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Abstract 

Cross-project defect prediction (CPDP) is a field of study 
that allows predicting defects in software projects for which 
the availability of data is limited and produces generalizable 
prediction models. Due to the heterogeneity of cross projects, 
CPDP is particularly challenging and several methods have 
been employed to address this problem. Nevertheless, the 
class-imbalanced characteristic of the cross-project defect data 
also increases the learning difficulty of such a task but has not 
been investigated in depth. This paper proposed a novel, cost-
cognitive ensemble method for CPDP, which includes four 
phases: bagging balanced resampling phase, base classifiers 
learning phase, cost value cognitive phase, and base classifiers 
ensemble phase. These phases create a composition of 
classifiers that are used for predicting defects. Results of an 
empirical evaluation on 10 datasets from the PROMISE 
repository indicated that our method achieves the best overall 
performance with respect to conventional methods. Moreover, 
our method could cognize the cost value automatically during 
the model training, it is shown to be more effective and 
practical. 

Keywords: Cross-project defects prediction, Class 
imbalanced data, Bagging ensembles, Cost-
cognitive learning 

1  Introduction 

Software defects prediction is one of the most common 
research topics in empirical software engineering. It can be 
utilized for helping developers focus on activities such as code 
inspection or testing on likely defect-prone modules, thus 
optimizing the usage of resources for software quality 
assurance [1] to reduce the risks of critical system failure [2-
3]. Most software defects prediction approaches are based on 
software metrics by means of machine learning to build a 
prediction model and are evaluated in within-project 
prediction settings [4]. However, software engineering is 
inherently a competitive and protean business, changing 
rapidly in response to changes in markets, hardware, and 
software platforms. When a new project starts or an old project 
is completely rewritten, this is a challenge for within-project 
defect prediction [5]. To work around this issue, researchers 
have turned toward cross-project defect prediction. 

Several researchers have discussed the possibility to use 
other finished projects’ data to train models for target projects 
that have limited availability data. This strategy is referred to 
as cross-project defects prediction (CPDP). However, CPDP 
often yields poor performance, and its reliable prediction is 
still an open issue [6-7]. The reasons are mainly due to the 
projects' heterogeneity. A noticeable way to overcome the data 
distribute difference among projects is to perform data 
selection, and several data selection strategies have been 
proposed by researchers in recent years [8]. 

It is worth noting that works in CPDP usually have focused 
only on the data selection methods and ignored the other key 
factor affecting the performance of the CPDP model, namely, 
class imbalance. In fact, there is still a class imbalance 
problem that the defective-free modules significantly 
outnumber the defective modules in both the filtered training 
data and the target testing data. Traditional machine learning 
algorithms may be biased towards the majority class. Thus, 
they may produce poor predictive accuracy for the minority 
class [9]. However, there are few studies that have taken into 
consideration the important characteristic of the CPDP 
problem.  

In this study, we focus on the solutions of class imbalance 
in CPDP and seek empirical evidence that they can achieve 
acceptable results. Our main contributions are summarized as 
follows: (1) We proposed a cost-cognitive bagging ensemble 
(CCBE) approach for CPDP, which addresses the class 
imbalance problem by using the resampling technique to build 
cost-cognitive classifiers and using the ensemble technique to 
capture better generalizable properties in each classifier. (2) 
We also validated the proposed method by a large number of 
experiments, and found that it can achieve better performance 
than the conventional ones, and shows better stability and 
flexibility in CPDP, especially for highly imbalanced datasets. 

The rest of this paper is organized as follows. Section 2 
introduces the related work. Section 3 describes the CCBE 
approach proposed. Section 4 and Section 5 are devoted to the 
experimental setups and results analysis. Section 6 discusses 
the threats to validity. Finally, Section 7 concludes the paper 
and presents the future work. 

2  Related Work 

2.1 Cross-project Defects Prediction 
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CPDP is used to predict defect-prone software modules 
based on the data collected from other software projects. 
These data can either be collected from completed 
development projects or taken from software repositories, 
such as PROMISE and so on [10]. In the last decade, a lot of 
studies have been put to define approaches for cross-project 
defects prediction.  

To the best of our knowledge, the earliest work on cross-
project prediction is by [11]. They built a CPDP model by 
using another open-source project’s data and logistic 
regression classifier, and validated that the model outperforms 
the random model. However, the both projects were developed 
by the same team, which is an assumption that usually does 
not hold for cross-project defect prediction. Zimmermann et 
al. [12] conducted a large study to determine the feasibility 
and challenges of cross-project defect prediction. They found 
that the CPDP model that was directly trained on one or a set 
of projects might not be generalized well for other projects. 
The study also pointed out that CPDP was a serious challenge, 
and more attention should be paid to this problem.  

To overcome the data distribution difference between 
source and target projects, transfer learning techniques have 
been proposed. Transfer learning addresses these issues by 
transferring knowledge extracted from the source projects to 
the target project for building more accurate CPDP models 
[13]. The CPDP approaches based on transfer learning can be 
classified as either feature-based or instance-based approaches 
[14-15].  

Feature-based approaches propose to transform the cross-
project data such that the underlying distributions are similar, 
and many existing models can be reused for CPDP, such as 
feature compensation approach [16], TCA+ approach [17], 
simplified metric-set approach [18], and so on. However, these 
approaches usually adopt single-source data as source projects. 
Especially when cross-project data are distributed with large 
differences, they are limited in the improvement of CPDP 
performance.  

Instance-based approaches realize CPDP through 
capturing appropriate source project modules that will work 
for the target project. A study by [19] found that with suitable 
training data, the success rate of cross-project defect 
prediction could be drastically improved to over 50%. 
However, this is a post-facto approach, and thus not intended 
for practical prediction settings. How to select training data 
from multi-source projects data is an empirical issue. 
Consequently, most studies have focused on the data filtering 
approaches for CPDP and proposed some strategies, such as 
hierarchical select-based filter [8], target project data guided 
filter [20], source project data guided filter [21], data 
characteristics-based filter [22], local clusters-based filter [23], 
and so on. Since instance-based approaches can capture the 
more suitable model data for the target project from multi-
source project data, it has drawn the attention of many 
researchers in recent years. 

All these studies suggested that CPDP is particularly 
challenging, and due to the heterogeneity of projects, 
prediction accuracy might be poor. However, the 
aforementioned CPDP models take no consideration of the 
class-imbalanced characteristic between the defect and non-
defect classes of the data set.  

2.2 Class Imbalance Learning 

In classification prediction, class imbalance means that the 
number of samples in one class is far less than that in other 
classes. The class imbalance problem also appears in software 
defects prediction. In most cases, the software defect data 
contain much fewer defective modules than the defect-free 
modules, and this ratio is lower in extreme cases. In general, 
the minority defective class is usually called positive class, 
while the majority defect-free class is called negative class 
correspondingly [24-25].  

Class imbalance is an important factor that affects machine 
learning performance, especially for the positive class 
identification. In the presence of imbalanced class data, the 
traditional machine learning method biases easily to the 
negative class. As a consequence, the classification accuracy 
of the negative class overwhelms that of the positive class. A 
serious class imbalance may even lead to the classifier 
completely losing its classification capability, classifying data 
samples all into the negative class [26]. However, the goal of 
software defects prediction is to find more defect-prone 
software modules, that is, positive samples. 

Several approaches have been developed trying to address 
class imbalance problems for defect prediction. These 
previous approaches can be categorized into two groups: data 
level techniques and algorithm level techniques, which depend 
on how they deal with class imbalance [27-28]. Data level 
techniques add a sampling step where the data is re-balanced 
in order to decrease the effect of the imbalanced class 
distribution. Algorithm level techniques incorporate different 
misclassification cost to take into account the significance of 
positive examples in the learning phase.  

Since the under-sampling technique may drop some 
important information, and oversampling may lead to over-
fitting of the model, it is generally believed that the sampling 
methods that alter the original defects class distribution may 
result in poor generalization of the model [29]. Therefore, the 
cost-sensitive learning is considered to be more suitable for 
software defects prediction, but the determination of cost 
factor is a difficult problem [24, 30]. 

Considering that there exists a class imbalance in both 
filtered data and target data in CPDP, combining class 
imbalance learning to build models is helpful to improve the 
performance of CPDP. However, how to deal with the 
imbalance of data and get a better performance model under 
the premise of using filtered data defect information has not 
been investigated in depth so far. So, we study the issue of if 
and how the approach can benefit CPDP with the aim of 
finding better solutions. 

3  Problem Solution 

3.1 The Proposed Approach Overview 

In the cross-project defect prediction, an important factor 
affecting the performance of the model is the defects 
distribution heterogeneity between the source project and the 
target project, i.e., data shift [31]. Due to the data shift 
phenomenon in software defect data, if we only select a single 
source project data, it may not be enough to reflect the defect 
patterns of the target project [32]. Therefore, the focus of this 
paper is to filter the multi-source project data to obtain the 
CPDP model data, and then build the model. 
The task of CPDP using a data filter can be defined as follows. 
We have K source projects Ss ={ Ss(1), Ss(2), Ss(3) ,…, Ss(k)} and 
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a target project St. Each source project contains many modules, 
and each module has two parts: a set of metrics x and a label y 
that corresponds to the defect information. For unlabeled 
modules in the target project St, the goals of data filter are to 
select suitable training data Dtrain from the source projects Ss 
and build a model for the target project St with unknown labels. 

target data

predicted label

multi-source data
training data

 

...

...

 

cost 
learning

cost 
learning

cost 
learning

cost 
learning

Figure 1. The CCBE approach framework.

Figure 1 presents the CPDP overall architecture using the 
proposed CCBE algorithm, which includes three steps: 
(1) The first step is filtering data for the model building with

the goal of reducing the impact of data shift between the
source projects and the target project.

(2) Then, the CCBE algorithm is used to train the prediction
model, which aims to relatively fully learn the defect
patterns that are suitable for the target project in the
filtered multi-source projects.

(3) Finally, the trained integrated model is used to predict
whether the target module is defective or non-defective
and the output is its defect label.

3.2 Data Preprocessing 

It should be noted that the focus of this paper is the class 
imbalance problem in CPDP. Considering that the proposed 
CCBE algorithm is independent of the data filtering algorithm, 
although different data filtering algorithms have been 
proposed in previous studies, we chose the most commonly 
used TGF strategy to filter multi-source data in the experiment 
[20, 33]. 

The TGF provides a filtering strategy for the model 
training data based on the K-nearest neighbor algorithm. For 
each module in the target project, TGF strategy selects k (The 
authors recommend k =10) modules of the available data 
closest to the target module as the training data. Turhan et al. 
[20] found that CPDP using the TGF strategy can compete
with WPDP in some cases. The pseudo code of TGF strategy
is shown in Algorithms 1.

Algorithm 1. The TGF algorithm 
Input: 

Multi-source projects data: (1) (2) ( ){ , , , }s s s s kS S S S= ; 
Target project data: tS ; 

Output: 

Training data for target project, trainD ; 
1: trainD  ; 
2: (1) (2) ( )mix s s s kS S S S   ; 
3:  for all modules ( )t i tM S do

4: tempD  search KNN modules from mixS ; 
5: train train tempD D D  ; 
6: end for 
7: return trainD ; 

3.3 The CCBE Algorithm 

The goal of CCBE algorithm is to more fully obtain the 
defect patterns suitable for the target data from the filtered 
model data without paying attention to the data source. In the 
following section, we describe the key technology and pseudo 
code of the algorithm. 

3.3.1 Cost Sensitive Software Defect Prediction 

The prediction results of the CPDP model for the target 
software module may lead to two types of errors: 
⚫ The type I error is to classify the defective module as

defective-free, which may lead to some defects that
cannot be repaired, resulting in software failure and
software unreliability.

⚫ The type II error is to classify the non-defective module
as defective-prone, which may lead to useless testing and
waste of development resources.

The cost of type I error and type II error can be expressed 
as Cost(1,0) and Cost(0,1) respectively, where the defect-
prone module is usually marked as "1", while the defect-free 
module is marked as "0". According to the practical 
experience of software engineering, it is obvious that when the 
model is mispredicted, Cost (1,0) > Cost (0,1), that is, when 
Cost (1,0) =  and Cost (0,1) = 1, >1. When the model is 
correctly predicted, Cost (1,1) = Cost (0,0) = 0. Therefore, 
considering the cost of different error predictions, cost-
sensitive software defect prediction may be more effective in 
practice. 

For the CPDP model, the prediction cost function can be 
defined as L, whose value is the sum of predicted costs of 
different classes. Therefore, the function L(x) can be formally 
expressed as:  

( ) ( ,1) ( ,0)L x L x L x= +
( ,1) ( ,0) (0,1) ( ,1) (1,1)L x Prob x C Prob x C=  + 

( ,0) ( ,1) (1,0) ( ,0) (0,0)L x Prob x C Prob x C=  +   
The function L(x) represents the expected cost of defect 

prediction for module x, that is, minimizing L(x,i) is equivalent 
to selecting the optimal defect prediction label, where i{0,1}, 
and Prob(x,c=i)  represents the probability of predicting 
module x as class i. 

Due to the practical requirements of software defect 
prediction, the cost factor >1. If the cost value is too high, 
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the prediction rate and the false alarm rate will decrease 
synchronously. If the cost value is too low, the cost of different 
prediction errors is not obvious in the prediction model. 
Therefore, the most appropriate cost value should be 
determined according to the practical need. 

3.3.2 The Cost-cognitive Process by Bootstrap Resampling 

Filtered Data: D

Bootstrap
Sampling

Cost
Cognition

0 1

0 1 0 1

Out-Of-Bag
Sampling

Training Data: TD Validation Data: VD

    

  

Figure 2. The Cost-cognitive process

Figure 2 gives the cost-cognitive process using bootstrap 
resampling for the CCBE algorithm. In the figure, D 
represents the filtered data, in which the number of defective 
modules is recorded as p, and the number of non-defective 
modules is recorded as n. Due to the class imbalance of 
software defect data, generally p < n. The process of cost 
learning is described as follows: 
(1) Class-balance model data sampling. Firstly, the software

modules marked as "1" and "0" in D are sampled p times
respectively, and then the sampled data are combined
into a class balanced training dataset TD.

(2) Class-imbalance verification data sampling. After the
defective modules in D are sampled p times, about 36.8%
of them are not selected into TD, and these modules are
recorded as VDP. Then, m modules are sampled again
from the defect-free modules that have not been sampled
and recorded as VDN, where m=|VDP|×(n/p). Finally,
combined VDP and VDN as verification set VD.

(3) Cost-cognitive using the verification data. First, the
balanced data TD is used to train the model, and then the
imbalanced verification data VD is used to obtain the
optimal cost value based on a certain model performance
metric.

In the process of the above method, the intersection of the 
training set and the verification set is empty, which can 
effectively avoid the overfitting of the model and improve the 
generalization performance of the prediction model. 

3.3.3 The CCBE Algorithm Pseudo Code 

We use the bagging method to implement training and cost 
learning for the base classifier in the CCBE algorithm and use 
the voting method to achieve prediction. In ensemble learning, 
the accuracy and difference of base classifiers are important 
factors affecting the performance of ensemble model [34]. 
Because the rules generated by the decision tree algorithm are 
easy to understand and the classification speed is fast, we 
choose the C4.5 algorithm to build the base classifier in the 
CCBE algorithm. Algorithm 2 shows the CCBE algorithm 
pseudo code. 

Algorithm 2. The CCBE algorithm 
Input: 

Filtered data: 1 1 2 2{( , ), ( , ),..., ( , })m mD x y x y x y=
Base-classifier algorithm: L 
Number of base-classifiers: T 

Output: 

Ensemble classifier: 
1

( ) ( ( ))T
tt

H x sign h x
=

=  , 

where th is the base classifier, [1,0]th  . 
1: PGet the defective modules from D , P D  
2: N  Get the non-defective modules from D , N D  
3: Compute the imbalance rate: | | / | |ir P N  
4: for 1t = to T do

5: Bootstrap sample the defective module subset tP from 

P with tP P=

6: Bootstrap sample the non-defective module subset tN

from N  with tN P=

7: Combine tP and tN as the base-classifier training data: 
{ , }t t tTD P N

8: Get the out-of-bag defective modules: ( )oob t tP P P −

9: Bootstrap sample the non-defective module subset 

( )oob tN from tN N− with ( ) ( ) /oob t oob tN P ir

10:   Combine ( )oob tP and ( )oob tN as the model validation 
data: ( ) ( ){ , }t oob t oob tVD P N

11: for 1cost =  to C do 
12: ( , )t th L TD cost

13: Evaluate th on tVD , and record the cost value which 
achieves the highest performance 

14: end for

15: ( , )t th L TD 

16: end for 

4  Empirical Study 

4.1 Datasets 

For our experiments, we used 10 open-source projects for 
validation. These datasets are part of the public PROMISE 
repository. The original datasets were collected by Jureczko 
and Madeyski with the Ckjm and BugInfo tools [35], in which 
each instance represents a class of the release and consists of 
two parts: 20 independent static code attributes and the 
dependent attribute labeled "defects" indicating the defect 
count information.  

For the work, we refer to each class as a module instance, 
and the defects attribute is discretized into a Boolean value 
where "0" indicates no defects for the class and "1" indicates 
otherwise. Since most of the software defect prediction 
research literature uses the same setting, we follow them. 
Detailed information on the experimental dataset is listed in 
Table 1. 
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Table 1. Defect dataset characteristics
Project Modules# Defect-prone# Defect-prone% 
ant13 125 20 16% 

arc 234 27 12% 
ivy11 111 63 57% 
jedit32 272 90 33% 
log4j10 135 34 25% 

lucene20 195 91 47% 
poi15 237 141 59% 

synapse10 157 16 10% 
velocity14 196 147 75% 
xercesinit 162 77 48% 

4.2 Performance Evaluation 

In the experiment, the number of modules whose defect 
label marked as i and predicted as j is expressed as nij. 
Therefore, the prediction results of the target software module 
can be divided into four situations: True Positive (TP)=n11, 
True Negative (TN)=n00, False Positive (FP)=n01, and False 
Negative (FN)=n10. 

Considering the various practice requirements, several 
performance measures are usually adopted to evaluate 
different aspects of predictors. In the existing studies, the 
commonly used single model metrics are PD/PF, and the 
comprehensive evaluation model metrics are AUC/BAL. 
These performance metrics are shown in Formulas 1, 2, 3, and 
4 respectively. 

TPPD
TP FN

=
+

(1) 

FPPF
FP TN

=
+

(2) 

1
2

TP FPAUC + −
= (3) 

2 2(1 )
1

2
PD PF

BAL
− +

= − (4) 

PD (Probability of detection) measures how many of the 
defective modules are found. PF (Probability of false alarm) 
measures how many of the modules that triggered the detector 
actually did not contain defective concept. Menzies et al. [36] 
claimed that a high-PD predictor is still useful in practice, even 
if the other measures may not be good enough. 

The ROC curve illustrates the trade-off between PD and 
PF, which serves as the performance of a classifier across all 
possible decision thresholds. AUC estimates the area under the 
ROC curve, which is a good measure for the overall PD/PF 
performance. The higher the AUC is, the better the 
performance will be. BAL is another commonly used 
comprehensive measure to indicate the tradeoff between PD 
and PF, which is defined as the normalized Euclidean distance 
from the desired point (1,0) to observed (PD, PF) in a ROC 
curve. A larger BAL value indicates that the performance is 
closer to the ideal case. 

In some studies, the Recall/Precision/F-value metrics that 
are commonly used in machine learning research are also used 
to evaluate the software defect prediction model. Due to the 
imbalanced characteristics of software defect data, we avoided 
the precision measure, and add the F-value with AUC and 
BAL to evaluate the CPDP comprehensive performance. 

4.3 Experimental Design 

The experiment consists of three investigations. The first 
investigation finds out which measure is better to be the 
criterion for choosing the cost of the CCBE approach, while 
the second investigation explores the relationship between the 
cost factor and the imbalance rates in our approach. The third 
investigation explores whether our proposed approach has 
advantages compared with conventional ones. More 
specifically, we try to find empirical evidence to answer the 
following questions. 

4.3.1 RQ1: Which Measure Is Better to Be the Criterion 

for Choosing the Cost of CCBE Approach? 

This investigation intended to find out which measure is 
suitable for cost learning. As a matter of fact, it is hard to 
determine the cost value when applying the cost-sensitive 
learning method to defect prediction, since the best cost 
parameter is always problem- and algorithm- dependent. 
Generally, there is competition among the single evaluation 
metrics of the model. For example, when the cost value is too 
high, PD and PF may decrease simultaneously, and vice versa. 
These trade-offs make it difficult to compare the performances 
of several prediction models by using only either PD or PF.  

Therefore, we usually choose the value that makes the 
CPDP model have the best comprehensive performance as the 
optimal cost value, which is also conducive to the 
experimental comparison and selection of models. For this 
purpose, we used AUC, BAL, and F-values as the criterion for 
determining the optimal cost value of class imbalance learning 
methods in the CCBE algorithm. 

4.3.2 RQ2: What is the Relationship between the Cost 

Factor and the Imbalance Rates in Our Proposed 

Method? 

This investigation was to explore whether or not the 
proposed method can effectively deal with the class-
imbalanced problem in the context of cross-project defect 
prediction. In fact, for different application scenarios, there are 
different requirements on the cost value. For example, in the 
security critical software, the prediction model is required to 
have a higher cost factor. When the software testing resources 
are limited, the cost factor cannot be too high. Therefore, in 
this section, PD/PF/AUC-based optimal learning cost factor 
are used to calculate PD, PF, and AUC, and to compare their 
changes with different imbalance rates. Because the BAL and 
F-values are positively correlated with AUC, only the AUC
with the most stable results is selected.

From Table 1, we know that the imbalance rate of the 
datasets that are used in the experiments vary from 10% to 
75%. This provides us with a chance to explore the 
relationship between the cost factor and the imbalance rates, 
and further investigate the effectiveness of our proposed 
method on dealing with the class-imbalanced problem. 
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4.3.3 RQ3: How Does the CCBE Method Perform 

Compared to the Conventional Ones? 

This investigation was used to explore whether our 
proposed method is effective or not. This was achieved by 
comparing our proposed CCBE method with seven 
conventional current state-of-the-art approaches. We 
investigated four single classifier algorithms and three 
ensemble algorithms; these are Naive Bayes (NB), Random 
Forest (RF), Decision Tree (DT) and SVM because of their 
simplicity, effectiveness, and popularity in the literature [4]. 
In addition, three representative ensemble algorithms are also 
considered in our study, namely AdaBoost (AB), 
EasyEnsemble (EE) [37] and Local Approach (LA) [23]. AB 
is the traditional ensemble algorithm, EE is the latest 
algorithm to deal with imbalanced data, and LA is a state-of-
the-art approach that uses local prediction to mitigate the 
heterogeneity of cross projects.  

Usually, there are trade-offs between PD and PF, which 
makes it difficult to compare the performances of several 
prediction models by using only either the PD or PF. The 
higher the AUC, BAL, and F-value are, the better the 
performance is. We compute AUC, BAL, and F-value to 
evaluate the performance of these 8 approaches on the 10 
datasets from the PROMISE repository. For each dataset, we 
run CCBE and the baseline approaches 10 times and the 
average value is used as the final experimental result. 

5  Results and Analysis 

This section presents the experiment result. The results are 
structured according to the research questions presented in 
above section. 

5.1 Optimal Cost Factor Learning Approach for 

the CCBE Algorithm 

To understand which measure is better to be the criterion 
for choosing the cost-value of the CCBE algorithm for CPDP, 
we produce bar graphs in Figure 3, in which the average 
performance values of AUC, BAL, and F-value on the ten 
datasets were displayed by the three sub-plot respectively. 
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Figure 3. Comparison of different methods in terms of 
prediction performance

This result illustrates that AUC is the best choice than 
others for learning the cost factor parameters. In most cases, 
the models with cost-factor learning by the AUC-based 
method could obtain better comprehensive performance than 
the model trained based on other methods. There is evidence 
supporting that AUC is a more stable metric than the others 
[38]. Hence, different settings do not change AUC 
significantly, and using AUC would be more appropriate for 
the choice of training parameters. 

Through the analysis of the above results, we can draw the 
following conclusions for RQ1:  
(1) The AUC and BAL measures of the three cost-value

learning methods are better than the F-value measure as
a whole. The possible explanation is that AUC and BAL
are comprehensive performance measures calculated
based on PD and PF. The poor performance of F-value
may be due to the low accuracy or precision. Some
studies have shown that the two measures are relatively
poor in the evaluation of imbalanced data [39].

(2) When the AUC, BAL, and F-value are used for model
evaluation, the performance of AUC-based cost factor
cognition method is better than the other two methods.
Therefore, in practice, it is suggested to use the method
of optimizing AUC measure to realize the cost-factor
learning.

5.2 The Relationship between the Cost Factor 

and the Imbalance Rates 

In this section, for convenience, PD/PF/AUC-based cost 
cognition methods are represented as M1, M2, and M3, 
respectively.  

Figure 4(a) shows the relationship between the cost factor 
by M1/M2/M3 methods and the imbalance rate. It can be seen 
from the figure that the cost learning methods based on M1 
and M2 obtain the maximum and minimum cost factor 
respectively. Moreover, M3 balances the prediction rate and 
false alarm rate, and its cost factor value ranges between M1 
and M2. In addition, from the perspective of the relationship 
between the data imbalance rate and the cost value, it can be 
seen intuitively that the cost factor value obtained by 
M1/M2/M3 has no direct relationship with the data imbalance 
rate, that is, the cost factor value is relatively stable. 

Figure 4(b) and Figure 4(c) are PD and PF values of the 
CPDP models respectively realized by M1/M2/M3 based on 
the CCBE algorithm. From this figure, it can be seen that the 
PD and PF values of the three models are also not affected by 
the change of class imbalance rate. In particular, 80% of the 
data sets achieved a prediction rate higher than 70%. In many 
research literature, 70% prediction rate is taken as a 
benchmark comparison value [40]. 

Figure 4(d) shows the AUC values of different cost 
perception models. From this figure, it can be seen intuitively 
that AUC, as a trade-off indicator of PD and PF, has relatively 
small differences based on M1/M2/M3. But in general, the 
comprehensive performance of the model based on M3 is 
relatively optimal, and the performance of the model is 
relatively stable with the change of class data imbalance rate, 
which also shows that the CCBE algorithm has certain 
advantages in dealing with class imbalance data for cross-
project software. 
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Figure 4. The relationship between the cost factor and the imbalance rates 

Through the analysis of the above results, we can draw the 
following conclusions for RQ2:  
(1) The proposed CCBE algorithm is relatively stable in the

class imbalance data, especially in the extreme case of
class imbalance. In addition, the CPDP model and cost
factor can be obtained from the class balanced model
data and class imbalanced cost factor validation data
based on under sampling.

(2) In software engineering practice, the CCBE algorithm
can be selected according to the test resources and the
security requirements. From the perspective of practical
validity, the prediction rate of the proposed method is
higher than 60% (artificial defects prediction rate [41]),
which also shows that the algorithm has better flexibility
and effectiveness.

5.3 Comparison Results of Our Proposed 

Approach with the Conventional Ones 

This section presents the results of our proposed approach 
vs. the conventional approaches CPDP experiments in order 
to address our third question. For each dataset, we build seven 
predictive models following the algorithm settings described 
in the previous section. It is important to note that we only use 
the AUC-based cost learning scheme for building the CCBE 
predictor. We focus on comparing the overall prediction 

performance (i.e., AUC, BAL, and F-value) between the 
CCBE and other ones. The results are summarized with mean 
performance values and average rank (AR) values in Table 2, 
Table 3, and Table 4 for AUC, BAL, and F-value, respectively. 
In all tables, the best approach is denoted in boldface. 

In order to demonstrate the experimental results more 
directly, the results are also visualized by using a boxplot in 
Figure 5. It can be seen from Figure 5 that the proposed CCBE 
algorithm is better than other methods in general, and the 
experimental results indirectly show that AUC/BAL/F-value 
is effective as a comprehensive index, and they have the same 
performance in describing the comprehensive performance of 
the prediction model. 

Through the analysis of the above results, we can draw the 
following conclusions for RQ3:   
(1) The comprehensive performance of the conventional

model is poor, which also shows that the traditional 
algorithm is poor in dealing with class imbalanced data. 
As the most widely used model algorithm in defect 
prediction, NB is second only to the CCBE and EE 
algorithm in imbalance data prediction. 

(2) The CCBE algorithm and EE algorithm are special
algorithms for dealing with class imbalanced data, and
their prediction performance is relatively excellent,
especially the CCBE algorithm which has better
flexibility in software defect prediction and stability.
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Table 2. The AUC values of the models built with eight learning algorithms
CCBE NB RF DT SVM AB EE LA 

ant13 0.693 0.660 0.655 0.720 0.569 0.631 0.686 0.573 
arc 0.671 0.671 0.682 0.580 0.648 0.693 0.673 0.655 

ivy11 0.680 0.614 0.612 0.550 0.509 0.586 0.616 0.585 
jedit32 0.555 0.620 0.612 0.624 0.510 0.526 0.519 0.493 
log4j10 0.719 0.710 0.637 0.725 0.583 0.632 0.651 0.587 

lucene20 0.643 0.611 0.587 0.597 0.541 0.603 0.587 0.600 
poi15 0.631 0.684 0.653 0.560 0.506 0.618 0.572 0.565 

synapse10 0.735 0.724 0.741 0.686 0.617 0.691 0.656 0.545 
velocity14 0.483 0.500 0.537 0.534 0.476 0.500 0.541 0.545 
xercesinit 0.514 0.516 0.518 0.417 0.440 0.556 0.539 0.487 

AVG 0.632 0.631 0.623 0.599 0.540 0.604 0.604 0.563 
AR 3.9 4.0 4.3 5.9 9.5 5.1 5.0 7.4 

Table 3. The BAL values of the models built with eight learning algorithms 
CCBE NB RF DT SVM AB EE LA 

ant13 0.630 0.624 0.652 0.692 0.564 0.625 0.666 0.566 
arc 0.641 0.620 0.678 0.579 0.574 0.692 0.672 0.645 

ivy11 0.678 0.483 0.531 0.507 0.387 0.506 0.605 0.580 
jedit32 0.550 0.537 0.541 0.610 0.462 0.484 0.517 0.486 
log4j10 0.719 0.642 0.520 0.705 0.438 0.520 0.639 0.562 

lucene20 0.642 0.513 0.508 0.594 0.427 0.562 0.586 0.591 
poi15 0.623 0.683 0.613 0.535 0.494 0.616 0.572 0.558 

synapse10 0.701 0.707 0.735 0.662 0.511 0.685 0.654 0.538 
velocity14 0.467 0.386 0.374 0.484 0.315 0.386 0.493 0.474 
xercesinit 0.504 0.433 0.453 0.389 0.302 0.500 0.531 0.455 

AVG 0.615 0.563 0.561 0.576 0.447 0.558 0.593 0.545 
AR 3.1 5.8 5.3 4.9 10.0 5.9 4.1 6.0 

Table 4. The F values of the models built with eight learning algorithms 
CCBE NB RF DT SVM AB EE LA 

ant13 0.391 0.408 0.373 0.425 0.294 0.350 0.395 0.302 
arc 0.299 0.377 0.343 0.242 0.361 0.350 0.317 0.294 

ivy11 0.695 0.415 0.484 0.454 0.231 0.444 0.600 0.584 
jedit32 0.433 0.448 0.443 0.503 0.315 0.345 0.404 0.362 
log4j10 0.562 0.576 0.440 0.583 0.311 0.431 0.481 0.395 

lucene20 0.635 0.446 0.430 0.562 0.298 0.503 0.580 0.550 
poi15 0.632 0.710 0.602 0.511 0.608 0.674 0.619 0.643 

synapse10 0.322 0.392 0.393 0.286 0.313 0.300 0.275 0.198 
velocity14 0.477 0.240 0.205 0.449 0.064 0.240 0.464 0.418 
xercesinit 0.451 0.309 0.345 0.279 0.584 0.417 0.486 0.365 

AVG 0.490 0.432 0.406 0.429 0.338 0.405 0.462 0.411 
AR 3.8 4.4 6.1 5.5 7.6 6.3 4.6 6.8 
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Figure 5. Comparison of different methods 

6  Threats To Validity 

In this study, we obtained several significant results to 
answer the three research questions proposed in Section 4.3. 
However, potential threats to the validity of our work still 
remain. 

Threats to construct validity concern the accuracy of 
independent variable and dependent variable to the described 
concept. These threats are primarily related to the static code 
metrics we used. In this study, all the data sets selected in the 
experiment are obtained from the PROMISE repository and 
have been widely used in related research. Therefore, it can be 
considered that the construction validity threat of the 
experimental study meets the requirements. 

Threats to internal validity concern any confounding 
factor that could influence the results, and they are mainly 
related to various experimental settings in this study. There are 
two main manifestations: one is the choice of model 
evaluation measure, we only select the most commonly used 
PD/PF/AUC/BAL/F-value metrics to achieve cost-cognition 
in the experiment. In fact, from the requirements of software 
engineering practice, these approaches are not enough to meet 
the needs; Second, the integrity of benchmark methods in 
experimental comparison. Therefore, in future studies, we will 
continue to explore cost-cognition methods for different 
practical needs and select more benchmark algorithms for the 
comparison validation. 

Threats to external validity concern the generalization of 
the results obtained. The experimental datasets selected in this 
experiment are open-source software projects based on Java 
language. Furthermore, in order to study the relationship 
between class imbalance rates and cost values, we randomly 
selected 10 medium-sized projects for the experiment. The 
experimental results may not be extended to other types of 
software systems, but this is a common problem in empirical 
research. In future research, we will try to mitigate this 
external effectiveness threat by selecting more types and sizes 
of software project data. 

7  Conclusion 

Cross-project defects prediction plays an important role in 
improving software quality in case of projects without 
sufficient historical data. This paper proposes a novel method 
for cross-project defects prediction, namely the cost-cognitive 
bagging ensemble (CCBE) classifier, which handles the class-
imbalance problem in cross-project defects data.  

We compared the proposed method with the conventional 
methods on the 10 PROMISE datasets, which shows that our 
proposed method significantly outperforms others. Our 
method could cognize the cost value automatically during the 
model training, and without the need to predefine the cost 
parameters, it is shown to be more effective and practical. 

Though results are promising, many problems still need to 
be solved in this context. Future work will be focused 
primarily on three aspects: Firstly, we may consider data 
filters other than TGF to further verify the performance of the 
CCBE algorithm in cross-project defect prediction. Secondly, 
we will further explore other cost factor learning methods to 
meet the needs of different software engineering practices. 
Thirdly, we may apply our approach to more datasets to 
validate the findings. 
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