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Abstract 

To ensure the confidentiality of the message, the AES 
(Advanced Encryption Standard) block cipher algorithm can 
be widely used. Furthermore, an implementation of masked 
AES is often used to resist side-channel attacks. To recover 
secret keys embedded in cryptographic devices with masked 
AES, we present some side-channel attacks based on deep 
learning models in profiling and non-profiling scenarios. The 
proposed method which applies the mask value profiling 
technique represents new approaches for extracting the secret 
key. To defeat the masked AES implementation, deep learning 
models such as multi-layer perceptron and convolutional 
neural networks are developed. In a non-profiling scenario, we 
adopt the DDLA (Differential Deep Learning Analysis) to 
extract sensitive information such as the secret key. The main 
idea of our method is that it is possible to adopt a new binary 
labeling method to conduct the DDLA based on the HW 
(Hamming Weight) model. We show several experiments 
using real power traces measured from the ChipWhisperer 
platform in profiling attacks and the ASCAD dataset in non-
profiling attacks respectively. Whether we target naïve or 
masked AES implementation, the experimental results show 
the predominant key recovery accuracy. 

Keywords: Internet of things, Side-channel attack, Masked 
AES implementation, Deep learning 

1  Introduction 

The AES (Advanced Encryption Standard) [1] known as 
the most representative block cipher can be used to provide 
confidentiality of communication messages between two 
peers. Nevertheless, several side-channel attacks have been 
proposed as an easy way for an adversary to find secret keys 
stored in hardware devices [2-3]. The power analysis attack, 
which observes power consumption as leakage information, is 
one of the most popular side-channel analyses. In particular, 
the side-channel attacks [4-5] on naïve implementation of 
block cipher algorithm are considered serious threats to 
ensuring confidentiality. 

To defeat side-channel analysis, several countermeasures 
have been proposed. The masking countermeasures, in which 
we randomize the intermediate computation values, are widely 
used to thwart side-channel analysis. Furthermore, the 

masking technique can be also adopted to protect AES 
implementation.  

A Boolean masking method is used to protect the 
vulnerable AES implementation. Here, the output of the S-
Box is randomized using a Boolean function such as the XOR 
operation [6]. The security level of the masking technique can 
be evaluated as the number of secret shares. We call a 
countermeasure in which d masks are applied to one variable 
as a 𝑑 -𝑡ℎ  masking, and this countermeasure can provide 
robustness against 𝑑-𝑡ℎ order attacks. 

In this paper, we present several power analysis attacks 
that can extract the secret key using the profiling and non-
profiling based on Multi-Layer Perceptron (MLP) [7] and 
Convolutional Neural Network (CNN) [8] models. The 
practical research on side-channel attack has seen some 
interesting advancements since its introduction by Z. 
Martinasek et al. [9], in which was MLP shown to break naive 
AES. And R. Gilmore et al. demonstrated that the masked 
countermeasure of AES can be incapacitated by a neural 
network-based profiling attack [10] with 91.8% accuracy for 
recovering the mask values and 88.4% for secret keys 
respectively. 

In the non-profiling scenario, we use the DDLA 
(Differential Deep Learning Analysis) [11] to defeat the first-
order masking countermeasure. The DDLA is a deep learning-
based non-profiling attack method. In the attack phase without 
the profiling phase, we train the deep learning models for each 
hypothetical key. If there was a validate key, this correct key 
can be extracted through the difference of metric values such 
as accuracy and cost (loss). One of the important factors that 
determine the success of non-profiling attacks is how to 
determine the label of deep learning models, including HW 
(Hamming Weight) labeling and binary labeling. We proposed 
a novel HW-based binary labeling method in consideration of 
performance and efficiency. 

We present some experiments on masked AES 
implementation using real power traces measured from the 
ChipWhisperer platform in profiling attacks and the ASCAD 
dataset [12] in non-profiling attacks respectively. In the 
profiling attacks, we divided the deep learning-based analysis 
into two phases: mask value recovery and masked Sbox output 
recovery phase. We perform power analysis attacks using 
MLP and CNN models by directly implementing the AES-128 
encryption on the XMEGA128 microcontroller [13]. 

 Furthermore, we can break the masked AES using the 
MLP-based DDLA without any preprocessing or separating 
the attack steps. As a result, we confirmed that the secret key 
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of masked AES can be extracted with 81.0% accuracy using 
MLP and 75.4% accuracy using CNN. And the DDLA attack 
can extract perfectly the secret key of masked AES 
implementation when the epoch value is 10 or more. 

2 Overview of Side-Channel Analysis 

2.1 Power Analysis Attack 

Side-channel signals, such as power, electromagnetic 
radiation, or operational time signal leaked hardware, can be 
used to extract sensitive information. We often divide these 
side-channel attacks into two categories. One is so-called 
profiling attacks such as the template attack, the stochastic 
attack, and machine learning-based attacks [14-18]. The other 
is non-profiling attacks such as DPA [2], CPA [3], and MIA 
[19].  

In the case of 1st-order CPA, the attacker measures several 
side-channel signals and generates a leakage model of S-Box 
operation (Sbox(p⊕ k)). Then, the attacker analyzes the 
correlation between the side-channel signal and modeled 
leakage to extract the secret key. Here, we denote p as the input 
message and k as a secret key. 

In the profiling attack, before the attack on the victim 
device, we should measure the power traces at POI (Points Of 
Interest) of the profiling device in advance. After that, we can 
re-setting the embedded key of the profiling device for 
measuring side-channel leakage. 

2.2 Countermeasure 

To thwart the side-channel analysis, the masking 
countermeasure that unlinks the dependency between the side-
channel signal and calculated (expected) leakage using some 
random numbers. Boolean masking, one of the several 
masking techniques, is usually used to protect naïve AES 
implementation consisting of the simplicity of Boolean 
operation. In Boolean masking, the sensitive information such 
as the Sbox operation, Sbox(p⊕k) in AES algorithm, should 
be hidden by XORing it using a random mask value as follows: 

S= Sbox(p⊕k) ⊕ mo = MSbox(p⊕mi⊕k)   (1) 

Our focus is 1st-order masking, where an original Sbox 
output is hidden by an input mask mo such as S= Sbox(p⊕k) 
⊕ mo. In the first-order countermeasure, the value of (p ⊕ 
k) can be denoted as a variable x. That is, S= Sbox(x)⊕ mo =
MSbox(x ⊕  mi). To implement a first-order masking
countermeasure, we generate MSbox using the following
equation:

Sbox[index]⊕ mo = MSbox[index ⊕ mi ]   (2) 

For the second-order attack, the attacker has to combine 
side-channel leakages from two POIs using some 
mathematical methods. Then, the distinguisher such as 
Pearson’s r is used to recover the secret key leaked from the 
masked intermediate values. 

3 Deep Learning Techniques 

Deep learning is a kind of machine learning technique that 
uses a neural network. A neural network is composed of 
perceptrons (neurons). To perform profiled SCAs, some 
previous publications were presented using different types of 
neural networks such as MLP and CNN [9-10, 16-18]. In [20], 
E. Cagli et al. showed that the CNN’s translation-invariance
property shows outstanding performance with misaligned
signals. Therefore, we will intensively apply MLP and CNN
models to perform power-based SCAs successfully.

The Deep learning model has been adopted to break some 
cryptographic algorithms. The process of DL-based side-
channel analysis consists of the two steps:  

- A training step: In this step, several side-channel signals
measured from the profiling device are utilized to tune the 
weights to minimize error. 

- A inference step: In this step, sensitive intermediate
values can be extracted. 

3.1 Multi-Layer Perceptron (MLP) 

The MLP consists of perceptrons stacked in multi-layer as 
described in Figure 1. An MLP model is composed of an input 
layer, some hidden layers, and an output layer. The output of 
each node is forwarded to the next layer. The weights are 
tuned to minimize the error in the training step. 

Figure 1. A brief structure of the Multi-Layer Perceptron 
model 

3.2 Convolutional Neural Network (CNN) 

The structure of CNN is composed of a feature extraction 
layer and classification layer as shown in Figure 2. The feature 
extraction layers have two types of sublayers: the 
convolutional layer, and the pooling layer. The convolutional 
layer conducts the convolution on the input data by shifting a 
set of kernels (filters) and passing its result to the pooling layer. 
The pooling layers are used to decrease the computing load by 
compressing the data. In the phase of training the CNN model, 
we optimize the weights of the filters to extract features.  
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Figure 2. Convolutional Neural Network model 

4 Side-Channel Analysis Based on the 
Deep Learning Models 

In the next section, our side-channel attacks based on deep 
learning models are more effective than other previous attacks 
through experimental attacks on AES implementations. 

4.1 Experimental Setup 

For the profiling and non-profiling attack, we set up the 
experimental environment using a ChipWhisperer platform 
[13]. In the profiling attack scenario which has a profiling 
device, we measure the power consumption traces while AES 
encryption is being performed. Then, the adversary attempts 
to extract the secret key of AES by measuring a power trace 
of a victim device. On the other hand, the profiling scenario 
assumes that an adversary can only use measurements from 
the target device. 

For experimental side-channel attacks, we implement an 
AES encryption scheme on a target board equipped with an 
XMEGA128 microcontroller. In addition, we supply the clock 
signal of 7.37MHz to the target board using the 
ChipWhisperer capture board. The traces measured from the 
target board were divided into a 3:1 ratio for the validation and 
test phase. 

4.2 Attack on Naive AES Implementation 

We only discuss the AES encryption with a 128-bit secret 
key as shown in Figure 3. First, the 16-byte plaintexts are fed 
into the AddRoundKey function, in which inputs are XORed 
with the initial round key. After initial AddRoundKey 
processing, the state composed of a 4x4 matrix of bytes is 
followed by round transformations such as SubBytes, 
ShiftRows, MixColumns, and AddRoundKey functions. The 
MixColumns operation is skipped in the final round. 

Figure 3. A structure of AES encryption 

The following Figure 4 shows a particular magnification 
of the power signal measured from 1~3 rounds of AES. The 
small patterns for 16 bytes in a power signal can be identified. 

Figure 4. A Power signal of AES encryption 

Thousands of training data concerning the Sbox output 
were characterized. Here, the sample value of each power 
signal is used as a feature of the training data, and the label is 
generated as the SBox output values. Therefore, the number of 
input neurons is equal to the length of the power signal. 

The goal of the attack is to classify the input vector to the 
corresponding Sbox output. The output layer is consist of 256 
perceptrons according to the range of SBox output values 
(0~255). After finding the Sbox output x, the secret key of the 
initial AddRoundKey can be extracted by computing k = (p 
⊕Inverse Sbox(x)). The following Figure 5 shows two side-
channel attacks on naive and first-order masked AES. 

Figure 5. Attacks on naive and first-order masked AES 

Our MLP model consists of two hidden layers (500 nodes 
per layer). We measure a total of 10 thousand power signals 
and split them into 3:1 for training and validation. The length 
of input nodes of MLP is equal to the sample points of a power 
trace. In this case, the power traces consist of 100 sample 
points containing the Sbox operation. And the length of the 
output layer is 256 (1 byte). The cost function and optimizer 
we used are cross-entropy and the Adam function. 

In the CNN-based attack, we feed 100 points per power 
trace according to the Sbox outputs as the inputs of nodes. As 
those in the MLP model, the output is designed to have 256 
nodes. We use two hidden layers that perform two 
convolutions using 16 kernels of sizes 8 and 4 respectively. 
However, we exclude the pooling layer to minimize the loss 
of features. And we adopt the ReLU activation function for 
each perceptrons. And we adopt dropout layers with a 0.25 
dropout ratio. 
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4.3 Attack on Masked AES – Profiling Scenario 

To apply a 2nd-order attack to 1st-order masked AES, we 
also implement it on an XMEGA128 board. The outputs of 16 
S-boxes of AES are masked with a mo. Our 2nd-order attack
was performed against the following target points: the mask
value and the output of the MSbox. The profiling process of
mask values and MSbox output values is pre-completed in the
same way as the bottom of Figure 5.

In the mask value profiling phase, the output mask mo is 
labeled. In our experiments, the 24,400 samples of a power 
signal of the following instruction: 

Sbox[index] ⊕ mo = MSbox[index ⊕ mi ].  (3) 

The main difference between the 1st-order and 2nd-order 
attack models is the label used in the training phase. In the 
previous naive AES implementation, the label for extracting 
the secret key is Sbox output. On the other hand, since we first 
need to recover the mask, we use the masking value as a label 
of the DL model.  

In the training phase on MSbox, we select the output value 
of MSbox as a label, that is, Sbox[x]⊕ mo =MSbox[x⊕ mi]. 
The power signals of SubBytes MSbox[x⊕ mi] are used as 
input values of DL models. Since mo and MSbox[x⊕ mi] are 
extracted through our DL models, we can easily derive the 
output of Sbox by solving the following equation: 

Sbox(x)= (Sbox[x]⊕mo]) ⊕mo =MSbox[x⊕mi] ⊕mo  (4) 

When Sbox[x] is known, the secret keys used in the initial 
AddRoundKey function could be extracted by computing k = 
(p ⊕ Sbox-1(x)).  

The accuracy of DL models according to the evolution of 
epochs is shown in Figure 6. In naïve AES implementation, 
the adversary succeeds the secret key recovery with more than 
98% accuracy in the MLP and CNN models at 200 epochs. 
When applying the MLP and CNN models in first-order 
masked implementation, the attacker extracts the secret key 
with accuracies of 81.0% and 75.4%, respectively. Even 
though it is not shown in Figure 6, the recovery accuracy for 
mask value in each model is 100% at 10 epochs.  

Figure 6. The accuracy of our attacks according to the 
evolution of epochs 

We described the accuracy of side-channel attacks based 
on DL models on several AES implementations as shown in 
Table 1. First, we can observe that the secret key of naïve 
implementation can be extracted with an accuracy of over 98% 
by our MLP-based or CNN-based attack. Therefore, our 

practical result achieves a significant improvement compared 
to previous research. 

Table 1. The comparison of DL-based attacks 
DL-based Attack
Model

Unprotected 
(Sbox) 

Protected 
Mask MSbox 

MLP [9] 93.7% - - 

MLP [16] 88.5% - - 
CNN [17] 89.8% - - 
SVM+CPA [18] - 88.0% - 
ANN [10] - 91.8% 88.4% 
Our MLP 98.4% 100% 81.0% 
Our CNN 98.9% 100% 75.4% 

In a previous 2nd-order attack on a protected AES 
implementation proposed by Lerman et al. [15], the mask 
value was recovered with about 88% accuracy using a support 
vector machine, and the secret key could be extracted by 
performing the existing CPA attack. R. Gilmore et al. showed 
that their neural network-based attack on a masked AES can 
recover the mask value with 91.8% accuracy and masked Sbox 
output with 88.4%. As mentioned above, our DL model attack 
achieves 100% accuracy in the mask value recovery phase, 
and 75% and 85% accuracy in CNN, and MLP models, 
respectively.  Therefore, our DL-based attacks show the 
overwhelming key recovery accuracy, whether it is an 
unmasked or masked implementation of AES. 

4.4 Attack on Masked AES – Non-Profiling 
Scenario 

As mentioned above, the non-profiling attacks statistically 
analyze traces measured from the only target board. The 
DDLA attack can surpass traditional non-profiling attack 
methods, such as differential power analysis and correlation 
power analysis. In particular, DDLA can perform high-order 
attacks and defeat masking countermeasures without signal 
combination. Note that DDLA can be performed without any 
leakage combination and knowledge about the specific secret 
sharing structure. 

Since DDLA is carried out in a non-profiling scenario, we 
guess all keys in key space (1-byte in out attacks). 

Whenever a hypothetical key is guessed, labels according 
to each power signal are created using known input (plaintext). 
Then, the training and validation steps are conducted. Here, 
the guessed key is equal to the correct key, and the PoI of the 
power signal is correlated to the label. Consequently, the 
model trained with the correct label shows surpasses other 
models in terms of metric values such as accuracy and loss. 
That is, the model trained with the correct label shows 
relatively high accuracy and low loss values rather than other 
models. Thus, the correct key can be extracted by examining 
the metric values.  

It is important to select metrics and labeling to reveal the 
correct key during the DDLA attack. We applied MLP-DDLA 
with an accuracy metric over the epochs per guess on 10,000 
power traces. That is, we adopt the MLP model as an 
underlying neural network and accuracy value as a metric. 
Here, we proposed a novel HW-based binary labeling method 
instead of the known methods such as HW, MSB, and LSB 
labeling. The HW-based binary labeling method assigns label 
‘1’ if the Hamming weight of the intermediate value v, which 
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is generated by guessed key and input message, is greater than 
a certain value, and ‘0’ otherwise. 

𝐿 = { 
0  𝑖𝑓 𝐻𝑊(𝑣) < 4

1  𝑖𝑓  𝐻𝑊(𝑣) > 4
(5) 

Here, we use the open dataset ASCAD which adopted 
first-order masking. Then, we perform a DDLA attack phase 
using this dataset. The following Figure 7 shows that the 
correct key ‘0xE0’ is distinguished from the group of 255 
wrong keys. Therefore, our DDLA attack can extract perfectly 
the secret key of masked AES implementation when the epoch 
value is 10 or more. 

Figure 7. The result of a DDLA on first-order masked AES 

5 Conclusions 

In this paper, we evaluate the security level of unprotected 
and protected AES implementation using two DL-based side-
channel attacks. Furthermore, the MLP and CNN models in 
the profiling attack on AES implementation are developed to 
break the first-order masking countermeasure. Our profiling 
attack on protected AES is composed of two phases, the first 
phase targets the mask value, and the second is the masked 
intermediate value.  

To recover the secret key using a non-profiling attack, we 
adopt the MLP-DDLA.  Here, we present a new HW-based 
binary labeling method to improve the performance of DDLA 
attacks. Our experimental results show the overwhelming key 
recovery accuracy when targeting the masked implementation 
of AES. Consequently, we found that an adversary could 
extract the secret key of first-order protected AES 
implementation with 81.0% accuracy using the ML-based 
profiling attack. And the non-profiling DDLA attack can 
extract perfectly the secret key of masked AES when the 
epoch value is 10 or more. Future work can include optimizing 
the DL models to minimize the number of traces required for 
SCAs and designing high-order countermeasures. 
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