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Abstract 

A person search system was developed to identify the 
query person from images captured by cameras at four scenes 
in the study. This study analyzed three network architectures 
called Model Basic, Model One, and Model Two. To verify 
the validity of the model design, the models in the public data 
set and in the recorded system data set were compared to 
determine whether the results of the proposed model exhibited 
consistent performance between the camera images from the 
public data set and the recorded, unprocessed system data set. 
The detected pedestrian images then underwent distance 
matching relative to query person images by using the online 
instance matching (OIM) loss function. Based on Model Basic, 
Model One and Model Two were designed to further improve 
accuracy by incorporating different convolutional neural 
networks. In CUHK-SYSU data set, the testing results of 
Model Basic, Model One and Model Two achieved the 
accuracies of 72.38%, 75.96% and 75.32%, respectively. The 
testing results of Model Basic, Model One, and Model Two 
with the system data set achieved accuracies of 63.745%, 
68.80%, and 69.33%, respectively. 

Keywords: Deep learning, Object detection, OIM loss 
function, Person search, ResNet50 

1  Introduction 

Cameras are ubiquitous, and dynamic camera images have 
become part of the mainstream approach for monitoring 
systems. Through long-term operation and numerous recorded 
dynamic images, real-time tracking or tracking by searching 
for specific persons, events, or objects has become possible. 
Because the human eye lies at the core of tracking 
identification, dynamic image monitoring is only feasible 
through human visual observation. However, such a use of 
human eye is constrained by limited visual attention, 
difficulties in data analysis, numerous missing reports or false 
alarms, and slow response. Thus, observation with the human 
eye cannot cope with processing the exponentially growing 
quantity of data. In real-time tracking, to identify the target to 
be tracked, personnel must be constantly deployed to 
continually watch real-time images. In tracking by searching, 
a substantial number of personnel is required to rewind and 
examine recorded videos before identifying the target to be 
searched. Such monitoring systems are not cost effective, 

whether in time or human resources. Thus, many scholars have 
aimed to realize real-time online tracking and highly accurate 
object detection, addressing the aforementioned problems 
using object detection and tracking in machine vision. In 
particular, deep learning has been used to replace traditional 
machine learning computations to improve identification 
accuracy.  

Since 2012, following the increasingly wide application of 
convolutional neural networks (CNNs), the field of person 
reidentification (Re-ID) has had a resurgence. Bromley et al. 
proposed the Siamese neural network, and some variants have 
been developed [1]. The Siamese structure is composed of two 
independent CNN network models that extract features 
separately and compare the features. Subsequently, the output 
results of the two networks are combined to produce the final 
result. Chopra et al. modified the Siamese network structure 
and used it for identifying image similarity [2]. Ahmed et al. 
integrated the results of previous studies and designed a 
special CNN model for person Re-ID. By inputting a group of 
person images to two identical CNN networks and using the 
verification of loss functions to train parameters, the model 
more accurately identifies whether two images are of the same 
person [3]. Ding et al. proposed a method for identifying 
whether two images are of the same person based on person 
data from different scenarios. Their method mainly involves 
the use of similarity measurement to enable the neural network 
to learn image features. The aim is to minimize the feature 
distance for the same person while maximizing the feature 
distance between different persons [4]. Based on existing 
person Re-ID architectures, recent studies have focused on 
improving the formulation of environmental variables. 
Because, in practice, different cameras are installed at 
different distances, camera image resolution vary, which 
makes person comparison difficult. To address the problem, 
Li et al. proposed a person Re-ID method for cameras with 
low resolution (LR). Their aim was to compare LR person 
images with their high-resolution counterparts in an existing 
data set. To enhance accuracy in person identification from 
traditional LR images with different resolutions, image 
processing techniques are used prior to the input of training 
data, where LR images are rescaled to produce images with 
greater resolution and clarity before they are input into the 
model for computation. However, this method is inapplicable 
to Re-ID problems. To solve the LR image problem, a unified 
multiscale Re-ID learning architecture is required, instead of 
direct comparison and identification using Re-ID [5-6].  



840 Journal of Internet Technology Vol. 23 No. 4, July 2022 

Person Re-ID is aimed at solving problems of identifying 
a person whose images are shot by different cameras at various 
angles. As a rapid developing field of research, person Re-ID 
has been widely applied in dynamic image monitoring and 
multimedia applications, such as pedestrian detection [7], 
cross-camera visual tracking [8], and object tracking analysis 
[9]. However, images of the same person may exhibit different 
patterns; this is because of different camera shooting 
conditions, such as perspective, posture, lighting, shading, 
identification rate, camera setup, and a messy background. 
These environmental variables make pedestrian detection 
more difficult. To solve this challenging problem, researchers 
have proposed many Re-ID data sets and algorithms to 
gradually increase basic identification performance. 
Nevertheless, much work remains to be done before these 
tools can be applied.  

Traditional person Re-ID comprises two steps: pedestrian 
detection and reidentification. First, pedestrian detection is 
conducted to identify whether a pedestrian is present in the 
image. Subsequently, and second, when a pedestrian is present, 
a linear classification method is adopted to perform 
reidentification. Because of its linear classification 
characteristics, this method often has the problems of 
overfitting data, an inability to identify unknown data, and 
difficulties in feature collection, which bottleneck the 
development of the technology. To address these problems, 
many studies have investigated object detection and tracking 
in machine vision. Deep learning has been used in place of 
traditional machine learning computation to improve 
identification accuracy. However, person Re-ID and 
pedestrian detection have different purposes. The purpose of 
person Re-ID is to classify individual persons to distinguish 
between different persons and to make the identity of persons 
traceable at any time point. The purpose of pedestrian 
detection is to detect features belonging to the pedestrian and 
locate the pedestrian’s position. At present, most person Re-
ID algorithms emphasize considerations pertaining to the 
query and gallery, in which most images are cropped [10-11]. 
In real-life application, query pedestrians must be searched in 
a complex and realistic scenario. Xiao et al. proposed 
combining person Re-ID and pedestrian detection to develop 
a person search architecture that can be applied in real-world 
images [12]. To facilitate detection in real application 
scenarios, a comprehensive set of environmental interference 
factors are retained in the image in addition to the query person. 

This study designed a person Re-ID search and tracking 
system for images captured from multiple cameras. Studies on 
person Re-ID and tracking more generally have mainly 
discussed the themes of collecting and using person data; the 
improvement of model identification accuracy; the analysis of 
differences between camera-captured person images; and the 
effect on identification accuracy from environmental factors, 
such as lighting, shading, posture, and perspective. These 
themes have been discussed theoretically in the absence of a 
complete system flow for combining the methods explored 
and for applying them in practical person Re-ID and tracking. 
The goal of this study was to use cross-camera real-time 
images and recorded images as the input data for training and 
testing. Subsequently, semisupervised learning was adopted to 
label a small proportion of the training data set. Thereafter, the 
deep learning model was improved to obtain greater 
identification accuracy. Finally, the user interface was 
designed, culminating in a complete system. When a user 

inputs the query person, the system identifies each image that 
possibly contains the person and informs the user of the 
probability that a given pedestrian is the query person. 

2  System Flow and Model Flow 

The system is composed of a data set and model. The data 
input method involves two channels to facilitate computation. 
The following two items are uploaded to the server for 
computation: first, a data set that contains the real scenario 
images of the search person from (Camera 1, …Camera N) 
and second, the image of the search person. The model uses 
the deep learning approach of faster region-based CNN (R-
CNN) object detection as the basis in combination with the 
Re-ID method. The output is a match with a person. The 
matching threshold values are set in the model. Matching 
results greater than the threshold values represent successful 
matches and are selected and stored, whereas those results 
lower than the threshold values are considered failed matches 
and stored (Figure 1).  

Figure 1. System flow

All computations were conducted on the Ubuntu 16.04 
operating system; the computer had an Intel i7-2600 four-core 
CPU, 12 GB of DDR3 RAM, and a GTX 1060 GPU with 6 
GB of video memory (Table 1). 

Table 1. Computer settings
Computer 

Operating system Ubuntu 16.04 

Processor Intel i7-2600 

Memory DDR3 12G 

Graphics card GTX1060 

The model design flow is illustrated in Figure 2. First, the 
public data set CUHK-SYSU [12] was used for training and 
testing to increase the reliability of the model design. The 
model was divided into three categories, which were Model 
Basic, Model One, and Model Two. Model One and Model 

System interface

Search person imageCamera 1 Camera N...

inputinput

Calculating model 

Save ResultsSave Results

Identify person

Server

upload

Match successful Match error

Model design

Dataset



A Deep Learning-Based Person Search System for Real-World Camera Images 841 

Two were models modified from Model Basic for improved 
accuracy, as shown in Figure 2(a). Subsequently, the data set 
collected in this study (referred to as the system data set) was 
used to train and test the model, which was again divided into 
Model Basic, Model One, and Model Two. Finally, the 
analysis results of the public data set and the system data set 
were compared to identify whether they exhibited consistent 
tendencies. Among the analysis results of the system data set, 
the optimal solution was selected as the system model, as 
shown in Figure 2(b).  

Public Dataset Model-Basic

Model-One

Model-Two

Improve Accuracy

(a) Public model

System Dataset Model-Basic

Model-One

Model-Two

Improve Accuracy

(b) System model
Figure 2. Model design flow

3. Data Set and Model Design

Present-day Re-ID references and algorithms mostly focus
on matching cropped pedestrian images; thus, nearly all 
images in the data set were cropped [10-11], as shown in 
Figure 3(a). However, these images are unsuitable for testing 
in person search because real-world images are affected by 
various background and external factors, as shown in Figure 
3(b). The purpose of person search is to identify the query 
person from all these factors.  

(a) Cropped images (b) Real scenario images
Figure 3. Data set difference for images 

3.1 Public Data Set 

To solve the problem, the person-search data set CUHK-
SYSU, which Xiao et al. applied to analyzing real-world 
images, was adopted as the public data set. CUHK-SYSU is a 
large-scale person-search data set collected under diverse 
scenarios. The data set comprises two sections: street 
snapshots and movie or TV series snapshots. In street 
snapshots, hundreds of scenario images are collected from 

various perspectives and under various lighting conditions, 
identification rates, shadings, and backgrounds. The data set 
of snapshots contains snapshots from movies or television 
series. These two snapshot data sets provide diverse scenarios 
and challenging perspectives. In total, 8432 labeled persons 
and 18 184 images are provided by the data set. Some CUHK-
SYSU images of street snapshots (StreetSnap) and movie or 
TV series snapshots (Movie&TV) are shown in Figure 4(a) 
and Figure 4(b), respectively. 

(a) StreetSnap (b) Movie&TV
Figure 4. CUHK-SYSU images

The architecture of the CUHK-SYSU [12] data set is 
detailed in Table 2. In total, 11260 images were used for 
training, where 55 272 pedestrian bounding boxes were 
labeled. The bounding boxes contained pedestrian positions 
(x1, y1, x2, y2). A total of 5532 pedestrian identities (id) were 
labeled. 

Table 2. CUHK-SYSU data set architecture
Data set Images Pedestrians Identities 

StreetSnap 12,490 7,5845 6057 

Movie&TV 5,694 2,0298 2,375 

Training 11,260 5,5272 5,532 

Test 6,978 4,0871 2,900 

Overall 18,184 9,6143 8,432 

3.2 System Data Set 

The person images in the system data set were collected 
through a method similar to that used for the public data set. 
The images were primarily collected using a SJ4000 camera 
that supports image capture at 4K resolution. The maximum 
image resolution was 12 million pixels. Image data were 
collected at 60 frames per second. The shooting environment 
mimicked those of surveillance cameras along streets and 
roads. The person image data comprising the system data set 
were mainly collected from four sites on a campus. The 
camera specifications are listed in Table 3.  

Table 3. SJ4000 Camera Specifications 
Specifications 

Camera appearance 

Image resolution Supports 4K video recording 
Camera pixels 12 million 

Frame per second 60Fps 
USB port USB2.0 

(a) (b)
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In response to the system’s needs, this study adopted four 
scenarios named Camera A, Camera B, Camera C, and 
Camera D, each for a given image capture scenario, when 
collecting pedestrian images for training the network to 
identify persons (Figure 5). The installation of each camera 
was purposeful. To capture images affected by simple to 
complex environmental factors, the cameras were installed at 
locations that were near to distant from the query person, 
respectively. Cameras A and B were nearest and furthest to the 
query person, respectively, where images from Camera B are 
likely to have problems with lighting and messy backgrounds. 
These different cameras were used to determine whether the 
proposed network is robust under such complex 
environmental factors.  

Figure 5. Images corresponding to the four scenarios

The system data set contained images of 54 query persons 
in four real-world scenarios and was used to compare the 
accuracy of identifying query persons under different 
scenarios. System tests were conducted, which involved a 
small-scale data set based on the 54 query persons. The data 
set contained 164 images for the four scenarios. The images 
were evenly distributed among the four scenarios. Each person 
with the same pedestrian identity was present in three images 
in a scenario on average. Among the 164 images, 272 
pedestrians and 54 identities were identified. The data set 
architecture is shown in Table 4.  

Table 4. System data set architecture
Data set Images Pedestrians Identities 
Camera A 39 64 11 
Camera B 43 73 16 
Camera C 40 67 14 
Camera D 42 68 13 
Training 114 209 38 
Test 50 63 16 
Overall 164 272 54 

The major difference between the system data set and the 
public data set lies in whether the same person appears for 
different scenarios. In the public data set, a person only 
appears at a single scenario; thus, none of the persons had the 
same identity. By contrast, in the system data set, the same 
person may appear repeatedly at different scenarios. The 
challenge faced by the present study was ensuring successful 
identification of the same person under different scenarios. 
This study’s analysis results on the advantages and 
disadvantages of each scenario can be used by future studies 
to improve the identification rate. 

4  Model Design 

The model design mainly comprised two parts: person 
detection and person identification (Figure 6). First, the data 
are input into the data set. Then, for person detection, all 
pedestrians that appear in the real scenario images are located 
with their coordinate positions through the use of bonding 
boxes. Subsequently, for person identification, all pedestrians 
undergo matching computation with the search person to 
determine the probabilities that any given pedestrian is the 
search person. The model design is completed by combining 
the two parts.  

Figure 6. Brief flow of model 

As required by the present study’s experiment, the 
network must comprise two inputs of query person images and 
gallery images [12]. Therefore, the model network was 
designed based on the Siamese network [1]. The Siamese 
network satisfied this study’s requirements: it is a similarity 
measurement network that is mainly applied to cases with 
diverse classes of samples, where a few samples are in each 
category. Traditional classification methods require specific 
information on the category each sample is in. Each sample 
must be labeled specifically and a massive sample data set is 
required. Traditional methods are unsuited to tasks with few 
samples classified in diverse categories. The basic operation 
of the Siamese network is depicted in Figure 7. First, a pair of 
data points X1, X2 were input into the network. Through a pair 
of identical CNN networks, a pair of features 

( ) ( )1 2,W WG X G X sharing an identical weight W were 
extracted. After the data were input, the similarity of the 
features was computed to determine the probability that X1 and 
X2 belonged in the same category. When the feature distance 
between X1 and X2 decreases, their probability of being in the 
same category increases and the loss decreases. By contrast, 
when the feature distance between X1 and X2 increases, their 
probability of being in the same category decreases and the 
loss increases. 

Camera A Camera B

Camera C Camera D

Person Detection

Person Identification

Dataset

Results

First part 

Second part 
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Figure 7. Siamese network architecture 

4.1 Model Basic 

The design principles of the network model pertained to 
detecting persons in a real-world image, matching the detected 
pedestrian with the search person, determining the person’s 
identity, and calculating the probability of the detected 
pedestrian being the search person. The pedestrian detection 
network was based on faster R-CNN [13-15]. The person Re-
ID method features the use of the online instance matching 
(OIM) loss function [16]. The joint network design for person 
search was developed by combining the two methods (Figure 
8).  

Figure 8. Model Basic network architecture 

The network model of Model Basic is described with 
respect to the architecture and tuned hyperparameters in 
Figure 8, as follows. 
(1) The ResNet50 model was selected for the CNN network

architecture [11]. The 256–1024 kernels in the layers
from Convolution1_1 to Convolution4_3 in the ResNet50
model were output as the features. The query person
images and gallery images were input into the CNN
network to extract features and generate a series of
convolution feature maps as the output.

(2) In the pedestrian proposal network, each position of the
feature maps was set with nine anchor bounding boxes.
The softmax classifier was used to determine the
reliability of pedestrian existence in the bounding boxes.

Regression analysis was used to modify the position of 
the bounding boxes. After a regression analysis of 
anchors containing pedestrians, nonmaximum 
suppression was conducted to reduce the number of 
repeated bounding boxes. Finally, these bounding boxes 
were used as the output of the pedestrian proposal 
network, which is called Proposal. 

(3) The region of interest (ROI) pooling mapped the
bounding boxes obtained from Proposal onto the feature
maps. After the coordinates of the bounding boxes on the
feature maps were obtained, pooling was conducted to
acquire the maximum or mean values. If L categories of
different query persons exist in the training set, after
matching Proposal with the query person, Proposal may
present three prediction results. A successful match is one
where Proposal is assigned to a category identity from 1
to L categories (one among the L categories); such a
Proposal is termed a Proposal with label identities. By
contrast, proposals with a failed match are called
Proposals with unlabeled identities and Proposals
containing nonpedestrian or background clutter. The three
results are input into the ROI pooling and mapped to the
feature maps.

(4) The person Re-ID method adopts the OIM, which was
constructed by Xiao et al. for person Re-ID in a joint
network [16]. Figure 9(a) depicts the OIM detection
results, which are represented in green (containing label
identities) and red (containing unlabeled identities)
bounding boxes. Two supportive structures, namely the
lookup table (LUT) and circular queue (CQ), were used
on the OIM, as shown in Figure 9(b). In general person
Re-ID models, the cropped person images result in the
existence of only positive samples. Therefore, the models
were less generalizable and thus less suited to practical
use.
1. LUT: The LUT is where the positive samples are

stored; it comprises eigenvectors of label identities.
To determine the similarity between the label
identities and the query person, subsequent
calculations only require a comparison between the
distances of the mini-batch samples of the query
person and the LUT samples of the label identities.

2. CQ: CQ is where negative samples are stored. It is
composed of the eigenvectors of unlabeled identities.
To determine the similarity between the unlabel
identities and the query person, subsequent
calculations only require a comparison between the
distances of the mini-batch samples of the query
person and the CQ samples of the unlabeled
identities.

id = 1 id = 2 id = 3

Labeled identities

Unlabeled identities

id 

1

2

3

Features

Lookup Table

Circular Queue

(a) (b)(a) OIM detection results (b) LUT and CQ used on the OIM 
Figure 9. OIM operating architecture
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(5) In OIM, the distance comparison uses the cosine distance
to reduce the computational load. The cosine distance
differs from the Euclidean distance (where the absolute
distance of each point is used to compare the similarity of
images) in that the cosine distance uses the angles
between vectors to calculate image similarity, where a
greater angle indicates lower similarity (Figure 10). The
cosine distance is defined in (1). Ai and Bi represent the
components of vectors A and B, respectively.

Figure 10. Cosine distance and Euclidean distance 

( ) ( )
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2 2

1 1
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n

i ii
n n

i ii i

A B

A B
 =

= =


=




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(1)

The purpose of OIM is to distinguish between persons with 
different identities, specifically by reducing the feature 
distance between images of the same person while increasing 
the feature distance between images of different persons. First, 
in (2), V represents the LUT extracted features; L represents 
the number of persons with different identities, and D 
represents the feature dimensions that are extracted for a single 
person. 

L DV R  (2)

In (3), x is the features extracted from the mini-batch 
samples, and M is the mini-batch size.  

D Mx R  (3)

Consequently, the similarity d1 between the mini-batch 
samples and all persons with label identities can be calculated 
using (4). 

T
ld V x= (4)

In addition to label identities, many unlabeled identities 
are valuable aids to feature learning. They can be safely used 
as the negation category of all label identities, as shown in (5), 
where U is the CQ extracted features and Q represents the 
queue size. Per [11], the queue size was set at 5000. After each 
iteration, new eigenvectors were pushed into the queue, and 
they eject outdated eigenvectors to maintain the loop of 5000 
computations. D is the feature dimensions extracted for a 
single person.  

D QU R  (5)

On basis of (5), the similarity du between the mini-batch 
samples and persons with unlabeled identities is calculated 
using (6).  

T
ud U x= (6)

According to the LUT and CQ, the probability of a mini-
batch x belonging to the ith category identity is calculated. The 
probability pi of x belonging to a label identity is calculated 
using (7).  0,1    is used to maintain the flatness of the 
probability distribution. The probability qi of x belonging to 
an unlabeled identity is calculated using (8). 
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(8)

To identify the expected value of the optimal parameter 
solutions of the model and to maximize the OIM probabilities, 
the statistical maximum likelihood estimation method was 
used to acquire the maximized expected log-likelihood, as 
shown in (9). pt is the predicted value of the distribution. 

L logx tE p=    (9)

Subsequently, the gradient of L to x can be expressed in 
(10). 

( )
1, 1

L 1 1
L Q

t t j j k kj j t k
p v p v q u

x  =  =

  = − − −
  

      (10) 

According to the equation, the OIM loss effectively 
compared the mini-batch samples with all persons with label 
and unlabeled identities. The results reduced the feature 
distance between persons with same identities and maximized 
the feature distance between persons with different identities. 
The person matching analysis results and the regression 
prediction results for person detection bounding boxes were 
thus obtained. 

4.2 Model One 

Model One is a modification of Model Basic. Because 
person identification revolves around analyzing similarities 
between different persons, more detailed local features are 
required to obtain improved identification results. Therefore, 
Model One was designed to obtain improved local features. 
After the ROI pooling was output, a six-layer CNN network 
was added to double the kernel number from 1024 to 2048, 
thereby generating 2048 feature maps. The model is aimed at 
obtaining subtle eigenvectors between localized pedestrians 
and the query persons and at examining whether more detailed 
eigenvectors improve the identification of similarity between 
pedestrians and the query persons. The increase in the kernel 
number increased the number of eigenvectors and 
corresponding overfitting rates. Therefore, global average 
pooling was added to reduce the likelihood of overfitting. 
Thereafter, the data were input to OIM to facilitate subsequent 
computation (Figure 11) [17]. The general basic CNN 
procedure is composed of convolutional, pooling, and fully 
connected layers. The present study adopted the global 
average pooling approach proposed by Lin et al. to replace the 
final fully connected layers [18]. That study noted two 
advantages of using global average pooling: (1) it effectively 

Y

X

Z

A

B
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mitigates the incidence of model overfitting and (2) it reduces 
the computational load of the model parameters. Therefore, 
the final step in the training involved the input of all 
eigenvectors obtained from the network into global average 
pooling to complete the model training.  

Figure 11. Model One network architecture 

The difference comparison for global average pooling is 
shown as follows. As shown in Figure 12(a), the outputs of the 
fully connected layers are eigenvectors of all the feature maps. 
As shown in Figure 12(b), the global average pooling outputs 
are the mean values of the eigenvectors of each feature map. 
The number of feature maps is equal to that of the outputs.  

Feature Maps

Fully Connected Layers

Output Nodes

Global Average Pooling 

(a) (b)

Feature Maps Output Nodes

(a) Fully connected layer (b) Global average pooling
Figure 12. Architecture comparison 

4.3 Model Two 

Similar to Model One, Model Two is a modification of 
Model Basic. Because person identification revolves around 
the similarity between different persons, detailed local 
features are required to obtain improved identification results. 
In Model Two, a six-layer CNN network was also added 
following the ROI pooling output. However, the CNN 
network was designed using the squeeze-and-excitation (SE) 
network method [19]. The model was modified without 
changing the kernel number (Figure 13). Thus, 
Convolution_down and Convolution_up 1 × 1 convolution 
kernels were added to the convolution layer to integrate 
eigenvectors of different sizes. The output can yield three 

eigenvectors. Thereafter, the axpy function a*x+y was used to 
calculate the final eigenvalue of the output.  

Figure 13. Model Two network architecture 

Figure 14 shows the SE network architecture with the axpy 
function added. 

Figure 14. SE Network architecture [19] 

5  Experimental Procedures and Results 

First, Caffe was selected among numerous deep learning 
frameworks as the framework for writing the network model; 
this was because Caffe has multiple supports and a fast 
operating speed. It is suitable for the person search system. 
The version of multi-GPU Caffee based on OpenMPI was 
adopted because this version supports multicalculation. 
Before installing Caffe, certain libraries must be installed 
(Table 5), which provided the settings used in this experiment. 
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Table 5. Library version
Library Version 
Python 2.7 
CUDA 8.0 
Cudnn 5.1 

OpenMPI 1.8.8 
boost 1.58 

5.1 Public Data Set 

The training data were inserted into the network for 
training to define the training parameters (Table 6). This 
experiment adopted the following training parameters: 50 000 
iterations and an initial learning rate of 0.001. The display was 
enabled every 20 iterations.  

Table 6. Training parameters for public data set
Parameter Value 

Iterations 50000 

Learning rate 0.001 

Display 20 

Gamma 0.1 

Stepsize 40000 

The experiment executed three person search network 
model architectures in the public data set to facilitate training 
and testing. Three experimental results were obtained. Figure 
15 shows the convergence curves of Model Basic after 50 000 
iterations of the public data set. 

Figure 15. Model Basic’s training loss and learning rate 
curves for public data set 

As learning rate increases, learning speed increases; and as 
learning rate decreases, local learning efficiency increases. 
Therefore, the experimental learning rate did not involve a 
fixed parameter of 0.001; instead, the learning rate changes 
with iterations to further converge the loss. Thus, (11) was 
applied to change the learning rate and converge the loss after 
further reduction of the loss.  

Learning ratestep=(base_lrgammar)(floor(iter/step)) (11)    

As shown in the red area in Figure 14, gamma represents 
the variation value of the learning rate in each iteration; 
stepsize represents the iteration when the learning rate changes. 

Thus, when the iteration reached 40 000, (11) is employed to 
further change the learning rate; convergence is enabled after 
further reduction of the loss. Figure 16 shows the convergence 
curves of Model One after 50 000 iterations of the public data 
set. 

Figure 16. Model One’s training loss and learning rate 
curves for public data set 

Figure 17 shows the convergence curves of Model Two 
after 60 000 iterations of the public data set. 

Figure 17. Model Two’s training loss and learning rate 
curves for public data set. 

The training time and total testing time of the three 
networks with the public data set are shown in Table 7. Model 
Basic had simpler network layers compared with Model One 
and Model Two; thus, the eigenvalues were fewer and the 
training time and total testing time were the shortest. In Model 
One, a six-layer CNN network was added and the kernel 
number increased to obtain more local eigenvalues. Therefore, 
the online parameter computation load increased, and the 
training time and total testing time of Model One were longer 
than those of Model Basic. In Model Two, the dimensional 
changes of Convolution_down and Convolution_up were 
added to the network to acquire eigenvalues of different sizes. 
This method was found to face challenges in convergence; 
thus, the number of iterations increased to 60 000, thereby 
prolonging the training time to longer than those of Model 
Basic and Model One. Because the proposed CNN network 
differs from the conventional CNN network, which only 
acquires the smallest eigenvalues, by adding eigenvalues of 
different sizes, the computation is longer. Thus, the training 
time of Model Two was the longest. 
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Table 7. Time analysis of three network models for the 
public data set

Network model Training time Total testing time 

Model Basic 9 hr 43 min 02 s 35 min 07 s 

Model One 24 hr 3 min 05 s 1 hr 3 min 36 s 

Model Two 29 hr 54 min 02 s 1 hr 21 min 32 s 

The three networks were compared in terms of evaluation 
indicators for the public data set model (Table 8). Recall is the 
proportion of all targets being correctly classified as the query 
person. Average precision (AP) is the quotient obtained by 
dividing the accuracy of all query persons in the category by 
the total number of images containing the category of query 
persons. The mean AP (mAP) represents the value of averaged 
accuracy calculated on all categories. The mAP of Model One 
and Model Two increased relative to that of Model Basic, 
verifying that the networks of Model One and Model Two 
were well designed. In Model One, the more detailed 
eigenvalues improved the mAP. In Model Two, the 
combinations of eigenvalues of different sizes also improved 
mAP. Methods based on Model One and Model Two had 
nearly identical effectiveness, which improved mAP. Thus, 
the system data set was used to determine which model was 
more suited to the needs of the system environment. 

Table 8. Evaluation indicators for three network models for 
the public data set

Network model Recall Ap mAP 

Model Basic 78.96% 70.28% 72.38% 

Model One 76.68% 71.90% 75.96% 

Model Two 76.02% 70.69% 75.32% 

5.2 System Data Set of Self-recorded Images 

The training data were input into the network for training, 
and the training parameters are detailed in Table 9. The 
training parameters of the present experiment were for 8000 
iterations. The learning rate was set initially at 0.001, and the 
display was enabled every 20 iterations.  

Table 9. Training parameters for system data set
Parameter Value 

Iterations 8000 

Learning rate 0.001 

Display 20 

Gamma 0.1 

Stepsize 6000 

The experiment involved the execution of three person 
search models, with distinct architectures, in the system data 
set to facilitate training and testing. Three experimental results 
were thus generated. Figure 18 displays the convergence 
curves of Model Basic after 8000 iterations on the system data 
set. 

Figure 18. System data set Model Basic training loss and 
learning rate curves 

Figure 19 displays the convergence curves of Model One 
after 8000 iterations on the system data set. 

Figure 19. System data set Model-One training loss and 
learning rate curves 

Figure 20 displays the convergence curves of Model Two 
after 8000 iterations on the system data set. 

Figure 20. System data set Model Two training loss and 
learning rate curves 

The training time for each of the three networks based on 
the system data set was then compared. As shown in Table 10, 
The results revealed that the training time of Model Basic was 
the shortest, corresponding to the result obtained for the public 
data set. The training times of Model One and Model Two 
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were similar, suggesting a nearly identical computational time 
for the two models. However, in the public data set, Model 
Two needed to undergo 10 000 more iterations than did the 
other networks to achieve convergence. Thus, the 
convergence of Model Two becomes increasingly challenging 
and requires additional iterations as the data quantity increases. 
When the data quantity was lower, the training times of Model 
One and Model Two were equivalent.  

Table 10. Time analysis of three network models for the 
system data set

Network model Training time 

Model Basic 1 hr 11 min 01 s 

Model One 1 hr 13 min 33 s 

Model Two 1 hr 13 min 33 s 

In the following test for the system data set, the mAP was 
calculated without distance ranking. Instead, the person search 
system was tested by determining the system accuracy in 
identifying the query person in the four scenarios. The testing 
method is illustrated in Figure 21. The search person was input 
for person analysis in the four scenarios.  

Figure 21. Query person and four scenario examples in 
system tests 

Table 11 lists the ten query persons for person search in 
the test of Model Basic’s network for the system data set; the 
table also lists the successful matching rate and average 
accuracy of successful matches in the four scenarios. For 
example, the average accuracy of Query Person 1 being 
correctly identified in the four scenarios was 60.50%. 

Table 11. Model Basic’s person search accuracy for the 
system data set

Model Basic’s person search accuracy in test for 
the system data set 

System test Camer
a A 

Camer
a B 

Camer
a C 

Camer
a D 

Average 
accuracy 

Query person 1 80% 45% 51% 66% 60.50% 

Query person 2 83% 47% 64% 69% 66% 

Query person 3 82% 51% 55% 63% 62.75% 

Query person 4 73% 48% 53% 73% 61.75% 

Query person 5 80% 55% 73% 74% 70.50% 

Query person 6 75% 46% 53% 48% 55.50% 

Query person 7 69% 41% 60% 63% 58.25% 

Query person 8 74% 51% 47% 62% 59% 

Query person 9 81% 53% 70% 75% 70% 

Query person 10 80% 65% 70% 82% 74.25% 

Table 12 lists the four scenarios for person search in the 
test of the Model Basic network model for the system data set. 
The results in Table 11 were substituted into (12) to calculate 
the successful matching rate of query persons in each scenario. 
The results revealed that the query persons were most easily 
identified in the Camera A scenario (average accuracy: 78%), 
whereas the query persons were most unlikely to be identified 
in the Camera B scenario (average accuracy: 50%).  

( )Camera Query persons 1 to 10 insum
,  A, B, C, D

10
x

x (12)

Table 12. Model Basic’s successful matching rate of each 
scenario for the system data set

Model Basic’s successful matching rate of 
each scenario 

Four scenarios Camera 
A 

Camera 
B 

Camera 
C 

Camera 
D 

Average accuracy of 
successful matching 78% 50% 60% 68% 

Table 13 lists the ten query persons for person search in 
the test of Model One’s network for the system data set; the 
table also lists the successful matching rate and average 
accuracy of successful matches in the four scenarios. For 
example, the average accuracy of Query Person 1 being 
correctly identified in the four scenarios was 74%. 

Table 13. Model One’s person search accuracy for the 
system data set

Model One’s person search accuracy in test for the 
system data set 

System test Camer
a A 

Camer
a B 

Camer
a C 

Camer
a D 

Average 
accuracy 

Query person 1 82% 68% 72% 74% 74% 

Query person 2 85% 45% 61% 69% 65% 

Query person 3 83% 53% 52% 75% 65.75% 

Query person 4 83% 45% 66% 73% 66.75% 

Query person 5 79% 61% 72% 67% 69.75% 

Query person 6 79% 58% 61% 65% 65.75% 

Query person 7 70% 44% 65% 62% 60.25% 

Query person 8 86% 59% 72% 73% 73% 

Query person 9 85% 53% 78% 73% 72% 

Query person 10 82% 66% 77% 79% 76% 

Table 14 lists the four scenarios for person search in the 
test of Model One’s network for the system data set. The 
results on matching accuracy in each scenario were substituted 
into (12). The results revealed that the query persons were 
most easily identified in the Camera A scenario (average 
accuracy: 81%), whereas the query persons were most 
unlikely to be identified in the Camera B scenario (average 
accuracy: 55%).  
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Table 14. Model One person search successful matching rate 
in each scenario for the system data set

Model One’s successful matching rate of each 
scenario 

Four scenarios Camera 
A 

Camera 
B 

Camera 
C 

Camera 
D 

Average accuracy of 
successful matching 81% 55% 68% 71% 

Table 15 lists the ten query persons for person search in 
the test of Model Two’s network for the system data set; the 
table also lists the successful matching rate and average 
accuracy of successful matches in the four scenarios. For 
example, the average accuracy of Query Person 1 being 
correctly identified in the four scenarios was 75%. 

Table 15. Model Two’s person search accuracy for the 
system data set

Model Two’s person search accuracy in test for the 
system data set 

System test Camer
a A 

Camer
a B 

Camer
a C 

Camer
a D 

Average 
accuracy 

Query person 1 85% 68% 75% 72% 75.00% 

Query person 2 89% 54% 56% 68% 67% 

Query person 3 87% 51% 55% 69% 65.50% 

Query person 4 81% 60% 66% 71% 69.50% 

Query person 5 83% 57% 66% 69% 68.75% 

Query person 6 84% 55% 61% 64% 66.0% 

Query person 7 69% 53% 60% 61% 60.75% 

Query person 8 89% 60% 69% 76% 74% 

Query person 9 85% 59% 73% 70% 72% 

Query person 10 86% 68% 72% 77% 75.75% 

Table 16 lists the four scenarios for person search in the 
test of Model Two’s network for the system data set. The 
results on matching accuracy in each scenario were substituted 
into (12). The results revealed that the query persons were 
most easily identified in the Camera A scenario (average 
accuracy: 84%), whereas the query persons were most 
unlikely to be identified in the Camera B (average accuracy: 
70%). 

Table 16. Model Two’s successful matching rate in each 
scenario for the system data set

Model Two’s successful matching rate 
of each scenario 

Four scenarios Camera 
A 

Camera 
B 

Camera 
C 

Camera 
D 

Average accuracy of 
successful matching 84% 59% 65% 70% 

Finally, the evaluation indicators of the three networks in 
the public data set model were compared (Table 17). The self-
recorded system data set had fewer data points and lower 
category diversity relative to the public data set; therefore, the 
Recall value of the system data set was higher than that of the 
public data set. Almost all detected images were of pedestrians. 

In addition, when the kernel number was changed to 2048, the 
Recall and Ap values were the lowest. The Recall and Ap 
values of 1024 kernels were higher than those of Model One. 
The comparison of the public data set evaluation indicators 
revealed that when data quantity and complexity were high, 
the detailed local eigenvalues of Model One yielded the most 
effective Ap values. However, in scenarios with low data 
quantity and complexity, the different eigenvalues in Model 
Two facilitated the achievement of the most effective Ap 
values. In the test on person search using the system data set, 
among the three designed network models (namely, Model 
Basic, Model One, and Model Two), Cameras A and B had 
the highest and lowest, respectively, average accuracy and 
successful matching rates. This was because Camera A was 
closer to the pedestrian and its images had less background 
and environmental noise than did Cameras B, C, and D. 
Camera B was more affected by lighting, shooting distance, 
and environmental noise compared with Cameras A, C, and D. 
The average accuracy was highest in Model Two at 69.33% 
and lowest in Model Basic at 63.75%. Corresponding to the 
model design, Model One and Model Two generated results 
identical for both the public and system data sets and 
effectively improved the accuracy of Model Basic. 

Table 17. Evaluation indicators used in analyzing the three 
network models for the system data set

Network model Recall Ap mAP 

Model Basic 86.21% 80.85% 63.75% 

Model One 82.76% 80.35% 68.80% 

Model Two 87.66% 81.19% 69.33% 

6  Conclusion 

The locations of the cameras are quite difference, how to 
find the optimal models in different scenarios are most 
important. To obtain the optimal network model, three 
network models, namely, Model Basic, Model One, and 
Model Two, were used for analysis. The model design 
concepts were verified through the public data set CUHK-
SYSU and the system data set. Models were designed based 
on Model Basic through two channels of the Siamese network. 
First, all pedestrians were detected among real-world images 
for person search before the search person image was 
incorporated for distance calculation and matching. Pedestrian 
detection was conducted using faster R-CNN. The OIM loss 
function was used to match distance calculation results. Model 
Basic combines the two methods to complete person search 
tasks. Model One and Model Two were designed to improve 
the accuracy of Model Basic. Model One incorporated an 
additional six-layer CNN network and constantly increased 
the kernel number to obtain more numerous and more detailed 
local features. Model Two also incorporated a six-layer CNN 
network; however, it differed from the more detailed local 
features in Model One, Model Two was combined with feature 
values with different sizes to attain more comprehensive 
outputs.  

In the public data set, Model Basic, Model One, and Model 
Two achieved 72.83%, 75.96%, and 75.32% accuracy, 
respectively. In the system data set, Model Basic, Model One, 
and Model Two achieved 63.75%, 68.80%, and 69.33% 



850 Journal of Internet Technology Vol. 23 No. 4, July 2022 

accuracy, respectively. Different results generated from 
images affected by different environmental factors were 
verified. For example, Camera A images and Camera B 
images had the highest and lowest successful matching rates, 
respectively. According to the different characteristics of 
Model Basic, Model One, and Model Two, two models were 
adopted for backend computation in the final system. When 
the data quantity and complexity is low at the initial stage, 
Model Two is most suitable; as the data size and complexity 
increase, Model One is more suitable and should be used to 
accelerate data training time.  
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