
Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 875

*Corresponding Author: Jung Taek Seo; E-mail: seojt@gachon.ac.kr
DOI: 10.53106/160792642022072304022

Detection and Blocking Method against DLL Injection Attack Using
PEB-LDR of ICS EWS in Smart IoT Environments

Junwon Kim1, Jiho Shin2, Jung Taek Seo3*

1 Department of Information Security Engineering, Gachon University, South Korea
2 Police Science Institute, Korean National Police University, South Korea
3 Department of Computer Engineering, Gachon University, South Korea

junone@gachon.ac.kr, suchme@police.go.kr, seojt@gachon.ac.kr

Abstract

Modern Industrial Control System (ICS) can provide vast
functions as the introduction of IT technology is established
along with the introduction of the IoT environment.
Engineering Workstation (EWS) used by ICS is widely used
to efficiently manage and control industrial devices including
smart IoT devices. However, the DLL injection attack in ICS
is not high in difficulty compared to the risk, but it can cause
fatal malfunction. If an attack is carried out targeting the EWS,
it may cause erroneous operation in many control devices,
including IoT devices, cause fatal accidents throughout the
Supervisory Control and Data Acquisition (SCADA) system.
In this paper, we present a method to detect DLL injection
attacks by specializing in EWS used in ICS in IoT
environment and purpose a method to detect data changes due
to DLL injection attacks by analyzing and utilizing PEB-LDR
data. Also, we purpose a method to detect and block execution
when a malicious DLL is suspected to be loaded by DLL
injection.

Keywords: Industrial Control System (ICS), Internet of
Things (IoT), Engineering Workstation (EWS),
Process Environment Block (PEB), Dynamic
Link Library (DLL), Injection

1 Introduction

In recent years, the succession of the IT technology of the
Industrial Control System (ICS) has changed it to a more
flexible and effective operation method, and the modern ICS
is utilized in infrastructures and improved productivity and
operational efficiency such as power plant, transportation,
smart city. Engineering Workstation (EWS) used in ICS is an
integrated tool that can manage Programmable Logic
Controller (PLC) logic and monitor industrial devices.
However, the introduction of IT technology not only improved
the level of ICS operation, but also led to the appearance of
new attacks that did not appear before, such as an increase in
the attack surface and connection to an external network.
Unlike the information system, the existing ICS operates
based on a closed network, so it is recognized that it is safe
from external attacks. Conversely, this awareness is an
important issue that can lead to negligence of internal workers’
security and cause potential risk that can cause physical

destruction, property damage. In recent years, as smart IoT
and industrial IoT devices start to converge with ICS and
operate together, it is difficult to rely on the physical
environment security of ICS any longer [1]. Now, as IoT
technology is introduced into ICS, security-related functions
such as key management, intrusion detection, and additional
access control are required [1]. A lot of time has been devoted
to research on intelligent methods to detect and identify risk
factors of installed industrial IoT devices [3-4]. This operating
environment includes the smart IoT mobile environment in
which ICS supports IoT-based mobility [5], and ICS security
is also unavoidable for proper computing operation. Among
ICS threats based on IoT environment; Dynamic Link Library
(DLL) injection attack is not high in execution difficulty
compared to attack severity, and an attacker can easily control
the system, which is a serious attack that can cause fatal
accidents to the infrastructure. For example, the Stuxnet
malware caused malicious behavior by damaging the EWS
installed on a network PC that was closed in a nuclear facility
[6]. As a result, it is impossible to identify if the actual attack
was caused by a DLL injection attack used by a malicious
intruder. Thus, the logic data of Siemens PLC could not be
observed normally. It resulted in physical destruction of the
device [7]. As such, there is an attack tendency to change core
functions targeting EWS, and DLL injection attack detection
and defense technology targeting EWS is essential.

In this paper, we analyzed the behavioral tendency of
attackers to perform DLL injection to detect DLL injection
attacks specialized for EWS. In addition, we proposed a
whitelist chain-based detection method using PEB-LDR data
existing in the EWS process, and able to detect the intrusion
of malicious DLLs through DLL injection. Also, we proposed
the methods to detect the DLL injection and applied the
whitelist chain concept that considers the operational
characteristics of the IoT-based ICS environment, using the
Microsoft Detour [8] tool together with a technology to block
DLL injection, an attempt by an attacker to inject a DLL in the
EWS process. This paper consists of 7 detailed sessions, which
are as follows:

Session 2 describes the analysis of existing research cases
to prevent DLL injection in the ICT environment and
describes the direction to be supplemented by specializing in
the ICS based-on IoT environment. Session 3 describes the
results of observing the data of the Process Environment Block
(PEB) structure containing process information, the results of
examining the Ldr field to obtain the DLL information

876 Journal of Internet Technology Vol. 23 No. 4, July 2022

referenced in the process, the analysis of the list data contained
in the Ldr field. In Session 4, through the field analysis result
of LDR_DATA_TABLE_ENTRY (LDTE) type analyzed in
Session 3, it describes a method to create a whitelist chain that
can detect DLL injection considering environmental factors
that can be used for ICS based on IoT environment. Session 5
presents a method of acquiring information from a target EWS
process to create the whitelist chain proposed in Session 4 and
a monitoring method for detecting the inserted DLL. Session
6 describes the details and results of the detectability
experiment by applying the whitelist chain-based collection
method proposed in Sessions 4 and 5, to block the injected
malicious DLL, the behavioral tendency of DLL injection
from previous studies. By suggesting and applying a technique
that can block it, proved that it is possible to ultimately block
the DLL injection attack. Finally, Session 7 describes the
experimental results and analysis contents were
comprehensively summarized, and the future scope we intend
to proceed.

1.1 Contributions

We presented the method to detect and block the DLL
injection that aimed at EWS running on IoT Environment-
based ICS and analyzed the PEB information that can identify
or acquire DLL-related events and actions, identified the
components of detailed fields. The above findings are
expected to contribute as follows:

Information gathering. We investigated the PEB data
structure to discover elements that can detect DLL injection in
the Windows OS environment, and collected information from
the Ldr detail field, a key field of PEB. These analysis results
can be effectively utilized when acquiring DLL information
used by the process.

Detection and blocking. By targeting the EWS used in
the ICS environment, it is possible to minimize the attack
damage by proposing a method to detect and block DLL
injection attacks.

Versatility. The proposed technique can be applied not
only to the EWS process, but also to important programs in
other fields, which can protect against DLL injection, and can
also be applied to target multiple processes whose availability
may be compromised by an attacker.

2 Related Works

Although the DLL injection attack is a well-known and
threatening attack in the IT field, ICS combined with IT
technology is now forming a target that can threaten it.
Relevant research includes the following categories: Klein et
al. (2019) presented various trends and attack penetration
processes of APIs that attackers call to perform intra-process
injection [9]. In addition, Park et al. (2015) analyzed a
malicious code execution routine that allows malware to
execute code for Command and Control (C&C) in a process
through Windows API hooking [10]. Through these research
results, they studied the major APIs and function calling
methods used 2 to succeed DLL injection and warned of the
high fatality rate of DLL injection attacks. Originally, DLL
injection was originally a method widely used for code
patching and maintenance, but it proved that there are not a
few cases of using it for malicious purposes. Due to this

recognition, several techniques have been proposed to protect
against high-risk DLL injection attacks. For example, Lee et
al. (2020) to propose an anti-injection technique for DLL
injection targeting Supervisory Control and Data Acquisition
(SCADA), In order to block DLL injection, an attacker’s
tendency has been analyzed and a method of monitoring and
blocking through Import Address Table (IAT) hooking has
been proposed [7]. In addition, Berdajs et al. (2010) hooked
the CreateRemoteThread function, which is mainly used for
DLL injection, to block separate inspection codes through
inline-based code insertion [11]. Sun et al. (2006) proposed an
exploit blocking technique through API monitoring using
Process Environment Block (PEB) data [12]. These studies
succeeded in blocking the x86 based operating system, but it
needs to conduct and verify an experiment on the x64
(AMD64) based operating system. Conclusively, there is a
limit that the x86 call stack-based blocking technique is
incompatible with the 64-bit method difference. In addition,
APIs with suffixes such as -Ex, -A, -W, -ExW, etc. exist
depending on the use of Unicode, multi-byte character set, and
extended type of functions as the main API used for DLL
injection. Hooking and verifying all these APIs has a
disadvantage in that it is less effective in terms of performance.
Crucially, there are cases where the DLL injection technique
is used for good faith purposes such as patching and
maintenance of vulnerable code, and when an injection event
occurs, an additional method of determining whether it is a
normal event is needed. As the proportion of programs
expanded to 64-bit increases, additional defense techniques
are also required. A study to block malicious DLL execution
was also presented, Syed et al. (2015) proposed a technique to
block malicious DLLs loaded in memory by detecting
Windows API hooking [13], Mira (2019) proposed a method
to detect abnormal activity by analyzing DLL data and
monitoring the sequence of API calls to block the inflow of
malicious DLLs [14]. However, as proposed by Shankarapani
et al. (2011) [15], Yusirwan et al. (2015) [16], Bae et al. (2019)
[17], presented the technical method to conceal and obfuscate
the malware execution routine, these case of deliberately
packed advanced malware, these malicious codes have
limitations in lowering the success rate of not only API trend-
based detection techniques but also code data-based detection
techniques. Specially, since the DLL injection attack operates
with a routine very similar to the existing injection-based good
faith program, determining whether to determine the attack
through code data that induces loading a malicious DLL has a
problem that may cause a false diagnosis. For instance, the
Stuxnet case also caused substantial damage by the injected
malicious DLL, not the result of executing the code executing
the DLL injection and has the disadvantage of having to go
through 2 detection processes (injection, code execution) to
block [18].

Recently, with the development of computing resources,
various research cases using machine learning (AI) have
appeared. Fan et al. (2015) proposed a method to detect
malware by mining API log data [19], Hwang et al. (2017)
conducted a study to block DLLs by learning the features of
the section data area and the features of DLLs to analyze
malware [20]. Ha et al. (2018) conducted a study to block the
execution of malicious DLLs by learning API statistics for
malicious DLLs [21]. In addition, Matsuda et al. (2020)
investigated various methods based on DLL data and proved
a recall result of 97.45% for the malware detection rate using

Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 877

a deep learning algorithm [22]. This technique is highly
accurate because it detects based on linear algebra values such
as statistical estimation and regression analysis based on
machine learning. However, in order to derive meaningful
results, there is a disadvantage in that the learning step requires
a lot of time and a lot of learning data, but the data must be
composed of quantitative data. In other words, a detection
technique based on machine learning requires many pre-
processing and learning processes to derive results. In addition,
in the industrial control system environment where the EWS
process operates, there are restrictions on the application of
detection techniques due to the use of limited resources for
securing availability and the use of unpublished industrial
protocols [7, 23]. Notably, since the industrial control system
has a communication system based on a closed network and
unidirectional data transmission, it is difficult to apply a
detection technique for external inflow such as network
monitoring [23-24].

When considering the ICS environment, verification is
possible in both x86/x64 based environments as presented
above, and a plan is needed to increase the efficiency of
detection based on existing API hooking. In addition, it does
not depend on an external connection such as a network and
must be able to meet resource constraints that can minimize
preprocessing for detection and blocking. To this end, we
analyzed the existing API calling method to detect and block
malicious DLL injection along with a whitelist chain design
technique using PEB-LDR data and proposed a method to
increase detection efficiency. This not only complements the
existing limitations and disadvantages but can also be
additionally applied to the IT field and contributed to the
deduction of DLL injection detection and blocking method
technologies.

3 Overview and Analysis of PEB-LDR

DATA (PLD)

3.1 Observing PEB Data of Process

PEB, one of the basic data structures used in Windows OS,
loads process information, and PEB information exists in all
processes running in the OS [25]. PEB is defined as a single
structure and is a data structure containing process load
information [26]. Microsoft has disclosed the purpose of use
of the seven fields constituting the PEB based on the date of
analysis [26]. If “nt!_PEB” structure is mapped using WinDbg
for the PEB address of an arbitrary process, Figure 1 displays
not only the result that it can be verified that Ldr is included
in the PEB structure but also the same as the result of inputting
“dt nt!_PEB @$PEB” command in WinDbg. Among the PEB
fields, we propose a detection method by using the Ldr field
data that loads the information of the loaded module in Section
3.2.

Figure 1. Ldr field which located at PEB

3.2 Detailed Analysis for PLD Structure

The Ldr field is a data structure variable with PLD
structure format, and the PLD structure consists of three fields
[27]. Since Ldr contains the information of modules loaded in
the process, we present a method for constructing information
that can detect DLL injection by using this information in
Section 3.3. However, before using Ldr data, we checked that
the purpose of use of some data fields constituting the PEB
structure and PLD is still not documented. The process of
obtaining detailed information for each field is necessary, and
research cases that analyze the purpose of use of each field
constituting the PLD structure data including PEB data were
referred to [9, 12]. Debugging tools such as WinDbg were
used to learn detailed field information, and PEB and PLD
symbols can be found by connecting to Microsoft Symbol
Server [28]. Through this, the fields of each data structure can
be briefly analyzed. Based on the operating system version
Windows 10 Pro 64-bit, build 18362, it was verified that the
details of the PEB and PLD field data differ from the previous
research results, and this is estimated due to internal reasons
of Microsoft. Particularly, it was verified that there are 9 fields
in the PLD that we want to use for detection, Table 1 and Table
2 describes a detail of each field.

878 Journal of Internet Technology Vol. 23 No. 4, July 2022

Figure 2. Example of LDTE linkages, depicted in a double linked list (Base on Windows 10 Pro 64-bit, build 18362)

Table 1. PLD structure data fields & data type (Based on
Windows 10 Pro 64-bit, build 18362)

Field Name Type

Length ULONG

Initialized UCHAR

SsHandle HANDLE

InLoadOrderModuleList LIST_ENTRY

InMemoryOrderModuleList LIST_ENTRY

InInitializationOrderModuleList LIST_ENTRY

EntryInProgress PVOID

ShutdownInProgress UCHAR

ShutdownThreadId PVOID

Table 2. PLD structure data fields description (Based on
Windows 10 Pro 64-bit, build 18362)

Field Name Description of usage purpose

Length The size of the structure used by
ntdll.dll as Structure Version ID

Initialized If TRUE, the Loader Data Session for
the current process is initialized

SsHandle Unidentified

InLoadOrder
ModuleList

Contains the order in which modules
are loaded, the address pointer is
linked to a circular double-linked list

InMemory
OrderModule
List

Same as above, but contains memory
arrangement order

InInitialization
OrderModule
List

Same as InLoadOrder
ModuleList, but contains initialization
order

EntryIn
Progress Not used in Windows 10

ShutdownIn
Progress Unidentified

Shutdown
ThreadId

The thread ID suggested by the name,
picked up from the UniqueThread
member of CLIENT_ID in the Thread
Environment Block (TEB) of the
thread requesting process termination

3.3 Analysis of Changing the Specific Field Data
& LDR_DATA_TABLE_ENTRY (LDTE)

Structure

The fields constituting the PLD are described in Table 2.
Among them, we continuously observed and analyzed
changes in the field values of the PLD data each process
operating in the OS. Among them, it is found that the data in
a module-list (–ModuleList) field has a different value for each
process, and it contains the DLL information that is being
loaded into the program. The module-list includes 3 specific
field as follows: InLoadOrderModuleList (LOML),
InitializationOrderModuleList (IOML), and
InMemoryOrderModuleList (MOML), and the data stored in
each field is different depending on the purpose of use. It can

Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 879

be describing that the LOML field stores static DLL module
information and process information that the process initially
loads during the bootstrapping process. IOML is a structure
that is almost like the data of the LOML field and has
information about the DLL module that was initially loaded
during bootstrap and performed until initialization but does
not include process information [7]. MOML can verify that
module information for all DLLs loaded in a dynamic manner
is stored while the program is running. In the way that the
module-list field loads module data, the variable with the
LIST_ENTRY structure is loaded in a circular linked list as
shown in Figure 2. It is connected to another LIST_ENTRY
variable address using 2 fields (Flink, Blink) of the
LIST_ENTRY structure, and the memory address loading the
actual module information can be read by referring to the
address values stored in the Flink and Blink fields. The data
loading the actual module information is LDTE structure unit,
and Microsoft documented and disclosed only 11 LDTE
structure fields [27], but as a result of mapping code symbols,
it can verify that there are 30 actual fields. However, we have
selected 6 fields and 2 module-list (OrderLink) fields that can
be used for DLL injection detection and blocking among 30
fields to increase efficiency and addresses for each field are
based on x86 and x64. The results are shown in Figure 3 and
Figure 4. The specific application plan for each field is
described in Section 4.2.

Figure 3. LDTE symbol analysis result (Based on Windows
10 Pro 64-bit, build 18362)

Figure 4. LDTE strcture data fields and selected (Based on
Windows 10 Pro 64-bit, Build 18362)

4 Proposal of Generating Whitelist
Chain Using LDTE

We propose a whitelist chain design to detect and block
DLL injections and analyzed LDTE data changes to design the
chain. In addition, the nodes constituting the chain were
created by selecting several fields constituting the LDTE. A
detailed method for this is proposed below in Section 4.1.

4.1 Analysis of Changing the Specific Field Data
& LDR_DATA_TABLE_ENTRY (LDTE)

Structure

We analyzed that the module-list fields of the PLD
structure have LIST_ENTRY type, and that the addresses
loaded in LDTE data units are connected. Since the purpose of
use of each field of LDTE is not documented at all, it is
difficult to accurately analyze all fields, but as a result, it can
be checked that some field data is being changed with certain
rules. First, the OrderLinks field existing in the LDTE field has
the same link structure as the module-list of the PLD structure,
which has the same data. In other words, the module-list field
in the PLD structure is the same as LDTE’s OrderLinks, which
is the same as connecting “LDTE nodes” in linked list format.
Second, each time a DLL is loaded in each process, it has a
different timestamp data. It is allocated to LDTE’s
TimeDateStamp field, which is an Unsigned Long type, it can
be expressed in a date format as shown in Figure 4 (Located
at +0x080). However, not used for the purpose of identifying
the date, it can be verified that it is a unique value by the
deterministic compilation method in the process. This is a field
that can identify the uniqueness of each DLL even if it has the
same DLL name. Third, in the ParentDllBase field, when a
child DLL is loaded due to various reasons such as API call
from the parent DLL, dynamic loading, etc., the
ParentDllBase field value, the DLLBase value of the parent

880 Journal of Internet Technology Vol. 23 No. 4, July 2022

DLL are stored in the child DLL. That determines the loading
order when the DLL is called. Based on the above, the 6 fields
of LDTE were selected to design the whitelist chain and
describes in Table 3 and Table 4.

Table 3. PLD structure data fields & data type (Based on
Windows 10 Pro 64-bit, build 18362)

Field Name Type

BaseDllName UNICODE_STRING

FullDllName UNICODE_STRING

SizeOfImage ULONG

TimeStampDate ULONG

DLLBase PVOID (Address Pointer)

ParentDLLBase PVOID (Address Pointer)

Table 4. PLD structure field description (based on Windows
10 Pro 64-bit, build 18362)

Field Name Description

BaseDllName DLL File Name

FullDllName Contains the path value including
the DLL file name

SizeOfImage Size of image (DLL)

TimeStampDate
Hash value of the build file
reproducible by the deterministic
compile, not used for timestamp

DLLBase Base Address of DLL

ParentDLLBase
Base Address of parent DLL
when current DLL is loaded by
DLL

4.2 Proposal of Whitelist Chain Design Method
for DLL Injection Defense

In order to solve the DLL injection problem, we finally
focused on the mechanism by which the malicious DLL works.
DLL injection writes the DLL data to be infected in the
process by using various approaches such as registry entry, the
technique of creating a separate thread in the process using the
CreateRemoteThread function, and the window hooking
function. Ultimately, a function for loading DLL (LoadLibrary)
and a function for loading data memory (VirtualAllocEx,
WriteMemoryProcess) in the process is finally called in the
injected process. Since this method uses the same technique in
normal programs such as antivirus and patch programs, it is
very difficult to detect them based on behavior. In addition,
some DLLs operate on a Fileless basis or utilize an intelligent
mechanism to finally deliver malicious DLL data to the victim
by using a removable transmission medium [9], which can
trigger DLL injection through file data monitoring. It is
difficult to completely detect malicious malware. Therefore,
we design a DLL whitelist chain to create a control group that
can determine whether it is a normal DLL by using the
resource constraints of the industrial control system
environment, continuous work environment, and unique
information of the DLL module loaded in LDTE data. The

technique is proposed as follows. In first time, the LDTE data
is read by referring to the PEB data address for the EWS
process, and all connected LDTE data is read by referring to
the OrderLinks field. For LDTE data sets 𝑆 = { 𝑎0 ,
𝑎1 , … , 𝑎𝑛}, access the address 𝑎𝑖 to get the structure field
value for each LDTE. Here, there are 3 OrderLinks fields
identical to Ldr, and the same LOML, IOML, and MOML
fields as each field name can be mapped. At this time, there
are dynamic and static methods for loading DLLs, so if it
refers to LOML and MOML, all DLL module information used
by the process can be retrieved. Among LDTE fields,
BaseDllName and FullDllName fields contain DLL name data
and are the most basic fields that can identify a DLL. However,
malicious malware can attempt a DLL replacement attack to
execute injection, and if this attack is successful, the values of
both fields can be maliciously manipulated. Therefore, in
order to check the actual data of the DLL, TimeStampDate and
ParentDLLBase fields were additionally selected so that the
authenticity of data manipulation can be determined. The
SizeOfImage and DLLBase fields are fields that store the base
address for the DLL and the size for the DLL, and the range
and area of the address that the DLL uses in the process can
be recognized. If it configures a total of 6 fields, it cans create
one node, and if it connects all of the created nodes, you can
configure it as a chain. At this time, the node data sheet can
increase the efficiency of data access by building formatted
data such as JavaScript Object Notation (JSON) and
Extensible Markup Language (XML). An example of a data
sheet designed based on JSON is shown in Figure 5.

Figure 5. whitelist chain example with JSON datasheet
(based on x64)

Also, it is necessary to continuously update the whitelist
chain, Industrial software such as EWS has a structure that
continuously operates the same task without interruption due
to the environmental characteristics of ICS. This is because the
module I/O operations in which the DLLs used by the EWS
are loaded and unloaded are constantly occurring, so we need
a way to discover all the DLLs used by the EWS and update
them in the chain. Considering the operating environment in
IoT-based and stability of service provision, ICS goes through
a process of continuously performing periodic tasks [5, 7].
From an information security perspective, availability is
always a top priority even in the CIA triad, If the continuity of

Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 881

the task is not guaranteed, or if it is interrupted, it is a serious
incident that can cause great damage. That is why it is very
important for ICS to keep the task constant at all times. In
order to propose and use this method, it is assumed that EWS
in a pure environment that is not yet subjected to DLL
injection attacks is executed. Next, the memory address
including the OrderLinks field data is read through the EWS
process to be detected, and reads are performed on all structure
data connected by a cyclic double linked list. At this time,
while the EWS is executing the task, the node is created while
reading the OrderLinks field data at a periodic time. If this
process continues to run periodically, it can see the tendency
of the EWS to load or unload a specific DLL and collect all
the DLL information it uses. This reflects the environmental
characteristics that the industrial control system continuously
performs tasks, and the DLL module information used can be
whitelisted. In summary, when there is a set 𝑇 = {𝑡0 , 𝑡1 , … ,
𝑡𝑛 } of points at which the chain creation operation is
performed the information of the whitelist node chain is
updated as each time passes from 𝑡0 to 𝑡𝑛 . Repeatedly,
performing this increases the accuracy of DLL information
used in EWS, it can be used as a control for detection and
blocking. Figure 6 shows this process as the flow chart.

Figure 6. Flow chart for periodic whitelist chain updates
(LOML based, MOML also can be applied in the same)

5 Whitelist Chain Based DLL Injection
Detection & Proposal for Blocking
Method

5.1 Proposal of DLL Injection Detection Method
using Whitelist Chain

We propose a method that can detect DLL injection by
using a whitelist chain based on the design technique proposed
above. We proposed a method to create a whitelist chain
updated with the latest information through Section 4.2, and a
whitelist chain created based on the proposed method has a
structure in which several nodes consisting of 6 fields is
connected. In addition, we briefly presented how each field is
used for detection through Section 4.1. In summary, it has the
purpose of use as shown in Table 5.

Table 5. Purpose of use by selected field for detection
Field Name Description

BaseDllName
Detect the DLL’s name that was
registered to chain

FullDllName
Detect the DLL’s name that was
registered to chain

SizeOfImage Determine the use area address on
process of DLL

TimeStampDate Identifies the uniqueness of the DLL

DLLBase Determine the use area address on
process of DLL

ParentDLLBase Determine if there is any abnormality in
the calling relationship of DLL

We propose a method to detect this when it is assumed that
a malicious DLL is loaded by an injection attack in the EWS
process. Through the method described in Section 4.2, the
EWS process reads all structures connected to LOML and
MOML at periodic intervals to create a whitelist chain for
normal DLLs used by EWS. As described in Section 2, this is
an operational characteristic that reflects that EWS processes
continuously perform tasks without interruption in most ICS
environments [7, 23]. At this time, all DLLs loaded after the
program bootstrapping process are loaded into LOML, and if
it uses the ones connected in a circular linked list method as
shown in Figure 2, it is determined whether the DLL is loaded
by changing the load count through looping. If a DLL load is
detected, information of nodes connected to the whitelist chain
is read one by one to detect whether the DLL loaded in the
process is normal. After that, it is determined whether the
loaded DLL is normal by referring to the field value of the
node. If there is no matching DLL information even after
referring to all nodes, it is an abnormal DLL, and it is judged
that a malicious DLL was loaded by DLL injection. The above
methodology is summarized in Figure 7, Figure 8 shows how
to detect a loaded DLL with a whitelist chain, and details of
verifying the above methodology are covered in Section 6.1.

882 Journal of Internet Technology Vol. 23 No. 4, July 2022

Figure 7. Flow chart for detecting load some DLL in the
Process

Figure 8. Flow chart for detecting injection when DLL is
loaded in the process

5.2 Proposal of Blocking Method Based on
Whitelist Chain to Prevent DLL Injection
Execution

In addition to the detection method, a separate method is
needed to block the execution of the injected DLL so that no
actual damage occurs. When there is an arbitrary process, if
the DLL is loaded into the process in a static or dynamic
manner, the operating system guarantees thread-safe for the
entire process until the loading is completed to improve safety.

In this process, it has been verified that if unloading is
forcibly attempted, it can cause a serious access violation in
the process. This is because the OS does not always guarantee
the sequential execution of threads, and the CPU context
switching is the cause [29]. In order to prevent the execution
of the injected DLL detected in the step 5.1, we additionally
conducted an experiment to disable the DLL through API calls
for unloading. As a result, the process was forcibly terminated
with a certain probability or the program was rebooted. In
other words, it can cause a large loss in the availability of the
operation from the point of view of the industrial control
system. In addition, to ensure thread safety, unloading
experiments were conducted through API calls based on
Thread-Safe, but the result of unloading the DLL was shown
after all the code in the injected DLL was executed. This
means that it doesn’t mean much to prevent DLL injection.
Therefore, it is necessary to design a method that can block
abnormal DLL injection techniques before the injected DLL
is loaded into the process. We focused on the whitelist chain
created using the technique proposed in Section 4.2 and the
API used for DLL injection. For malicious DLL injection,
calling of preceding codes for injecting malicious DLLs must
be guaranteed, and several bypass techniques have emerged to
execute the preceding codes [9].

To verify API calls to prevent DLL injection such as
LoadLibrary, CreateRemoteThread, etc., it is necessary to
hook the verification code for virtually all resident processes,
which is a very inefficient operation. In other words, in order
to guarantee the execution of malicious DLL, a separate thread
is created in the victim process, and a method to detect this is
proposed as follows. When the EWS process is loaded, it
implements a routine that checks based on the whitelist chain
by pre-hooking the main API that DLL injection calls to create
a thread. At this time, the hooked function is used for
verification, and it can check the presence or absence of DLL
injection using the whitelist chain. The details are covered in
Section 5.3, and the API hooking process for the verification
code when loading the proposed process is described in Figure
9 and the hooking method in Figure 10. Additionally, we used
the Microsoft’s Detours library for API hooking for thread
verification [8].

Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 883

Figure 9. Flow chart for detecting load the DLL in the Process

Figure 10. Flow chart for target process of API Hooking

5.3 Proposal of Verification Method for Blocking
Based on Whitelist Chain to Prevent DLL
Injection Execution

This section describes a method of additionally verifying
whether the first caller address is valid when the thread in the
EWS process is executed. If it uses the DllBase and
SizeOfImage fields among the nodes constituting the whitelist
chain, it can find the DLL corresponding to this address area.
For example, if there is no DLL address corresponding to the
area of this address through the node data constituting the
chain, this is a DLL that is not recorded in the whitelisted chain,
and the hooked API intentionally causes the return value to
contain an error DLL injection can be blocked by applying a
verification routine. Additionally, calling the LoadLibrary
function through a thread created separately from the process
is a basic routine for DLL injection, and if executed, the initial
call point will point to the address of the thread creation
function of the Windows native DLL, not the address of the
process area, It was verified that the thread creation API
(nt!RtlUserThreadStart) points to the RDX (x86 equals edx)
register as shown in Figure 11.

Figure 11. nt!RtlUserThreadStart, thread starting branch and
assembly code in ntdll.dll (x86-64 based)

These routines are deliberately called through a thread
unless they are performed in the EWS process code area. If the
proposed method is written in code, it is as shown in Figure
12. At this time, if a routine is suspected of DLL injection, it
is designed to cause an error intentionally by inducing a stub
function call. At this time, for 32 bits, rcx and rdx register can
be replaced with ecx and edx register, respectively. Here, the
stub function does not perform any function, but only
performs “ret 0”, and is an empty function that does not mean
much to execution. Through our proposed verification routine,
we can induce a stub function to be executed without
executing a function written by the malicious.

884 Journal of Internet Technology Vol. 23 No. 4, July 2022

Figure 12. Flow chart for verifying nt!RtlUserThreadStart
API call using the data of whitelist chain

6 Whitelist Chain Based DLL Injection
Detection & Experiment Result for
Blocking Verification

We constructed an experiment environment as describes
in Table 6 to verify the methodology for Sections 5.1 and 5.2.
PLC and EWS are connected through the same network, and
EWS targets TIA Portal v15 developed by Siemens, which is
widely used in the ICS field, and EWS developed by Siemens
becomes an attack site for Stuxnet malware and is a
representative victim of DLL injection. The testbed operation
consists of updating the values of the outputs (Q0.0-Q0.7) of
the PLC Siemens S7-1200 (Q0.0-Q0.7) once a second on a
virtual HMI using the built-in WinCC software in TIA Portal
v15. The programming environment was written based on
Visual Studio 2019, C++17, and uses a datasheet based on
std::vector. In this case, that means there is no restriction to
create a whitelist chain even if the datasheet is different
depending on the user.

Table 6. Configuration of the experiment environment
Category Description

CPU Ryzen 7 2700x

OS Windows 10 Pro 64bit Build 18362

Compile Ver. VS2019 v142 (Visual C++)

RAM 16GB

PLC Siemens S7-1200 1214C

EWS Siemens TIA Portal v15

Datasheet std::vector (C++17)

Figure 14. Output node information connected to whitelist chain

Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 885

For DLL injection test, we used the SecurityXploded
Remote DLL Injector, InjectAllTheThings program [30].
These are injection experiment programs using
CreateRemoteThread related functions and QueueUser APC,
SetWindowsHookEx, and SetThreadContext functions that
can create remote jobs for injection. When the process is first
loaded, The DLL implemented based on the methodology
according to Figure 9, loaded into the process as shown in
Figure 13. The result of the loaded dll as shown in Figure 14,
an environment in which the whitelist chain and API
verification function can be operated while residing in the
EWS process was established. In other words, it plays a role
of protection for the process through well-intentioned DLL
injection.

Figure 13. Resides in the process and loads the DLL for
verification and chain creation

6.1 Whitelist Chain Based DLL Injection
Detection Technique Experiment and
Results

The whitelist chain stores, and records DLL module
information based on Ldr data while executing the task at 0.1
second intervals for a total of 8 hours. As also shown in Figure
13, a DLL containing information gathering routines is
executed to create the whitelist chain. Additionally, to
minimize the performance impact of the EWS parent process,
we created a separate thread to do. It can be designed to act in
a separate thread space from the parent process to collect the
process of the DLL being onloaded into the EWS. This
approach is like the technique used by DLL injection, but the
difference is that it creates a whitelist chain, it is a well-
intentioned work to fulfill the preceding work for defense. As
a result, the process correctly created the whitelist node for the
module information of 193 DLLs used for work, and the CPU
occupancy used for creation was 6-8% on average and the
RAM occupied about 35MB. If it reads the whitelist chain and
print all the connected nodes, it is as shown in Figure 14, these
shows that the PEB-LDR data was read, the whitelist chain
was created normally. When a malicious DLL is loaded by
injection while the DLL is monitoring, it can be verified that
it is success-fully detected as shown in Figure 15.

Figure 15. A scene in which the verification DLL detects the
loading of a malicious DLL by DLL injection

6.2 Whitelist Chain Based Blocking Technique
Experiment and Result of Prevent DLL
Injection Execution

We conduct an experiment to verify whether actual DLL
injection can be blocked by utilizing both the whitelist chain
based on the design technique proposed in Section 5.1 and the
DLL injection blocking technique proposed in Sections 5.2
and 5.3. Previously, through Section 5.3, we added a
verification routine for Windows Native API (NTAPI), which
must be called for creating a remote thread, and NTAPI for
writing memory to a remote process, and a verification routine
for RTL functions that are called when creating a thread. The
main purpose is to experiment to see if these verification
routines work correctly. We envisioned an EWS process to
include a validation routine in nt!RtlUserThreadStart to
determine whether it is called from a valid address or not.
Furthermore, we performed caller address verification for
low-level API such as LdrLoadDll. Previously, we checked
the functions including various suffixes for each API [2, 4], so
proceeded to target the low-level API. As a result of the
experiment, it was verified that the routine process works
correctly for the main API for injection as shown in Figure 16.
The figure shows the stack up to the routine that verifies that
when LoadLibrary API is called from EWS process, being
called from a valid address. Before calling the API, we
observed that the call was entered correctly into the validation
function we implemented separately.

Figure 16. Scene where verification code is called before
calling LoadLibrary API in new thread of EWS process

In addition, when attempting to load the DLL forcibly by
the injector, it was verified that the thread creation in the EWS
process failed as shown in Figure 17. The EWS process was
not terminated and operated normally, the CPU occupancy
used for detection is on average 10-15% and the RAM
occupancy is about 60MB, which means that the DLL
implementing the defense technique proposed by us normally
blocks malicious DLL execution by the DLL injection
technique of external malicious code in the EWS process.
Additionally, the process does not terminate and operates
normally, the results described in Table 7, it means that DLL
injection is called through a remote thread to ensure stable
operation and shows that the verification code inserted at the
thread creation call point is effective in blocking. In a separate,
the main goal of the SetWindowsHookEx function is to hook
the message, the LoadLibrary function is included only in the
call category for operating the main code [9]. In our
experiment, when trying to hook using the function the exploit
tool causes freezed, it succeeded in blocking, but essentially
more detailed verification is required to determine whether it
led to hooking. At this time, we considered technical
compatibility, the purposed technology referenced specific

886 Journal of Internet Technology Vol. 23 No. 4, July 2022

NTAPI and LDTE data to detect DLL injection attacks. LDTE
and LDR data have been supported since Windows XP, which
means that legacy OS can be technically used [26-27]. In
generally, ICS environments except for the overhaul period,
legacy OSs such as Windows XP and Server 2003 are still
widely used. In the other word, it can satisfy the backward
compatibility of the specific NTAPI and LDTE data we
utilized.

Figure 17. Sense of example when DLL injection was
attempted

Table 7. Configuration of the experiment environment
API Name Block Result (Reason)

CreateRemoteThread Success (Failed to create
thread)

SetWindowsHookEx Unknown (Freezed the expolt
tool)

SetThreadContext Success (Failed to create
thread)

QueueUserAPC
Success (Failed to create
thread)

7 Conclusion Future Works

As the experiement results, we verified the DLL injection
attack detection method for EWS used in ICS in IoT
environment. The presented method also contributes to the
safety operation of ICS along with device and platform
security technologies in the IoT environment that have been
previously worked on. Compared with other studies, our
proposed DLL injection blocking method does not require
various types of training data for DLL injection detection. In
addition, it is possible to protect DLL information used in the
EWS process by establishing a whitelist chain based on PEB-
LDR data through periodic DLL information recording in
consideration of ICS operation characteristics. For the
preceding steps to present the technology, we analyzed symbol
information to analyze PEB structure information, and
described how to utilize the specific fields containing DLL
information in LDR structure. These analysis results can be
widely applied when searching for traces of DLLs that can be
utilized in a specific process or referenced when accessing
them, or when building tasks that require status monitoring.
On the other hand, we targeted the main attack types targeting
the Windows OS such as DLL injection attacks, but if EWS is
software running on Unix/Linux OS, it can be compromised
similar attack types such as .so file injection. Therefore, it is
necessary to study defense techniques targeting platforms
other than Windows OS.

Currently, it is publicly known that malicious actions
through DLL injection as well as attacks that intentionally
inject code in a DLL or inject code into process memory are
possible. Although the above method detects based on DLL
injection attacks that target processes, protection against code
injection attacks that target processes or DLLs has not been
verified. These types of attacks need to address pre-

requirements that need to be viewed broadly on a binary or
code basis rather than a file information. For this reason, in the
future, we will propose a technology that automatically
recognizes DLLs used in EWS and automatically creates
whitelist data and plans to conduct technology research that
can protect not only DLL injection but also code unit injection.
Besides, to create a whitelist chain through the above method,
there is a hassle of periodically recording in a pure
environment in advance. Since EWS used by ICS in IoT
environment is still actively used for long-term monitoring
and management of SCADA systems, it is necessary to devise
various detection techniques to prepare for fatal attacks such
as DLL injection to guarantee the normal function of EWS in
the future. To overcome these shortcomings, we will devise a
technique that can detect suspicious behaviors such as DLL
injection without separate prior procedures such as
whitelisting.

Acknowledgments

This work was supported by the Nuclear Safety Research
Program through the Korea Foundation of Nuclear Safety
(KoFONS) using the financial resource granted by the Nuclear
Safety and Security Commission (NSSC) of the Republic of
Korea (No. 2106058, 45%), Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (NRF-
2020R1A2C1012187, 45%), and the Gachon University
research fund of 2021(GCU-202106330001, 10%).

References

[1] A. Moradbeikie, K. Jamshidi, A. Bohlooli, J. Garcia, X.
Masip-Bruin, An IIoT Based ICS to Improve Safety
Through Fast and Accurate Hazard Detection and
Differentiation, IEEE Access, Vol. 8, pp. 206942-
206957, November, 2020.

[2] A. Shahzad, Y.-G. Kim, A. Elgamoudi, Secure IoT
Platform for Industrial Control Systems, 2017
International Conference on Platform Technology and
Service (PlatCon), Busan, South Korea, 2017, pp. 1-6.

[3] A. Hansson, M. Khodari, A. Gurtov, Analyzing Internet-
connected industrial equipment, 2018 International
Conference on Signals and Systems (ICSigSys), Bali,
Indonesia, 2018, pp. 29-35.

[4] M. H. Alquwatli, M. H. Habaebi, S. Khan, Review of
SCADA Systems and IoT Honeypots, 2019 IEEE 6th
International Conference on Engineering Technologies
and Applied Sciences (ICETAS), Kuala Lumpur,
Malaysia, 2019, pp. 1-6.

[5] J. Ferreira, J. N. Soares, R. J. Goncalves, C. Agostinho,
Management of IoT Devices in a Physical Network,
2017 21st International Conference on Control Systems
and Computer Science (CSCS), Bucharest, Romania,
2017, pp. 485-492.

[6] D. Kushner, The real story of stuxnet, IEEE Spectrum,
Vol. 50, No. 3, pp. 48-53, March, 2013.

[7] J. Lee, S. Hong, Keeping Host Sanity for Security of the
SCADA Systems, IEEE Access, Vol. 8, pp. 62954-
62968, March, 2020.

[8] A. O. A. El-Mal, M. A. Sobh, A. M. B. Eldin, Hard-
Detours: A new technique for dynamic code analysis,
Eurocon 2013, Zagreb, Croatia, 2013, pp. 46-51.

Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments 887

[9] A. Klein, I. Kotler, Windows Process Injection in 2019,
August, 2019, Available Online:
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-
Process-Injection-Techniques-Gotta-Catch-Them-All-
wp.pdf.

[10] C.-W. Park, J.-W. Son, H.-K. Hwang, K.-C. Kim,
Detection of Systems Infected with C&C Zeus Through
Technique of Windows API Hooking, Asia-Pacific
Journal of Multimedia Services Convergent with Art,
Humanities, and Sociology, Vol. 5, No. 2, pp. 297-304,
April, 2015.

[11] J. Berdajs, Z. Bosnic, Extending applications using an
advanced approach to DLL injection and API hooking,
Software Practice and Experience, Vol. 40, No. 7, pp.
567-584, June, 2010.

[12] H.-M. Sun, Y.-H. Lin, M.-F. Wu, API Monitoring
System for Defeating Worms and Exploits in MS-
Windows System, Information Security and Privacy
(ACISP 2006), Melbourne, Australia, 2006, pp. 159-170.

[13] S. Z. M. Shaid, M. A. Maarof, In memory detection of
Windows API call hooking technique, 2015 IEEE 2015
International Conference on Computer,
Communications, and Control Technology (I4CT 2015),
Kuching, Malaysia, 2015, pp. 294-298.

[14] F. Mira, A Review Paper of Malware Detection Using
API Call Sequences, 2019 2nd International Conference
on Computer Applications & Information Security
(ICCAIS), Riyadh, Saudi Arabia, 2019, pp. 1-6.

[15] M. K. Shankarapani, S. Ramamoorthy, R. Movva, S.
Mukkamala, Malware detection using assembly and API
call sequences, Journal in Computer Virology, Vol. 7,
No. 2, pp. 107-119, May, 2011.

[16] S. Yusirwan, Y. Prayudi, I. Riadi, Implementation of
Malware Analysis using Static and Dynamic Analysis
Method, International Journal of Computer
Applications, Vol. 117, No. 6, pp. 11-15, May, 2015.

[17] S. I. Bae, E. G. Im, Unpacking Technique for In-memory
Malware Injection Technique, Korean Institute of Smart
Media, Vol. 8, No. 1, pp. 19-26, March, 2019.

[18] S. Karnouskos, Stuxnet Worm Impact on Industrial
Cyber-Physical System Security, IECON 2011 - 37th
Annual Conference of the IEEE Industrial Electronics
Society, Victoria, Australia, 2011, pp. 4490-4494.

[19] C.-I. Fan, H.-W. Hsiao, C.-H. Chou, Y.-F. Tseng,
Malware Detection Systems Based on API Log Data
Mining, 2015 IEEE 39th Annual Computer Software
and Applications Conference, Taichung, Taiwan, 2015,
pp. 255-260.

[20] J.-H. Hwang, S.-B. Hwang, H.-G. Kim, J.-H. Ha, T.-J.
Lee, Malware Analysis Based on Section, DLL, Journal
of the Korea Institute of Information Security and
Cryptology, Vol. 27, No. 5, pp. 1077-1086, October,
2017.

[21] J.-H. Ha, S.-J. Kim, T.-J. Lee, Feature Extraction using
DLL/API Statistical Analysis and Malware Detection
based on Machine Learning, The Journal of Korean
Institute of Communications and Information Sciences,
Vol. 43, No. 4, pp. 730-739, April, 2018.

[22] W. Matsuda, M. Fujimoto, T. Mitsunaga, Detection of
Malicious Tools by Monitoring DLL Using Deep
Learning, Journal of Information Processing, Vol. 28,
pp. 1052-1064, December, 2020.

[23] P. Forsgren, Requirements specification in
SCADA/EMS/DMS procurement projects, Fourth
International Conference on Power System Control and
Management (Conf. Publ. No. 421), London, UK, 1996,
pp. 226-230.

[24] S. Ghosh, S. Sampalli, A Survey of Security in SCADA
Networks: Current Issues and Future Challenges, IEEE
Access, Vol. 7, pp. 135812-135831, July, 2019.

[25] S. Choi, T. Chang, C. Kim, Y. Park, x64Unpack: Hybrid
Emulation Unpacker for 64-bit Windows Environments
and Detailed Analysis Results on VMProtect 3.4, IEEE
Access, Vol. 8, pp. 127939-127953, July, 2020.

[26] Microsoft, PEB (winternl.h) - Win32 apps | Microsoft
Docs, December, 2018, https://docs.microsoft.com/en-
us/windows/win32/api/winternl/ns-winternl-peb,
retrieved in February, 2021.

[27] Microsoft, PEB_LDR_DATA (winternl.h) - Win32 apps
| Microsoft Docs, December, 2018,
https://docs.microsoft.com/en-
us/windows/win32/api/winternl/ns-winternl-
peb_ldr_data, retrieved in February, 2021.

[28] Microsoft, Microsoft public symbol server - Windows
drivers | Microsoft Docs, April, 2018,
https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/microsoft-public-symbols,
retrieved in February, 2021.

[29] K. Sharif, S. R. M. Zeebaree, L. M. Haji, R. Zebari,
Performance Measurement of Processes and Threads
Controlling, Tracking and Monitoring Based on Shared-
Memory Parallel Processing Approach, 2020 3rd
International Conference on Engineering Technology
and its Applications (IICETA), Najaf, Iraq, 2020, pp. 62-
67.

[30] R. C. B. Hink, K. Goseva-Popstojanova,
Characterization of Cyberattacks Aimed at Integrated
Industrial Control and Enterprise Systems: A Case Study,
2016 IEEE 17th International Symposium on High
Assurance Systems Engineering (HASE), Orlando, FL,
USA, 2016, pp. 149-156.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/microsoft-public-symbols
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/microsoft-public-symbols
https://ieeexplore.ieee.org/author/38274339900

888 Journal of Internet Technology Vol. 23 No. 4, July 2022

Biographies

Junwon Kim received his M.S. degree in
Information Security Engineering from
Gachon University, South Korea, in 2022,
and the B.S. degree in Information Security
Engineering from Soonchunhyang
University, South Korea, in 2020. His
research interests include ICS security,
CPS security, Anomaly Detection, Deep

Packet Inspection, Vulnerability Analysis, and Information
Security.

Jiho Shin received his M.S. degree in
Digital Forensic from Korea University,
South Korea, in 2015, and the Ph.D.
Degree in Information Security
Engineering from Soonchunhyang
University, South Korea, in 2022. He is
currently a research officer with Science
and Technology Research Division, Police

Science Institute of Korean National Police University. His
research interests include Digital Forensics, Cybercrime
Response, OT security, Industrial Control System, and
Information Security.

Jung Taek Seo received the M.S. degree in
Computer Engineering from Ajou
University, South Korea, in 2001, and the
Ph.D. degree in Information Security
Engineering from Korea University, South
Korea, in 2006. He worked for National
Security Research Institute as a senior
researcher. He is currently an Associate

Professor with the Department of Computer Engineering,
Gachon University. His research interests include CPS
security, ICS cybersecurity, smart grid security, nuclear power
plant security, smart factory security, smart city security, and
automotive cybersecurity.

	組合 01-05
	01
	02
	03
	04
	05
	空白頁面
	空白頁面

	組合 06-10
	06
	07
	08
	09
	10
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 11-15
	11
	12
	13
	14
	15
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 16-21
	16
	17
	18.0 Guest Ediorial
	18.1
	19
	20
	21
	空白頁面
	空白頁面
	空白頁面

	組合 22-26
	22.0 Guest Ediorial
	22.1
	23
	24
	25
	26
	空白頁面

