
Using Cost-cognitive Bagging Ensemble to Improve Cross-project Defects Prediction 779

*Corresponding Author: Yong Li; E-mail: liyong@live.com
DOI: 10.53106/160792642022072304013

Using Cost-cognitive Bagging Ensemble to Improve

Cross-project Defects Prediction

Yong Li1,2,3*, Ming Wen2, Zhandong Liu1, Haijun Zhang1

1 College of Computer Science and Technology, Xinjiang Normal University, China
2 Xinjiang Electronic Research Institute Limited by Share Ltd, China

3 Key Laboratory of Safety-Critical Software (NUAA), Ministry of Industry and Information Technology, China
liyong@live.com, wmconet@126.com, lzd0825@163.com, zhjlp@163.com

Abstract

Cross-project defect prediction (CPDP) is a field of study
that allows predicting defects in software projects for which
the availability of data is limited and produces generalizable
prediction models. Due to the heterogeneity of cross projects,
CPDP is particularly challenging and several methods have
been employed to address this problem. Nevertheless, the
class-imbalanced characteristic of the cross-project defect data
also increases the learning difficulty of such a task but has not
been investigated in depth. This paper proposed a novel, cost-
cognitive ensemble method for CPDP, which includes four
phases: bagging balanced resampling phase, base classifiers
learning phase, cost value cognitive phase, and base classifiers
ensemble phase. These phases create a composition of
classifiers that are used for predicting defects. Results of an
empirical evaluation on 10 datasets from the PROMISE
repository indicated that our method achieves the best overall
performance with respect to conventional methods. Moreover,
our method could cognize the cost value automatically during
the model training, it is shown to be more effective and
practical.

Keywords: Cross-project defects prediction, Class
imbalanced data, Bagging ensembles, Cost-
cognitive learning

1 Introduction

Software defects prediction is one of the most common
research topics in empirical software engineering. It can be
utilized for helping developers focus on activities such as code
inspection or testing on likely defect-prone modules, thus
optimizing the usage of resources for software quality
assurance [1] to reduce the risks of critical system failure [2-
3]. Most software defects prediction approaches are based on
software metrics by means of machine learning to build a
prediction model and are evaluated in within-project
prediction settings [4]. However, software engineering is
inherently a competitive and protean business, changing
rapidly in response to changes in markets, hardware, and
software platforms. When a new project starts or an old project
is completely rewritten, this is a challenge for within-project
defect prediction [5]. To work around this issue, researchers
have turned toward cross-project defect prediction.

Several researchers have discussed the possibility to use
other finished projects’ data to train models for target projects
that have limited availability data. This strategy is referred to
as cross-project defects prediction (CPDP). However, CPDP
often yields poor performance, and its reliable prediction is
still an open issue [6-7]. The reasons are mainly due to the
projects' heterogeneity. A noticeable way to overcome the data
distribute difference among projects is to perform data
selection, and several data selection strategies have been
proposed by researchers in recent years [8].

It is worth noting that works in CPDP usually have focused
only on the data selection methods and ignored the other key
factor affecting the performance of the CPDP model, namely,
class imbalance. In fact, there is still a class imbalance
problem that the defective-free modules significantly
outnumber the defective modules in both the filtered training
data and the target testing data. Traditional machine learning
algorithms may be biased towards the majority class. Thus,
they may produce poor predictive accuracy for the minority
class [9]. However, there are few studies that have taken into
consideration the important characteristic of the CPDP
problem.

In this study, we focus on the solutions of class imbalance
in CPDP and seek empirical evidence that they can achieve
acceptable results. Our main contributions are summarized as
follows: (1) We proposed a cost-cognitive bagging ensemble
(CCBE) approach for CPDP, which addresses the class
imbalance problem by using the resampling technique to build
cost-cognitive classifiers and using the ensemble technique to
capture better generalizable properties in each classifier. (2)
We also validated the proposed method by a large number of
experiments, and found that it can achieve better performance
than the conventional ones, and shows better stability and
flexibility in CPDP, especially for highly imbalanced datasets.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 describes the CCBE
approach proposed. Section 4 and Section 5 are devoted to the
experimental setups and results analysis. Section 6 discusses
the threats to validity. Finally, Section 7 concludes the paper
and presents the future work.

2 Related Work

2.1 Cross-project Defects Prediction

780 Journal of Internet Technology Vol. 23 No. 4, July 2022

CPDP is used to predict defect-prone software modules
based on the data collected from other software projects.
These data can either be collected from completed
development projects or taken from software repositories,
such as PROMISE and so on [10]. In the last decade, a lot of
studies have been put to define approaches for cross-project
defects prediction.

To the best of our knowledge, the earliest work on cross-
project prediction is by [11]. They built a CPDP model by
using another open-source project’s data and logistic
regression classifier, and validated that the model outperforms
the random model. However, the both projects were developed
by the same team, which is an assumption that usually does
not hold for cross-project defect prediction. Zimmermann et
al. [12] conducted a large study to determine the feasibility
and challenges of cross-project defect prediction. They found
that the CPDP model that was directly trained on one or a set
of projects might not be generalized well for other projects.
The study also pointed out that CPDP was a serious challenge,
and more attention should be paid to this problem.

To overcome the data distribution difference between
source and target projects, transfer learning techniques have
been proposed. Transfer learning addresses these issues by
transferring knowledge extracted from the source projects to
the target project for building more accurate CPDP models
[13]. The CPDP approaches based on transfer learning can be
classified as either feature-based or instance-based approaches
[14-15].

Feature-based approaches propose to transform the cross-
project data such that the underlying distributions are similar,
and many existing models can be reused for CPDP, such as
feature compensation approach [16], TCA+ approach [17],
simplified metric-set approach [18], and so on. However, these
approaches usually adopt single-source data as source projects.
Especially when cross-project data are distributed with large
differences, they are limited in the improvement of CPDP
performance.

Instance-based approaches realize CPDP through
capturing appropriate source project modules that will work
for the target project. A study by [19] found that with suitable
training data, the success rate of cross-project defect
prediction could be drastically improved to over 50%.
However, this is a post-facto approach, and thus not intended
for practical prediction settings. How to select training data
from multi-source projects data is an empirical issue.
Consequently, most studies have focused on the data filtering
approaches for CPDP and proposed some strategies, such as
hierarchical select-based filter [8], target project data guided
filter [20], source project data guided filter [21], data
characteristics-based filter [22], local clusters-based filter [23],
and so on. Since instance-based approaches can capture the
more suitable model data for the target project from multi-
source project data, it has drawn the attention of many
researchers in recent years.

All these studies suggested that CPDP is particularly
challenging, and due to the heterogeneity of projects,
prediction accuracy might be poor. However, the
aforementioned CPDP models take no consideration of the
class-imbalanced characteristic between the defect and non-
defect classes of the data set.

2.2 Class Imbalance Learning

In classification prediction, class imbalance means that the
number of samples in one class is far less than that in other
classes. The class imbalance problem also appears in software
defects prediction. In most cases, the software defect data
contain much fewer defective modules than the defect-free
modules, and this ratio is lower in extreme cases. In general,
the minority defective class is usually called positive class,
while the majority defect-free class is called negative class
correspondingly [24-25].

Class imbalance is an important factor that affects machine
learning performance, especially for the positive class
identification. In the presence of imbalanced class data, the
traditional machine learning method biases easily to the
negative class. As a consequence, the classification accuracy
of the negative class overwhelms that of the positive class. A
serious class imbalance may even lead to the classifier
completely losing its classification capability, classifying data
samples all into the negative class [26]. However, the goal of
software defects prediction is to find more defect-prone
software modules, that is, positive samples.

Several approaches have been developed trying to address
class imbalance problems for defect prediction. These
previous approaches can be categorized into two groups: data
level techniques and algorithm level techniques, which depend
on how they deal with class imbalance [27-28]. Data level
techniques add a sampling step where the data is re-balanced
in order to decrease the effect of the imbalanced class
distribution. Algorithm level techniques incorporate different
misclassification cost to take into account the significance of
positive examples in the learning phase.

Since the under-sampling technique may drop some
important information, and oversampling may lead to over-
fitting of the model, it is generally believed that the sampling
methods that alter the original defects class distribution may
result in poor generalization of the model [29]. Therefore, the
cost-sensitive learning is considered to be more suitable for
software defects prediction, but the determination of cost
factor is a difficult problem [24, 30].

Considering that there exists a class imbalance in both
filtered data and target data in CPDP, combining class
imbalance learning to build models is helpful to improve the
performance of CPDP. However, how to deal with the
imbalance of data and get a better performance model under
the premise of using filtered data defect information has not
been investigated in depth so far. So, we study the issue of if
and how the approach can benefit CPDP with the aim of
finding better solutions.

3 Problem Solution

3.1 The Proposed Approach Overview

In the cross-project defect prediction, an important factor
affecting the performance of the model is the defects
distribution heterogeneity between the source project and the
target project, i.e., data shift [31]. Due to the data shift
phenomenon in software defect data, if we only select a single
source project data, it may not be enough to reflect the defect
patterns of the target project [32]. Therefore, the focus of this
paper is to filter the multi-source project data to obtain the
CPDP model data, and then build the model.
The task of CPDP using a data filter can be defined as follows.
We have K source projects Ss ={ Ss(1), Ss(2), Ss(3) ,…, Ss(k)} and

Using Cost-cognitive Bagging Ensemble to Improve Cross-project Defects Prediction 781

a target project St. Each source project contains many modules,
and each module has two parts: a set of metrics x and a label y
that corresponds to the defect information. For unlabeled
modules in the target project St, the goals of data filter are to
select suitable training data Dtrain from the source projects Ss
and build a model for the target project St with unknown labels.

target data

predicted label

multi-source data
training data

...

...

cost
learning

cost
learning

cost
learning

cost
learning

Figure 1. The CCBE approach framework.

Figure 1 presents the CPDP overall architecture using the
proposed CCBE algorithm, which includes three steps:
(1) The first step is filtering data for the model building with

the goal of reducing the impact of data shift between the
source projects and the target project.

(2) Then, the CCBE algorithm is used to train the prediction
model, which aims to relatively fully learn the defect
patterns that are suitable for the target project in the
filtered multi-source projects.

(3) Finally, the trained integrated model is used to predict
whether the target module is defective or non-defective
and the output is its defect label.

3.2 Data Preprocessing

It should be noted that the focus of this paper is the class
imbalance problem in CPDP. Considering that the proposed
CCBE algorithm is independent of the data filtering algorithm,
although different data filtering algorithms have been
proposed in previous studies, we chose the most commonly
used TGF strategy to filter multi-source data in the experiment
[20, 33].

The TGF provides a filtering strategy for the model
training data based on the K-nearest neighbor algorithm. For
each module in the target project, TGF strategy selects k (The
authors recommend k =10) modules of the available data
closest to the target module as the training data. Turhan et al.
[20] found that CPDP using the TGF strategy can compete
with WPDP in some cases. The pseudo code of TGF strategy
is shown in Algorithms 1.

Algorithm 1. The TGF algorithm
Input:

Multi-source projects data: (1) (2) (){ , , , }s s s s kS S S S= ;
Target project data: tS ;

Output:

Training data for target project, trainD ;
1: trainD  ;
2: (1) (2) ()mix s s s kS S S S   ;
3: for all modules ()t i tM S do

4: tempD  search KNN modules from mixS ;
5: train train tempD D D  ;
6: end for
7: return trainD ;

3.3 The CCBE Algorithm

The goal of CCBE algorithm is to more fully obtain the
defect patterns suitable for the target data from the filtered
model data without paying attention to the data source. In the
following section, we describe the key technology and pseudo
code of the algorithm.

3.3.1 Cost Sensitive Software Defect Prediction

The prediction results of the CPDP model for the target
software module may lead to two types of errors:
⚫ The type I error is to classify the defective module as

defective-free, which may lead to some defects that
cannot be repaired, resulting in software failure and
software unreliability.

⚫ The type II error is to classify the non-defective module
as defective-prone, which may lead to useless testing and
waste of development resources.

The cost of type I error and type II error can be expressed
as Cost(1,0) and Cost(0,1) respectively, where the defect-
prone module is usually marked as "1", while the defect-free
module is marked as "0". According to the practical
experience of software engineering, it is obvious that when the
model is mispredicted, Cost (1,0) > Cost (0,1), that is, when
Cost (1,0) =  and Cost (0,1) = 1, >1. When the model is
correctly predicted, Cost (1,1) = Cost (0,0) = 0. Therefore,
considering the cost of different error predictions, cost-
sensitive software defect prediction may be more effective in
practice.

For the CPDP model, the prediction cost function can be
defined as L, whose value is the sum of predicted costs of
different classes. Therefore, the function L(x) can be formally
expressed as:

() (,1) (,0)L x L x L x= +
(,1) (,0) (0,1) (,1) (1,1)L x Prob x C Prob x C=  + 

(,0) (,1) (1,0) (,0) (0,0)L x Prob x C Prob x C=  + 
The function L(x) represents the expected cost of defect

prediction for module x, that is, minimizing L(x,i) is equivalent
to selecting the optimal defect prediction label, where i{0,1},
and Prob(x,c=i) represents the probability of predicting
module x as class i.

Due to the practical requirements of software defect
prediction, the cost factor >1. If the cost value is too high,

782 Journal of Internet Technology Vol. 23 No. 4, July 2022

the prediction rate and the false alarm rate will decrease
synchronously. If the cost value is too low, the cost of different
prediction errors is not obvious in the prediction model.
Therefore, the most appropriate cost value should be
determined according to the practical need.

3.3.2 The Cost-cognitive Process by Bootstrap Resampling

Filtered Data: D

Bootstrap
Sampling

Cost
Cognition

0 1

0 1 0 1

Out-Of-Bag
Sampling

Training Data: TD Validation Data: VD

Figure 2. The Cost-cognitive process

Figure 2 gives the cost-cognitive process using bootstrap
resampling for the CCBE algorithm. In the figure, D
represents the filtered data, in which the number of defective
modules is recorded as p, and the number of non-defective
modules is recorded as n. Due to the class imbalance of
software defect data, generally p < n. The process of cost
learning is described as follows:
(1) Class-balance model data sampling. Firstly, the software

modules marked as "1" and "0" in D are sampled p times
respectively, and then the sampled data are combined
into a class balanced training dataset TD.

(2) Class-imbalance verification data sampling. After the
defective modules in D are sampled p times, about 36.8%
of them are not selected into TD, and these modules are
recorded as VDP. Then, m modules are sampled again
from the defect-free modules that have not been sampled
and recorded as VDN, where m=|VDP|×(n/p). Finally,
combined VDP and VDN as verification set VD.

(3) Cost-cognitive using the verification data. First, the
balanced data TD is used to train the model, and then the
imbalanced verification data VD is used to obtain the
optimal cost value based on a certain model performance
metric.

In the process of the above method, the intersection of the
training set and the verification set is empty, which can
effectively avoid the overfitting of the model and improve the
generalization performance of the prediction model.

3.3.3 The CCBE Algorithm Pseudo Code

We use the bagging method to implement training and cost
learning for the base classifier in the CCBE algorithm and use
the voting method to achieve prediction. In ensemble learning,
the accuracy and difference of base classifiers are important
factors affecting the performance of ensemble model [34].
Because the rules generated by the decision tree algorithm are
easy to understand and the classification speed is fast, we
choose the C4.5 algorithm to build the base classifier in the
CCBE algorithm. Algorithm 2 shows the CCBE algorithm
pseudo code.

Algorithm 2. The CCBE algorithm
Input:

Filtered data: 1 1 2 2{(,), (,),..., (, })m mD x y x y x y=
Base-classifier algorithm: L
Number of base-classifiers: T

Output:

Ensemble classifier:
1

() (())T
tt

H x sign h x
=

=  ,

where th is the base classifier, [1,0]th  .
1: PGet the defective modules from D , P D
2: N  Get the non-defective modules from D , N D
3: Compute the imbalance rate: | | / | |ir P N
4: for 1t = to T do

5: Bootstrap sample the defective module subset tP from

P with tP P=

6: Bootstrap sample the non-defective module subset tN

from N with tN P=

7: Combine tP and tN as the base-classifier training data:
{ , }t t tTD P N

8: Get the out-of-bag defective modules: ()oob t tP P P −

9: Bootstrap sample the non-defective module subset

()oob tN from tN N− with () () /oob t oob tN P ir

10: Combine ()oob tP and ()oob tN as the model validation
data: () (){ , }t oob t oob tVD P N

11: for 1cost = to C do
12: (,)t th L TD cost

13: Evaluate th on tVD , and record the cost value which
achieves the highest performance

14: end for

15: (,)t th L TD 

16: end for

4 Empirical Study

4.1 Datasets

For our experiments, we used 10 open-source projects for
validation. These datasets are part of the public PROMISE
repository. The original datasets were collected by Jureczko
and Madeyski with the Ckjm and BugInfo tools [35], in which
each instance represents a class of the release and consists of
two parts: 20 independent static code attributes and the
dependent attribute labeled "defects" indicating the defect
count information.

For the work, we refer to each class as a module instance,
and the defects attribute is discretized into a Boolean value
where "0" indicates no defects for the class and "1" indicates
otherwise. Since most of the software defect prediction
research literature uses the same setting, we follow them.
Detailed information on the experimental dataset is listed in
Table 1.

Using Cost-cognitive Bagging Ensemble to Improve Cross-project Defects Prediction 783

Table 1. Defect dataset characteristics
Project Modules# Defect-prone# Defect-prone%
ant13 125 20 16%

arc 234 27 12%
ivy11 111 63 57%
jedit32 272 90 33%
log4j10 135 34 25%

lucene20 195 91 47%
poi15 237 141 59%

synapse10 157 16 10%
velocity14 196 147 75%
xercesinit 162 77 48%

4.2 Performance Evaluation

In the experiment, the number of modules whose defect
label marked as i and predicted as j is expressed as nij.
Therefore, the prediction results of the target software module
can be divided into four situations: True Positive (TP)=n11,
True Negative (TN)=n00, False Positive (FP)=n01, and False
Negative (FN)=n10.

Considering the various practice requirements, several
performance measures are usually adopted to evaluate
different aspects of predictors. In the existing studies, the
commonly used single model metrics are PD/PF, and the
comprehensive evaluation model metrics are AUC/BAL.
These performance metrics are shown in Formulas 1, 2, 3, and
4 respectively.

TPPD
TP FN

=
+

(1)

FPPF
FP TN

=
+

(2)

1
2

TP FPAUC + −
= (3)

2 2(1)
1

2
PD PF

BAL
− +

= − (4)

PD (Probability of detection) measures how many of the
defective modules are found. PF (Probability of false alarm)
measures how many of the modules that triggered the detector
actually did not contain defective concept. Menzies et al. [36]
claimed that a high-PD predictor is still useful in practice, even
if the other measures may not be good enough.

The ROC curve illustrates the trade-off between PD and
PF, which serves as the performance of a classifier across all
possible decision thresholds. AUC estimates the area under the
ROC curve, which is a good measure for the overall PD/PF
performance. The higher the AUC is, the better the
performance will be. BAL is another commonly used
comprehensive measure to indicate the tradeoff between PD
and PF, which is defined as the normalized Euclidean distance
from the desired point (1,0) to observed (PD, PF) in a ROC
curve. A larger BAL value indicates that the performance is
closer to the ideal case.

In some studies, the Recall/Precision/F-value metrics that
are commonly used in machine learning research are also used
to evaluate the software defect prediction model. Due to the
imbalanced characteristics of software defect data, we avoided
the precision measure, and add the F-value with AUC and
BAL to evaluate the CPDP comprehensive performance.

4.3 Experimental Design

The experiment consists of three investigations. The first
investigation finds out which measure is better to be the
criterion for choosing the cost of the CCBE approach, while
the second investigation explores the relationship between the
cost factor and the imbalance rates in our approach. The third
investigation explores whether our proposed approach has
advantages compared with conventional ones. More
specifically, we try to find empirical evidence to answer the
following questions.

4.3.1 RQ1: Which Measure Is Better to Be the Criterion

for Choosing the Cost of CCBE Approach?

This investigation intended to find out which measure is
suitable for cost learning. As a matter of fact, it is hard to
determine the cost value when applying the cost-sensitive
learning method to defect prediction, since the best cost
parameter is always problem- and algorithm- dependent.
Generally, there is competition among the single evaluation
metrics of the model. For example, when the cost value is too
high, PD and PF may decrease simultaneously, and vice versa.
These trade-offs make it difficult to compare the performances
of several prediction models by using only either PD or PF.

Therefore, we usually choose the value that makes the
CPDP model have the best comprehensive performance as the
optimal cost value, which is also conducive to the
experimental comparison and selection of models. For this
purpose, we used AUC, BAL, and F-values as the criterion for
determining the optimal cost value of class imbalance learning
methods in the CCBE algorithm.

4.3.2 RQ2: What is the Relationship between the Cost

Factor and the Imbalance Rates in Our Proposed

Method?

This investigation was to explore whether or not the
proposed method can effectively deal with the class-
imbalanced problem in the context of cross-project defect
prediction. In fact, for different application scenarios, there are
different requirements on the cost value. For example, in the
security critical software, the prediction model is required to
have a higher cost factor. When the software testing resources
are limited, the cost factor cannot be too high. Therefore, in
this section, PD/PF/AUC-based optimal learning cost factor
are used to calculate PD, PF, and AUC, and to compare their
changes with different imbalance rates. Because the BAL and
F-values are positively correlated with AUC, only the AUC
with the most stable results is selected.

From Table 1, we know that the imbalance rate of the
datasets that are used in the experiments vary from 10% to
75%. This provides us with a chance to explore the
relationship between the cost factor and the imbalance rates,
and further investigate the effectiveness of our proposed
method on dealing with the class-imbalanced problem.

784 Journal of Internet Technology Vol. 23 No. 4, July 2022

4.3.3 RQ3: How Does the CCBE Method Perform

Compared to the Conventional Ones?

This investigation was used to explore whether our
proposed method is effective or not. This was achieved by
comparing our proposed CCBE method with seven
conventional current state-of-the-art approaches. We
investigated four single classifier algorithms and three
ensemble algorithms; these are Naive Bayes (NB), Random
Forest (RF), Decision Tree (DT) and SVM because of their
simplicity, effectiveness, and popularity in the literature [4].
In addition, three representative ensemble algorithms are also
considered in our study, namely AdaBoost (AB),
EasyEnsemble (EE) [37] and Local Approach (LA) [23]. AB
is the traditional ensemble algorithm, EE is the latest
algorithm to deal with imbalanced data, and LA is a state-of-
the-art approach that uses local prediction to mitigate the
heterogeneity of cross projects.

Usually, there are trade-offs between PD and PF, which
makes it difficult to compare the performances of several
prediction models by using only either the PD or PF. The
higher the AUC, BAL, and F-value are, the better the
performance is. We compute AUC, BAL, and F-value to
evaluate the performance of these 8 approaches on the 10
datasets from the PROMISE repository. For each dataset, we
run CCBE and the baseline approaches 10 times and the
average value is used as the final experimental result.

5 Results and Analysis

This section presents the experiment result. The results are
structured according to the research questions presented in
above section.

5.1 Optimal Cost Factor Learning Approach for

the CCBE Algorithm

To understand which measure is better to be the criterion
for choosing the cost-value of the CCBE algorithm for CPDP,
we produce bar graphs in Figure 3, in which the average
performance values of AUC, BAL, and F-value on the ten
datasets were displayed by the three sub-plot respectively.

AUC Bal F

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

AUC-based learning

Bal-based learning

F-based learning

M
e
a
su

r
e
s

Figure 3. Comparison of different methods in terms of
prediction performance

This result illustrates that AUC is the best choice than
others for learning the cost factor parameters. In most cases,
the models with cost-factor learning by the AUC-based
method could obtain better comprehensive performance than
the model trained based on other methods. There is evidence
supporting that AUC is a more stable metric than the others
[38]. Hence, different settings do not change AUC
significantly, and using AUC would be more appropriate for
the choice of training parameters.

Through the analysis of the above results, we can draw the
following conclusions for RQ1:
(1) The AUC and BAL measures of the three cost-value

learning methods are better than the F-value measure as
a whole. The possible explanation is that AUC and BAL
are comprehensive performance measures calculated
based on PD and PF. The poor performance of F-value
may be due to the low accuracy or precision. Some
studies have shown that the two measures are relatively
poor in the evaluation of imbalanced data [39].

(2) When the AUC, BAL, and F-value are used for model
evaluation, the performance of AUC-based cost factor
cognition method is better than the other two methods.
Therefore, in practice, it is suggested to use the method
of optimizing AUC measure to realize the cost-factor
learning.

5.2 The Relationship between the Cost Factor

and the Imbalance Rates

In this section, for convenience, PD/PF/AUC-based cost
cognition methods are represented as M1, M2, and M3,
respectively.

Figure 4(a) shows the relationship between the cost factor
by M1/M2/M3 methods and the imbalance rate. It can be seen
from the figure that the cost learning methods based on M1
and M2 obtain the maximum and minimum cost factor
respectively. Moreover, M3 balances the prediction rate and
false alarm rate, and its cost factor value ranges between M1
and M2. In addition, from the perspective of the relationship
between the data imbalance rate and the cost value, it can be
seen intuitively that the cost factor value obtained by
M1/M2/M3 has no direct relationship with the data imbalance
rate, that is, the cost factor value is relatively stable.

Figure 4(b) and Figure 4(c) are PD and PF values of the
CPDP models respectively realized by M1/M2/M3 based on
the CCBE algorithm. From this figure, it can be seen that the
PD and PF values of the three models are also not affected by
the change of class imbalance rate. In particular, 80% of the
data sets achieved a prediction rate higher than 70%. In many
research literature, 70% prediction rate is taken as a
benchmark comparison value [40].

Figure 4(d) shows the AUC values of different cost
perception models. From this figure, it can be seen intuitively
that AUC, as a trade-off indicator of PD and PF, has relatively
small differences based on M1/M2/M3. But in general, the
comprehensive performance of the model based on M3 is
relatively optimal, and the performance of the model is
relatively stable with the change of class data imbalance rate,
which also shows that the CCBE algorithm has certain
advantages in dealing with class imbalance data for cross-
project software.

Using Cost-cognitive Bagging Ensemble to Improve Cross-project Defects Prediction 785

PD-based Cost Cognition PF-based Cost Cognition AUC-based Cost Cognition

0

1

2

3

4

5

6

7

8

 data1
(75%)

data2
(59%)

data3
(57%)

data4
(48%)

data5
(47%)

data6
(33%)

data7
(25%)

data8
(16%)

data9
(12%)

data10
(10%)

C
ost

(a) Cost value

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data1
(75%)

data2
(59%)

data3
(57%)

data4
(48%)

data5
(47%)

data6
(33%)

data7
(25%)

data8
(16%)

data9
(12%)

data10
(10%)

P
D

(b) PD value

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

data1
(75%)

data2
(59%)

data3
(57%)

data4
(48%)

data5
(47%)

data6
(33%)

data7
(25%)

data8
(16%)

data9
(12%)

data10
(10%)

P
F

(c) PF value

0.45

0.5

0.55

0.6

0.65

0.7

0.75

data1
(75%)

data2
(59%)

data3
(57%)

data4
(48%)

data5
(47%)

data6
(33%)

data7
(25%)

data8
(16%)

data9
(12%)

data10
(10%)

A
U

C

(d) AUC value

Figure 4. The relationship between the cost factor and the imbalance rates

Through the analysis of the above results, we can draw the
following conclusions for RQ2:
(1) The proposed CCBE algorithm is relatively stable in the

class imbalance data, especially in the extreme case of
class imbalance. In addition, the CPDP model and cost
factor can be obtained from the class balanced model
data and class imbalanced cost factor validation data
based on under sampling.

(2) In software engineering practice, the CCBE algorithm
can be selected according to the test resources and the
security requirements. From the perspective of practical
validity, the prediction rate of the proposed method is
higher than 60% (artificial defects prediction rate [41]),
which also shows that the algorithm has better flexibility
and effectiveness.

5.3 Comparison Results of Our Proposed

Approach with the Conventional Ones

This section presents the results of our proposed approach
vs. the conventional approaches CPDP experiments in order
to address our third question. For each dataset, we build seven
predictive models following the algorithm settings described
in the previous section. It is important to note that we only use
the AUC-based cost learning scheme for building the CCBE
predictor. We focus on comparing the overall prediction

performance (i.e., AUC, BAL, and F-value) between the
CCBE and other ones. The results are summarized with mean
performance values and average rank (AR) values in Table 2,
Table 3, and Table 4 for AUC, BAL, and F-value, respectively.
In all tables, the best approach is denoted in boldface.

In order to demonstrate the experimental results more
directly, the results are also visualized by using a boxplot in
Figure 5. It can be seen from Figure 5 that the proposed CCBE
algorithm is better than other methods in general, and the
experimental results indirectly show that AUC/BAL/F-value
is effective as a comprehensive index, and they have the same
performance in describing the comprehensive performance of
the prediction model.

Through the analysis of the above results, we can draw the
following conclusions for RQ3:
(1) The comprehensive performance of the conventional

model is poor, which also shows that the traditional
algorithm is poor in dealing with class imbalanced data.
As the most widely used model algorithm in defect
prediction, NB is second only to the CCBE and EE
algorithm in imbalance data prediction.

(2) The CCBE algorithm and EE algorithm are special
algorithms for dealing with class imbalanced data, and
their prediction performance is relatively excellent,
especially the CCBE algorithm which has better
flexibility in software defect prediction and stability.

786 Journal of Internet Technology Vol. 23 No. 4, July 2022

Table 2. The AUC values of the models built with eight learning algorithms
CCBE NB RF DT SVM AB EE LA

ant13 0.693 0.660 0.655 0.720 0.569 0.631 0.686 0.573
arc 0.671 0.671 0.682 0.580 0.648 0.693 0.673 0.655

ivy11 0.680 0.614 0.612 0.550 0.509 0.586 0.616 0.585
jedit32 0.555 0.620 0.612 0.624 0.510 0.526 0.519 0.493
log4j10 0.719 0.710 0.637 0.725 0.583 0.632 0.651 0.587

lucene20 0.643 0.611 0.587 0.597 0.541 0.603 0.587 0.600
poi15 0.631 0.684 0.653 0.560 0.506 0.618 0.572 0.565

synapse10 0.735 0.724 0.741 0.686 0.617 0.691 0.656 0.545
velocity14 0.483 0.500 0.537 0.534 0.476 0.500 0.541 0.545
xercesinit 0.514 0.516 0.518 0.417 0.440 0.556 0.539 0.487

AVG 0.632 0.631 0.623 0.599 0.540 0.604 0.604 0.563
AR 3.9 4.0 4.3 5.9 9.5 5.1 5.0 7.4

Table 3. The BAL values of the models built with eight learning algorithms
CCBE NB RF DT SVM AB EE LA

ant13 0.630 0.624 0.652 0.692 0.564 0.625 0.666 0.566
arc 0.641 0.620 0.678 0.579 0.574 0.692 0.672 0.645

ivy11 0.678 0.483 0.531 0.507 0.387 0.506 0.605 0.580
jedit32 0.550 0.537 0.541 0.610 0.462 0.484 0.517 0.486
log4j10 0.719 0.642 0.520 0.705 0.438 0.520 0.639 0.562

lucene20 0.642 0.513 0.508 0.594 0.427 0.562 0.586 0.591
poi15 0.623 0.683 0.613 0.535 0.494 0.616 0.572 0.558

synapse10 0.701 0.707 0.735 0.662 0.511 0.685 0.654 0.538
velocity14 0.467 0.386 0.374 0.484 0.315 0.386 0.493 0.474
xercesinit 0.504 0.433 0.453 0.389 0.302 0.500 0.531 0.455

AVG 0.615 0.563 0.561 0.576 0.447 0.558 0.593 0.545
AR 3.1 5.8 5.3 4.9 10.0 5.9 4.1 6.0

Table 4. The F values of the models built with eight learning algorithms
CCBE NB RF DT SVM AB EE LA

ant13 0.391 0.408 0.373 0.425 0.294 0.350 0.395 0.302
arc 0.299 0.377 0.343 0.242 0.361 0.350 0.317 0.294

ivy11 0.695 0.415 0.484 0.454 0.231 0.444 0.600 0.584
jedit32 0.433 0.448 0.443 0.503 0.315 0.345 0.404 0.362
log4j10 0.562 0.576 0.440 0.583 0.311 0.431 0.481 0.395

lucene20 0.635 0.446 0.430 0.562 0.298 0.503 0.580 0.550
poi15 0.632 0.710 0.602 0.511 0.608 0.674 0.619 0.643

synapse10 0.322 0.392 0.393 0.286 0.313 0.300 0.275 0.198
velocity14 0.477 0.240 0.205 0.449 0.064 0.240 0.464 0.418
xercesinit 0.451 0.309 0.345 0.279 0.584 0.417 0.486 0.365

AVG 0.490 0.432 0.406 0.429 0.338 0.405 0.462 0.411
AR 3.8 4.4 6.1 5.5 7.6 6.3 4.6 6.8

Using Cost-cognitive Bagging Ensemble to Improve Cross-project Defects Prediction 787

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Bal

0.45

0.5

0.55

0.6

0.65

0.7

0.75

AUC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F-value

(a) AUC (b) Bal (c) F-Value

Figure 5. Comparison of different methods

6 Threats To Validity

In this study, we obtained several significant results to
answer the three research questions proposed in Section 4.3.
However, potential threats to the validity of our work still
remain.

Threats to construct validity concern the accuracy of
independent variable and dependent variable to the described
concept. These threats are primarily related to the static code
metrics we used. In this study, all the data sets selected in the
experiment are obtained from the PROMISE repository and
have been widely used in related research. Therefore, it can be
considered that the construction validity threat of the
experimental study meets the requirements.

Threats to internal validity concern any confounding
factor that could influence the results, and they are mainly
related to various experimental settings in this study. There are
two main manifestations: one is the choice of model
evaluation measure, we only select the most commonly used
PD/PF/AUC/BAL/F-value metrics to achieve cost-cognition
in the experiment. In fact, from the requirements of software
engineering practice, these approaches are not enough to meet
the needs; Second, the integrity of benchmark methods in
experimental comparison. Therefore, in future studies, we will
continue to explore cost-cognition methods for different
practical needs and select more benchmark algorithms for the
comparison validation.

Threats to external validity concern the generalization of
the results obtained. The experimental datasets selected in this
experiment are open-source software projects based on Java
language. Furthermore, in order to study the relationship
between class imbalance rates and cost values, we randomly
selected 10 medium-sized projects for the experiment. The
experimental results may not be extended to other types of
software systems, but this is a common problem in empirical
research. In future research, we will try to mitigate this
external effectiveness threat by selecting more types and sizes
of software project data.

7 Conclusion

Cross-project defects prediction plays an important role in
improving software quality in case of projects without
sufficient historical data. This paper proposes a novel method
for cross-project defects prediction, namely the cost-cognitive
bagging ensemble (CCBE) classifier, which handles the class-
imbalance problem in cross-project defects data.

We compared the proposed method with the conventional
methods on the 10 PROMISE datasets, which shows that our
proposed method significantly outperforms others. Our
method could cognize the cost value automatically during the
model training, and without the need to predefine the cost
parameters, it is shown to be more effective and practical.

Though results are promising, many problems still need to
be solved in this context. Future work will be focused
primarily on three aspects: Firstly, we may consider data
filters other than TGF to further verify the performance of the
CCBE algorithm in cross-project defect prediction. Secondly,
we will further explore other cost factor learning methods to
meet the needs of different software engineering practices.
Thirdly, we may apply our approach to more datasets to
validate the findings.

Acknowledgment

This work is supported by the Xinjiang Tianshan Youth
Project of China (2020Q019), the National Natural Science
Foundation of China (61562087), and the Doctoral Scientific
Research Foundation of Xinjiang Normal University
(XJNUBS1905).

References

[1] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, Z. Wang,
Large-Scale Empirical Studies on Effort-aware Security
Vulnerability Prediction Methods, IEEE Transactions
on Reliability, Vol. 69, No. 1, pp. 70-87, March, 2020.

[2] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, M. F. Siok,
Recent Catastrophic Accidents: Investigating How Software
was Responsible, Proceedings of the Fourth IEEE
International Conference on Secure Software

788 Journal of Internet Technology Vol. 23 No. 4, July 2022

Integration and Reliability Improvement, Singapore,
Singapore, 2010, pp. 14-22.

[3] W. E. Wong, X. Li, P. A. Laplante, Be More Familiar
with our Enemies and Pave the Way Forward: A Review
of the Roles Bugs Played in Software Failures, Journal
of Systems and Software, Vol. 133, pp. 68-94, November,
2017.

[4] M. Shepperd, D. Bowes, T. Hall, Researcher bias: The
Use of Machine Learning in Software Defect Prediction,
IEEE Transactions on Software Engineering, Vol. 40,
No. 6, pp. 603-616, June, 2014.

[5] B. A. Kitchenham, E. Mendes, G. H. Travassos, Cross
versus Within-Company Cost Estimation Studies: A
Systematic Review, IEEE Transactions on Software
Engineering, Vol. 33, No. 5, pp. 316-329, May, 2007.

[6] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J. Qian,
B. Xu, How Far We Have Progressed in the Journey? An
Examination of Cross-project Defect Prediction, ACM
Transactions on Software Engineering and
Methodology, Vol. 27, No. 1, pp. 1-51, January, 2018.

[7] S. Hosseini, B. Turhan, D. Gunarathna, A Systematic
Literature Review and Meta-analysis on Cross Project
Defect Prediction, IEEE Transactions on Software
Engineering, Vol. 45, No. 2, pp. 111-147, February, 2019.

[8] Y. Li, Z. Huang, Y. Wang, B. Fang, Evaluating Data
Filter on Cross-project Defect Prediction: Comparison
and Improvements, IEEE Access, Vol. 5, pp. 25646-
25656, November, 2017.

[9] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F.
Herrera, A Review on Ensembles for the Class
Imbalance Problem: Bagging, Boosting, and Hybrid-
based Approaches, IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
Vol. 42, No. 4, pp. 463-484, July, 2012.

[10] D. Rodriguez, I. Herraiz, R. Harrison, On Software
Engineering Repositories and Their open Problems,
2012 First International Workshop on Realizing AI
Synergies in Software Engineering, Zurich, Switzerland,
2012, pp. 52-56.

[11] L. C. Briand, W. L. Melo, J. Wust, Assessing the
Applicability of Fault-proneness Models across Object-
oriented Software Projects, IEEE Transactions on
Software Engineering, Vol. 28, No. 7, pp. 706-720, July,
2002.

[12] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B.
Murphy, Cross-project Defect Prediction: A Large Scale
Experiment on Data vs. Domain vs. Process,
Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software
Engineering, Amsterdam, The Netherlands, 2009, pp.
91-100.

[13] K. Weiss, T. M. Khoshgoftaar, D. Wang, A Survey of
Transfer Learning, Journal of Big Data, Vol. 3, No. 1,
pp. 1-40, May, 2016.

[14] Y. Li, Z. Q. Huang, Y. Wang, B. W. Fang, Survey on
Data Driven Software Defects Prediction, Acta
Electronica Sinica, Vol. 45, No. 4, pp. 982-988, April,
2017.

[15] Q. Zou, L. Lu, S. Qiu, X. Gu, Z. Cai, Correlation Feature
and Instance Weights Transfer Learning for Cross
Project Software Defect Prediction, Institution of

Engineering and Technology Software, Vol. 15, No. 1,
pp. 55-74, February, 2021.

[16] S. Watanabe, H. Kaiya, K. Kaijiri, Adapting a Fault
Prediction Model to Allow inter Language Reuse,
Proceedings of the 4th International Workshop on
Predictor Models in Software Engineering, Leipzig,
Germany, 2008, pp. 19-24.

[17] J. Nam, S. J. Pan, S. Kim, Transfer Defect Learning,
2013 35th International Conference on Software
Engineering, San Francisco, CA, USA, 2013, pp. 382-
391.

[18] P. He, B. Li, X. Liu, J. Chen, Y. Ma, An Empirical Study
on Software Defect Prediction with a Simplified Metric
Set, Information and Software Technology, Vol. 59, No.
C, pp. 170-190, March, 2015.

[19] Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, An Investigation
on the Feasibility of Cross-project Defect Prediction,
Automated Software Engineering, Vol. 19, No. 2, pp.
167-199, June, 2012.

[20] B. Turhan, T. Menzies, A. B. Bener, J. Di Stefano, On
the Relative Value of Cross-company and Within-
company Data for Defect Prediction, Empirical
Software Engineering, Vol. 14, No. 5, pp. 540-578,
October 2009.

[21] F. Peters, T. Menzies, A. Marcus, Better Cross Company
Defect Prediction, 2013 10th Working Conference on
Mining Software Repositories, San Francisco, CA, USA,
2013, pp. 409-418.

[22] S. Herbold, Training Data Selection for Cross-project
Defect Prediction, Proceedings of the 9th International
Conference on Predictive Models in Software
Engineering, Baltimore, Maryland, USA, 2013, pp. 1-
10.

[23] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman,
F. Shull, B. Turhan, T. Zimmermann, Local versus
Global Lessons for Defect Prediction and Effort
Estimation, IEEE Transactions on Software
Engineering, Vol. 39, No. 6, pp. 822-834, June, 2013.

[24] Q. Song, Y. Guo, M. Shepperd, A Comprehensive
Investigation of the Role of Imbalanced Learning for
Software Defect Prediction, IEEE Transactions on
Software Engineering, Vol. 45, No. 12, pp. 1253-1269,
December, 2019.

[25] Y. H. Li, W. E. Wong, S. Y. Lee, F. Wotawa, Using Tri-
relation Networks for Effective Software Fault-
proneness Prediction, IEEE Access, Vol. 7, pp. 63066-
63080, May, 2019.

[26] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, N. Seliya,
A Survey on Addressing High-class Imbalance in Big
Data, Journal of Big Data, Vol. 5, No. 1, pp. 1-30,
November, 2018.

[27] S. Wang, L. L. Minku, Y. Xin, A Systematic Study of
Online Class Imbalance Learning with Concept Drift,
IEEE Transactions on Neural Networks and Learning
Systems, Vol. 29, No. 10, pp. 4802-4821, October, 2018.

[28] G. Q. Xie, S. Y. Xie, X. H. Peng, Z. Li, Prediction of Number
of Software Defects based on SMOTE, International
Journal of Performability Engineering, Vol. 17, No. 1, pp.
123-134, January, 2021.

[29] K. Bennin, J. Keung, A. Monden, On the Relative Value
of Data Resampling Approaches for Software Defect
Prediction, Empirical Software Engineering, Vol. 24, No.
2, pp. 602-636, April, 2019.

Using Cost-cognitive Bagging Ensemble to Improve Cross-project Defects Prediction 789

[30] C. Tantithamthavorn, S. Mcintosh, A. E. Hassan, K.
Matsumoto, The Impact of Automated Parameter
Optimization on Defect Prediction Models, IEEE
Transactions on Software Engineering, Vol. 45, No. 7,
pp. 683-711, July, 2019.

[31] B. Turhan, On the Dataset Shift Problem in Software
Engineering Prediction Models, Empirical Software
Engineering, Vol. 17, No. 1-2, pp. 62-74, February, 2012.

[32] X. Xia, D. Lo, S. J. Pan, N. Nagappan, X. Wang,
HYDRA: Massively Compositional Model for Cross-
project Defect Prediction, IEEE Transactions on
Software Engineering, Vol. 42, No. 10, pp. 977-998,
October, 2016.

[33] Z. Yuan, X. Chen, Z. Cui, Y. Mu, ALTRA: Cross-project
Software Defect Prediction via Active Learning and
Tradaboost, IEEE Access, Vol. 8, pp. 30037-30049,
February, 2020.

[34] S. B. Wang, Y. Li, W. B. Mi, Y. Liu, Software Defect
Prediction Incremental Model using Ensemble
Learning, International Journal of Performability
Engineering, Vol. 16, No. 11, pp. 1771-1780, November,
2020.

[35] M. Jureczko, L. Madeyski, Towards Identifying
Software Project Clusters with Regard to Defect
Prediction, Proceedings of the 6th International
Conference on Predictive Models in Software
Engineering, Timişoara, Romania, 2010, pp. 1-10.

[36] T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald,
Problems with Precision: A Response to “Comments on
‘Data Mining Static Code Attributes to Learn Defect
Predictors’”, IEEE Transactions on Software
Engineering, Vol. 33, No. 9, pp. 637-640, September,
2007.

[37] X. Y. Liu, J. Wu, Z. H. Zhou, Exploratory Under
sampling for Class-Imbalance Learning, IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), Vol. 39, No. 2, pp. 539-550, April, 2009.

[38] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A.
Bener, Defect Prediction from Static Code Features:
Current Results, Limitations, new Approaches,
Automated Software Engineering, Vol. 17, No. 4, pp.
375-407, December, 2010.

[39] D. Gray, D. Bowes, N. Davey, Y. Sun, B. Christianson,
Further thoughts on Precision, 15th Annual Conference
on Evaluation and Assessment in Software Engineering,
Durham, United Kingdom, 2011, pp. 129-133.

[40] A. Monden, T. Hayashi, S. Shinoda, K. Shirai, J.
Yoshida, M. Barker, K. Matsumoto, Assessing the Cost
Effectiveness of Fault Prediction in Acceptance Testing,
IEEE Transactions on Software Engineering, Vol. 39,
No. 10, pp. 1345-1357, October, 2013.

[41] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M.
Lindvall, D. Port, I. Rus, R. Tesoriero, M. Zelkowitz,
What We Have Learned about Fighting Defects,
Proceedings Eighth IEEE Symposium on Software
Metrics, Ottawa, ON, Canada, 2002, pp. 1-10.

Biographies

Yong Li received the Ph.D. degree in
Computer Science from Nanjing University
of Aeronautics and Astronautics in 2018. He
is currently an Associate Professor of
Xinjiang Normal University and a
Postdoctoral Fellow of Xinjiang Electronic
Research Institute. His research interests
include Machine Learning and Intelligent
Software Engineering.

Ming Wen graduated from Xi'an University
of Technology in 1988 with a major in
automatic control. Now he is the director
and researcher of software development and
testing center of Xinjiang Electronic
Research Institute. His research interests
include Software Engineering and Artificial
Intelligence.

Zhandong Liu received the Ph.D. degree in
Computer Science from University of
Science and Technology of China in 2018.
He is currently an Associate Professor with
the College of Computer Science and
Technology of Xinjiang Normal University.
His research interests include Pattern
Recognition and Computer Algorithm.

Haijun Zhang received the Ph.D. degree in
Computer Science from University of Science
and Technology of China in 2011. He is
currently a Professor with the College of
Computer Science and Technology of Xinjiang
Normal University. His research interests
include Software Engineering and Data Mining.

	組合 01-05
	01
	02
	03
	04
	05
	空白頁面
	空白頁面

	組合 06-10
	06
	07
	08
	09
	10
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 11-15
	11
	12
	13
	14
	15
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 16-21
	16
	17
	18.0 Guest Ediorial
	18.1
	19
	20
	21
	空白頁面
	空白頁面
	空白頁面

	組合 22-26
	22.0 Guest Ediorial
	22.1
	23
	24
	25
	26
	空白頁面

