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Abstract 

Liver cancer is one of the most prevalent cancer deaths 
worldwide. Thus, early detection and diagnosis of possible 
liver cancer help in reducing cancer death. Histopathological 
Image Analysis (HIA) used to be carried out traditionally, but 
these are time-consuming and require expert knowledge. We 
propose a patch-based deep learning method for liver cell 
classification and segmentation. In this work, a two-step 
approach for the classification and segmentation of whole-
slide image (WSI) is proposed. Since WSIs are too large to be 
fed into convolutional neural networks (CNN) directly, we 
first extract patches from them. The patches are fed into a 
modified version of U-Net with its equivalent mask for precise 
segmentation. In classification tasks, the WSIs are scaled 4 
times, 16 times, and 64 times respectively. Patches extracted 
from each scale are then fed into the convolutional network 
with its corresponding label. During inference, we perform 
majority voting on the result obtained from the convolutional 
network. The proposed method has demonstrated better results 
in both classification and segmentation of liver cancer cells. 

Keywords: Histopathological image analysis, Whole-slide 
image, Segmentation, Classification, Patch-
based method 

1  Introduction 

Hepatocellular Carcinoma (HCC) is the fourth most 
leading cause of cancer and is currently the biggest cause of 
liver-related death [1], constituting a major global health 
problem. Early detection and treatment can thus remarkably 
improve the likelihood of survival. Imaging techniques such 
as histopathological image analysis (HIA) [2] are considered 
ideal standard for cancer detection. Unfortunately, 
pathological analysis is a tedious and intense process that 
needs proficient knowledge. Thus, there is an increased need 
for processes that can automatically classify and segment the 
malignant cells in whole slide images.  

Computer-aided automatic image analysis of liver cancer 
has become feasible with the advancement in computer vision 
and pattern recognition techniques. Compared to the 
traditional methods based on hand-engineered features, 
computer-assisted (CAD) helps lessen the burdens of 
pathologists. The current computerized approach, however, 
has a myriad of obstacles. First, the data extraction procedure 

is costly in the medical domain [3] and usually amounts to 
class imbalance problems. Second, generated whole slide 
image (WSI) is of very high resolution scale, generally up to 
40 times magnification on a microscope. Third, the extracted 
information is difficult to generalize form medical point of 
view. And finally, the selection of features cannot be 
dynamically optimized with the change in dataset.   

The development of CAD allows the automatic extraction 
of features from low-to-high levels with the usage of 
convolutional neural networks. Such a network performs at 
low cost and requires no manual feature design and can 
recognize objects with utmost accuracy. Over the years, 
various deep learning approaches have been proposed and are 
still being developed. For example, classification architectures 
[4-6], segmentation architectures [7-9], detection architectures 
[10] and so on. Applying such models, different types of
histopathological image analysis have been carried out, such
as melanoma detection [11], breast cancer classification [12-
13], cancer cell segmentation [14-15]. However, HIA still
faces some challenges. First of all, HIA fails to generalize
complex clinical features. Secondly, the training data is
insufficient. And finally, the WSI size is too large, in the range
of 50,000x50,000 pixels, it is challenging to annotate and
perform analysis on it accurately.

To mitigate the above-mentioned problems, various 
techniques have been proposed. Among them, patch-based 
techniques are very popular and still in use. A whole slide 
image is cropped into various patches, and such patches are 
fed independently into a deep learning model during training 
and inference. For the prediction and result during 
classification and segmentation, the patches are aggregated in 
a suitable order. [16] and [17] showed compelling results 
based on patch-based methods for classification and 
segmentation tasks, respectively. In [16], two different modes 
of classification are proposed - one patch in one decision 
(OPOD) and all patches in one decision (APOD). 

In OPOD mode, for correct classification, all the extracted 
patches need to have same class label that matches with the 
ground truth. In APOD mode, final decision about class label 
is taken based on the majority voting among the classified 
patches. In [17] a U-net based approach to tissue segmentation 
in whole slide histopathological image is carried out. Patches 
of size 512x512 pixels are extracted, augmented, and fed to 
the U-Net network.  Many approaches have been applied to 
solve the data imbalance and insufficiency issue. For instance, 
[18] proposed a classification of histopathology images using
only global labels. Augmentation methods have also been
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applied to increase the size and diversity of the training dataset. 
[19] uses efficient image augmentation methods to alleviate
the demand for a large amount of data and improve the
network’s generalization capacity.

Given the complexities of liver cancer histopathological 
images and the insufficiency in training dataset, we propose a 
framework developed for analyzing whole slide images using 
patch-based methods. We have listed the advantages of 
proposed method as follows: 

1. Efficient analysis of image – A typical whole slide
image (WSI) can contain more than 50,000×50,000
pixels; utilizing patch-based methods, it can be
divided into several patches and analyzed
individually.

2. Training data insufficiency can be solved by utilizing
the augmentation approach. We follow a method
where each patch is further augmented into several
other patches and thus, we have an increased number
of training data.

3. We utilize a majority voting scheme that robustly
estimates the cancerous or non-cancerous liver tissue.

The organization of this paper is as follows. Section 2
consists of related work. Section 3 consists of methodology 
where dataset, network architecture, preprocessing, 
classification, and segmentation is discussed. Section 4 
consists of performance measure of classification and 
segmentation models. Finally, the conclusion is presented in 
section 5. 

2 Related Work 

2.1 Deep Learning Methods for Histopatho-
logical Image Classification 

The advent of convolutional neural networks has 
accelerated histopathological image analysis. With the usage 
of CNNs, the traditional hand-engineered features are no 
longer required, and features can be automatically easily 
extracted. However, CNN’s require a lot of data to generalize 
on them, and the medical domain suffers from dataset 
insufficiency.  

Especially in the medical domain, processes for tackling 
the improvement in classification performance and dataset 
insufficiency were required.  [18] uses global labels instead 
of patch-level labels to solve the problem of insufficient 
training dataset. They utilize transfer learning techniques to 
mitigate the issue of insufficient histopathological images. [20] 
uses augmentation strategy to have enough diverse samples. 
Augmentation also helps the network to generalize on the 
dataset. 

2.2 Deep Learning Methods for Histopatho-
logical Image Segmentation 

Due to the complexity of shape, texture, overlapping of 
cells, scanning devices, automatic segmentation is still an 
arduous task in deep learning. However, compared to manual 
methods, the deep learning methods can handle images with 
increased complexity. 

[21] uses a two-stage learning method based on U-Nets to
solve the challenging issue on Nuclei segmentation. This two-
stage method is used to solve the overlapping nuclei issue 
problem. Here, in the first stage, the nuclei image is segmented, 
and in the second stage, the overlapping nuclei image are 
segmented. Nucleus instance segmentation results from the 
first stage would be updated by addition of overlapped regions 
obtained from the second stage. [22] proposes an ensemble 
method where the sequence of techniques in the 
preprocessing-training-inference pipeline takes place. In 
preprocessing, they divide the WSI into patches to address the 
class imbalance issue; for training and inference, they use 
encoder-decoder architecture and follow it with a pixel-wise 
classification layer. [23] also uses the patch-based method; 
however, they allow 25% overlap during patch extraction. The 
extracted patches would then be passed to the convolutional 
neural network for prediction of possible tissue classes. After 
that, pixel-level segmentation is used to predict pixel-level 
activation maps before the extracted features of neighboring 
patches are averaged at overlapping areas. At the post 
processing stage, the segmented section is stitched together 
back to the slide level.  

2.3 Deep Learning Methods for Histopatho-
logical Image Classification and 
Segmentation   

The development of precise and efficient network for both 
classification and segmentation of tissue image is still a 
challenging problem because of the variations of tissue shapes 
and textures. Thus, algorithms must generalize on the tissue 
heterogeneity and learn to adapt to changes in tissue 
morphology. 

[24] trains two convolutional networks, one to identify the
nuclei blob and other for boundary detection. The CNNs 
consists of encoder-decoder architecture and extract nuclei 
pixels and nuclei boundary pixels and thus generating nuclei 
blob and border mask, respectively. The segmentation process 
is carried out by removal of nuclei boundaries and separation 
of clumped nuclei. They use ResNet-32 for training the deep 
neural network and use random forest regression model for 
classification purpose. In [25] authors have proposed a nuclear 
classification and segmentation network. Here, the nuclear 
pixels are first detected, and then with a post-processing 
method, nuclear instances are simultaneously segmented. 
With the segmented nuclear instances, corresponding nuclear 
type is also obtained. The overall network is based on 
horizontal and vertical distance maps. 

3 Methodology 

3.1 Dataset Description and Experimental 
Settings 

The dataset of liver cancer WSI was taken from the PAIP 
2019 challenge [26]. In the challenge, the participants were 
provided with 2 levels of dataset extracted from WSIs i.e., 
tumor with peritumoral reaction and tumor with minimal 
peritumoral or intratumoral reaction. The data and its 
segmented part were provided by Seoul National University 
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Hospital, Korea1. The training data contained 50 WSIs. Each 
image has an average dimension of 50,000x50,000 pixels.  

The histopathological images were split into three datasets 
of ratios 0.6,02 and 0.2, corresponding to training, validation, 
and testing datasets respectively. Since the histopathological 
images were too big to be directly fed into the convolutional 
neural networks, they were transformed into patches of 
224x224 pixels. Patches containing white background would 
be removed. In the classification stage, the whole slide images 
(WSI) were scaled three times. In the first step, 4 times, in the 
second step, 16 times, and in the last step, 64 times. 4 times 
scaled WSIs on average would have 50,000 images for each 
of positive and negative classes. The class imbalance among 
the dataset was mitigated through the augmentation process. 
Augmentation methods such as rotation, flipping, blurring, 
scaling and shifting was carried out. The 16 times scaled WSIs 
in average, would have 20,000 images for each of positive and 
negative classes, whereas the 64 times scaled WSIs in average 
would have 10,000 images for each of positive and negative 
classes.  

In the case of the segmentation stage, unlike in the 
classification process, the histopathological images were not 
scaled and only patches each of 224x224 pixels were extracted. 

3.2 Network Overview 

An overview of the proposed network can be seen on 
Figure 2. It is a multi-step, multi-stage network. The whole 
slide images are transformed into individual patches of 
224x224 pixels in the first step. Such patches are then fed into 
the encoder-decoder network. The individual segmented 
patches are then recombined and presented as result. In the 
next step, every whole slide image is scaled three times, i.e., 4 
times, 16 times and 64 times. Individual patches are extracted 
from all three of the scaled images and fed into the 
classification model separately. The result from all 3 training 
models is then aggregated, and a majority voting scheme is 
applied after which we obtain the class label of the image.  

In Figure 1 we can see the portion of the scaled images. In 
4 times scaled image, different shapes, textures, color 
distribution, are easy to quantify and read. On 16 times scaled 
image, the quality on scaled image gradually decreases 
compared with the prior scaled image. The texture, color 
distribution is slightly difficult to generalize. As we scale the 

WSIs up to 64 times, the image sharpness, color distribution 
loses its edge. The image is difficult to generalize. The texture, 
shape and color distribution are hazy. 

3.3 Pre-Processing 

As discussed earlier, the whole slide images (WSIs) are 
too large to be processed by convolution networks as a whole; 
thus, small patches need to be extracted from them. We also 
have to separate the tissue region from the background glass 
region of the whole slide image. For that, first, we extract 
patches without overlap using the patchify python package 
[27]. After the patches are extracted, we calculate the optimal 
threshold for each patch and remove the patches which contain 
white background. This white background denotes the 
background glass region. Segmenting them from the tissue 
region prevents unnecessary computational tasks. This step is 
repeated every time the WSIs are scaled for classification tasks. 
Finally, the patches which contain tissue regions are obtained 
and fed into the network for classification and segmentation 
tasks. 

3.4 Segmentation 

The proposed segmentation network can be seen in Figure 
3. The segmentation network takes influence from UNet++
[28] network. It is a deeply-supervised encoder-decoder
network where the encoder-decoder sub-networks are
connected through a series of nested, dense skip connections.
Unlike UNet++, we have used EfficientNet-B0 [29] as a
feature extractor in the encoding path. Each node receives
features as inputs from the previous node as well as the
upsampled output of the lower dense block as seen on Figure
3 which is then concatenated and convolved. Similarly, each
node also receives multiscale features at varying scale to
aggregate diverse feature maps. Furthermore, we reduce the
size of feature map by 2 at each level. On the decoding section,
we have used transposed convolution to match the size of
feature map with corresponding encoding section. 1*1
convolution followed with a sigmoid function is applied on
output of each decoding block.  Finally, the output of the end
layer and each decoding block with deep supervision [29] is
averaged to obtain segmentation result.

Figure 1. Scaled WSI for classification. From left, 4 times, 16 times and 64 times scaled image 

1 The de-identified pathology images and annotations were provided under the grant of the Korea Health Technology RD Project through Korea Health Industry 
Development Institute (KHIDI), funded by the Ministry of Health Welfare, Republic of Korea (grant number: HI18C0316).



906 Journal of Internet Technology Vol. 23 No. 4, July 2022 

Figure 2. Proposed method for classification and segmentation of liver cancer histopathological images 

Figure 3. Proposed modified U-Net architecture for whole slide image segmentation 

Loss function: The section to be segmented on the whole 
slide images is minuscule compared to the original image. 
This leads to class imbalance. So, we needed to choose a loss 
function that would have the potential to tackle this issue. The 
dice score coefficient is an overlap metric used to assess 
segmentation performance when ground truth is available. 
Dice loss [30] is a differentiable function that is defined using 
the predicted probability map and calculates a range from 0 to 

1 where 1 denotes perfect and complete overlap. Dice loss 
approximates dice score coefficient and is defined in the 
equation as shown below: 

𝐷1 =  
∑ 𝑝𝑛𝑟𝑛

𝑁
𝑛

∑ 𝑃𝑛
2+∑ 𝑟𝑛

2𝑁
𝑛

𝑁
𝑛

(1)
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where Dl represents dice loss, pn and rn denotes corresponding 
pixel value of predicted probability and ground truth.  

We have also used Jaccard Index [31] as a metric, also 
known as Intersection over Union, is one of the most used 
metrics in image segmentation. It defines the area of overlap 
between predicted segmentation and ground truth over the 
section of union between predicted segmentation and ground 
truth. Jaccard Index signifies similarity between sample sets. 
Itis represented in the range of 0 to 100% (0-1), 0 denotes no 
overlap and 1 denotes complete overlap between predicted 
segmentation and ground truth. It is expressed as follows: 

J (A, B) = |𝐴∩𝐵| 

|𝐴|+|𝐵|−|𝐴∩𝐵|
 (2) 

where A and B represents area of segmented region and 
ground truth. 

3.5 Classification 

For the classification, we have compared the results on two 
different classification models. At first, we have used 
EfficientNet-B0 [29]. This network is pre-trained on 
ImageNet dataset, and we fine-tune its final layers. We have 
used stochastic gradient descent [32] as an optimization 
method. The network is trained with a batch size of 64 and the 
learning rate is set at 0.0001 which is multiplied by 0.1 every 
time the patience level crosses 8. We have also used weight 
decay which is set at 0.0001 and momentum which is set at 
0.9. The second classification model we used is ResNet-50 
[33]. It is also pre-trained on ImageNet. We use Adam 
Optimizer [34] with a batch size of 64. The learning rate starts 
from 0.000001 and when a metric stops improving it is 
reduced by a factor of 0.1. The patience is set at 25 with 
number of epochs as 200. 

All patches are aimed at classifying images into two 
classes based on a majority voting scheme on its predicted 
patch labels. Let P, a = {1,2, ...n} be the patch extracted from 
the whole slide image I and L represent the class label of patch 
P such that l = [0,1]. The result is counted as, 

Ci
y = {

1 𝑖𝑓 𝑙 = 𝑡
0 𝑖𝑓 𝑙 ≠ 𝑡

 (3) 

where t = [1,2] corresponds to accurate class labels. The total 
count can be expressed as: 

fi = ∑ 𝐶𝑖
𝑦𝑛

𝑗=0
(4) 

The final label is one that majority of the individual 
classifiers agrees. The result can be simply expressed as: 

J = argmax| fi   |  (5) 

4 Implementation and Experimental 
Results 

We employed 29 whole slide images for the training set, 9 
images for validation, and 9 images for testing purposes. From 
each of the whole slide image, patches and their corresponding 
mask is generated -. On training, taking the mask as a 
reference, we remove the white background region of the 
WSIs. For that, we extracted patches from the WSIs, 
compared the threshold of color with its corresponding mask, 
and removed it if it exceeded its threshold. On inference as 
well, the network first extracts the patches from the whole 
slide images. The extracted patches are fed through the 
network to obtain the segmentation maps. These individual 
maps are then aggregated to get the result and can be seen on 
Figure 4. Since patchification and un-patchification takes 
place, there are certain noises in the result. We can see that the 
patch-based method requires generality features in the patches 
for them to be equally efficient. And if such a case is not 
possible, then it might be better to use to convolutional 
networks that take entire image as input and produce result at 
a single forward pass. We obtained a Dice score of 0.69 and a 
Jaccard index of 0.68. The performance result can be seen in 
Figure 4. The predicted image is closer to the ground truth, 
however, there does exist certain noises and inconsistencies in 
the boundary. 

Figure 4. Result of the segmentation process 
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For better results, we have used two different models for 
classification purposes. These models are ResNet-50 and 
EfficientNet-B0. We have adapted a majority-voting scheme 
to obtain the final results. For that reason, as discussed earlier, 
the whole slide image is scaled at 3 different scales, i.e., at 4 
times scaled, at 16 times scale and 64 times scaled. Patches of 
224x224 pixels would then be extracted from each scaled 
image and fed into two different models. At total each of the 
classification model had to be trained 3-3 times respectively. 
The result from 4 times, 16 times and 64 times scaled would 
then be sent through the majority voting scheme. Both models 
performed well. We used 9 WSI for testing purpose and all the 
images were accurately classified. The training loss plot can 
be seen on Figure 5. As seen from the figure, all of the 

classification models stop learning at around 180 epoch. The 
training beyond that is to just confirm the model saturation. 
The final result of each classification model can be seen on 
Table 1. We see better performance of both models on 4 times 
scaled images. And the learning accuracy seems to gradually 
decrease with the scale. Among the models, EfficientNet-B0 
outperforms ResNet-50 at all scales. ResNet-50 is 50 layers 
deep with constant convolutional and max-pooling layers. The 
added skip connection helps in retaining previous information 
and provides an alternative path for the gradient. Contrary to 
ResNet-50, EfficientNet-B0 uses clever scaling depth, width, 
and resolution. This helps in improving accuracy, training 
time, and convergence as evident in Table 1. 

Figure 5. Training Loss plot of 6 different classification approach (Bracketed term means the scaled image parameter) 

Table 1. Learning accuracy of ResNet and EfficientNet model 
Scale ratio ResNet-50 EfficientNet-B0 

4 93.31% 96.2% 
16 89.8% 92.8% 
64 86.21% 89.21% 

5 Discussion and Conclusion 

In this paper, we have carried out both segmentation and 
classification of liver cancer in histopathological images. We 
have utilized patch-based methods for both segmentation and 
classification tasks and obtained compelling results. In the 
case of classification task, we have scaled the images 3 times 
and determined the result based on the majority score. The 
proposed method shows that the model can accurately classify 
the liver histopathological images into cancerous or non-
cancerous type. For segmentation task, we have used modified 
version of traditional U-Net which produced exemplary 
results. 

Our approach reduces the need for large training corpus 
annotated by expert pathologists. The usage of augmentation 
approach has helped in increasing the training dataset as well 
as adding regularization in the network. Prior methods have 
usually focused on either of segmentation or classification task, 
hence there exists a lack of relevant studies on a combined 
network that can accurately perform segmentation as well as 
classification. This also leads to lack of comparative results. 
To that end, our proposed method can accurately classify and 
segment histopathology images. 
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