
Cross-Project Defect Prediction Method based on Feature Distribution Alignment and Neighborhood Instance Selection 761

*Corresponding Author: Yu Zhao; E-mail: zhaoyu@jsnu.edu.cn
DOI: 10.53106/160792642022072304011

Cross-Project Defect Prediction Method based on Feature Distribution
Alignment and Neighborhood Instance Selection

Yi Zhu1,2, Yu Zhao1*, Qiao Yu1, Xiaoying Chen1

1 School of Computer Science and Technology, Jiangsu Normal University, China
2 Key Laboratory of Safety-Critical Software (Nanjing University of Aeronautics and Astronautics),

Ministry of Industry and Information Technology, China
zhuy@jsnu.edu.cn, zhaoyu@jsnu.edu.cn, yuqiao@jsnu.edu.cn, cxy@jsnu.edu.cn

Abstract

In the practice of software project development, the
developed project is a brand-new project. Defect prediction for
this type of software project requires the use of other similar
projects (i.e. source projects) to collect relevant data to build a
defect prediction model, and make defect prediction for the
project under development (i.e. target project). However, the
prediction model built with the relevant data of the source
project cannot achieve the ideal prediction performance when
predicting the target project. The main reason is that there is a
large data distribution difference between the source project
and the target project. The data distribution difference is
mainly in the distribution of features between projects and
differences between instances. In response to the above
problems, starting from both features and instances, a cross-
project defect prediction method is proposed. This method
first aligns the feature distribution based on the data of the
existing target project and the source project data. Then, it
selects the labeled instance that is similar to the unlabeled
instance in the target project, and finally builds a defect
prediction model based on the selected source project
instances. Cross-project defect prediction experiments were
carried out on the Relink datasets and the Promise datasets.
Compared with the classic instance-based cross-project defect
prediction method, significant improvements have been made
in F-measure and AUC; compared with the prediction of within
project defect prediction, it has achieved comparable performance.

Keywords: Cross-project defect prediction, Feature
distribution alignment, Instance selection

1 Introduction

The importance and dependence of software in many
application fields are increasing, so it is more and more
important to ensure the reliability of software [1-5]. Predicting
defects in a software project is very important to the software
development process because the later errors in the software
are discovered, the greater the cost of fixing the errors. The
purpose of software defect prediction [6-12] is to help
software developers find software defects in the early stages
of development to allocate software testing resources
reasonably to improve software reliability. The rapid
development of machine learning technology allows software

testers to build software defect prediction models based on
existing data to focus on testing those classes or files that may
have defects based on the prediction results [13]. Machine
learning technology has been successfully applied in Within
Project Defect Prediction (WPDP). Nevertheless, the actual
software project under development is often a brand-new
software project. In this case, WPDP may not be applicable
because we do not have enough historical data to construct a
defect prediction model.

In response to this situation, researchers have proposed the
Cross-project Defect Prediction method [14-21]. The Cross-
project Defect Prediction (CPDP) method is used to train the
model based on the labeled data of other similar software
projects (i.e. source projects) and to predict the defects of the
software projects currently under development (i.e. target
projects). However, due to the large distribution differences
between the source project and the target project in features
and instances, this leads to the failure of the defect prediction
model built by the source project to achieve a good prediction
performance on the target project. Therefore, how to reduce
the difference in data distribution between the source project
and the target project has become an urgent problem in the
field of software defect prediction.

In the field of computer vision, image recognition and
classification also have the problem of the difference in the
feature distribution between the source domain and the target
domain. There are already many methods to reduce the
difference in feature distribution between image domains and
improve the accuracy of image recognition [22-23], Sun et al.
[24] proposed a feature distribution alignment method, which
transformed and aligned the statistical features of image data,
and then used the aligned data to construct a traditional
machine learning classifier, which effectively improved the
accuracy of image classification. The method has also
achieved excellent results in the field of deep learning [25].

This paper proposes a cross-project defect prediction
method based on feature distribution alignment and
neighborhood instance selection (FDAIS). This method starts
from the perspective of feature distribution alignment and
neighborhood instance selection. On the one hand, it tries to
solve the problem of feature distribution differences between
projects. On the other hand, it tries to find the source project
instances similar to the target project instances. Specifically,
the existing methods on how to reduce the difference between
the source project and the target project basically select source
projects with similar feature distribution vectors from a large

762 Journal of Internet Technology Vol. 23 No. 4, July 2022

number of source project datasets, and then use the selected
source project data to build the model. Another solution is to
first select a similar source project dataset, then select similar
instances in the dataset, and finally build the model with the
selected instances. However, the existing methods to measure
the similarity between projects only rely on the statistical
characteristics of the value distribution of the metrics. The
similarity of the statistical characteristics does not accurately
indicate that the projects are similar, that is to say, there are
still differences in data distribution between the selected
source project and the target project.

Furthermore, our method can preserve all feature
information and data distribution and make full use of it. For
example, existing feature selection methods for data feature
processing may directly remove redundant features or
irrelevant features that may exist in the dataset, which may
lose important information. Because the feature selection
method is judged according to the source project, some
features are judged to be effective for classification according
to the source project, but the actual feature that is effective for
the classification of the target project of unknown label may
be the feature discarded by the feature selection method.

From the perspective of feature distribution alignment, we
perform second-order feature alignment on the source project
and the target project, and then select a subset of neighborhood
instances that are strongly related to the target project in the
source project after feature alignment. Finally, a defect
prediction model is constructed based on the subset of
neighborhood instances. Compared with the classic instance
selection method, our method achieved better and more stable
performance in experiments on Relink and Promise datasets.

The main contributions of this paper are as follows:
(1) We propose a cross-project defect prediction method

named FDAIS. This method can effectively reduce the
difference in data distribution between the source project and
the target project by second-order alignment of the features of
the source project and the target project;

(2) Based on the empirical research on the Relink and
Promise datasets, our method has better performance on a
variety of indicators and more stable performance than the
classic Burak filters; compared with WPDP, our method
achieved comparable performance in the prediction of defect
class.

The second section of the paper introduces the background
knowledge and related works. The third section introduces
specific implementation details of the cross-project defect
prediction method based on feature distribution alignment and
neighborhood instance selection. The fourth section
introduces the empirical research of the paper. The fifth
section analyzes the experimental results in detail, and finally
summarizes the full text and the next work in the sixth section.

2 Related Work

In recent years, CPDP has attracted extensive attention
from software testing researchers. There are many problems
worth studying in CPDP research. At present, researchers
mainly focus on three aspects: training data, data features and
training models.

For the training data problem in CPDP research, many
researchers have proposed methods of training data selection
to select training data [26-28]. These methods select
appropriate training data from the perspective of project,

instance, and simultaneous selection of both. For example, He
[26] et al. proposed a two-stage screening method. In the first
stage, starting from a coarse-grained perspective, first select
the source project with the most similar distribution to the
target project, and then select the most similar instance set
from the selected source projects in the second stage.

In view of the possible redundant features in the CPDP
dataset, researchers have proposed some feature selection
methods to process the data features before training the CPDP
model. For example, Yu et al. [29] analyzed the importance of
features and instances in cross-project defect prediction
methods, conducted a lot of empirical research on feature
selection methods [30], and proposed a feature matching and
transferring cross-project defect prediction method [31].

In view of the problem that the current CPDP training data
is large in quantity and belongs to different source projects,
the researchers studied the applicability of the ensemble
learning algorithm to CPDP from the perspective of training
models [32-35]. For example, Zhang et al. [35] evaluated
seven ensemble algorithms on the large-scale datasets. When
building a defect prediction model, the ensemble algorithm is
iteratively trained using a set of labeled instances from
multiple source projects. Experimental results show that using
bagging and boosting algorithms combined with appropriate
classification models can improve the performance of CPDP.

3 Proposed Method

Turhan [36] et.al. believe that the difference in data
distribution between the source project and the target project
is mainly caused by the drift of the covariate, and the drift of
the covariate causes the difference in the feature distribution
between the projects. Therefore, we introduced a method of
covariance alignment [24] by aligning the covariance matrix
of the source project and the target project. This was done to
align the feature distribution of the source project and the
target project. Then, select the neighborhood instance in the
source project dataset after the feature distribution is aligned.
Figure 1 shows the framework of the proposed method.
Initially, it receives an unlabeled target project and multiple
labeled source projects as input. The feature distribution
alignment module aligns multiple source projects with the
target project for covariance alignment, and then the
neighborhood instance selection module selects instances
similar to the target project in the aligned source projects sets.
Finally, the training model module receives the selected
source project instance as training data for model training and
returns the trained classifier.

Source
Project 1

Feature
Distribution
Alignment

Source
Project 2

Source
Project n

Target
Project

Neighborho
od Instance
Selection

Model
Training

Classifier

Figure 1. FDAIS method framework

Next, we introduce the definition of related symbols.

Cross-Project Defect Prediction Method based on Feature Distribution Alignment and Neighborhood Instance Selection 763

3.1 Related Definition

indicates the labeled source project data and
indicates the unlabeled target project data; and have
the same metric, represents the covariance matrix of the
source project, and represents the covariance matrix of
the target project. represents all instances in the source
project and represents all instances in the target project.
Every instance indicates that the i-th instance has
m attributes and defect indicators , represents the
j-th attribute of the i-th instance in a software project, defect
indicators , indicates that the i-th instance in the
project has no defects, and indicates that the i-th
instance in the project has defects.

3.2 Feature Distribution Alignment

As mentioned above, we introduced a covariance
alignment method, which aligns the feature distribution of the
source project and target project data by aligning the
covariance matrix of the source project and the target project.

Specifically, our goal is to minimize the distance of the
covariance matrix between the source project and the target
project. We apply linear transformation A to the source project
features, then use the Frobenius norm as the distance metric
between the matrices. The optimization goal can be written as
follows:

(1)

Where is the covariance of and represents
the Frobenius norm of the matrix. According to the solution
process in [14], we can get the optimal solution of A:

 (2)

We did not use the optimal solution for calculation directly.
In fact, the optimal solution is the product of two parts. The
first part is actually processing the features of the source
project, that is, eliminating the correlation between the
features of the source project, and the second part is to fill the
feature correlation of the target project into the source project.
We use Algorithm 1 to complete the above functions. The
input of Algorithm 1 is the source project data and the
target project data . The third and fourth steps are to
calculate the covariance matrix of the source project and the
target project respectively. The fifth step is to eliminate the
correlation between the features of the source project, and the
sixth step is to fill the feature correlation of the target project
into the source project. Finally, the adjusted source project
data is output.

Algorithm 1. Feature distribution processing algorithm
(1) Input: source project , target project
(2) Output: adjusted source project
(3)
(4)
(5)
(6)

3.3 Neighborhood Instance Selection

Neighborhood instance selection is to select the k instances
that are most similar to each instance in the target project from
the source project after the feature distribution is aligned,
similar to the knn algorithm. If there are N test instances in the
target project, for each instance, we add the k closest source
project instances in the neighborhood of the instance to the
training instance set, similar to the idea of Burak filters, so that
we finally get N*k training instances. We selected 5 source
project instances with the highest similarity for each instance
in the target project, and calculate the degree of similarity
between instances using the following formula:

 (3)

4 Experimental Design

This section conducts an empirical study on the
effectiveness of the FDAIS method. We first introduce the
datasets, performance evaluation indicators, classification
models, and experimental settings used in the empirical
research.

4.1 Datasets

This paper uses the defect data of some software projects
in the Relink [37-38] datasets and the Promise datasets [39]
for experiments. These datasets were widely used by
researchers in this field. The basic information of the datasets
is shown in Table 1. The first three projects belong to the
Relink datasets, and the last ten projects belong to the Promise
datasets.

Table 1. Datasets
Projects Modules Features Defects%
Apache 194 26 51%

Safe 56 26 39%
Zxing 399 26 30%
berek 30 21 43%
ckjm 7 21 43%

pdftranslator 25 21 32%
skarbonka 30 21 50%

szybkafucha 18 21 39%
workflow 29 21 34%

ivy-1.1 111 21 57%
jedit-3.2 272 21 33%
log4j-1.1 109 21 34%

velocity-1.6 229 21 34%

SD TD

SD TD

SC

TC

SI

TI

i 1 2={ , ... , }i i i
m iI f f f y

i
jf iy i

jf

 ,iy Y N =iy N

=iy Y

22
ˆ

T
T S TS F FA A

MIN C C MIN A C A C− = −

Ŝ
C

SD A
2.
F

[

*

1 1
2 2

1]: 1: [1] :][()()

S

T T
S S S T r T r T r

A U E

U U U U+

=

=

SD

TD

*
SD

SD TD

*
SD

()S SC COV D=

()T TC COV D=
1/2*S S SD D C−=

* 1/2*S S TD D C=

2
1

(,) ()
m jS T i

i j k k
k

similarity I I f f

=
= −

764 Journal of Internet Technology Vol. 23 No. 4, July 2022

4.2 Evaluation Indicator

Cross-project defect prediction is essentially a
classification problem, so we use commonly used
classification evaluation indicators to evaluate the
performance of the method.

There are four types in the classification task: TP (True
Positive) means that a defective software module is predicted
to be defective; FP (False Positive) means that a non-defective
software module is predicted to be defective; TN (True
Negative) means that a non-defective software module is
predicted to be non-defective; FN (False Negative) means that
a defective software module is predicted to be non-defective.
Combining these results yields some commonly used
performance metrics. Precision is the ratio of true defects in
all predicted defective test data, and recall is the ratio of true
defects in all actual defective test data. The calculation method
is shown in Equations 4 and 5.

TP
precision

TP FP
=

+
(4)

TP
recall

TP FN
=

+
(5)

The F-measure comprehensively considers Recall and
Precision, which can fully reflect the actual performance of the
method. Therefore, we mainly use the F-measure to evaluate
the performance of each method, but we will also refer to other
indicators in the specific analysis.

(6)

Since the experiment is carried out on the Weka platform,
the indicator value can be obtained directly from the
experimental results of the Weka platform.

4.3 Classification Models and Experimental
Settings

This paper chooses the logistic regression model as the
training model. The model has been automatically integrated
on the Weka platform, and the relevant parameters are set as
the default parameters of the Weka platform when the model
is used. When performing feature distribution alignment and
neighborhood instance selection, we use python language and
related data processing packages.

5 Experimental Results and Analysis

We explore the experimental performance of the FDAIS
method and the main factors affecting the performance of the
FDAIS method from the following three questions.

RQ1: Can the FDAIS method effectively reduce the
difference in data distribution between projects and achieve
good performance? How does the performance compare with
the classic instance selection method Burak filters?

RQ2: Compared with WPDP, what can be improved in the
FDAIS method?

RQ3: How do different classification models and datasets
with different defect rates affect the experimental performance
of the FDAIS method?

Figure 2. Overall F-measure Figure 3. Overall AUC Figure 4. Overall Precision Figure 5. Overall Recall

Figure 6. Class-Y F-measure Figure 7. Class-Y AUC Figure 8. Class-Y Precision Figure 9. Class-Y Recall

Figure 10. Overall F-measure Figure 11. Class-Y F-measure Figure 12. Impact on FDAIS using different basic classifier

2* *- precision recall
F measure

precision recall
=

+

Cross-Project Defect Prediction Method based on Feature Distribution Alignment and Neighborhood Instance Selection 765

Figure 13. Overall performance on different defect rate datasets Figure 14. Performance of class-Y on different defect rate
datasets

5.1 Answer to RQ1

For RQ1, we made the experimental results into the line
graphs shown in Figure 2 to Figure 9. The line chart not only
shows the indicator F-measure, but we also show the indicator
values of Precision and Recall. In addition, because the AUC
takes into account the change of the threshold, it is more
comprehensive to use AUC value to evaluate the performance
of the model, so we also plot the value of the AUC indicator.
As shown in Figure 2 to Figure 9, the red solid line and red
circle indicate the performance of FDAIS on each project, and
the blue solid line and blue square indicate the performance of
the Burak filters on each project. The red dotted line represents
the average performance of FDAIS on all projects, and the
blue dotted line represents the average performance of Burak
filters on all projects.

From the performance on the Relink datasets and Promise
datasets in Figure 2 to Figure 5, we can see that the overall
performance of FDAIS is good. The F-measure, Precision,
Recall, and AUC are between 0.5 and 0.8, especially the
Relink datasets which only have three projects. FDAIS has
shown excellent results with F-measure, Precision, Recall, and
AUC between 0.6 and 0.8. The performance on the Promise
datasets is also very good, so FDAIS can effectively reduce
the difference between projects and achieve good performance.

Herbold [40] et al. conducted large-scale experimental
investigations on all reproducible CPDP methods and found
that the performance of the classic Burak filters method
surpassed most of the current more advanced methods.
Therefore, we compared the performance of the FDAIS with
the Burak filters in an all-round way. We compare from two
aspects. On the one hand, we choose the overall classification
performance (i.e. Weka's weighted result). The overall
classification performance is to measure the total
classification ability of the method for defective and non-
defective instances, including predicting defective instances
as non-defective classes and predicting non-defective
instances as defective classes. The specific indicators values
are shown in Figure 2 to Figure 5. On the other hand, we only
compare the performance of the two methods on the positive
class (i.e. Weka's Y class), because the defect of a software
project is more important in practical application. If a non-
defective instance is predicted to be defective, the impact may
not be significant, and it will only cause a waste of part of the
test resources. If the defective instance is predicted to be non-
defective, the defective instance will always be hidden in the
software project in this case, and it will eventually lead to
serious problems. Therefore, we also made a comparison in
the defective class, and the specific indicators values are
shown in Figure 6 to Figure 9.

In terms of overall classification, Figure 2 to Figure 5 show
that FDAIS is generally better than Burak filters in various
indicators. From the F-measure and AUC in Figure 2 to Figure
3, 9 groups are significantly better than Burak filters, and 3
groups are significantly inferior to Burak filters. The average
value of FDAIS is about 0.1 higher than that of traditional
methods. We analyze the three projects of log4j-1.1, berek,
and skarbonka with low F-measure. We found that log4j-1.1
and berek whose Precision and Recall were lower than Burak
filters, while skarbonka is higher than Burak filters in
Precision and lower than Burak filters in Recall. This shows
that the performance of FDAIS on log4j-1.1 and berek is
indeed worse than Burak filters. On skarbonka, since the F-
measure is the harmonic mean of precision and recall, it is
affected by the lower Recall, which leads to the decrease of F-
measure. In general, FDAIS is much more stable than Burak
filters. The broken line statistical chart from Figure 2 to Figure
5 shows that the performance of Burak filters fluctuates
greatly, ranging from 0.2 to 0.8, while FDAIS is basically
between 0.5 and 0.8. This is another advantage compared to
Burak filters.

When only comparing the positive class, Figure 6 to
Figure 7 show the F-measure and AUC values of the FDAIS
and Burak filters on the defective class. It can be seen that
FDAIS is better than the Burak filters as a whole. Similarly,
there are 9 groups of indicator values that are significantly
better than the Burak filters, and 3 groups are significantly
worse than the Burak filters; on average, FDAIS is about 0.2
higher than the Burak filters. We analyze the three projects of
log4j-1.1, berek, and velocity-1.6 with low F-measure. We
found that log4j-1.1 and berek whose Precision and Recall
were lower than Burak filters, while velocity-1.6 is higher than
Burak filters in Precision and lower than Burak filters in
Recall. This also shows that the performance of FDAIS in
judging defective classes on log4j-1.1 and berek is indeed
worse than the Burak filters and the F-measure is reduced by
the lower Recall on the velocity-1.6. Therefore, on the whole,
FDAIS has better performance on defective classes, that is, the
ability to identify defective instances is stronger and the
method is more reliable.

Therefore, we give a brief answer to RQ1, FDAIS method
can effectively reduce the difference of data distribution
between projects and achieve good performance. Compared
with the classical instance selection method Burak filter, our
method has advantages in multiple metrics in terms of
comprehensive performance and performance on defect
classes.

766 Journal of Internet Technology Vol. 23 No. 4, July 2022

5.2 Answer to RQ2

For RQ2, in order to explore the performance comparison
between FDAIS and WPDP, we use the Weka software
platform, select the logistic regression model, and use the
default parameters of Weka to carry out WPDP experiments
on all software projects.

Figure 10 and Figure 11 are the comparison of FDAIS and
WPDP on F-measure. Figure 10 is the overall classification
performance, and Figure 11 is the prediction performance on
the defect class. The red solid line and red circle represent the
F-measure of FDAIS on each dataset, and the green solid line
and green square represent the F-measure of WPDP. The red
dotted line represents the average F-measure of FDAIS on all
projects, and the green dotted line represents the average F-
measure of WPDP on all projects.

According to Figure 11, it can be found that the prediction
performance of FDAIS on defect instances is very close to that
of WPDP. The average difference of F-measure between them
is no more than 0.02, The performance of each project is also
very close. However, in Figure 10, the average of F-Measure
on the whole is about 0.08 different, and the F-Measure of
WPDP is also high in each project. This shows that the WPDP
can not only correctly identify the defect instances, but also
has a better prediction effect on the non-defect instances.

Therefore, compared with WPDP, although the
performance of FDAIS on defect instances can be compared
with that of WPDP, there is still some misjudgment on non-
defect instances, which is worth improving.

5.3 Answer to RQ3

RQ3 is to explore the factors that affect the experimental
performance of the FDAIS method. In general, different
classification models tend to have an impact on the
experimental performance, so we use different models for the
experiment. In addition to the classification model we used at
the beginning, we also used the probability-based
classification model NB (Naive Bayes), the rule-based
classifier DT (Decision Tree), and the ensemble learning
classifier RF (Random Forest). Figure 12 shows the
experimental results.

Here we use two common indicators to evaluate different
classifiers, one is Recall, the other is AUC. In Figure 12, the
four red box graphs on the left represent the Recall values
predicted by the four classifiers on the datasets in Table 1, and
the four on the right represent the AUC values. The horizontal
line in each box graph represents the median of experimental
results obtained using the classifier, the triangle represents the
average of experimental results, and the box represents the
data distribution of experimental results. As can be seen from
Figure 12, the Recall obtained by using NB is relatively low,
while the Recall obtained by using LR and DT is similar, and
the Recall obtained by using RF is generally better. In terms
of AUC, the median AUC obtained by using LR, NB, and DT
is the same. The average value and overall distribution of AUC
obtained by using LR are slightly better, but the overall
distribution of AUC obtained by using RF is much better than
the other three models, with the highest mean value and
median value.

Based on the above analysis, different types of classifiers
will have a certain impact on the performance of FDAIS

method, and ensemble learning classifier can significantly
improve the performance of the method.

In general, the performance of CPDP is also affected by
imbalanced datasets. At the beginning of the experiment, we
chose some projects with balanced defect rate in Promise
datasets, but there may be class imbalance in practice. To
further determine the scope of our method, we performed an
experimental comparison on two other projects with extreme
defect rates in the Promise datasets. The first set of low defect
rates datasets is shown in Table 2. The defect rate of each
project is between 0% and 30%. The second set of high defect
rate datasets is shown in Table 3. The defect rate of each
project is between 60% and 100%. We performed experiments
on low defect rate datasets and high defect rate datasets using
the FDAIS method. The box plots in Figure 13 and Figure 14
show the experimental results of FDAIS on different defect
rate datasets. Figure 13 shows the overall classification
performance, while Figure 14 shows the classification
performance only on the defect class.

F1_lowR and AUC_lowR represent the F-measure and
AUC values on the datasets shown in Table 2. F1 and AUC
represent the performance of the FDAIS method on the
datasets shown in Table 1, which are obtained under the
condition of a balanced defect ratio. F1_highR and
AUC_highR represent the F-measure and AUC values on the
datasets shown in Table 3. The green horizontal lines in the
box plot represent the median of the group's experimental
results, and the green triangles represent the average of the
group’s experimental results.

From the overall classification results shown in Figure 13,
the F-measure of the FDAIS method is the highest on datasets
with low defect rates, and it is better than the other two
conditions whether it is the distribution of F-measure, the
mean value of F-measure, or the median value of F-measure.
However, the AUC is very low. The reason for our analysis is
that the defect rate of the datasets is very low which causes the
model to classify most of the non-defect instances correctly,
while a small number of defect instances are not correctly
classified, resulting in the situation of high F-measure and low
AUC. The mean value, median value, and distribution range
of F-measure in high defect rate datasets are similar to those
in defect rate balanced datasets, but the AUC on high defect
rate datasets is poor. We analyze that at this time, most of the
defective instances are successfully classified, while only a
small part of the non-defect instances in the datasets are
successfully classified. However, it is slightly better than the
performance of the low defect rate datasets. This shows that
the FDAIS method is more suitable for a balanced defect ratio
of the datasets. Our method may not be suitable for low defect
rate datasets. For high defect rate datasets, FDAIS also cannot
achieve satisfactory results.

This conclusion can also be proved in the performance of
the defect class in Figure 14. The value of F1_lowR is
basically lower than 0.5, indicating that the model's Precision
and Recall on the defect class are very low. Moreover, the F-
measure and AUC on the high defect rate datasets are not
commensurate, indicating that the model also has a large
degree of misjudgment. Therefore, we suggest that FDAIS
should be used when the defect rate is relatively balanced, that
is, a dataset with a defect rate of 30%-60% can get better
results.

As a result, we make a summary answer to RQ3. Different
types of classifiers will have a certain impact on the

Cross-Project Defect Prediction Method based on Feature Distribution Alignment and Neighborhood Instance Selection 767

performance of FDAIS method, and ensemble learning
classifier can significantly improve the performance of the
method. Datasets with different defect rates will affect the
experimental performance of the FDAIS method, and the
FDAIS method is more suitable for datasets with balanced
defect rates.

Table 2. Low ratio promise datasets
Projects Modules Features Defects%

arc 234 21 12%
camel-1.4 872 21 17%

ivy-2.0 352 21 11%
jedit-4.2 367 21 13%
poi-2.0 314 21 12%
prop-6 660 21 10%

redaktor 176 21 15%
tomcat 858 21 9%

xalan-2.4 723 21 15%
xerces-1.2 440 21 16%

Table 3. High ratio promise datasets
Projects Modules Features Defects%
log4j-1.2 205 21 92%

lucene-2.4 340 21 60%
pbeans1 26 21 77%
poi-2.5 385 21 64%

sklebagd 20 21 60%
szybkafucha 25 21 56%
velocity-1.4 196 21 75%

wspomaganiepi 18 21 67%
xalan-2.7 909 21 99%
xerces-1.4 588 21 74%

6 Conclusion

This paper proposes a cross-project defect prediction
method based on feature distribution alignment and
neighborhood instance selection. This method combines
feature distribution alignment and neighborhood instance
selection. From the perspective of project covariate drift, first
align the second-order statistics between the source project
and the target project, then select a subset of neighborhood
instances that are strongly related to the target project in the
aligned source project. Finally, build a defect prediction model
based on the neighborhood instance subset. Empirical research
shows that our method can effectively reduce the difference in
data distribution between the source project and the target
project. Compared with the classic Burak filters, our method
has achieved better and more stable performance on the Relink
and Promise datasets. Compared with the WPDP method, our
method has achieved considerable performance on the defect
classes of the Relink and Promise datasets.

There are still many next steps worth discussing in this
article. First of all, the method uses the traditional Euclidean
distance to measure the similarity between instances when
selecting instances after feature alignment. In fact, Euclidean
distance may not necessarily get similar instances in this case,
we can try other distance measures later. Secondly, in the
experiment, we selected software projects with two datasets,
and our method can be further extended to other suitable
datasets in the later period; at the same time, it can be seen
from the experimental results that not all methods can achieve

excellent results on all datasets. Our method can achieve better
results on the class-balanced datasets, and it can also predict
the defect class very well. But in fact, unbalanced datasets are
more common, so designing appropriate methods for different
datasets is also a problem worthy of research, and we will
continue to design new methods for exploration in the later
period. Finally, different classifiers have a certain impact on
the method. Ensemble learning can improve the performance
of the method a lot. In the later stage, the effect of ensemble
learning on the performance of cross-project defect prediction
methods can be studied.

Acknowledgment

This work is supported by the National Natural Science
Foundation of China (Grant No. 62077029); the National
Natural Science Foundation of China Youth Project (Grant No.
61902161); the Open Project Fund of Key Laboratory of
Safety-Critical Software Ministry of Industry and Information
Technology (Grant No. NJ2020022); the Future Network
Scientific Research Fund Project (Grant No. FNSRFP-2021-
YB-32); the Applied Basic Research Program of Xuzhou
(Grant No. KC19004); the Graduate Science Research
Innovation Program of Jiangsu Province (Grant No.
KYCX20_2384 and KYCX20_2380).

References

[1] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, M. F.
Siok, Recent Catastrophic Accidents: Investigating how
Software was Responsible, Proceedings of the Fourth

IEEE International Conference on Secure Software

Integration and Reliability Improvement, Singapore,
2010, pp. 14-22.

[2] W. E. Wong, X. Li, P. A. Laplante, Be more Familiar
with our Enemies and Pave the Way Forward: A Review
of the Roles Bugs Played in Software Failures, Journal

of Systems and Software, Vol. 133, pp. 68-94,
November, 2017.

[3] Y. Zhu, Z. Q. Huang, H. Zhou. Modeling and
Verification of Web Services Composition based on
Model Transformation, Software: Practice and

Experience, Vol. 47, No. 5, pp. 709-730, May, 2017.
[4] Y. T. Chang, W Gunarathne, T. K. Shih, Deep Learning

Approaches for Dynamic Object Understanding and
Defect Detection, Journal of Internet Technology, Vol.
21, No. 3, pp. 783-790, May, 2020.

[5] B. Khan, R. Naseem, M. Binsawad, M. Khan, A.
Ahmad, Software Cost Estimation Using Flower
Pollination Algorithm, Journal of Internet Technology,
Vol. 21, No. 5, pp. 1243-1251, September, 2020.

[6] P. Mahesha, D. Gupta, Performance of Genetic
Programming-based Software Defect Prediction Models,
International Journal of Performability Engineering, Vol.
17, No. 9, pp. 787-795, September, 2021.

[7] X. Chen, Q. Gu, W. S. Liu, S. L. Liu, C. Ni, Survey of
Static Software Defect Prediction, Journal of Software,

Vol. 27, No. 1, pp. 1-25, January, 2016.
[8] Q. Wang, S. J. Wu, M. S. Li, Software Defect Prediction,

Journal of Software, Vol. 19, No. 7, pp. 1565-1580, July,
2008.

768 Journal of Internet Technology Vol. 23 No. 4, July 2022

[9] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A
Systematic Literature Review on Fault Prediction
Performance in Software Engineering, IEEE

Transactions on Software Engineering, Vol. 38, No. 6,
pp. 1276-1304, November-December, 2012.

[10] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato, N.
Ziviani, Understanding Machine Learning Software
Defect Predictions, Automated Software Engineering,
Vol. 27, No. 3-4, pp. 369-392, December, 2020.

[11] S. K. Pandey, D. Rathee, A. K. Tripathi, Software
Defect Prediction Using K-PCA and Various Kernel-
Based Extreme Learning Machine: An Empirical Study,
IET Software, Vol. 14, No. 7, pp. 768-782, December,
2020.

[12] D. Li, W. E. Wong, W. Wang, Y. Yao, M. Chau,
Detection and Mitigation of Label-Flipping Attacks in
Federated Learning Systems with KPCA and K-Means,
2021 8th International Conference on Dependable

Systems and Their Applications (DSA), Yinchuan,
China, 2021, pp. 551-559.

[13] G. Xie, S. Xie, X. Peng, Z. Li, Prediction of Number of
Software Defects based on SMOTE, International

Journal of Performability Engineering, Vol. 17, No. 1,
pp. 123-134, January, 2021.

[14] Y. Li, W. E. Wong, S. Y. Lee, F. Wotawa, Using Tri-
relation Networks for Effective Software Fault-
proneness Prediction, IEEE Access, Vol. 7, pp. 63066-
63080, May, 2019.

[15] X. Chen, L. P. Wang, Q. Gu, Z. Wang, C. Ni, W. S. Liu,
Q. P. Wang, A Survey on Cross-project Software Defect
Prediction Methods, Chinese Journal of Computers, Vol.
41, No. 1, pp. 254-274, January, 2018.

[16] L. N. Gong, S. L. Jiang, L. Jiang, Research Progress of
Software Defect Prediction, Journal of Software, Vol.
30, No. 10, pp. 3090-3114, October, 2019.

[17] S. Hosseini, B. Turhan, D. Gunarathna, A Systematic
Literature Review and Meta-Analysis on Cross Project
Defect Prediction, IEEE Transactions on Software

Engineering, Vol. 45, No. 2, pp. 111-147, February,
2019.

[18] X. Xia, D. Lo, S. J. Pan, N. Nagappan, X. Wang,
HYDRA: Massively Compositional Model for Cross-
Project Defect Prediction, IEEE Transactions on

Software Engineering, Vol. 42, No. 10, pp. 977-998,
October, 2016.

[19] Y. Li, Z. D. Liu, H. J. Zhang, Review on Cross-project
Software Defects Prediction Methods, Computer

Technology and Development, Vol. 30, No. 3, pp. 98-
103, March, 2020.

[20] Y. Zhao, Y. Zhu, Q. Yu, X. Y. Chen, Cross-Project
Defect Prediction Method Based on Manifold Feature
Transformation, Future Internet, Vol. 13, No. 8, 216, pp.
1-17, August, 2021.

[21] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J.
Qian, B. Xu, How Far We Have Progressed in the
Journey? An Examination of Cross-Project Defect
Prediction, ACM Transactions on Software Engineering

and Methodology, Vol. 27, No. 1, pp. 1-51, January,
2018.

[22] B. Fernando, A. Habrard, M. Sebban, T. Tuytelaars,
Unsupervised Visual Domain Adaptation Using
Subspace Alignment, 2013 IEEE International

Conference on Computer Vision, Sydney, Australia,
2013, pp. 2960-2967.

[23] B. Sun, K. Saenko, Subspace Distribution Alignment for
Unsupervised Domain Adaptation, British Machine

Vision Conference, Swansea, UK, 2015, pp. 1-10.
[24] B. Sun, J. Feng, K. Saenko, Return of Frustratingly Easy

Domain Adaptation, 2016 AAAI Conference on

Artificial Intelligence, Phoenix, AZ, US, 2016, pp.
2058-2065.

[25] B. Sun, K. Saenko, Deep Coral: Correlation Alignment
for Deep Domain Adaptation, European Conference on

Computer Vision, Amsterdam, The Netherlands, 2016,
pp. 443-450.

[26] Z. He, F. Peters, T. Menzies, Y. Yang, Learning From
Open-source Projects: An Empirical Study on Defect
Prediction, Proceedings of the 7th International

Symposium on Empirical Software Engineering and

Measurement, Baltimore, MD, USA, 2013, pp. 45-54.
[27] F. Peters, T. Menzies, A. Marcus, Better Cross

Company Defect Prediction, 2013 10th Working

Conference on Mining Software Repositories, San
Francisco, CA, USA, 2013, pp. 409-418.

[28] P. He, B. Li, X. Liu, J. Chen, Y. T. Ma, An Empirical
Study on Software Defect Prediction with a Simplified
Metric Set, Information and Software Technology, Vol.
59, pp. 170-190, March, 2015.

[29] Q. Yu, S. Jiang, Y. Zhang, A Feature Matching and
Transfer Approach for Cross-company Defect
Prediction, Journal of Systems and Software, Vol. 132,
pp. 366-378, October, 2017.

[30] Q. Yu, S. Jiang, J. Qian, L. Bo, L. Jiang, G. Zhang,
Process Metrics for Software Defect Prediction in
Object-oriented Programs, IET Software, Vol. 14, No. 3,
pp. 283-292, June, 2020.

[31] Q. Yu, J. Qian, S. Jiang, Z. Wu, G. Zhang, An Empirical
Study on the Effectiveness of Feature Selection for
Cross-project Defect Prediction, IEEE Access, Vol. 7,
pp. 35710-35718, January, 2019.

[32] G. Adomavicius, A. Tuzhilin, Toward the Next
Generation of Recommender Systems: A Survey of the
State-of-the-art and Possible Extensions, IEEE

Transactions on Knowledge and Data Engineering, Vol.
17, No. 6, pp. 734-749, June, 2005.

[33] Z. Sun, J. Li, H. Sun, L. He, CFPS: Collaborative
Filtering Based Source Projects Selection for Cross-
project Defect Prediction, Applied Soft Computing, Vol.
99, Article No. 106940, February, 2021.

[34] J. Chen, K. Hu, Y. Yang, Y. Liu, Q. Xuan, Collective
Transfer Learning for Defect Prediction,
Neurocomputing, Vol. 416, pp. 103-116, November,
2020.

[35] Y. Zhang, D. Lo, X. Xia, J. Sun, An Empirical Study of
Classifier Combination for Cross-project Defect
Prediction, IEEE Computer Software & Applications

Conference, Taichung, Taiwan, 2015, pp. 264-269.
[36] B. Turhan, On the Dataset Shift Problem in Software

Engineering Prediction Models, Empirical Software

Engineering, Vol. 17, No. 1-2, pp. 62-74, February,
2012.

[37] R. Wu, H. Zhang, S. Kim, S. C. Cheung, ReLink:
Recovering Links Between Bugs and Changes, 19th

ACM SIGSOFT Symposium and the 13th European

Cross-Project Defect Prediction Method based on Feature Distribution Alignment and Neighborhood Instance Selection 769

Conference on Foundations of Software Engineering,
Szeged, Hungary, 2011, pp. 15-25.

[38] M. D'Ambros, M. Lanza R. Robbes, Evaluating Defect
Prediction Approaches: A Benchmark and an Extensive
Comparison, Empirical Software Engineering, Vol. 17,
No. 4-5, pp. 531-577, August, 2012.

[39] M. Jureczko, L. Madeyski, Towards Identifying
Software Project Clusters with regard to Defect
Prediction, 2010 International Conference on

Predictive Models in Software Engineering, Timisoara,
Romania, 2010, pp. 1-10.

[40] S. Herbold, A. Trautsch J. Grabowski, A Comparative
Study to Benchmark Cross-Project Defect Prediction
Approaches, IEEE Transactions on Software

Engineering, Vol. 44, No. 9, pp. 811-833, September,
2018.

Biographies

Yi Zhu received his Ph.D. degree in
computer science and technology from
Nanjing University of Aeronautics and
Astronautics. He is currently the Professor
in the School of Computer Science and
Technology, Jiangsu Normal University.
His current research interests include
software engineering, software defect

prediction, and formal methods and applications.

Yu Zhao received the B.S. degree in
software engineering from Jiangsu Normal
University. He is currently pursuing the
M.S. degree in software engineering at
Jiangsu Normal University. His current
research interests include software testing
and software defect prediction.

Qiao Yu received her Ph.D. degree in
computer science and technology from
China University of Mining and
Technology. She is currently the Associate
Professor in the School of Computer
Science and Technology, Jiangsu Normal
University. Her current research interests
include software testing and software defect
prediction.

Xiaoying Chen received the B.S. degree in
software engineering from Jiangsu Normal
University. She is currently pursuing the
M.S. degree in software engineering at
Jiangsu Normal University, China. Her
current research interests include software
engineering, formal methods and
applications.

	組合 01-05
	01
	02
	03
	04
	05
	空白頁面
	空白頁面

	組合 06-10
	06
	07
	08
	09
	10
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 11-15
	11
	12
	13
	14
	15
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 16-21
	16
	17
	18.0 Guest Ediorial
	18.1
	19
	20
	21
	空白頁面
	空白頁面
	空白頁面

	組合 22-26
	22.0 Guest Ediorial
	22.1
	23
	24
	25
	26
	空白頁面

