Design of Broadband Implantable Antenna for Biomedical Application

Ching-Fang Tseng*, Bo-Zhong Huang, Wen-Chieh Huang

Department of Electronic Engineering, National United University, Taiwan
cftseng@nuu.edu.tw, berg0308@gmail.com, U0022105@smail.nuu.edu.tw

Abstract

A broadband implantable antenna is presented for the biomedical implantable system applications. The proposed antenna adopts a spiral monopole structure to realize the purpose of miniaturization size. The total size of the antenna including the biocompatible superstrates is $15 \times 15 \times 1.42$ mm3 operating frequency at 402 MHz. The effects of some design parameters on performance of proposed antenna are discussed. The simulated and measured in skin-mimicking gel show that the broad bandwidths of 150 MHz (310–460 MHz) and 260 MHz (280–540 MHz) at return loss of 10 dB can be achieved covering the entire Medical Device Radiocommunications Service (MedRadio) and Industrial Scientific Medical (ISM, 433–338 MHz) bands, respectively. The broadband implantable antenna performs an omnidirectional pattern, showing a good candidate for biomedical implantable systems application.

Keywords: Implantable antenna, Medical Device Radiocommunications Service (MedRadio), Industrial Scientific Medical (ISM), Broadband antenna

1 Introduction

Over the past few decades, implantable medical devices (IMDs) have attracted the attention of researchers for its applications in collecting physiological data and health monitoring of the patients toward wireless communication with the receiver equipment outside the human body. IMDs are used for many biomedical telemetry applications such as glucose monitoring, hyperthermia for cancer treatment, biomedical sensors, cardiac pacemakers, and capsule endoscopy [1-4]. The IMD is composed of many components in which an implantable antenna is the most crucial component because the transmission and reception of the signal must rely on the antenna working. The dielectric properties of human tissue are change with gender, age, weight, etc. which influence the impedance matching and stability of the resonant performance of an implantable antenna. Moreover, the size limits, human safety regulations and high data-rate transmission also are the essential requirements for an antenna inside the body, that make the implanted antenna designs challenging [5-7]. The available bandwidth of the implantable antenna is an important parameter to maximize the system performance with a high data rate; for instance, visual prosthesis and multichannel neural recording systems need sufficient bandwidth to satisfy a requirement of high data rate up to 10 Mb/s [8].

The Medical Device Radio Communication Service (MedRadio, 401–406, 413–419, 426–432, 438–444, and 451–457 MHz), the Wireless Medical Telemetry Service (WMTS, 608–614, 1395–1400, and 1427–1432 MHz), and the Industrial Scientific Medical (ISM) (433–438 MHz; 886–906 MHz; 2.4–2.48 GHz; and 5.725–5.875 GHz) are approved and currently used in different medical implant applications [9-19]. At lower frequencies, implanted antennas have the better signal propagation characteristics inside the human body, but they have relative bigger sizes compared with that used in higher frequencies.

Base on signal propagation characteristics, the proposed implantable is designed to use at around 400 MHz medical implant applications in this paper. Moreover, we attempt to design an implantable antenna with compact size, broad operation bandwidth and high data rate that is capable of monitoring patient physiological data wirelessly in real time for various biomedical telemetry applications. A spiral monopole resonator with an inverse L-shaped ground plane is used to satisfy the implanted space limit. Owing to the strong coupling happens between both, the best impedance matching and broadband performance can be obtained by tuning their size to catch more signal energy for achieving wideband communication with a high data rate. Detail results of the proposed antenna design and experimental results are presented and discussed.

2 Antenna Design

Figure 1 displays the precise geometry of the proposed broadband bioimplantable antenna fed by 50Ω microstrip line. A spiral monopole resonator to realize the purpose of miniaturization size is printed on one side of a 0.8 mm thickness FR4 substrate with $\varepsilon_r = 4.4$ and loss tangent $\tan\delta = 0.02$, and an inverse L-shaped ground plane on the other side as well. For the superstrate, an Al$_2$O$_3$ with a thickness of 0.64 mm, $\varepsilon_r = 9.8$ and loss tangent $\tan\delta = 0.0087$ is laid over the spiral monopole resonator to preserve its biocompatibility and robustness, as shown in Figure 1(b). The whole antenna dimension is $15 \times 15 \times 1.42$ mm3. The detailed parameters of the proposed implantable antenna are presented in Figure 1(a). By tuning W_1, W_2, GW and GL, the broadband performance can be achieved for MedRadio application. Because the proposed antenna is expected to embedded inside

*Corresponding Author: Ching-Fang Tseng; E-mail: cftseng@nuu.edu.tw
DOI: 10.53106/160792642022072304019
the human skin, the surrounding media is considered in simulated and measured processes. A simplified rectangular biological tissue model with dimension of \(60 \times 60 \times 20 \text{ mm}^3\) is adopted to simulate and the proposed antenna is placed at 4 mm in depth inside the model [11]. The appropriate real skin recipe for skin-mimicking gel at 402 MHz consists of 55.92% sugar, 2.53% NaCl salt, and 41.55% deionized water to form 100 ml solution and then 1 g agarose is added in the solution, which are used in [17] as a human skin model. The dielectric constant and conductivity of skin-mimicking gel at 402 MHz are 46.37 and 1.22 S/m, respectively.

Figure 1. The proposed bioimplantable antenna geometry: (a) Top view and (b) Side view

3 Results and Discussions

By correct choice of \(W_1\), \(W_2\), GL and GW, the good impedance mating and the suitable operating frequency for implantable biotelemetry systems application. The simulated \(S_{11}\) characteristics of the proposed bioimplantable antenna with different dimensions (\(W_1\) and \(W_2\)) of the spiral monopole resonator are plotted in Figure 2 and Figure 3. It can be seen and the resonant frequencies increase simultaneously as \(W_1\) and \(W_2\) increase from 1.3 to 2.2 mm and 1 to 4 mm, respectively. Moreover, the best bandwidth performance can be obtained at \(W_1 = 1.9\) mm and \(W_2 = 4\) mm. To investigated the effects of the ground plane’s size on the impedance characteristics of the proposed antenna, the simulated \(S_{11}\) with various GL and GW are shown in Figure 4 and Figure 5. Because of the strong fringing fields of the vertically placed strip resonator and ground plane, the proposed antenna produces easily nearby coupling [20]. Hence, the impedance matching is sensitive to the dimensions of GL and GW in the proposed structure. As shown in Figure 4 and Figure 5, the impedance matching is improved effectively by decreasing GL and GW and the optimized size of the ground plane is GL = 9 mm and GW = 1.5 mm. The current path length (L) which follows around the white dash path of Figure 1(a) is introduced to describe above \(S_{11}\) characteristics. The estimated current path length of the proposed monopole spiral resonator is about 93.75–3\(W_1–2W_2–\text{GW}\), while the change of the corresponding quarter wavelength resonance frequencies (\(f_r\)) of the proposed antenna with different \(W_1\), \(W_2\) and GW are presented in Table 1. It can be clearly seen that the proposed antenna provides resonance characteristics at about 0.4 GHz for all \(W_1\), \(W_2\) and GW values. The resonance frequency moves to high frequency with increasing \(W_1\), \(W_2\) and GW because of the current length reduction. As observed from Table 1, the calculated shift frequency level (\(\Delta f\)) is more in evidence by tuning \(W_2\), which is harmonized with the simulated \(S_{11}\) result. In addition, it can not only explain that why the resonance frequency remains unchanged with varying GL through analysis of the current path length but also understand how the mechanism of resonant mode excites.

Figure 2. Simulated \(S_{11}\) for the proposed implantable antenna for different \(W_1\) values with fixed values \(W_2 = 4\) mm, GL = 9 mm and GW = 1.5 mm

Figure 3. Simulated \(S_{11}\) for the proposed implantable antenna for different \(W_2\) values with fixed values \(W_1 = 1.9\) mm, GL = 9 mm and GW = 1.5 mm
Because of the inaccurate material allocation proportion, the skin-mimicking gel has the slightly lower dielectric constant and higher conductivity, which lead to that measured resonant frequency and 10 dB bandwidth is higher and bigger than simulated one [21], respectively. Another reason might be that the proposed antenna is implanted in the skin-mimicking gel with slight bigger than 4 mm embedded depth in the experiment. The bandwidth (BW) is calculated by:

\[
BW = \frac{(VSWR - 1)}{Q_T \times VSWR^{1/2}}
\]

where \(Q_T\) and VSWR are the total quality factor and voltage standing-wave ratio, respectively. The BW presents the inversely proportional relationship to \(Q_T\). In the body tissue, the \(Q_T\) is mainly dominated by the dielectric loss \(Q_e\) which is inversely proportional to the effective loss tangent (\(\tan \delta_e\)). When embedded depth is \(\leq 5\) mm, the \(\tan \delta_e\) sharply increases to lead to reduce rapidly \(Q_T\) with increasing embedded depth [22-23]. Hence, the body tissue with high-loss properties can broaden the bandwidth of the implanted antenna. The measured operating frequencies of proposed antenna are from 280 to 540 MHz at return loss of 10 dB which is suitable for the entire Medical Device Radiocommunications Service (MedRadio) and Industrial Scientific Medical (ISM, 433-438 MHz) bands applications. The impedance matching, impedance bandwidth and radiation situation are also influenced by the superstrate. The lossy high permittivity human tissues and antenna conductors are separated by the superstrate, which restrain the leaky current from the conductor directly into the lossy materials to avoid the high permittivity human body from shorting out the antenna. Compared to the antenna without a superstrate, the stronger and more uniform distributed fields can be generated inside the human tissues and a lower SAR on the skin surface can be achieved as the implanted antenna has the superstrate layer. Higher dielectric constant of superstrate brings the lower resonant frequency. Besides, the thin superstrate layer also assists in reducing the operating frequency. Therefore, the commercially available Al2O3 ceramic is selected as superstrate to provide biocompatibility in this antenna because its high dielectric constant of 9.8 and low loss features satisfy the low frequency operation of an implantable antenna [24-25].

Table 1. The change of resonance frequency \(f_r\), current path length (L) and calculated shift frequency (\(\Delta f\)) of the proposed antenna with different \(W_1, W_2\) and GW values

<table>
<thead>
<tr>
<th>(W_1) (mm)</th>
<th>(W_2) (mm)</th>
<th>GW (mm)</th>
<th>L (mm)</th>
<th>(Fr) (MHz)</th>
<th>(\Delta f) (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>4</td>
<td>1.5</td>
<td>80.35</td>
<td>444.99</td>
<td>-</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>1.5</td>
<td>79.45</td>
<td>450.03</td>
<td>5.04</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.5</td>
<td>78.55</td>
<td>455.19</td>
<td>5.16</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>1.5</td>
<td>77.65</td>
<td>460.46</td>
<td>5.27</td>
</tr>
<tr>
<td>1.9</td>
<td>2</td>
<td>1.5</td>
<td>84.55</td>
<td>422.88</td>
<td>-</td>
</tr>
<tr>
<td>1.9</td>
<td>3</td>
<td>1.5</td>
<td>82.55</td>
<td>433.13</td>
<td>10.25</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.5</td>
<td>80.55</td>
<td>443.88</td>
<td>10.75</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.5</td>
<td>78.55</td>
<td>455.19</td>
<td>11.31</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>2.5</td>
<td>78.55</td>
<td>455.19</td>
<td>-</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>3.5</td>
<td>77.55</td>
<td>461.06</td>
<td>5.87</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>4.5</td>
<td>76.55</td>
<td>467.08</td>
<td>6.02</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>4.5</td>
<td>75.55</td>
<td>473.26</td>
<td>6.18</td>
</tr>
</tbody>
</table>

The proposed antenna was implanted into skin-mimicking gel to emulated human skin and the simulated and measured \(S_{11}\) results are shown in Figure 6. It can be observed that there exists a discrepancy between simulated and measured results.
The radiation patterns of the proposed implantable antenna are illustrated in Figure 7. The vertical surface current distributions of a planar monopole antenna mainly contribute the horizontal radiation patterns. If the vertical surface currents are in-phase, the planar monopole antenna could generate stronger radiation in the broadside. The H-plane radiation patterns are hard to keep omnidirectional with increasing the width of ground plane especially as width of ground plane is close to the wavelength at higher operation frequency [26]. As shown in Figure 7, it can be seen that the radiation patterns in the y-z plane are nearly omnidirectional monopole-like with low cross-polarization because of small size GL. The 3D far-field gain radiation pattern is also shown in Figure 7. A maximum peak gain of –25.9 dB can be obtained at 402 MHz because of the electrically small size and high tissue loss.

In Table 2, a detailed performance of the proposed antenna is compared one skin layer geometry implanted antennas of [11] published in the open literature in which the microstrip antenna and planar inverted-F antenna (PIFA) are designed to operate at 402–405 MHz for short-range biomedical devices application. All of three antennas in Table 2 have the similar spiral structure resonator as well as the same 4 mm implanted depth and covering 402–405 MHz. Although the dielectric constant of substrate and superstrate are lower than that of [11], the proposed antenna provides the most compact size and the largest bandwidth because bandwidth enhancement and volume reduction by a wide margin can be realized through utilizing monopole geometry and inverted-I shaped ground plane especially. The proposed implantable antenna is simulated within the simplified human model compared with [11] and measured in the human skin-mimicking gel model which closely approximates the simulated model such as size, surrounding environment, implanted depth and dielectric properties. Therefore, the measured return loss agrees well with the simulated one. Here, the proposed implantable antenna is designed without using any via or shorting pins, which can reduce the addition losses and design complexity. Results show that the proposed compact antenna with excellent performances has good potential to be used in a miniaturized implantable device.

Table 2. Comparison of implantable antennas in [6] with the proposed antenna

<table>
<thead>
<tr>
<th>Ref.</th>
<th>[6]</th>
<th>[6]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. resonator type</td>
<td>Microstrip spiral (one skin layer)</td>
<td>PIFA spiral (one skin layer)</td>
<td>Monopole spiral</td>
</tr>
<tr>
<td>Ant. Dimension (mm³)</td>
<td>40×36×4</td>
<td>32×24×4</td>
<td>15×15×1.42</td>
</tr>
<tr>
<td>Volume (mm³)</td>
<td>5760</td>
<td>3072</td>
<td>319.5</td>
</tr>
<tr>
<td>Substrate</td>
<td>εᵣ = 10.2, tanδ = -</td>
<td>εᵣ = 10.2, tanδ = -</td>
<td>FR4, εᵣ = 4.4, tanδ = 0.02</td>
</tr>
<tr>
<td>Superstrate</td>
<td>εᵣ = 10.2, tanδ = -</td>
<td>εᵣ = 10.2, tanδ = -</td>
<td>Al₂O₃, εᵣ = 9.8, tanδ = 0.0087</td>
</tr>
<tr>
<td>Frequency</td>
<td>402 MHz</td>
<td>402 MHz</td>
<td>402 MHz</td>
</tr>
<tr>
<td>-10 dB BW</td>
<td>Sim.: ~ 30MHz</td>
<td>Sim.: ~ 30MHz</td>
<td>Sim.: 150MHz</td>
</tr>
<tr>
<td>Mea.: mismatching</td>
<td>Mea.: mismatching</td>
<td>Mea.: 260 MHz</td>
<td></td>
</tr>
<tr>
<td>Measured implantation scenario/ Implanted depth</td>
<td>Skin layer/ 4 mm</td>
<td>Skin layer/ 4 mm</td>
<td>Skin layer/ 4 mm</td>
</tr>
</tbody>
</table>
4 Conclusion

In this paper, a broadband implantable antenna is presented and suitable for the Medical Device Radiocommunications Service (MedRadio) (401–406 MHz) applications. The optimal impedance matching can be obtained by properly tuning W_1, W_2, GW and GL. The experiment results exhibit an impedance bandwidth of 260 MHz (280–540 MHz) at return loss of 10 dB by implanting inside skin-mimicking gel. The maximum peak gain of −25.9 dBd is achieved at 402 MHz. The simulated and measured results confirm that the proposed antenna is a potential candidate and suitable for biomedical implantable systems.

References

Biographies

Ching-Fang Tseng was born in Koahsiung, Taiwan, in 1978. She received the Ph. D. degree in electrical engineering from Cheng-Kung University, Tainan, in 2007. Currently, she is a Professor in the Electronic Engineering Department at National United University, Taiwan. She has been involved in the research and development of wearable and flexible antennas, implantable antenna, biomedical devices, microwave/mm-Wave/sub-THz mobile antennas, wireless biosensors, glass free ULTCC & LTCC microwave dielectric materials, biomedical signal analysis, nonintrusive biological signal measurement and intelligent health monitoring systems. She has author or coauthor over 100 technical publications.

Bo-Zhong Huang received the B.E degree in electronic engineering from National United University, Miaoli, Taiwan, in 2017, and is currently working toward the M.S degree in electronic engineering at the National United University. His main research direction is the development of wireless communication substrate materials, implantable antennas and dielectric resonator antennas.

Wen-Chieh Chuang received the B.S. degree in electronic engineering from National United University, Miaoli, Taiwan, in 2015. His research interests include implantable antennas, wearable antennas and dielectric resonator antennas.