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Abstract 

Modern Industrial Control System (ICS) can provide vast 
functions as the introduction of IT technology is established 
along with the introduction of the IoT environment. 
Engineering Workstation (EWS) used by ICS is widely used 
to efficiently manage and control industrial devices including 
smart IoT devices. However, the DLL injection attack in ICS 
is not high in difficulty compared to the risk, but it can cause 
fatal malfunction. If an attack is carried out targeting the EWS, 
it may cause erroneous operation in many control devices, 
including IoT devices, cause fatal accidents throughout the 
Supervisory Control and Data Acquisition (SCADA) system. 
In this paper, we present a method to detect DLL injection 
attacks by specializing in EWS used in ICS in IoT 
environment and purpose a method to detect data changes due 
to DLL injection attacks by analyzing and utilizing PEB-LDR 
data. Also, we purpose a method to detect and block execution 
when a malicious DLL is suspected to be loaded by DLL 
injection. 

Keywords: Industrial Control System (ICS), Internet of 
Things (IoT), Engineering Workstation (EWS), 
Process Environment Block (PEB), Dynamic 
Link Library (DLL), Injection 

1  Introduction 

In recent years, the succession of the IT technology of the 
Industrial Control System (ICS) has changed it to a more 
flexible and effective operation method, and the modern ICS 
is utilized in infrastructures and improved productivity and 
operational efficiency such as power plant, transportation, 
smart city. Engineering Workstation (EWS) used in ICS is an 
integrated tool that can manage Programmable Logic 
Controller (PLC) logic and monitor industrial devices. 
However, the introduction of IT technology not only improved 
the level of ICS operation, but also led to the appearance of 
new attacks that did not appear before, such as an increase in 
the attack surface and connection to an external network. 
Unlike the information system, the existing ICS operates 
based on a closed network, so it is recognized that it is safe 
from external attacks. Conversely, this awareness is an 
important issue that can lead to negligence of internal workers’ 
security and cause potential risk that can cause physical 

destruction, property damage. In recent years, as smart IoT 
and industrial IoT devices start to converge with ICS and 
operate together, it is difficult to rely on the physical 
environment security of ICS any longer [1]. Now, as IoT 
technology is introduced into ICS, security-related functions 
such as key management, intrusion detection, and additional 
access control are required [1]. A lot of time has been devoted 
to research on intelligent methods to detect and identify risk 
factors of installed industrial IoT devices [3-4]. This operating 
environment includes the smart IoT mobile environment in 
which ICS supports IoT-based mobility [5], and ICS security 
is also unavoidable for proper computing operation. Among 
ICS threats based on IoT environment; Dynamic Link Library 
(DLL) injection attack is not high in execution difficulty
compared to attack severity, and an attacker can easily control
the system, which is a serious attack that can cause fatal
accidents to the infrastructure. For example, the Stuxnet
malware caused malicious behavior by damaging the EWS
installed on a network PC that was closed in a nuclear facility
[6]. As a result, it is impossible to identify if the actual attack
was caused by a DLL injection attack used by a malicious
intruder. Thus, the logic data of Siemens PLC could not be
observed normally. It resulted in physical destruction of the
device [7]. As such, there is an attack tendency to change core
functions targeting EWS, and DLL injection attack detection
and defense technology targeting EWS is essential.

In this paper, we analyzed the behavioral tendency of 
attackers to perform DLL injection to detect DLL injection 
attacks specialized for EWS. In addition, we proposed a 
whitelist chain-based detection method using PEB-LDR data 
existing in the EWS process, and able to detect the intrusion 
of malicious DLLs through DLL injection. Also, we proposed 
the methods to detect the DLL injection and applied the 
whitelist chain concept that considers the operational 
characteristics of the IoT-based ICS environment, using the 
Microsoft Detour [8] tool together with a technology to block 
DLL injection, an attempt by an attacker to inject a DLL in the 
EWS process. This paper consists of 7 detailed sessions, which 
are as follows: 

Session 2 describes the analysis of existing research cases 
to prevent DLL injection in the ICT environment and 
describes the direction to be supplemented by specializing in 
the ICS based-on IoT environment. Session 3 describes the 
results of observing the data of the Process Environment Block 
(PEB) structure containing process information, the results of 
examining the Ldr field to obtain the DLL information 
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referenced in the process, the analysis of the list data contained 
in the Ldr field. In Session 4, through the field analysis result 
of LDR_DATA_TABLE_ENTRY (LDTE) type analyzed in 
Session 3, it describes a method to create a whitelist chain that 
can detect DLL injection considering environmental factors 
that can be used for ICS based on IoT environment. Session 5 
presents a method of acquiring information from a target EWS 
process to create the whitelist chain proposed in Session 4 and 
a monitoring method for detecting the inserted DLL. Session 
6 describes the details and results of the detectability 
experiment by applying the whitelist chain-based collection 
method proposed in Sessions 4 and 5, to block the injected 
malicious DLL, the behavioral tendency of DLL injection 
from previous studies. By suggesting and applying a technique 
that can block it, proved that it is possible to ultimately block 
the DLL injection attack. Finally, Session 7 describes the 
experimental results and analysis contents were 
comprehensively summarized, and the future scope we intend 
to proceed. 

1.1 Contributions 

We presented the method to detect and block the DLL 
injection that aimed at EWS running on IoT Environment-
based ICS and analyzed the PEB information that can identify 
or acquire DLL-related events and actions, identified the 
components of detailed fields. The above findings are 
expected to contribute as follows: 

Information gathering. We investigated the PEB data 
structure to discover elements that can detect DLL injection in 
the Windows OS environment, and collected information from 
the Ldr detail field, a key field of PEB. These analysis results 
can be effectively utilized when acquiring DLL information 
used by the process. 

Detection and blocking. By targeting the EWS used in 
the ICS environment, it is possible to minimize the attack 
damage by proposing a method to detect and block DLL 
injection attacks. 

Versatility. The proposed technique can be applied not 
only to the EWS process, but also to important programs in 
other fields, which can protect against DLL injection, and can 
also be applied to target multiple processes whose availability 
may be compromised by an attacker. 

2  Related Works 

Although the DLL injection attack is a well-known and 
threatening attack in the IT field, ICS combined with IT 
technology is now forming a target that can threaten it. 
Relevant research includes the following categories: Klein et 
al. (2019) presented various trends and attack penetration 
processes of APIs that attackers call to perform intra-process 
injection [9]. In addition, Park et al. (2015) analyzed a 
malicious code execution routine that allows malware to 
execute code for Command and Control (C&C) in a process 
through Windows API hooking [10]. Through these research 
results, they studied the major APIs and function calling 
methods used 2 to succeed DLL injection and warned of the 
high fatality rate of DLL injection attacks. Originally, DLL 
injection was originally a method widely used for code 
patching and maintenance, but it proved that there are not a 
few cases of using it for malicious purposes. Due to this 

recognition, several techniques have been proposed to protect 
against high-risk DLL injection attacks. For example, Lee et 
al. (2020) to propose an anti-injection technique for DLL 
injection targeting Supervisory Control and Data Acquisition 
(SCADA), In order to block DLL injection, an attacker’s 
tendency has been analyzed and a method of monitoring and 
blocking through Import Address Table (IAT) hooking has 
been proposed [7]. In addition, Berdajs et al. (2010) hooked 
the CreateRemoteThread function, which is mainly used for 
DLL injection, to block separate inspection codes through 
inline-based code insertion [11]. Sun et al. (2006) proposed an 
exploit blocking technique through API monitoring using 
Process Environment Block (PEB) data [12]. These studies 
succeeded in blocking the x86 based operating system, but it 
needs to conduct and verify an experiment on the x64 
(AMD64) based operating system. Conclusively, there is a 
limit that the x86 call stack-based blocking technique is 
incompatible with the 64-bit method difference. In addition, 
APIs with suffixes such as -Ex, -A, -W, -ExW, etc. exist 
depending on the use of Unicode, multi-byte character set, and 
extended type of functions as the main API used for DLL 
injection. Hooking and verifying all these APIs has a 
disadvantage in that it is less effective in terms of performance. 
Crucially, there are cases where the DLL injection technique 
is used for good faith purposes such as patching and 
maintenance of vulnerable code, and when an injection event 
occurs, an additional method of determining whether it is a 
normal event is needed. As the proportion of programs 
expanded to 64-bit increases, additional defense techniques 
are also required. A study to block malicious DLL execution 
was also presented, Syed et al. (2015) proposed a technique to 
block malicious DLLs loaded in memory by detecting 
Windows API hooking [13], Mira (2019) proposed a method 
to detect abnormal activity by analyzing DLL data and 
monitoring the sequence of API calls to block the inflow of 
malicious DLLs [14]. However, as proposed by Shankarapani 
et al. (2011) [15], Yusirwan et al. (2015) [16], Bae et al. (2019) 
[17], presented the technical method to conceal and obfuscate 
the malware execution routine, these case of deliberately 
packed advanced malware, these malicious codes have 
limitations in lowering the success rate of not only API trend-
based detection techniques but also code data-based detection 
techniques. Specially, since the DLL injection attack operates 
with a routine very similar to the existing injection-based good 
faith program, determining whether to determine the attack 
through code data that induces loading a malicious DLL has a 
problem that may cause a false diagnosis. For instance, the 
Stuxnet case also caused substantial damage by the injected 
malicious DLL, not the result of executing the code executing 
the DLL injection and has the disadvantage of having to go 
through 2 detection processes (injection, code execution) to 
block [18]. 

Recently, with the development of computing resources, 
various research cases using machine learning (AI) have 
appeared. Fan et al. (2015) proposed a method to detect 
malware by mining API log data [19], Hwang et al. (2017) 
conducted a study to block DLLs by learning the features of 
the section data area and the features of DLLs to analyze 
malware [20]. Ha et al. (2018) conducted a study to block the 
execution of malicious DLLs by learning API statistics for 
malicious DLLs [21]. In addition, Matsuda et al. (2020) 
investigated various methods based on DLL data and proved 
a recall result of 97.45% for the malware detection rate using 
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a deep learning algorithm [22]. This technique is highly 
accurate because it detects based on linear algebra values such 
as statistical estimation and regression analysis based on 
machine learning. However, in order to derive meaningful 
results, there is a disadvantage in that the learning step requires 
a lot of time and a lot of learning data, but the data must be 
composed of quantitative data. In other words, a detection 
technique based on machine learning requires many pre-
processing and learning processes to derive results. In addition, 
in the industrial control system environment where the EWS 
process operates, there are restrictions on the application of 
detection techniques due to the use of limited resources for 
securing availability and the use of unpublished industrial 
protocols [7, 23]. Notably, since the industrial control system 
has a communication system based on a closed network and 
unidirectional data transmission, it is difficult to apply a 
detection technique for external inflow such as network 
monitoring [23-24].  

When considering the ICS environment, verification is 
possible in both x86/x64 based environments as presented 
above, and a plan is needed to increase the efficiency of 
detection based on existing API hooking. In addition, it does 
not depend on an external connection such as a network and 
must be able to meet resource constraints that can minimize 
preprocessing for detection and blocking. To this end, we 
analyzed the existing API calling method to detect and block 
malicious DLL injection along with a whitelist chain design 
technique using PEB-LDR data and proposed a method to 
increase detection efficiency. This not only complements the 
existing limitations and disadvantages but can also be 
additionally applied to the IT field and contributed to the 
deduction of DLL injection detection and blocking method 
technologies. 

3  Overview and Analysis of PEB-LDR

DATA (PLD)

3.1 Observing PEB Data of Process 

PEB, one of the basic data structures used in Windows OS, 
loads process information, and PEB information exists in all 
processes running in the OS [25]. PEB is defined as a single 
structure and is a data structure containing process load 
information [26]. Microsoft has disclosed the purpose of use 
of the seven fields constituting the PEB based on the date of 
analysis [26]. If “nt!_PEB” structure is mapped using WinDbg 
for the PEB address of an arbitrary process, Figure 1 displays 
not only the result that it can be verified that Ldr is included 
in the PEB structure but also the same as the result of inputting 
“dt nt!_PEB @$PEB” command in WinDbg. Among the PEB 
fields, we propose a detection method by using the Ldr field 
data that loads the information of the loaded module in Section 
3.2. 

Figure 1. Ldr field which located at PEB 

3.2 Detailed Analysis for PLD Structure 

The Ldr field is a data structure variable with PLD 
structure format, and the PLD structure consists of three fields 
[27]. Since Ldr contains the information of modules loaded in 
the process, we present a method for constructing information 
that can detect DLL injection by using this information in 
Section 3.3. However, before using Ldr data, we checked that 
the purpose of use of some data fields constituting the PEB 
structure and PLD is still not documented. The process of 
obtaining detailed information for each field is necessary, and 
research cases that analyze the purpose of use of each field 
constituting the PLD structure data including PEB data were 
referred to [9, 12]. Debugging tools such as WinDbg were 
used to learn detailed field information, and PEB and PLD 
symbols can be found by connecting to Microsoft Symbol 
Server [28]. Through this, the fields of each data structure can 
be briefly analyzed. Based on the operating system version 
Windows 10 Pro 64-bit, build 18362, it was verified that the 
details of the PEB and PLD field data differ from the previous 
research results, and this is estimated due to internal reasons 
of Microsoft. Particularly, it was verified that there are 9 fields 
in the PLD that we want to use for detection, Table 1 and Table 
2 describes a detail of each field. 
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Figure 2. Example of LDTE linkages, depicted in a double linked list (Base on Windows 10 Pro 64-bit, build 18362) 

Table 1. PLD structure data fields & data type (Based on 
Windows 10 Pro 64-bit, build 18362) 

Field Name Type 

Length ULONG 

Initialized UCHAR 

SsHandle HANDLE 

InLoadOrderModuleList LIST_ENTRY 

InMemoryOrderModuleList LIST_ENTRY 

InInitializationOrderModuleList LIST_ENTRY 

EntryInProgress PVOID 

ShutdownInProgress UCHAR 

ShutdownThreadId PVOID 

Table 2. PLD structure data fields description (Based on 
Windows 10 Pro 64-bit, build 18362) 

Field Name Description of usage purpose 

Length The size of the structure used by 
ntdll.dll as Structure Version ID 

Initialized If TRUE, the Loader Data Session for 
the current process is initialized 

SsHandle Unidentified 

InLoadOrder 
ModuleList 

Contains the order in which modules 
are loaded, the address pointer is 
linked to a circular double-linked list 

InMemory 
OrderModule 
List 

Same as above, but contains memory 
arrangement order 

InInitialization 
OrderModule 
List 

Same as InLoadOrder 
ModuleList, but contains initialization 
order 

EntryIn 
Progress Not used in Windows 10 

ShutdownIn 
Progress Unidentified 

Shutdown 
ThreadId 

The thread ID suggested by the name, 
picked up from the UniqueThread 
member of CLIENT_ID in the Thread 
Environment Block (TEB) of the 
thread requesting process termination 

3.3 Analysis of Changing the Specific Field Data 
& LDR_DATA_TABLE_ENTRY (LDTE)

Structure 

The fields constituting the PLD are described in Table 2. 
Among them, we continuously observed and analyzed 
changes in the field values of the PLD data each process 
operating in the OS. Among them, it is found that the data in 
a module-list (–ModuleList) field has a different value for each 
process, and it contains the DLL information that is being 
loaded into the program. The module-list includes 3 specific 
field as follows: InLoadOrderModuleList (LOML), 
InitializationOrderModuleList (IOML), and 
InMemoryOrderModuleList (MOML), and the data stored in 
each field is different depending on the purpose of use. It can 
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be describing that the LOML field stores static DLL module 
information and process information that the process initially 
loads during the bootstrapping process. IOML is a structure 
that is almost like the data of the LOML field and has 
information about the DLL module that was initially loaded 
during bootstrap and performed until initialization but does 
not include process information [7]. MOML can verify that 
module information for all DLLs loaded in a dynamic manner 
is stored while the program is running. In the way that the 
module-list field loads module data, the variable with the 
LIST_ENTRY structure is loaded in a circular linked list as 
shown in Figure 2. It is connected to another LIST_ENTRY 
variable address using 2 fields (Flink, Blink) of the 
LIST_ENTRY structure, and the memory address loading the 
actual module information can be read by referring to the 
address values stored in the Flink and Blink fields. The data 
loading the actual module information is LDTE structure unit, 
and Microsoft documented and disclosed only 11 LDTE 
structure fields [27], but as a result of mapping code symbols, 
it can verify that there are 30 actual fields. However, we have 
selected 6 fields and 2 module-list (OrderLink) fields that can 
be used for DLL injection detection and blocking among 30 
fields to increase efficiency and addresses for each field are 
based on x86 and x64. The results are shown in Figure 3 and 
Figure 4. The specific application plan for each field is 
described in Section 4.2. 

Figure 3. LDTE symbol analysis result (Based on Windows 
10 Pro 64-bit, build 18362) 

Figure 4. LDTE strcture data fields and selected (Based on 
Windows 10 Pro 64-bit, Build 18362) 

4  Proposal of Generating Whitelist 
Chain Using LDTE

We propose a whitelist chain design to detect and block 
DLL injections and analyzed LDTE data changes to design the 
chain. In addition, the nodes constituting the chain were 
created by selecting several fields constituting the LDTE. A 
detailed method for this is proposed below in Section 4.1. 

4.1 Analysis of Changing the Specific Field Data 
& LDR_DATA_TABLE_ENTRY (LDTE)

Structure 

We analyzed that the module-list fields of the PLD 
structure have LIST_ENTRY type, and that the addresses 
loaded in LDTE data units are connected. Since the purpose of 
use of each field of LDTE is not documented at all, it is 
difficult to accurately analyze all fields, but as a result, it can 
be checked that some field data is being changed with certain 
rules. First, the OrderLinks field existing in the LDTE field has 
the same link structure as the module-list of the PLD structure, 
which has the same data. In other words, the module-list field 
in the PLD structure is the same as LDTE’s OrderLinks, which 
is the same as connecting “LDTE nodes” in linked list format. 
Second, each time a DLL is loaded in each process, it has a 
different timestamp data. It is allocated to LDTE’s 
TimeDateStamp field, which is an Unsigned Long type, it can 
be expressed in a date format as shown in Figure 4 (Located 
at +0x080). However, not used for the purpose of identifying 
the date, it can be verified that it is a unique value by the 
deterministic compilation method in the process. This is a field 
that can identify the uniqueness of each DLL even if it has the 
same DLL name. Third, in the ParentDllBase field, when a 
child DLL is loaded due to various reasons such as API call 
from the parent DLL, dynamic loading, etc., the 
ParentDllBase field value, the DLLBase value of the parent 
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DLL are stored in the child DLL. That determines the loading 
order when the DLL is called. Based on the above, the 6 fields 
of LDTE were selected to design the whitelist chain and 
describes in Table 3 and Table 4. 

Table 3. PLD structure data fields & data type (Based on 
Windows 10 Pro 64-bit, build 18362) 

Field Name Type 

BaseDllName UNICODE_STRING 

FullDllName UNICODE_STRING 

SizeOfImage ULONG 

TimeStampDate ULONG 

DLLBase PVOID (Address Pointer) 

ParentDLLBase PVOID (Address Pointer) 

Table 4. PLD structure field description (based on Windows 
10 Pro 64-bit, build 18362) 

Field Name Description 

BaseDllName DLL File Name 

FullDllName Contains the path value including 
the DLL file name 

SizeOfImage Size of image (DLL) 

TimeStampDate 
Hash value of the build file 
reproducible by the deterministic 
compile, not used for timestamp 

DLLBase Base Address of DLL 

ParentDLLBase 
Base Address of parent DLL 
when current DLL is loaded by 
DLL 

4.2 Proposal of Whitelist Chain Design Method 
for DLL Injection Defense 

In order to solve the DLL injection problem, we finally 
focused on the mechanism by which the malicious DLL works. 
DLL injection writes the DLL data to be infected in the 
process by using various approaches such as registry entry, the 
technique of creating a separate thread in the process using the 
CreateRemoteThread function, and the window hooking 
function. Ultimately, a function for loading DLL (LoadLibrary) 
and a function for loading data memory (VirtualAllocEx, 
WriteMemoryProcess) in the process is finally called in the 
injected process. Since this method uses the same technique in 
normal programs such as antivirus and patch programs, it is 
very difficult to detect them based on behavior. In addition, 
some DLLs operate on a Fileless basis or utilize an intelligent 
mechanism to finally deliver malicious DLL data to the victim 
by using a removable transmission medium [9], which can 
trigger DLL injection through file data monitoring. It is 
difficult to completely detect malicious malware. Therefore, 
we design a DLL whitelist chain to create a control group that 
can determine whether it is a normal DLL by using the 
resource constraints of the industrial control system 
environment, continuous work environment, and unique 
information of the DLL module loaded in LDTE data. The 

technique is proposed as follows. In first time, the LDTE data 
is read by referring to the PEB data address for the EWS 
process, and all connected LDTE data is read by referring to 
the OrderLinks field. For LDTE data sets  𝑆 = { 𝑎0 ,
𝑎1 , … , 𝑎𝑛}, access the address 𝑎𝑖  to get the structure field 
value for each LDTE. Here, there are 3 OrderLinks fields 
identical to Ldr, and the same LOML, IOML, and MOML 
fields as each field name can be mapped. At this time, there 
are dynamic and static methods for loading DLLs, so if it 
refers to LOML and MOML, all DLL module information used 
by the process can be retrieved. Among LDTE fields, 
BaseDllName and FullDllName fields contain DLL name data 
and are the most basic fields that can identify a DLL. However, 
malicious malware can attempt a DLL replacement attack to 
execute injection, and if this attack is successful, the values of 
both fields can be maliciously manipulated. Therefore, in 
order to check the actual data of the DLL, TimeStampDate and 
ParentDLLBase fields were additionally selected so that the 
authenticity of data manipulation can be determined. The 
SizeOfImage and DLLBase fields are fields that store the base 
address for the DLL and the size for the DLL, and the range 
and area of the address that the DLL uses in the process can 
be recognized. If it configures a total of 6 fields, it cans create 
one node, and if it connects all of the created nodes, you can 
configure it as a chain. At this time, the node data sheet can 
increase the efficiency of data access by building formatted 
data such as JavaScript Object Notation (JSON) and 
Extensible Markup Language (XML). An example of a data 
sheet designed based on JSON is shown in Figure 5. 

Figure 5. whitelist chain example with JSON datasheet 
(based on x64) 

Also, it is necessary to continuously update the whitelist 
chain, Industrial software such as EWS has a structure that 
continuously operates the same task without interruption due 
to the environmental characteristics of ICS. This is because the 
module I/O operations in which the DLLs used by the EWS 
are loaded and unloaded are constantly occurring, so we need 
a way to discover all the DLLs used by the EWS and update 
them in the chain. Considering the operating environment in 
IoT-based and stability of service provision, ICS goes through 
a process of continuously performing periodic tasks [5, 7]. 
From an information security perspective, availability is 
always a top priority even in the CIA triad, If the continuity of 
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the task is not guaranteed, or if it is interrupted, it is a serious 
incident that can cause great damage. That is why it is very 
important for ICS to keep the task constant at all times. In 
order to propose and use this method, it is assumed that EWS 
in a pure environment that is not yet subjected to DLL 
injection attacks is executed. Next, the memory address 
including the OrderLinks field data is read through the EWS 
process to be detected, and reads are performed on all structure 
data connected by a cyclic double linked list. At this time, 
while the EWS is executing the task, the node is created while 
reading the OrderLinks field data at a periodic time. If this 
process continues to run periodically, it can see the tendency 
of the EWS to load or unload a specific DLL and collect all 
the DLL information it uses. This reflects the environmental 
characteristics that the industrial control system continuously 
performs tasks, and the DLL module information used can be 
whitelisted. In summary, when there is a set 𝑇 = {𝑡0 , 𝑡1 , … ,
𝑡𝑛 } of points at which the chain creation operation is 
performed the information of the whitelist node chain is 
updated as each time passes from 𝑡0  to 𝑡𝑛 . Repeatedly, 
performing this increases the accuracy of DLL information 
used in EWS, it can be used as a control for detection and 
blocking. Figure 6 shows this process as the flow chart. 

Figure 6. Flow chart for periodic whitelist chain updates 
(LOML based, MOML also can be applied in the same) 

5  Whitelist Chain Based DLL Injection 
Detection & Proposal for Blocking 
Method 

5.1 Proposal of DLL Injection Detection Method 
using Whitelist Chain 

We propose a method that can detect DLL injection by 
using a whitelist chain based on the design technique proposed 
above. We proposed a method to create a whitelist chain 
updated with the latest information through Section 4.2, and a 
whitelist chain created based on the proposed method has a 
structure in which several nodes consisting of 6 fields is 
connected. In addition, we briefly presented how each field is 
used for detection through Section 4.1. In summary, it has the 
purpose of use as shown in Table 5. 

Table 5. Purpose of use by selected field for detection 
Field Name Description 

BaseDllName 
Detect the DLL’s name that was 
registered to chain 

FullDllName 
Detect the DLL’s name that was 
registered to chain 

SizeOfImage Determine the use area address on 
process of DLL 

TimeStampDate Identifies the uniqueness of the DLL 

DLLBase Determine the use area address on 
process of DLL 

ParentDLLBase Determine if there is any abnormality in 
the calling relationship of DLL 

We propose a method to detect this when it is assumed that 
a malicious DLL is loaded by an injection attack in the EWS 
process. Through the method described in Section 4.2, the 
EWS process reads all structures connected to LOML and 
MOML at periodic intervals to create a whitelist chain for 
normal DLLs used by EWS. As described in Section 2, this is 
an operational characteristic that reflects that EWS processes 
continuously perform tasks without interruption in most ICS 
environments [7, 23]. At this time, all DLLs loaded after the 
program bootstrapping process are loaded into LOML, and if 
it uses the ones connected in a circular linked list method as 
shown in Figure 2, it is determined whether the DLL is loaded 
by changing the load count through looping. If a DLL load is 
detected, information of nodes connected to the whitelist chain 
is read one by one to detect whether the DLL loaded in the 
process is normal. After that, it is determined whether the 
loaded DLL is normal by referring to the field value of the 
node. If there is no matching DLL information even after 
referring to all nodes, it is an abnormal DLL, and it is judged 
that a malicious DLL was loaded by DLL injection. The above 
methodology is summarized in Figure 7, Figure 8 shows how 
to detect a loaded DLL with a whitelist chain, and details of 
verifying the above methodology are covered in Section 6.1. 
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Figure 7. Flow chart for detecting load some DLL in the 
Process 

Figure 8. Flow chart for detecting injection when DLL is 
loaded in the process 

5.2 Proposal of Blocking Method Based on 
Whitelist Chain to Prevent DLL Injection 
Execution 

In addition to the detection method, a separate method is 
needed to block the execution of the injected DLL so that no 
actual damage occurs. When there is an arbitrary process, if 
the DLL is loaded into the process in a static or dynamic 
manner, the operating system guarantees thread-safe for the 
entire process until the loading is completed to improve safety. 

In this process, it has been verified that if unloading is 
forcibly attempted, it can cause a serious access violation in 
the process. This is because the OS does not always guarantee 
the sequential execution of threads, and the CPU context 
switching is the cause [29]. In order to prevent the execution 
of the injected DLL detected in the step 5.1, we additionally 
conducted an experiment to disable the DLL through API calls 
for unloading. As a result, the process was forcibly terminated 
with a certain probability or the program was rebooted. In 
other words, it can cause a large loss in the availability of the 
operation from the point of view of the industrial control 
system. In addition, to ensure thread safety, unloading 
experiments were conducted through API calls based on 
Thread-Safe, but the result of unloading the DLL was shown 
after all the code in the injected DLL was executed. This 
means that it doesn’t mean much to prevent DLL injection. 
Therefore, it is necessary to design a method that can block 
abnormal DLL injection techniques before the injected DLL 
is loaded into the process. We focused on the whitelist chain 
created using the technique proposed in Section 4.2 and the 
API used for DLL injection. For malicious DLL injection, 
calling of preceding codes for injecting malicious DLLs must 
be guaranteed, and several bypass techniques have emerged to 
execute the preceding codes [9].  

To verify API calls to prevent DLL injection such as 
LoadLibrary, CreateRemoteThread, etc., it is necessary to 
hook the verification code for virtually all resident processes, 
which is a very inefficient operation. In other words, in order 
to guarantee the execution of malicious DLL, a separate thread 
is created in the victim process, and a method to detect this is 
proposed as follows. When the EWS process is loaded, it 
implements a routine that checks based on the whitelist chain 
by pre-hooking the main API that DLL injection calls to create 
a thread. At this time, the hooked function is used for 
verification, and it can check the presence or absence of DLL 
injection using the whitelist chain. The details are covered in 
Section 5.3, and the API hooking process for the verification 
code when loading the proposed process is described in Figure 
9 and the hooking method in Figure 10. Additionally, we used 
the Microsoft’s Detours library for API hooking for thread 
verification [8]. 
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Figure 9. Flow chart for detecting load the DLL in the Process 

Figure 10. Flow chart for target process of API Hooking 

5.3 Proposal of Verification Method for Blocking 
Based on Whitelist Chain to Prevent DLL 
Injection Execution 

This section describes a method of additionally verifying 
whether the first caller address is valid when the thread in the 
EWS process is executed. If it uses the DllBase and 
SizeOfImage fields among the nodes constituting the whitelist 
chain, it can find the DLL corresponding to this address area. 
For example, if there is no DLL address corresponding to the 
area of this address through the node data constituting the 
chain, this is a DLL that is not recorded in the whitelisted chain, 
and the hooked API intentionally causes the return value to 
contain an error DLL injection can be blocked by applying a 
verification routine. Additionally, calling the LoadLibrary 
function through a thread created separately from the process 
is a basic routine for DLL injection, and if executed, the initial 
call point will point to the address of the thread creation 
function of the Windows native DLL, not the address of the 
process area, It was verified that the thread creation API 
(nt!RtlUserThreadStart) points to the RDX (x86 equals edx) 
register as shown in Figure 11.  

Figure 11. nt!RtlUserThreadStart, thread starting branch and 
assembly code in ntdll.dll (x86-64 based) 

These routines are deliberately called through a thread 
unless they are performed in the EWS process code area. If the 
proposed method is written in code, it is as shown in Figure 
12. At this time, if a routine is suspected of DLL injection, it
is designed to cause an error intentionally by inducing a stub
function call. At this time, for 32 bits, rcx and rdx register can
be replaced with ecx and edx register, respectively. Here, the
stub function does not perform any function, but only
performs “ret 0”, and is an empty function that does not mean
much to execution. Through our proposed verification routine,
we can induce a stub function to be executed without
executing a function written by the malicious.
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Figure 12. Flow chart for verifying nt!RtlUserThreadStart 
API call using the data of whitelist chain 

6  Whitelist Chain Based DLL Injection 
Detection & Experiment Result for 
Blocking Verification

We constructed an experiment environment as describes 
in Table 6 to verify the methodology for Sections 5.1 and 5.2. 
PLC and EWS are connected through the same network, and 
EWS targets TIA Portal v15 developed by Siemens, which is 
widely used in the ICS field, and EWS developed by Siemens 
becomes an attack site for Stuxnet malware and is a 
representative victim of DLL injection. The testbed operation 
consists of updating the values of the outputs (Q0.0-Q0.7) of 
the PLC Siemens S7-1200 (Q0.0-Q0.7) once a second on a 
virtual HMI using the built-in WinCC software in TIA Portal 
v15. The programming environment was written based on 
Visual Studio 2019, C++17, and uses a datasheet based on 
std::vector. In this case, that means there is no restriction to 
create a whitelist chain even if the datasheet is different 
depending on the user. 

Table 6. Configuration of the experiment environment 
Category Description 

CPU Ryzen 7 2700x 

OS Windows 10 Pro 64bit Build 18362 

Compile Ver. VS2019 v142 (Visual C++) 

RAM 16GB 

PLC Siemens S7-1200 1214C 

EWS Siemens TIA Portal v15 

Datasheet std::vector (C++17) 

Figure 14. Output node information connected to whitelist chain 
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For DLL injection test, we used the SecurityXploded 
Remote DLL Injector, InjectAllTheThings program [30]. 
These are injection experiment programs using 
CreateRemoteThread related functions and QueueUser APC, 
SetWindowsHookEx, and SetThreadContext functions that 
can create remote jobs for injection. When the process is first 
loaded, The DLL implemented based on the methodology 
according to Figure 9, loaded into the process as shown in 
Figure 13. The result of the loaded dll as shown in Figure 14, 
an environment in which the whitelist chain and API 
verification function can be operated while residing in the 
EWS process was established. In other words, it plays a role 
of protection for the process through well-intentioned DLL 
injection. 

Figure 13. Resides in the process and loads the DLL for 
verification and chain creation 

6.1 Whitelist Chain Based DLL Injection 
Detection Technique Experiment and 
Results 

The whitelist chain stores, and records DLL module 
information based on Ldr data while executing the task at 0.1 
second intervals for a total of 8 hours. As also shown in Figure 
13, a DLL containing information gathering routines is 
executed to create the whitelist chain. Additionally, to 
minimize the performance impact of the EWS parent process, 
we created a separate thread to do. It can be designed to act in 
a separate thread space from the parent process to collect the 
process of the DLL being onloaded into the EWS. This 
approach is like the technique used by DLL injection, but the 
difference is that it creates a whitelist chain, it is a well-
intentioned work to fulfill the preceding work for defense. As 
a result, the process correctly created the whitelist node for the 
module information of 193 DLLs used for work, and the CPU 
occupancy used for creation was 6-8% on average and the 
RAM occupied about 35MB. If it reads the whitelist chain and 
print all the connected nodes, it is as shown in Figure 14, these 
shows that the PEB-LDR data was read, the whitelist chain 
was created normally. When a malicious DLL is loaded by 
injection while the DLL is monitoring, it can be verified that 
it is success-fully detected as shown in Figure 15. 

Figure 15. A scene in which the verification DLL detects the 
loading of a malicious DLL by DLL injection 

6.2 Whitelist Chain Based Blocking Technique 
Experiment and Result of Prevent DLL 
Injection Execution 

We conduct an experiment to verify whether actual DLL 
injection can be blocked by utilizing both the whitelist chain 
based on the design technique proposed in Section 5.1 and the 
DLL injection blocking technique proposed in Sections 5.2 
and 5.3. Previously, through Section 5.3, we added a 
verification routine for Windows Native API (NTAPI), which 
must be called for creating a remote thread, and NTAPI for 
writing memory to a remote process, and a verification routine 
for RTL functions that are called when creating a thread. The 
main purpose is to experiment to see if these verification 
routines work correctly. We envisioned an EWS process to 
include a validation routine in nt!RtlUserThreadStart to 
determine whether it is called from a valid address or not. 
Furthermore, we performed caller address verification for 
low-level API such as LdrLoadDll. Previously, we checked 
the functions including various suffixes for each API [2, 4], so 
proceeded to target the low-level API. As a result of the 
experiment, it was verified that the routine process works 
correctly for the main API for injection as shown in Figure 16. 
The figure shows the stack up to the routine that verifies that 
when LoadLibrary API is called from EWS process, being 
called from a valid address. Before calling the API, we 
observed that the call was entered correctly into the validation 
function we implemented separately.  

Figure 16. Scene where verification code is called before 
calling LoadLibrary API in new thread of EWS process 

In addition, when attempting to load the DLL forcibly by 
the injector, it was verified that the thread creation in the EWS 
process failed as shown in Figure 17. The EWS process was 
not terminated and operated normally, the CPU occupancy 
used for detection is on average 10-15% and the RAM 
occupancy is about 60MB, which means that the DLL 
implementing the defense technique proposed by us normally 
blocks malicious DLL execution by the DLL injection 
technique of external malicious code in the EWS process. 
Additionally, the process does not terminate and operates 
normally, the results described in Table 7, it means that DLL 
injection is called through a remote thread to ensure stable 
operation and shows that the verification code inserted at the 
thread creation call point is effective in blocking. In a separate, 
the main goal of the SetWindowsHookEx function is to hook 
the message, the LoadLibrary function is included only in the 
call category for operating the main code [9]. In our 
experiment, when trying to hook using the function the exploit 
tool causes freezed, it succeeded in blocking, but essentially 
more detailed verification is required to determine whether it 
led to hooking. At this time, we considered technical 
compatibility, the purposed technology referenced specific 
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NTAPI and LDTE data to detect DLL injection attacks. LDTE 
and LDR data have been supported since Windows XP, which 
means that legacy OS can be technically used [26-27]. In 
generally, ICS environments except for the overhaul period, 
legacy OSs such as Windows XP and Server 2003 are still 
widely used. In the other word, it can satisfy the backward 
compatibility of the specific NTAPI and LDTE data we 
utilized. 

Figure 17. Sense of example when DLL injection was 
attempted 

Table 7. Configuration of the experiment environment 
API Name Block Result (Reason) 

CreateRemoteThread Success (Failed to create 
thread) 

SetWindowsHookEx Unknown (Freezed the expolt 
tool) 

SetThreadContext Success (Failed to create 
thread) 

QueueUserAPC 
Success (Failed to create 
thread) 

7  Conclusion Future Works

As the experiement results, we verified the DLL injection 
attack detection method for EWS used in ICS in IoT 
environment. The presented method also contributes to the 
safety operation of ICS along with device and platform 
security technologies in the IoT environment that have been 
previously worked on. Compared with other studies, our 
proposed DLL injection blocking method does not require 
various types of training data for DLL injection detection. In 
addition, it is possible to protect DLL information used in the 
EWS process by establishing a whitelist chain based on PEB-
LDR data through periodic DLL information recording in 
consideration of ICS operation characteristics. For the 
preceding steps to present the technology, we analyzed symbol 
information to analyze PEB structure information, and 
described how to utilize the specific fields containing DLL 
information in LDR structure. These analysis results can be 
widely applied when searching for traces of DLLs that can be 
utilized in a specific process or referenced when accessing 
them, or when building tasks that require status monitoring. 
On the other hand, we targeted the main attack types targeting 
the Windows OS such as DLL injection attacks, but if EWS is 
software running on Unix/Linux OS, it can be compromised 
similar attack types such as .so file injection. Therefore, it is 
necessary to study defense techniques targeting platforms 
other than Windows OS.  

Currently, it is publicly known that malicious actions 
through DLL injection as well as attacks that intentionally 
inject code in a DLL or inject code into process memory are 
possible. Although the above method detects based on DLL 
injection attacks that target processes, protection against code 
injection attacks that target processes or DLLs has not been 
verified. These types of attacks need to address pre-

requirements that need to be viewed broadly on a binary or 
code basis rather than a file information. For this reason, in the 
future, we will propose a technology that automatically 
recognizes DLLs used in EWS and automatically creates 
whitelist data and plans to conduct technology research that 
can protect not only DLL injection but also code unit injection. 
Besides, to create a whitelist chain through the above method, 
there is a hassle of periodically recording in a pure 
environment in advance. Since EWS used by ICS in IoT 
environment is still actively used for long-term monitoring 
and management of SCADA systems, it is necessary to devise 
various detection techniques to prepare for fatal attacks such 
as DLL injection to guarantee the normal function of EWS in 
the future. To overcome these shortcomings, we will devise a 
technique that can detect suspicious behaviors such as DLL 
injection without separate prior procedures such as 
whitelisting.  
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