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Abstract 

In response to the abnormal data mining in dam safety 
monitoring, and based on the traditional spectral clustering, 
this paper presents an anomaly detection method based on 
improved spectral clustering. This method applies a distance 
and density adaptive similarity measure. The natural 
eigenvalue is introduced to adaptively select the neighbors of 
data points, and the similarity is redefined to be combined with 
the natural k-nearest neighbor. Furthermore, the shared 
neighbor is introduced to adjust the similarity between the 
monitoring data samples according to the regional density. 
Moreover, considering the distribution of dam monitoring data, 
the initialization of clustering centers is optimized according 
to both the density and distance feature. This method can 
prevent the algorithm from local optimum, better adapt to the 
density of non-convex dataset, reduce the number of iterations, 
and enhance the efficiencies of clustering and anomaly 
detection. Taking the dam slab monitoring data as the research 
object, experimental datasets are formed. Experiments on 
these datasets further verify that the method of this paper can 
effectively adapt to discrete distribution datasets and is 
superior to the classical spectral clustering method in both 
clustering and anomaly detection. 
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1  Introduction 

The primary target of dam safety monitoring is to master 
the operation characteristics of the dam and the changing trend 
of each monitoring measurement [1]. According to the 
Technical Specification for Earth-rockfill Dam Safety 
Monitoring (SL 551-2012), the main contents of dam safety 
monitoring include deformation monitoring, seepage 
monitoring, internal monitoring, hydraulic monitoring, and 
environmental monitoring. The concrete face rockfill dam 
takes the slab as the main anti-seepage system, and thus it is 
particularly important to monitor the deformation of the slab. 
Through the analysis of historical data, it is found that slab 
deformation is closely related to changes in the environment 
[2]. This means that the abnormal monitoring data can be 
selected through the statistical analysis of environmental 
variables such as water pressure, water flow rate, and 
temperature, which are collected from sensors arranged on the 
dam slab. These can be further used to study the trend of dam 

safety and stability. However, the wide distribution of dam 
monitoring sites and the diversity of environmental variable 
data lead to multidimensional, discrete, and uneven 
distributions of the data, which challenges anomaly detection. 

Anomaly detection is the classification and recognition of 
unbalanced data. The goal is to efficiently and accurately 
identify the suspected abnormal value that deviate from 
normal distribution [3]. Anomaly detection methods are 
generally classified into statistical-based methods, nearest 
neighbor-based methods, and clustering-based methods [4-5]. 
Statistical-based methods need to make assumptions about the 
normality of the data, which is only effective when the 
statistical assumptions meet the actual constraints. In many 
practical applications, it is very difficult to detect the 
anomalies of multivariate and unknown distribution data. The 
most common nearest neighbor-based methods are distance-
based methods [6-7], and density-based methods [8-10]. 
Compared with statistical-based methods, they are 
computationally effective, but for high-dimensional datasets, 
especially those with discrete attributes, their performance is 
significantly reduced [11]. Clustering-based methods find 
outliers by data grouping, which are efficient and practical for 
anomaly detection [12-13]. K-means [14-15] is the most 
common clustering method. Jiang et al. [16] improved K-
means clustering-based anomaly detection by optimizing the 
initial clustering centers, however, this only applies to datasets 
with a specific data distribution. Clustering with a density 
measure is another classic approach. In general, traditional 
clustering methods are good for convex spherical data 
distribution sample space clustering, but they easily fall into 
the local optimum, and the clustering effect is not good for 
multidimensional and non-convex samples such as dam slab 
monitoring data. 

The spectral clustering method provides a new idea for 
clustering. Compared with traditional methods, it can work on 
any spatial dataset and can converge to global optimal value 
[17]. Spectral clustering performs well in practice, but it still 
has many issues to be further studied. Ayed et al. [18] 
proposed an improved strategy on the adaptive fuzzy mean, 
but it has high computational complexity. Liu et al. [19] 
conducted spectral set clustering by weighted K-means. 
Meanwhile, Beauchemin et al. [20] used the density 
estimation method constructing similarity matrix, which 
improved the accuracy of spectral clustering; however, this 
method has too many parameters. Yuan et al. [21] proposed a 
spectral clustering algorithm based on fast search of natural 
neighborhood, and it can quickly determine natural 
eigenvalues and improve the clustering accuracy and 
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efficiency on some datasets. There are various methods that 
can improve the spectral clustering by improving the 
similarity matrix or the clustering center initialization, but 
there is no universal similarity measurement method. Due to 
the multidimensional, discrete, and non-uniform 
characteristics of dam monitoring data, the existing 
approaches cannot reflect the similarity between the points 
well. Furthermore, spectral method is new compared with 
other clustering methods, and the studies on spectral clustering 
are focused on clustering, with limited work on anomaly 
detection. 

Therefore, in view of the multidimensional, discrete, and 
uneven density characteristics of dam monitoring data 
distributions, we redefine the similarity matrix in spectral 
clustering by combining global and local density on the 
distance basis and optimize the selection of initial clustering 
centers by using the principle of density first. Experiments 
indicate that our approach is superior to other advanced 
models in dam anomaly detection. The main contributions of 
this paper are as follows: 

1) An anomaly detection method based on improved
spectral clustering is proposed. It takes the dam slab 
environmental monitoring data as the object to verify its 
superiority and provides references to dam safety monitoring. 

2) On the basis of Euclidean distance, we redefine the data
similarity by combining natural neighbors and shared 
neighbors, and adaptive similarity according to local density. 

3) According to the discrete and non-uniform
characteristics of dam monitoring data, we optimize the 
initialization of clustering centers based on the high-density 
first and maximum distance principles. 

This paper is organized as follows. Section 2 discusses 
related works. Section 3 focuses on the method of anomaly 
detection by the improved spectral clustering proposed in this 
paper. Section 4 presents experimental procedures, results, 
and analysis. Finally conclusions and discussion on future 
works are given in Section 5. 

2  Related work 

2.1 Anomaly Detection 

Anomaly detection is very important in global research and 
application fields [22-23]. Intrusion detection in network 
security [24] is a typical application. Huang et al. [25] proposed 
an outlier detection framework named CoDetect for financial 
transaction networks. Boddy et al. [26] proposed a model to 
detect abnormal access activities in electronic medical record 
systems. The sensor network [27] is the physical basis of 
automatic monitoring. Zhang et al. [28] developed an artificial 
neural network to detect abnormal temperatures of WSNs 
(Wireless Sensors Networks) in intelligent buildings. Li et al. 
[29] proposed an improved defense strategy that emphasizes
employing KPCA and K-means clustering to defend against
data-poisoning attacks in federated-learning systems.
Bettencourt et al. [30] identified fault nodes through the space-
time structure of sensors and neighbor measurements.
Meanwhile, Bhatti et al. [31] developed outlier detection
technology for Wi-Fi indoor by analyzing RSSs (Received
Signal Strengths). These methods can be regarded as effective
solutions in different fields, but outlier detection is always
faced with many challenges. First of all, there is no accurate

and clear boundary between abnormal data and normal data. 
Although more and more achievements appeared in anomaly 
detection, it remains a broad research topic, and there are still 
many basic problems to be solved in the application domain.  

There are many techniques for anomaly detection. 
Statistical-based methods were the earliest approaches [32]. In 
recent works, outliers are mostly detected through 
approximate statistical models of sensor data distribution or 
time-space series [5, 33-34]. These methods rely on the 
statistical assumptions made on the data, and it is impractical 
to establish an effective hypothetical statistical model for 
multivariate data. Nearest neighbor-based methods lie in the 
outlier factor measurement. KNN (K-nearest neighbor) is the 
most fundamental approach. On the basis of the KNN, RNN 
(reverse nearest neighbor), and SNN (shared nearest neighbor), 
Wahid et al. [35] proposed an approach using a measure of k-
nearest neighbor kernel density to estimate data density. In 
addition, LOF (local outlier factor) [10] and NOF (natural 
outlier factor) [8] are common calculation methods. The 
nearest neighbor based technique is simple and intuitive. It 
only needs to define an appropriate measurement for the given 
samples. However, in multivariate datasets, the computation 
of proximity is expensive, and the model is not easy to scale. 
In general, the measurement techniques between data patterns 
of nearest neighbor-based method are valuable. Clustering-
based methods partition data into groups and implicitly define 
the outliers as background noise. There are many 
developments on clustering technology. Distance-based 
clustering [14, 36] is adequate for finding spherical clusters in 
small and medium-sized datasets, but the performance is poor 
for non-convex datasets. In contrast, the density-based 
clustering method [16, 37] is effective for non-convex datasets, 
and it is also better for noisy data. Its disadvantage is that the 
clustering results are highly parameter-dependent. The 
hierarchical clustering method partitions a set of objects into 
groups of different levels and has good interpretability but high 
time complexity. Lastly, the grid-based clustering method has 
the advantage of fast speed, but the algorithm’s efficiency is 
improved at the cost of accuracy. As a whole, clustering-based 
methods do not need prior models, but their performance 
highly depend on the partition ability of clustering algorithms. 
In addition, deep approaches [38-39] to anomaly detection 
have recently shown promising results over shallow methods 
on large and complex datasets. 

2.2 Spectral Clustering 

As shown in Figure 1, spectral clustering is a new 
clustering method based on spectral graph theory. Different 
from the traditional clustering method, it can obtain the optimal 
result by solving the optimal partition problem of the graph. It 
is more adaptable to data distribution, can be applied to datasets 
of any shape, and can converge the global structure to obtain 
the optimal solution [21]. The most commonly Laplacian 
matrices types [40] used for spectral clustering are shown in 
Table 1.  
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Figure 1. Stages of spectral clustering method 

Table 1. Table of Laplacian matrices types 
Type Formula 

Unnormalized WDL −=

Symmetric 2/12/12/12/1 −−−− −== WDDILDDLSy

Asymmetric WDILDLAs
11 −− −==

Note: L is the Laplacian matrix, D is the degree matrix, 
and W is the adjacency matrix. 

Considering the characteristics of the wide distribution of 
dam monitoring sites, multidimensional data, and uneven 
density, we propose an anomaly detection method using 
improved spectral clustering. Specifically, improvements are 
made in the pre-processing and clustering stages of the spectral 
clustering method. In the pre-processing stage, the proximity 
measurement approaches of nearest neighbor-based methods 
are imported into the spectral clustering-based methods. The 
natural eigenvalues generated by natural neighbors [8, 21], are 
combined with the shared neighbors [41], and the similarity 
matrix is redefined on global and local scales by integrating 
distance and density to make it more suitable for widely 
distributed and uneven datasets. In the clustering stage, the 
clustering centers are selected by the principles of maximum 
distance and the high-density first, which optimizes the 
centroid without significantly increasing the number of 
operations. The proposed method can effectively explore the 
cluster structure of dam monitoring datasets and can more 
accurately identify outliers.  

3  Method 

This section will introduce our improved spectral clustering 
and the method of dam data anomaly detection. 

The environmental sensors monitoring data can be used to 
analyze the deformation of dam slabs, which may lead to 
serious water leakage. Engineering practice and research 
results show that under the action of high water head, 
peripheral joints of the slab will produce complex three-way 
displacement, which makes the peripheral joints become 
leakage channels [2, 34]. For this reason, monitoring data are 
usually multidimensional data objects that contain attributes 
such as pressure, temperature, and velocity. They are expressed 
as: 1 2{ , ,..., },nD x x x= 1 2( , ,..., ),i i i imx x x x= where n is the
amount of data points, m is the dimension of data ix , and

imx is the m-th attribute of the i-th data point.
As shown in Figure 2, the sample data of the monitoring 

sites located along the water line at a certain height of the dam 
usually have similarity, but the abnormal data do not. Anomaly 

detection in dam slab monitoring can be realized by clustering 
approach, which can be further abstracted into the problem of 
graph partition by using spectral method. The dataset of each 
slab monitoring station at a certain time can be abstracted as as 
vertices set V  in the same spatial graph. According to the 
similarities of points, the edges set E  are weighted, and thus 
an undirected weighted graph ),( EVG =  based on sample 
similarity is obtained. ijW is defined as the weight between

iv and jv . The basic rule of weights is that the edge weight 
between two points far away from each other is lower while the 
edge weight between two points close together is higher. The 
adjacency matrix W  can be obtained by using the weights of 
all edges. It is an nn matrix, and the j-th value of the i-th 
row corresponds to the weight ijW . 

Figure 2. Example layout of monitoring sites for dam slab 
(The sensors arranged on the dam panel monitor the 
deformation, as well as the environmental variables such as 
water pressure, water velocity and temperature.)  

The free partition criterion based on graph theory is to 
maximize the internal similarity of subgraphs and minimize the 
similarity between subgraphs. Therefore, the quality of 
clustering is directly affected by the partition criterion. 

3.1 Outlier Definition for Dam Monitoring 

Referring to the 12 different definitions of outliers given by 
Ayadi et al. [27], an anomaly or outlier can be described as a 
data point that manifests itself as a behavior that does not meet 
expectation or a well-defined abnormal behavior. In the 
clustering method for dam anomaly detection, let the dataset 
D contain n  samples, each sample has m  attributes, and
D  is divided into K  clusters.  A partial projection example 
of the dataset containing outliers in two-dimensional space is 
shown in Figure 3. There are three types of samples that are 
usually considered as abnormal data. 

Proposition 1: Points that do not pertain to any cluster are 
outliers (as shown in Figure 1, the points in the rectangular 
regions are far away from all cluster centers). 

Proposition 2: The point far from its nearest cluster is an 
outlier (as shown in Figure 1, the points in triangle regions are 
outliers relative to some clusters). 

The degree of anomaly can be measured by comparing the 
distance of the point to its nearest centroid and the average 
distance within the cluster. For example, Gaddam et al. [36] 
used the method of combining K-means and ID3 to iteratively 
calculate the distances, and defined the threshold to filter 
outliers. 

Proposition 3: All of the points in sparse clusters and 
smaller clusters are outliers (as shown in Figure 1, clusters in 
the circular regions are abnormally small). 
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The clustering results can be divided into large clusters and 
small clusters heuristically, and the anomaly degree can be 
measured by different calculation methods. 

Figure 3. Sketch of outliers in dam anomaly detection  
(The rectangular regions highlight the significant outliers far 
away from all clusters; the triangular regions encompass the 
outliers relative to a certain cluster; and the circular regions 
highlight the sparse clusters and smaller clusters, where the 
points they contain are all outliers.) 

3.2 Construction of Similarity Measure 

The similarity matrix directly affects the spectral separation. 
The data similarity in the spectral clustering algorithm is 
usually defined by a Gaussian kernel function: 

2
21

2
exp( ( , ))ij i jS d x x


= − (1) 

where ijS is similarity of ix and jx , ),( ji xxd is the
Euclidean distance between ix and jx , and   is the scale
parameter, which controls the attenuation speed of the 
similarity coefficient with the Euclidean distance. 

However,   often needs to be determined by repeated 
experiments, which increases the calculation amount. 
Moreover, the Gaussian kernel function only uses the distance 
information between data points to construct similar functions, 
which is only suitable for datasets with uniform data 
distribution. 

3.2.1 Adaptive Natural Nearest Neighbor Measurement 

The natural neighbor is based on a phenomenon that point 
in high-density regions has more neighbors while point in low-
density regions has fewer neighbors. This method increased the 
search in the neighborhood, detected the interaction of all data 
points, and determined the natural eigenvalue adaptively. 

Definition 1 (Natural Stable States): Given dataset ,D  for 
each data object ,ix D its k-nearest neighbor is searched, and 
the variable k  is 1, 2, 3, …, n  in turn. With the growth of

,k when any point in D  has at least one inverse nearest 
neighbor, or when the data points without an inverse nearest 
neighbor in the dataset remain unchanged, the state is a natural 
stable state. 

Definition 2 (Natural Eigenvalue): If natural neighbor 
search achieves natural stable, the number of searches is called 
the natural eigenvalue, which is denoted as sup .k  

The similarity measure based on natural neighbors can be 
defined as follows: 

)),(exp( 2
sup

1
2 jikij xxdS −= (2) 

3.2.2 Adjust Similarity According to Local Density 

Further study on the deformation history data of dam slabs 
showed that if two points belong to the same cluster, they 
should be located in the same area with relatively high density, 
and there will be many neighbors overlapping of the two points. 
The shared neighbors can adjust the similarity between data 
points according to the local density [41]. Therefore, for the 
shared performance of data the shared natural neighbor (SNN) 
is used to represent the neighbor relationship by combining the 
natural neighbor and the shared neighbor. ),( ji xxSnn
represents the shared neighbors of ix and jx in ksup
natural neighborhood. 

Definition 3 (Shared Natural Neighbors): For each point 
ix in dataset ,D  its ksup nearest neighbor set is ( );NL i for 

two points ix and jx in dataset ,D their shared natural 
neighbor set ),( ji xxSnn is the intersection of )(iNL and

( ).NL j
The similarity measure based on shared natural neighbors 

can be defined as 




+
=

),(
)),(),((

|),(|
|),(| 

ji xxSnno
ji

ji
jiij xodoxd

xxSnn
xxSnnS (3) 

where o  is a shared natural neighbor of point ix and point 
,jx the similarity is only calculated when ix and jx are 

ksup nearest neighbors to each other. The right side of the
multiplier is the reciprocal of the average distance between two 
points and their shared neighbors, which represents their local 
density to some extent. 

3.2.3 Comprehensive Measurement based on Sample 
Features 

By obtaining the local density and the shared neighborhood 
of two points at the same time, the shared natural nearest 
neighbor similarity can better adapt to various transformed 
datasets. However, in the case of an incomplete connection, the 
similarity between non-nearest neighbors is generally recorded 
as 0, which cannot detect the sparse outliers in dam monitoring 
datasets. By combining the Gaussian distance and SNN 
similarity, the similarity of dam monitoring data is defined as 
follows: 
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When ix and jx are ksup nearest neighbors to each 
other, the nearest neighbor density weight is calculated; 
otherwise, the Euclidean distance is used for similarity. 

3.2.4 Construction of Adjacency Matrix 

There are three approaches used to construct adjacency 
matrix W from data similarity: the ɛ-neighboring approach, K-
neighboring approach, and full connection approach. The ɛ-
neighboring approach sets a threshold ɛ, and defines the 
adjacency matrix according to the relationship between 
similarity ijS and ɛ: 










=





ij

ij
ij S

εS
W

  0
  

(5) 

In this case, the weight between two points can only be ɛ or 
0, and the similarity measurement is very rough; therefore, this 
method is rarely used in practical applications. The K-
neighboring approach generally uses the KNN algorithm to 
search the nearest neighbors of samples; only the ijW values 
between the point and its k  nearest neighbors are greater than 
0. At present, the natural neighbor and shared neighbor can also
be used to measure the neighbor relationship. The full
connection approach defines the weight value between all
points as greater than 0. In practical applications, the full
connection approach is the most commonly used method to
establish the adjacency matrix, and the Gaussian radial kernel
function is often employed. [40] is formulated as follows:

)),(exp( 2
2

1
2 jiijij xxdSW


−== (6) 

For dam slab monitoring data points, we use the full 
connection approach to construct the adjacency matrix but do 
not simply set the adjacency matrix to be the same as the 
similarity matrix. Further, we increase the similarity weight 
between the nearest neighbor samples in the shared natural 
neighbor search algorithm while retaining Euclidean algorithm 
to measure similarity. The adjacency matrix is thus formulated 
as follows: 
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(7) 

where i  and j  are the Euclidean distances from ix and

jx to their ksup nearest neighbors, respectively. They can 

adjust themselves automatically and timely according to the 
sparse or dense distribution between the two points in the 
specified neighborhood. 

3.3 Improvement of Initialization Method for 
Clustering Centers 

Clustering is an important step in spectral method, and we 
implement it by improving the K-means. The initialization of 
centroid in traditional K-means involves randomly selecting 
k  data objects. However, this easily causes randomness in the 
clustering results, which may lead to low iteration efficiency. 
Therefore, a more reasonable initialization method of 
clustering centers will improve the clustering effect. 

The basic rule of clustering is the data similarity. Generally, 
similarity and Euclidean distance are inverse relationship in K-
means algorithm. For the task of anomaly detection in dam data, 
we first try to improve the selection of clustering centers based 
on distance. 

Principle 1: The principle of maximum distance between 
clustering centers. 

The distance between clustering centers should be as large 
as possible to ensure the uniform distribution of centroids. The 
K-means algorithm is optimized according to Principle 1, and
then we get K-means+. This randomly selects the first
clustering center, and then continuously selects new clustering
centers according to Principle 1 until k  clustering centers are
selected.

The initialization of clustering centers based on the 
maximum distance principle obviously speeds up the iteration 
speed of the algorithm, but this method cannot rule out the 
influence of discrete data points. It is possible to select outliers 
as clustering centers. Since the clustering center is 
characterized by higher density than other regions, the 
principle of high-density first is further considered. 

Principle 2: The principle of high-density first. 
Instead of randomly selecting the first clustering center, we 

pick out the sample having the highest local density, since that 
avoids the possibility of selecting outliers to a certain extent. 
K-means+ is further optimized according to Principle 2 to yield
K-means++. The initialization method of clustering centers in
K-means++ is as follows.

Algorithm 1. Clustering center initialization on the basis of 
maximum distance and high-density priority principles 
Input: dataset 1 2{ , ,..., },nX x x x= number of clusters
k , natural eigenvalue ksup . 
Output: clustering centers kccc ,...,, 21 . 
1: pick out the sample having the most neighbors under 

ksup as the first clustering center 1c ;

2: for each point ix in X
3: calculate the distance ),( 1cxd i  between ix

and 1;c
4: if 1 1( , ) ( ( , ))j id x c MAX d x c==

5: 2 jc x=
6: for c ←3 to k
7: for each point ix in X and ix that is not a 

clustering center 
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8: calculate ),( ai cxd  and ( , ),i bd x c  where

ac and bc are the arbitrary two clustering centers; 
9: if jx makes 2)),(),(( bjaj cxdcxd + the 

largest one 
10: jxc =c ; 

3.4 Algorithm 

Anomaly detection based on improved spectral clustering 
method is as follows. 

Algorithm 2. Anomaly detection algorithm based on the 
improved spectral clustering 

Input: dataset },...,,{ 21 nxxxX = , number of clusters c ,
anomaly threshold value TVAL .
Output: tags for each .ix
1: construct the KNN matrix;

 2: perform the natural neighbors search algorithm in 
the KNN matrix and obtain the natural eigenvalue 

ksup  and neighborhood of each point; 
3: calculate the degree matrix ;D
4: calculate the adjacency matrix W according to 

formula (7);
5: calculate and standardize the Laplacian matrix 

1/2 1/2 1/2 1 /2 ;SyL D LD I D WD− − − −= = −

6: calculate eigenvector cvvv ,...,, 21 corresponding to 
the first c  minimum eigenvalues;

7: do 
8: get c clustering centers cccc ,...,, 21 according 

to Algorithm 1;
 

9: use K-means++ to obtain clusters 1 2, ,..., ,cC C C

and the sizes of clusters 1 2, ,..., ;cs s s

10: for i ←1 to n  do
 

11: for ck ←1 to c  do
12: 

if cki Cx 

and 
=

=


cksj

j
ckj

ck
cki cxDist

s
),cDist(x

1
),(1

13: the abnormal value of ix ++
ixAbn  ;

 
14: if 3

ixAbn

15: mark ix as an outlier; 
16: until no more new outliers are marked; 
17: for ck ←1 to c  do

18: if TVALsck =

19: for each jx in ckC
20: mark jx as an outlier; 

In the classical spectral clustering algorithm, the Gaussian 
kernel function is used to construct the similarity matrix. Its 
sensitivity to scale will lead to unstable clustering results, and 
the single scale will lead to unrecognized, intertwined clusters 

on spiral datasets. In this paper, the improved similarity 
measure can dynamically judge the similarity relationship 
between two points by whether there are shared natural 
neighbors and the number of neighbors, which makes up for 
the defect of single scale scale. In addition, considering the 
influence of outliers on data partitioning, the maximum 
distance and high-density first principle are introduced to 
improve the clustering centers initialization so that the 
partitioning process contains more accurate prior information. 

4  Experiment 

The goal of this section is to verify the performance of the 
proposed method in clustering and anomaly detection. 
Experiments are carried out on synthetic datasets and real 
datasets, respectively. Comparative experiments are carried out 
with the other two clustering-based methods: K-means++ 
developed from the traditional K-means [14], and classical 
spectral clustering [42]. In addition, the method is compared 
with two deep anomaly detection methods on real datasets. 

4.1 Datasets 

4.1.1 Synthetic Datasets 

In this paper, datasets with different characteristics are 
created for experiments, and the test abnormal data points are 
added to form three synthetic datasets, namely TwoCircles, 
FiveClusters, and TwoMoons, for clustering and anomaly 
detection. Details about the datasets are shown in Table 2. 

Table 2. Details of synthetic datasets 
Dataset Number of 

instances 
Number of 
clusters 

Number of 
outliers 

TwoCircles 323 2 9 
FiveClusters 2000 5 95 
TwoMoons 1525 2 26 

4.1.2 Real Datasets 

The real datasets are obtained from a dam data center. The 
data is profile data from 2019 and the data format is .dat. The 
data file contains the basic information of equipments such as 
instrument model, data format, and identification number, as 
well as environmental data such as flow rate, hydrostatic 
pressure, hydrodynamic pressure, and temperature. 

The raw sensor data contains many redundant attributes 
that have nothing to do with anomaly detection, and thus it is 
not possible to import the unprocessed data file directly. So, we 
preprocess raw data first. According to the spatial distribution 
and seasonal characteristics of the environmental sensors data, 
567 observation data near the top area of a specific slab and at 
a specific time (12:00AM) were selected for the experiment. 
The data point is recorded as =ix (hydrostatic pressure, 
hydrodynamic pressure, flow rate, temperature). The real 
datasets after pre-processing can be divided into Phase 1 and 
Phase 2 according to the location of the measuring points; the 
details are shown in Table 3. 
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Table 3. Details of real dam slab monitoring datasets 
Dataset Number of dimensions Number of instances 

Phase I 4 95 

Phase II 4 472 

4.2 Effectiveness of Anomaly Detection 

We experiment on three synthetic datasets and real dam 
monitoring datasets. In order to evaluate the effectiveness of 
the proposed anomaly detection method, we select accuracy, 
precision, false negative ratio (FNR), and false positive ratio 
(FPR) as evaluation indices. They are defined as follows: 

)/()( FNFPTNTPTNTPAccuracy ++++=   (8) 

)/(Pr FPTPTPecision += (9)

)/( TPFNFNFNR +=   (10) 

)/( TNFPFPFPR +=   (11) 

In anomaly detection, we pay more attention to outliers, 
and thus we express outliers as positive classes and normal data 
as negative classes. TP (true positive) denotes an outlier is 
correctly recognized, FN (false negative) denotes an outlier 
mistaken as normal data, TN (true negative) denotes normal 
data correctly identified, and FP (false positive) denotes normal 
data mistaken as an outlier. 

Table 4 shows the experimental results of anomaly 
detection on synthetic and real datasets. 

Table 4. Effectiveness of anomaly detection 
Dataset Accuracy Precision FNR FPR 
TwoCircles 1 1 0 0 
FiveClusters 0.984 0.9024 0.0042 0.2449 
TwoMoons 0.9987 0.9231 0 0.0769 
DamMonitoring 1 1 0 0 

4.3 Clustering Efficiency and Anomaly Detection 
Efficiency 

Furthermore, we conduct experiments to assess the 
clustering efficiency and anomaly detection efficiency. 

In the experiment, we use four indices: the running time of 
the clustering algorithm, the RAND index (RI), the adjusted 
RAND index (ARI), and the normalized mutual information 

(NMI). Th improved spectral clustering (SC+) algorithm is 
compared with K-means++ and classical spectral clustering 
(SC) method. Table 5 compares the running time of each 
method during clustering. Table 6 compares the clustering RI, 
ARI, and NMI scores.  

Table 5. Clustering execution time comparison, the unit is 
second (s) 
Dataset K-means++ SC SC+ 

TwoCircles 0.045 0.185 0.075 

FiveClusters 0.39 4.82 0.21 

TwoMoons 0.21 1.365 0.195 

DamMonitoring 0.635 0.44 0.12 

Table 6. Comparison of RI, ARI, and NMI 
Dataset K-means++ SC SC+ 

TwoCircles 0.5535 1 1 

0.4197 1 1 

0.2796 1 1 

FiveClusters 1 0.7455 0.8146 

1 0.5265 0.7228 

1 0.6412 0.7566 

TwoMoons 0.6654 0.6854 1 

0.2980 0.4876 1 

0.2867 0.4215 1 

DamMonitoring 0.4886 0.7422 1 

0.0397 0.6478 1 

0.0277 0.7256 1 

We next evaluate the performance on anomaly detection 
using four evaluation indices: run time, accuracy, false 
negative ratio (FNR), and false positive ratio (FPR), and 
compared with other representative clustering-based methods. 
The method based on the improved spectral clustering is 
recorded as SC+AD, the method based on K-means++ is 
recorded as K++AD, and the method based on classical 
spectral clustering is recorded as SC-AD. Table 7 shows the 
experimental results and comparison. Figure 4 shows the 
original datasets, which contains three synthetic datasets sets 
and the dam monitoring dataset. 
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Table 7. Comparison of anomaly detection efficiency 
Dataset Evaluation index K++-AD SC-AD SC+-AD 
TwoCircles run time (s) 0.075 0.215 0.126 

Accuracy 0.9907 0.9907 1 
FPR 0.0003 0.0003 0 
FNR 0.2222 0.2222 0 

FiveClusters run time (s) 0.545 5.035 0.52 
Accuracy 0.969 0.991 0.984 
FPR 0.0016 0.0005 0.0042 
FNR 0.602 0.1735 0.2449 

TwoMoons run time (s) 0.37 1.525 0.45 
Accuracy 0.9889 0.9887 0.9987 
FPR 0.002 0 0 
FNR 0.5385 0.0769 0.0769 

DamMonitoring run time (s) 0.675 0.62 0.23 
Accuracy 0.9841 0.9912 1 
FPR 0.0071 0.0089 0 
FNR 0.8333 0 0 

(a) (b) 

(c) (d) 

Figure 4. Original datasets 
(a) The original synthetic dataset named TwoCircles
(b) The original synthetic dataset named FiveClusters
(c) The original synthetic dataset named TwoMoons
(d) The dam monitoring dataset named DamMonitoring

The clustering and anomaly detection results based on K-
means++ are shown in Figure 5. K-means++ improves the 
centroid initialization method according to the maximum 
distance and high-density priority principles. The algorithm 
works well on simple datasets such as FiveClusters, as it 
improves the efficiency of clustering centers iteration, still has 
the problem of a poor effect on non-convex datasets. In the 
experiment of the convex sample dataset FiveClusters, its 
clustering score is higher than others, but its clustering effects 
in the other, non-convex datasets, are poor (as shown in Table 
4). In addition, it can be seen from Figure 5, the manifold spiral 
datasets cannot be recognized. This method simply measures 
the data similarity by distance, and the false negative is too high. 

(a) (b) 

(c) (d)

Figure 5. Results based on K-means++ 
(a) Results on the dataset TwoCircles
(b) Results on the dataset FiveClusters
(c) Results on the dataset TwoMoons
(d) Results on the dataset DamMonitoring

Figure 6 shows the results of clustering and anomaly 
detection based on classical spectral clustering. Since the scale 
parameters need to be selected by many experiments, the run 
time of this method is generally high. The clustering effect of 
the spectral method has good performance on sparse datasets 
and can also be applied to some non-convex datasets, but it is 
still insufficient for the spiral winding datasets such as (c) and 
(d) shown in Figure 6. In regards to outlier recognition, this
approach is evidently better than K-means++. In addition,
because the similarity measure of classical spectral clustering
is still completely based on distance and cannot consider the
density, the efficiency of classical spectral clustering on non-
uniform datasets declines sharply. 
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(a) (b) 

(c) (d) 

Figure 6. Results based on classical spectral clustering 
(a) Results on the dataset TwoCircles
(b) Results on the dataset FiveClusters
(c) Results on the dataset TwoMoons
(d) Results on the dataset DamMonitoring

Figure 7 shows the results of clustering and anomaly 
detection by improved spectral clustering. Adaptively setting 
the neighborhood greatly reduces the cost of the neighbor 
search. It can be seen from table 5 and table 7 that the improved 
method has obvious advantages in both clustering run time and 
anomaly detection execution time. Because it takes distance 
and local density into account when measuring similarity, the 
clustering results reflect the datasets structure more accurately, 
and the clustering performance and anomaly detection 
performance are significantly better than classical spectral 
clustering. Especially on the real dataset, the effect is obviously 
better than the classical N-cut algorithm, which only takes the 
distance as the unique standard and constructs the similarity 
matrix by the Gaussian function. 

(a) (b) 

(c) (d) 

Figure 7. Results based on improved spectral clustering 
(a) Results on the dataset TwoCircles
(b) Results on the dataset FiveClusters
(c) Results on the dataset TwoMoons
(d) Results on the dataset DamMonitoring

We further test the anomaly detection efficiency and 
consider to compare with deep learning methods DAGMM [38] 
and DUAD [39]. At the same time, we expand datasets to 
include more observation data from May 2019 to April 2021. 
Detailed information about the datasets is shown in Table 8. 
Table 9 shows the experimental results and comparison.  

Table 8. Details of more real dam slab monitoring datasets 
Dataset Number of 

dimensions 
Number of 
instances 

Number of 
outliers 

Dam 1 4 43,282 137 
Dam 2 8 6,183 113 
Dam 3 23 796 21 

Table 9. Comparison of anomaly detection efficiency 
Dataset Evaluation 

index 
DAGMM DUAD SC+-AD 

Dam 1 Precision 0.9010 0.9226 0.9227 
FPR 0.00033 0.000257 0.000259 
FNR 0.0511 0.0336 0.0248 

Dam 2 Precision 0.8814 0.8914 0.8916 
FPR 0.00242 0.00221 0.00222 
FNR 0.0336 0.0257 0.0207 

Dam 3 Precision 0.7568 0.8042 0.8083 
FPR 0.00684 0.00606 0.00619 
FNR 0.0667 0.081 0.0762 

From the experimental results, compared with deep 
anomaly detection methods, SC+AD still performs well, 
especially in the FNR index, which is exactly what anomaly 
detection needs. With the increase of dimensions, the 
performance of our method decreases, but there is a small gap 
with the best results. 

In short, experiments show that the clustering and anomaly 
detection efficiency of the proposed method are greatly 
improved. It has better efficiency and stability in clustering, 
and can reflect the characteristics of datasets more efficiently 
and accurately. The significant advantages of this clustering 
method are its speed and accuracy on complex non-uniform 
datasets. In the anomaly detection further, the efficiency is 
significantly improved. Moreover, its outliers identification 
ratio is higher, and false detection ratio is lower, especially on 
the real dataset. 

5  Conclusion 

Following research on the spectral clustering algorithm and 
anomaly detection, an improved method for anomaly detection 
in dam monitoring data is proposed. The natural eigenvalue is 
introduced to determine the neighborhood adaptively, and the 
similarity calculation method is redefined by using the shared 
neighborhood and distance information between data. The 
similarity can effectively describe the actual distribution and 
internal relationship between data. Then, anomaly detection is 
carried out according to anomaly criteria and assumptions, 
which can fully reflect the overall situation of the data. 
Experimental results show that this method has stronger 
adaptive ability than other advanced methods and has higher 
clustering and anomaly detection efficiency. 

Data is growing exponentially in big data era. In the field 
of dam anomaly detection, processing higher dimensional and 
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large datasets will be the focus of our future studies. In addition, 
we will consider further improvement of this method to make 
it applicable to more domains and help accomplish more tasks, 
such as domain entity classification [43]. 
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