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Abstract 

In the practice of software project development, the 
developed project is a brand-new project. Defect prediction for 
this type of software project requires the use of other similar 
projects (i.e. source projects) to collect relevant data to build a 
defect prediction model, and make defect prediction for the 
project under development (i.e. target project). However, the 
prediction model built with the relevant data of the source 
project cannot achieve the ideal prediction performance when 
predicting the target project. The main reason is that there is a 
large data distribution difference between the source project 
and the target project. The data distribution difference is 
mainly in the distribution of features between projects and 
differences between instances. In response to the above 
problems, starting from both features and instances, a cross-
project defect prediction method is proposed. This method 
first aligns the feature distribution based on the data of the 
existing target project and the source project data. Then, it 
selects the labeled instance that is similar to the unlabeled 
instance in the target project, and finally builds a defect 
prediction model based on the selected source project 
instances. Cross-project defect prediction experiments were 
carried out on the Relink datasets and the Promise datasets. 
Compared with the classic instance-based cross-project defect 
prediction method, significant improvements have been made 
in F-measure and AUC; compared with the prediction of within 
project defect prediction, it has achieved comparable performance. 

Keywords: Cross-project defect prediction, Feature 
distribution alignment, Instance selection 

1  Introduction 

The importance and dependence of software in many 
application fields are increasing, so it is more and more 
important to ensure the reliability of software [1-5]. Predicting 
defects in a software project is very important to the software 
development process because the later errors in the software 
are discovered, the greater the cost of fixing the errors. The 
purpose of software defect prediction [6-12] is to help 
software developers find software defects in the early stages 
of development to allocate software testing resources 
reasonably to improve software reliability. The rapid 
development of machine learning technology allows software 

testers to build software defect prediction models based on 
existing data to focus on testing those classes or files that may 
have defects based on the prediction results [13]. Machine 
learning technology has been successfully applied in Within 
Project Defect Prediction (WPDP). Nevertheless, the actual 
software project under development is often a brand-new 
software project. In this case, WPDP may not be applicable 
because we do not have enough historical data to construct a 
defect prediction model. 

In response to this situation, researchers have proposed the 
Cross-project Defect Prediction method [14-21]. The Cross-
project Defect Prediction (CPDP) method is used to train the 
model based on the labeled data of other similar software 
projects (i.e. source projects) and to predict the defects of the 
software projects currently under development (i.e. target 
projects). However, due to the large distribution differences 
between the source project and the target project in features 
and instances, this leads to the failure of the defect prediction 
model built by the source project to achieve a good prediction 
performance on the target project. Therefore, how to reduce 
the difference in data distribution between the source project 
and the target project has become an urgent problem in the 
field of software defect prediction. 

In the field of computer vision, image recognition and 
classification also have the problem of the difference in the 
feature distribution between the source domain and the target 
domain. There are already many methods to reduce the 
difference in feature distribution between image domains and 
improve the accuracy of image recognition [22-23], Sun et al. 
[24] proposed a feature distribution alignment method, which
transformed and aligned the statistical features of image data,
and then used the aligned data to construct a traditional
machine learning classifier, which effectively improved the
accuracy of image classification. The method has also
achieved excellent results in the field of deep learning [25].

This paper proposes a cross-project defect prediction 
method based on feature distribution alignment and 
neighborhood instance selection (FDAIS). This method starts 
from the perspective of feature distribution alignment and 
neighborhood instance selection. On the one hand, it tries to 
solve the problem of feature distribution differences between 
projects. On the other hand, it tries to find the source project 
instances similar to the target project instances. Specifically, 
the existing methods on how to reduce the difference between 
the source project and the target project basically select source 
projects with similar feature distribution vectors from a large 
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number of source project datasets, and then use the selected 
source project data to build the model. Another solution is to 
first select a similar source project dataset, then select similar 
instances in the dataset, and finally build the model with the 
selected instances. However, the existing methods to measure 
the similarity between projects only rely on the statistical 
characteristics of the value distribution of the metrics. The 
similarity of the statistical characteristics does not accurately 
indicate that the projects are similar, that is to say, there are 
still differences in data distribution between the selected 
source project and the target project.  

Furthermore, our method can preserve all feature 
information and data distribution and make full use of it. For 
example, existing feature selection methods for data feature 
processing may directly remove redundant features or 
irrelevant features that may exist in the dataset, which may 
lose important information. Because the feature selection 
method is judged according to the source project, some 
features are judged to be effective for classification according 
to the source project, but the actual feature that is effective for 
the classification of the target project of unknown label may 
be the feature discarded by the feature selection method. 

From the perspective of feature distribution alignment, we 
perform second-order feature alignment on the source project 
and the target project, and then select a subset of neighborhood 
instances that are strongly related to the target project in the 
source project after feature alignment. Finally, a defect 
prediction model is constructed based on the subset of 
neighborhood instances. Compared with the classic instance 
selection method, our method achieved better and more stable 
performance in experiments on Relink and Promise datasets. 

The main contributions of this paper are as follows: 
(1) We propose a cross-project defect prediction method

named FDAIS. This method can effectively reduce the 
difference in data distribution between the source project and 
the target project by second-order alignment of the features of 
the source project and the target project; 

(2) Based on the empirical research on the Relink and
Promise datasets, our method has better performance on a 
variety of indicators and more stable performance than the 
classic Burak filters; compared with WPDP, our method 
achieved comparable performance in the prediction of defect 
class. 

The second section of the paper introduces the background 
knowledge and related works. The third section introduces 
specific implementation details of the cross-project defect 
prediction method based on feature distribution alignment and 
neighborhood instance selection. The fourth section 
introduces the empirical research of the paper. The fifth 
section analyzes the experimental results in detail, and finally 
summarizes the full text and the next work in the sixth section. 

2  Related Work 

In recent years, CPDP has attracted extensive attention 
from software testing researchers. There are many problems 
worth studying in CPDP research. At present, researchers 
mainly focus on three aspects: training data, data features and 
training models. 

For the training data problem in CPDP research, many 
researchers have proposed methods of training data selection 
to select training data [26-28]. These methods select 
appropriate training data from the perspective of project, 

instance, and simultaneous selection of both. For example, He 
[26] et al. proposed a two-stage screening method. In the first
stage, starting from a coarse-grained perspective, first select
the source project with the most similar distribution to the
target project, and then select the most similar instance set
from the selected source projects in the second stage.

In view of the possible redundant features in the CPDP 
dataset, researchers have proposed some feature selection 
methods to process the data features before training the CPDP 
model. For example, Yu et al. [29] analyzed the importance of 
features and instances in cross-project defect prediction 
methods, conducted a lot of empirical research on feature 
selection methods [30], and proposed a feature matching and 
transferring cross-project defect prediction method [31]. 

In view of the problem that the current CPDP training data 
is large in quantity and belongs to different source projects, 
the researchers studied the applicability of the ensemble 
learning algorithm to CPDP from the perspective of training 
models [32-35]. For example, Zhang et al. [35] evaluated 
seven ensemble algorithms on the large-scale datasets. When 
building a defect prediction model, the ensemble algorithm is 
iteratively trained using a set of labeled instances from 
multiple source projects. Experimental results show that using 
bagging and boosting algorithms combined with appropriate 
classification models can improve the performance of CPDP. 

3  Proposed Method 

Turhan [36] et.al. believe that the difference in data 
distribution between the source project and the target project 
is mainly caused by the drift of the covariate, and the drift of 
the covariate causes the difference in the feature distribution 
between the projects. Therefore, we introduced a method of 
covariance alignment [24] by aligning the covariance matrix 
of the source project and the target project. This was done to 
align the feature distribution of the source project and the 
target project. Then, select the neighborhood instance in the 
source project dataset after the feature distribution is aligned. 
Figure 1 shows the framework of the proposed method. 
Initially, it receives an unlabeled target project and multiple 
labeled source projects as input. The feature distribution 
alignment module aligns multiple source projects with the 
target project for covariance alignment, and then the 
neighborhood instance selection module selects instances 
similar to the target project in the aligned source projects sets. 
Finally, the training model module receives the selected 
source project instance as training data for model training and 
returns the trained classifier. 

Source 
Project 1

Feature 
Distribution 
Alignment

Source 
Project 2

Source 
Project n

Target 
Project

Neighborho
od Instance 
Selection

Model 
Training 

Classifier

Figure 1. FDAIS method framework 

Next, we introduce the definition of related symbols. 
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3.1 Related Definition 

indicates the labeled source project data and 
indicates the unlabeled target project data; and  have 
the same metric, represents the covariance matrix of the 
source project, and represents the covariance matrix of 
the target project. represents all instances in the source 
project and  represents all instances in the target project. 
Every instance indicates that the i-th instance has 
m attributes and defect indicators ,  represents the 
j-th attribute of the i-th instance in a software project, defect
indicators ,  indicates that the i-th instance in the 
project has no defects, and  indicates that the i-th 
instance in the project has defects. 

3.2 Feature Distribution Alignment 

As mentioned above, we introduced a covariance 
alignment method, which aligns the feature distribution of the 
source project and target project data by aligning the 
covariance matrix of the source project and the target project. 

Specifically, our goal is to minimize the distance of the 
covariance matrix between the source project and the target 
project. We apply linear transformation A to the source project 
features, then use the Frobenius norm as the distance metric 
between the matrices. The optimization goal can be written as 
follows: 

(1) 

Where  is the covariance of  and  represents 
the Frobenius norm of the matrix. According to the solution 
process in [14], we can get the optimal solution of A: 

 (2) 

We did not use the optimal solution for calculation directly. 
In fact, the optimal solution is the product of two parts. The 
first part is actually processing the features of the source 
project, that is, eliminating the correlation between the 
features of the source project, and the second part is to fill the 
feature correlation of the target project into the source project. 
We use Algorithm 1 to complete the above functions. The 
input of Algorithm 1 is the source project data  and the 
target project data . The third and fourth steps are to 
calculate the covariance matrix of the source project and the 
target project respectively. The fifth step is to eliminate the 
correlation between the features of the source project, and the 
sixth step is to fill the feature correlation of the target project 
into the source project. Finally, the adjusted source project 
data  is output. 

Algorithm 1. Feature distribution processing algorithm 
(1) Input: source project , target project
(2) Output: adjusted source project
(3)  
(4)  
(5) 
(6) 

3.3 Neighborhood Instance Selection 

Neighborhood instance selection is to select the k instances 
that are most similar to each instance in the target project from 
the source project after the feature distribution is aligned, 
similar to the knn algorithm. If there are N test instances in the 
target project, for each instance, we add the k closest source 
project instances in the neighborhood of the instance to the 
training instance set, similar to the idea of Burak filters, so that 
we finally get N*k training instances. We selected 5 source 
project instances with the highest similarity for each instance 
in the target project, and calculate the degree of similarity 
between instances using the following formula: 

 (3) 

4  Experimental Design 

This section conducts an empirical study on the 
effectiveness of the FDAIS method. We first introduce the 
datasets, performance evaluation indicators, classification 
models, and experimental settings used in the empirical 
research. 

4.1 Datasets 

This paper uses the defect data of some software projects 
in the Relink [37-38] datasets and the Promise datasets [39] 
for experiments. These datasets were widely used by 
researchers in this field. The basic information of the datasets 
is shown in Table 1. The first three projects belong to the 
Relink datasets, and the last ten projects belong to the Promise 
datasets. 

Table 1. Datasets 
Projects Modules Features Defects% 
Apache 194 26 51% 

Safe 56 26 39% 
Zxing 399 26 30% 
berek 30 21 43% 
ckjm 7 21 43% 

pdftranslator 25 21 32% 
skarbonka 30 21 50% 

szybkafucha 18 21 39% 
workflow 29 21 34% 

ivy-1.1 111 21 57% 
jedit-3.2 272 21 33% 
log4j-1.1 109 21 34% 

velocity-1.6 229 21 34% 
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4.2 Evaluation Indicator 

Cross-project defect prediction is essentially a 
classification problem, so we use commonly used 
classification evaluation indicators to evaluate the 
performance of the method.  

There are four types in the classification task: TP (True 
Positive) means that a defective software module is predicted 
to be defective; FP (False Positive) means that a non-defective 
software module is predicted to be defective; TN (True 
Negative) means that a non-defective software module is 
predicted to be non-defective; FN (False Negative) means that 
a defective software module is predicted to be non-defective. 
Combining these results yields some commonly used 
performance metrics. Precision is the ratio of true defects in 
all predicted defective test data, and recall is the ratio of true 
defects in all actual defective test data. The calculation method 
is shown in Equations 4 and 5. 

TP
precision

TP FP
=

+
(4) 

TP
recall

TP FN
=

+
(5) 

The F-measure comprehensively considers Recall and 
Precision, which can fully reflect the actual performance of the 
method. Therefore, we mainly use the F-measure to evaluate 
the performance of each method, but we will also refer to other 
indicators in the specific analysis. 

(6) 

Since the experiment is carried out on the Weka platform, 
the indicator value can be obtained directly from the 
experimental results of the Weka platform. 

4.3 Classification Models and Experimental 
Settings 

This paper chooses the logistic regression model as the 
training model. The model has been automatically integrated 
on the Weka platform, and the relevant parameters are set as 
the default parameters of the Weka platform when the model 
is used. When performing feature distribution alignment and 
neighborhood instance selection, we use python language and 
related data processing packages. 

5  Experimental Results and Analysis 

We explore the experimental performance of the FDAIS 
method and the main factors affecting the performance of the 
FDAIS method from the following three questions. 

RQ1: Can the FDAIS method effectively reduce the 
difference in data distribution between projects and achieve 
good performance? How does the performance compare with 
the classic instance selection method Burak filters? 

RQ2: Compared with WPDP, what can be improved in the 
FDAIS method? 

RQ3: How do different classification models and datasets 
with different defect rates affect the experimental performance 
of the FDAIS method? 

Figure 2. Overall F-measure Figure 3. Overall AUC Figure 4. Overall Precision Figure 5. Overall Recall 

Figure 6. Class-Y F-measure Figure 7. Class-Y AUC Figure 8. Class-Y Precision Figure 9. Class-Y Recall 

Figure 10. Overall F-measure Figure 11. Class-Y F-measure Figure 12. Impact on FDAIS using different basic classifier 

2* *- precision recall
F measure

precision recall
=

+
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Figure 13. Overall performance on different defect rate datasets Figure 14. Performance of class-Y on different defect rate 
datasets 

5.1 Answer to RQ1 

For RQ1, we made the experimental results into the line 
graphs shown in Figure 2 to Figure 9. The line chart not only 
shows the indicator F-measure, but we also show the indicator 
values of Precision and Recall. In addition, because the AUC 
takes into account the change of the threshold, it is more 
comprehensive to use AUC value to evaluate the performance 
of the model, so we also plot the value of the AUC indicator. 
As shown in Figure 2 to Figure 9, the red solid line and red 
circle indicate the performance of FDAIS on each project, and 
the blue solid line and blue square indicate the performance of 
the Burak filters on each project. The red dotted line represents 
the average performance of FDAIS on all projects, and the 
blue dotted line represents the average performance of Burak 
filters on all projects. 

From the performance on the Relink datasets and Promise 
datasets in Figure 2 to Figure 5, we can see that the overall 
performance of FDAIS is good. The F-measure, Precision, 
Recall, and AUC are between 0.5 and 0.8, especially the 
Relink datasets which only have three projects. FDAIS has 
shown excellent results with F-measure, Precision, Recall, and 
AUC between 0.6 and 0.8. The performance on the Promise 
datasets is also very good, so FDAIS can effectively reduce 
the difference between projects and achieve good performance. 

Herbold [40] et al. conducted large-scale experimental 
investigations on all reproducible CPDP methods and found 
that the performance of the classic Burak filters method 
surpassed most of the current more advanced methods. 
Therefore, we compared the performance of the FDAIS with 
the Burak filters in an all-round way. We compare from two 
aspects. On the one hand, we choose the overall classification 
performance (i.e. Weka's weighted result). The overall 
classification performance is to measure the total 
classification ability of the method for defective and non-
defective instances, including predicting defective instances 
as non-defective classes and predicting non-defective 
instances as defective classes. The specific indicators values 
are shown in Figure 2 to Figure 5. On the other hand, we only 
compare the performance of the two methods on the positive 
class (i.e. Weka's Y class), because the defect of a software 
project is more important in practical application. If a non-
defective instance is predicted to be defective, the impact may 
not be significant, and it will only cause a waste of part of the 
test resources. If the defective instance is predicted to be non-
defective, the defective instance will always be hidden in the 
software project in this case, and it will eventually lead to 
serious problems. Therefore, we also made a comparison in 
the defective class, and the specific indicators values are 
shown in Figure 6 to Figure 9. 

In terms of overall classification, Figure 2 to Figure 5 show 
that FDAIS is generally better than Burak filters in various 
indicators. From the F-measure and AUC in Figure 2 to Figure 
3, 9 groups are significantly better than Burak filters, and 3 
groups are significantly inferior to Burak filters. The average 
value of FDAIS is about 0.1 higher than that of traditional 
methods. We analyze the three projects of log4j-1.1, berek, 
and skarbonka with low F-measure. We found that log4j-1.1 
and berek whose Precision and Recall were lower than Burak 
filters, while skarbonka is higher than Burak filters in 
Precision and lower than Burak filters in Recall. This shows 
that the performance of FDAIS on log4j-1.1 and berek is 
indeed worse than Burak filters. On skarbonka, since the F-
measure is the harmonic mean of precision and recall, it is 
affected by the lower Recall, which leads to the decrease of F-
measure. In general, FDAIS is much more stable than Burak 
filters. The broken line statistical chart from Figure 2 to Figure 
5 shows that the performance of Burak filters fluctuates 
greatly, ranging from 0.2 to 0.8, while FDAIS is basically 
between 0.5 and 0.8. This is another advantage compared to 
Burak filters. 

When only comparing the positive class, Figure 6 to 
Figure 7 show the F-measure and AUC values of the FDAIS 
and Burak filters on the defective class. It can be seen that 
FDAIS is better than the Burak filters as a whole. Similarly, 
there are 9 groups of indicator values that are significantly 
better than the Burak filters, and 3 groups are significantly 
worse than the Burak filters; on average, FDAIS is about 0.2 
higher than the Burak filters. We analyze the three projects of 
log4j-1.1, berek, and velocity-1.6 with low F-measure. We 
found that log4j-1.1 and berek whose Precision and Recall 
were lower than Burak filters, while velocity-1.6 is higher than 
Burak filters in Precision and lower than Burak filters in 
Recall. This also shows that the performance of FDAIS in 
judging defective classes on log4j-1.1 and berek is indeed 
worse than the Burak filters and the F-measure is reduced by 
the lower Recall on the velocity-1.6. Therefore, on the whole, 
FDAIS has better performance on defective classes, that is, the 
ability to identify defective instances is stronger and the 
method is more reliable. 

Therefore, we give a brief answer to RQ1, FDAIS method 
can effectively reduce the difference of data distribution 
between projects and achieve good performance. Compared 
with the classical instance selection method Burak filter, our 
method has advantages in multiple metrics in terms of 
comprehensive performance and performance on defect 
classes. 
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5.2 Answer to RQ2 

For RQ2, in order to explore the performance comparison 
between FDAIS and WPDP, we use the Weka software 
platform, select the logistic regression model, and use the 
default parameters of Weka to carry out WPDP experiments 
on all software projects. 

Figure 10 and Figure 11 are the comparison of FDAIS and 
WPDP on F-measure. Figure 10 is the overall classification 
performance, and Figure 11 is the prediction performance on 
the defect class. The red solid line and red circle represent the 
F-measure of FDAIS on each dataset, and the green solid line
and green square represent the F-measure of WPDP. The red
dotted line represents the average F-measure of FDAIS on all
projects, and the green dotted line represents the average F-
measure of WPDP on all projects.

According to Figure 11, it can be found that the prediction 
performance of FDAIS on defect instances is very close to that 
of WPDP. The average difference of F-measure between them 
is no more than 0.02, The performance of each project is also 
very close. However, in Figure 10, the average of F-Measure 
on the whole is about 0.08 different, and the F-Measure of 
WPDP is also high in each project. This shows that the WPDP 
can not only correctly identify the defect instances, but also 
has a better prediction effect on the non-defect instances.  

Therefore, compared with WPDP, although the 
performance of FDAIS on defect instances can be compared 
with that of WPDP, there is still some misjudgment on non-
defect instances, which is worth improving. 

5.3 Answer to RQ3 

RQ3 is to explore the factors that affect the experimental 
performance of the FDAIS method. In general, different 
classification models tend to have an impact on the 
experimental performance, so we use different models for the 
experiment. In addition to the classification model we used at 
the beginning, we also used the probability-based 
classification model NB (Naive Bayes), the rule-based 
classifier DT (Decision Tree), and the ensemble learning 
classifier RF (Random Forest). Figure 12 shows the 
experimental results. 

Here we use two common indicators to evaluate different 
classifiers, one is Recall, the other is AUC. In Figure 12, the 
four red box graphs on the left represent the Recall values 
predicted by the four classifiers on the datasets in Table 1, and 
the four on the right represent the AUC values. The horizontal 
line in each box graph represents the median of experimental 
results obtained using the classifier, the triangle represents the 
average of experimental results, and the box represents the 
data distribution of experimental results. As can be seen from 
Figure 12, the Recall obtained by using NB is relatively low, 
while the Recall obtained by using LR and DT is similar, and 
the Recall obtained by using RF is generally better. In terms 
of AUC, the median AUC obtained by using LR, NB, and DT 
is the same. The average value and overall distribution of AUC 
obtained by using LR are slightly better, but the overall 
distribution of AUC obtained by using RF is much better than 
the other three models, with the highest mean value and 
median value. 

Based on the above analysis, different types of classifiers 
will have a certain impact on the performance of FDAIS 

method, and ensemble learning classifier can significantly 
improve the performance of the method. 

In general, the performance of CPDP is also affected by 
imbalanced datasets. At the beginning of the experiment, we 
chose some projects with balanced defect rate in Promise 
datasets, but there may be class imbalance in practice. To 
further determine the scope of our method, we performed an 
experimental comparison on two other projects with extreme 
defect rates in the Promise datasets. The first set of low defect 
rates datasets is shown in Table 2. The defect rate of each 
project is between 0% and 30%. The second set of high defect 
rate datasets is shown in Table 3. The defect rate of each 
project is between 60% and 100%. We performed experiments 
on low defect rate datasets and high defect rate datasets using 
the FDAIS method. The box plots in Figure 13 and Figure 14 
show the experimental results of FDAIS on different defect 
rate datasets. Figure 13 shows the overall classification 
performance, while Figure 14 shows the classification 
performance only on the defect class. 

F1_lowR and AUC_lowR represent the F-measure and 
AUC values on the datasets shown in Table 2. F1 and AUC 
represent the performance of the FDAIS method on the 
datasets shown in Table 1, which are obtained under the 
condition of a balanced defect ratio. F1_highR and 
AUC_highR represent the F-measure and AUC values on the 
datasets shown in Table 3. The green horizontal lines in the 
box plot represent the median of the group's experimental 
results, and the green triangles represent the average of the 
group’s experimental results. 

From the overall classification results shown in Figure 13, 
the F-measure of the FDAIS method is the highest on datasets 
with low defect rates, and it is better than the other two 
conditions whether it is the distribution of F-measure, the 
mean value of F-measure, or the median value of F-measure. 
However, the AUC is very low. The reason for our analysis is 
that the defect rate of the datasets is very low which causes the 
model to classify most of the non-defect instances correctly, 
while a small number of defect instances are not correctly 
classified, resulting in the situation of high F-measure and low 
AUC. The mean value, median value, and distribution range 
of F-measure in high defect rate datasets are similar to those 
in defect rate balanced datasets, but the AUC on high defect 
rate datasets is poor. We analyze that at this time, most of the 
defective instances are successfully classified, while only a 
small part of the non-defect instances in the datasets are 
successfully classified. However, it is slightly better than the 
performance of the low defect rate datasets. This shows that 
the FDAIS method is more suitable for a balanced defect ratio 
of the datasets. Our method may not be suitable for low defect 
rate datasets. For high defect rate datasets, FDAIS also cannot 
achieve satisfactory results. 

This conclusion can also be proved in the performance of 
the defect class in Figure 14. The value of F1_lowR is 
basically lower than 0.5, indicating that the model's Precision 
and Recall on the defect class are very low. Moreover, the F-
measure and AUC on the high defect rate datasets are not 
commensurate, indicating that the model also has a large 
degree of misjudgment. Therefore, we suggest that FDAIS 
should be used when the defect rate is relatively balanced, that 
is, a dataset with a defect rate of 30%-60% can get better 
results. 

As a result, we make a summary answer to RQ3. Different 
types of classifiers will have a certain impact on the 
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performance of FDAIS method, and ensemble learning 
classifier can significantly improve the performance of the 
method. Datasets with different defect rates will affect the 
experimental performance of the FDAIS method, and the 
FDAIS method is more suitable for datasets with balanced 
defect rates. 

Table 2. Low ratio promise datasets 
Projects Modules Features Defects% 

arc 234 21 12% 
camel-1.4 872 21 17% 

ivy-2.0 352 21 11% 
jedit-4.2 367 21 13% 
poi-2.0 314 21 12% 
prop-6 660 21 10% 

redaktor 176 21 15% 
tomcat 858 21 9% 

xalan-2.4 723 21 15% 
xerces-1.2 440 21 16% 

Table 3. High ratio promise datasets 
Projects Modules Features Defects% 
log4j-1.2 205 21 92% 

lucene-2.4 340 21 60% 
pbeans1 26 21 77% 
poi-2.5 385 21 64% 

sklebagd 20 21 60% 
szybkafucha 25 21 56% 
velocity-1.4 196 21 75% 

wspomaganiepi 18 21 67% 
xalan-2.7 909 21 99% 
xerces-1.4 588 21 74% 

6  Conclusion 

This paper proposes a cross-project defect prediction 
method based on feature distribution alignment and 
neighborhood instance selection. This method combines 
feature distribution alignment and neighborhood instance 
selection. From the perspective of project covariate drift, first 
align the second-order statistics between the source project 
and the target project, then select a subset of neighborhood 
instances that are strongly related to the target project in the 
aligned source project. Finally, build a defect prediction model 
based on the neighborhood instance subset. Empirical research 
shows that our method can effectively reduce the difference in 
data distribution between the source project and the target 
project. Compared with the classic Burak filters, our method 
has achieved better and more stable performance on the Relink 
and Promise datasets. Compared with the WPDP method, our 
method has achieved considerable performance on the defect 
classes of the Relink and Promise datasets. 

There are still many next steps worth discussing in this 
article. First of all, the method uses the traditional Euclidean 
distance to measure the similarity between instances when 
selecting instances after feature alignment. In fact, Euclidean 
distance may not necessarily get similar instances in this case, 
we can try other distance measures later. Secondly, in the 
experiment, we selected software projects with two datasets, 
and our method can be further extended to other suitable 
datasets in the later period; at the same time, it can be seen 
from the experimental results that not all methods can achieve 

excellent results on all datasets. Our method can achieve better 
results on the class-balanced datasets, and it can also predict 
the defect class very well. But in fact, unbalanced datasets are 
more common, so designing appropriate methods for different 
datasets is also a problem worthy of research, and we will 
continue to design new methods for exploration in the later 
period. Finally, different classifiers have a certain impact on 
the method. Ensemble learning can improve the performance 
of the method a lot. In the later stage, the effect of ensemble 
learning on the performance of cross-project defect prediction 
methods can be studied. 
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