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Abstract 

Dynamic Fault Tree (DFT) is used widely in the 
community of reliability and safety analysis of a complex 
system. DFT is a high-level modeling language lacking formal 
semantics, so we need to convert it to a mathematical model 
to analyze. The conventional analysis method can only solve 
the DFT with discrete or exponential distribution, but not the 
DFT with mixed distributions. To this end, we first propose a 
TBN framework to represent the DFT with mixed failure 
distribution by extending the BN and introduce Dirac delta 
functions and unit-step functions into the framework to 
represent the logical relationship and temporal relationship 
between the nodes, respectively. To run the standard BN 
inference algorithm over TBN, we fit the failure distribution 
of the nodes by using k-piece and n-degree polynomials. We 
then propose a transformation method from DFT to TBN and 
prove the equivalence of the transformation. Finally, the 
analysis of the DFT model of the X2000 avionics system 
shows that our approach can effectively analyze the reliability 
of mixed distribution failure models. Moreover, the accuracy 
and efficiency of the analysis are significantly better than 
current mainstream methods. 

Keywords: Dynamic fault tree, Safety analysis, Mixed 
distribution failure model, Temporal Bayesian 
Networks 

1  Introduction 

Dynamic fault tree (DFT) has been widely used in 
reliability modeling of complex dynamic systems in the fields 
of aerospace, automotive electronics, and nuclear power 
because of its intuitive, concise, and good description 
capability [1-2]. DFT, a high-level modeling language, lacks 
formal semantics and needs to be transformed into a 
mathematical model for analysis. These models include binary 
decision graph, Markov chain, and Petri net, which can 
accurately analyze the DFT with discrete or exponential 
distributions [3-4]. However, these models are all faced with 
the infamous state space explosion problem, that is, the 
number of states grows exponentially with the number of 
components comprised in the DFT. Therefore, they are time-
consuming and inefficient for the analysis of complex DFT. 

To this end, researchers use Bayesian network (BN) for 
solving the DFT because the state of any node in BN only 
depends on the state of its neighbors, which effectively 
alleviates the problem of state space explosion, and the 
method also improves the modeling and analysis ability of 
DFT [5-6]. Boudali and Dugan proposed a discrete-time 
Bayesian network (DTBN) to analyze DFT in which mission 
time was partitioned into a finite number of time intervals [7]. 
Each root node of the DTBN has a finite number of states 
which equals to the number of time intervals. By partition, the 
conditional probability table (CPT) of the DTBN node can 
represent sequential failure, redundancy failure, and 
functional dependency failure of the components. The 
inference algorithm of BN can run over DTBN. However, the 
increase in the number of time intervals results in some huge 
and intractable CPT. To reduce the dimension of the CPT, 
Khakzad decomposed the CPT of the DTBN node into some 
intermediate nodes, which transformed the DFT into a chain 
BN structure [8]. Fang used a decision tree to represent the 
CPT and proposed a hierarchical DTBN inference algorithm 
to improve the analysis efficiency [9]. Marquez developed a 
hybrid BN to incorporate both discrete and continuous 
variables [10]. They used a dynamic time discretization 
method to improve the accuracy and efficiency of DTBN 
analysis. In this method, a finer interval partition is performed 
in the high-density region of the failure distribution to 
overcome the poor accuracy of the DTBN with a uniform 
partition. To analyze the DFT with continuous-time failure 
probability density function (PDF), Boudali and Dugan 
proposed a continuous-time BN (CTBN) framework in which 
one can perform various analyses, including reliability, 
sensitivity, and uncertainty analyses, and all the analyses 
allow the user to obtain closed-form solutions [11].  

However, Existing methods can only analyze the DFT 
with discrete or exponential distributions and cannot 
effectively analyze the DFT with mixed distributions. To 
solve this problem, we present a temporal Bayesian network 
(TBN) framework for the analysis of the DFT with mixed 
distributions. We first extend BN to TBN by introducing the 
Dirac function and unit step function into the BN to express 
the logical relationship and temporal relationship among its 
nodes, respectively. We then propose a transformation method 
from DFT to TBN and prove the equivalence of the 
transformation. Because the failure distribution of nodes in 
TBN follows different distributions, and these operations 
among distributions, such as integration, marginalization, and 
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multiplication, are not closed-form solutions, the standard BN 
inference algorithm cannot run on TBN. To this end, we use 
k-piece and n-degree polynomials to fit the failure distribution
of these nodes, so that all parameters in the TBN are
represented uniformly by k-piece and n-degree polynomials.
Since the family of polynomials is closed under integration,
marginalization, and multiplication, the BN inference
algorithms can run on TBN. Our method can adjust the
network parameters k and n to trade-off between the efficiency
and accuracy of the analysis and avoid the state space
explosion. By applying this method, one can solve a variety of
DFT including unreliability, importance indices, and
diagnosis, etc.

The rest of this paper is organized as follows: In Section 2, 
we propose an TBN framework based on the BN. Section 3 
present the method of converting DFT to TBN. We prove the 
equivalence of the conversion in Section 4. In Section 5, we 
provide a case study and discuss analysis results. Section 6 
give a conclusion and future research. 

2  TBN Framework 

The dynamic logic gates of DFT, such as SEQ, PAND and 
Spare, are used to model the failure scenario of temporal 
sequence. However, in the standard BN, the CPT expressing 
the relationship between nodes cannot express temporal 
relationship and continuous conditional probability 
distribution (CPD). Therefore, we propose a TBN to represent 
the DFT with mixed failure distribution by extending the BN. 

2.1 Representation of Temporal Relationship 

In the TBN formalism, we first divide the time domain [0, 
T] of the nodes representing primary components of the DFT
into k disjoint time intervals, where T is mission time, and k is
the time granularity. Then, the time domain of the failure
distribution of the nodes is similarly divided, and an n-degree
polynomial is used to fit the failure distribution piece in the
time interval (see 2.2).

In addition, we introduce Dirac delta functions and unit-
step functions into the framework as the components of the 
CPD of non-root nodes to represent the logical relationship 
and temporal relationship between the nodes, respectively.  

In summary, the primary components of the DFT may fail 
in different time intervals, so, in the TBN, the failure order of 
all components can be expressed, and CPDs represented by 
these two functions can express the logical relationship and 
timing relationship between nodes Therefore, the TBN can 
represent the semantics of DFT. The definitions of these two 
functions on the interval [0, ∞) are as follows. 
Definition 1. Dirac delta functions 

( ) ( )
0

0      0
and d 1

     0
x

x x x
x

,   


= =
 =

  

By definition, we may regard the Dirac delta function as a 
PDF. Although the value δ(0) is undefined, we can interpret it 
as probability 1. Consider the normal PDF with mean 0 and 
variance σ^2. Its moment-generating function has a value of 1 
when σ^2→0, so the value of δ(0) can be regarded as 
probability 1. 

Definition 2. Unit-step functions 
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x
u x

x
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δ (x) is the derivative of u(x) with respect to x. u(x) can be 
regarded as the limit of the cumulative distribution functions 
of the Gaussian random variable with mean 0 and variance σ^2 
when σ^2→0. 

2.2 Piecewise Fitting of Failure Distributions 

When analyzing DFT with mixed failure distribution, the 
distributions of nodes in the TBN may be exponential, Weibull 
distribution, Gaussian distribution, and so on, and the 
multiplication and integration of these distributions are not a 
closed-form. Therefore, it is impossible to run the automatic 
reasoning algorithm in the TBN that runs well in the BN. 

To solve this problem, in each time interval, we use a n-
degree polynomial to fit the corresponding the failure 
distribution piece. That is, the failure distribution of the node 
is fitted by a k-piece and n-degree polynomial. In addition, the 
CPD represented by Dirac functions and unit step functions 
are also piecewise polynomials in nature. Therefore, all 
parameters in the TBN are represented by piecewise 
polynomials which are closed under multiplication, 
integration, and addition, so, the inference algorithm of the BN 
can run on the TBN. 
Definition 3. A one-dimensional function f: R→R is said to 
be a k-piece and n-degree polynomials function if it is a 
piecewise function of the form: 

0
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where Ω0, …, Ωk−1 are disjoint intervals in R that do not

depend on x, and ija  are constants and anj≠0 for all i, j.
We construct the k-piece and n-degree polynomial to fit 

the failure distribution of the node by using Newton 
interpolation with Chebyshev points in each time interval. 
Newton interpolation in the interval can eliminate the Runge 
phenomenon and choosing the Chebyshev point as the interval 
interpolation point can further improve the fitting accuracy. 
As a result, a polynomial with small k and n can fit the failure 
distribution of the node accurately. We can effectively adjust 
TBN complexity and accuracy by adjusting parameters k and 
n. For the interval (a, b), the n Chebyshev points are given by

  
( ) ( )1 1 2 1cos , 1, ,

2 2 2j
jx a b b a j n
n


−

= + + − = 

3  Converting DFT to TBN 

3.1 Conversion Steps from DFT to TBN 

The DFT is converted to TBN by two steps of structure 
conversion and parameter mapping. Figure 1 shows the 
conversion process from DFT to TBN. In the structure 
conversion, the primary components, gates, and the system 
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(top events) of the DFT are converted into root nodes, 
intermediate nodes, and a leaf node of the TBN, respectively. 
In the parameter mapping, the PDF of the component is 
mapped to the marginal distribution of the corresponding root 
node, and the semantics of the gate is mapped to the CPD of 
the corresponding intermediate node. After transformation, 
the nodes in TBN are divided into three categories: the root 
node corresponds to the component of the system, the 
intermediate node corresponds to the subsystem, and the leaf 
node corresponds to the system. 

Figure 1. Conversion steps from DFT to TBN 

3.2 Structure Conversion 

The structure from DFT to BN shows in Figure 2 and 
Figure 3, in which X and Y denote the input component, and Z 
denotes the subsystem. Figure 2(a), Figure 2(b), and Figure 
2(c) are AND, OR, and PAND gates of the DFT, respectively, 
and they have the same TBN structure, as shown in Figure 2(d). 
Figure 3(a) shows a Spare gate. Figure 3(b) and Figure 3(c) 
show the corresponding TBN structures of the WSP and CSP, 
respectively, and the TBN structure of the HSP is the same as 
the AND gate shown in Figure 2(d). 

Figure 2. AND, OR and PAND gates of DFT and the 
corresponding TBN structures 

Figure 3. The Spare gate of DFT and the corresponding TBN 
structures 

3.3 Semantics Mapping 

We use the CPD of the non-root node of the TBN to 
represent the logical semantics of the DFT gate. Let x, y and z 
denote the failure time of X, Y, and Z, respectively, and assume 
that the components X, Y fail not at the same time. 

3.3.1 TBN Parameters of AND Gate 

The AND gate has more than two input components, 
which can be primary components or subsystems. When all 
input components fail, the AND gate subsystem fails. 
According to the AND gate failure mechanism, the 
dependence of the AND subsystem Z and the input 
components X, Y is  

AND | , = ( ) ( ) ( ) ( )( )f z x y u x y z x u y x z yd d- - + - - (1)

where u(x-y) δ(z-x) indicates that the X fails after the Y, and 
the failure of the Z depends on the X. u(y-x) δ(z-y) indicates 
that the X fails before the Y, and failure of the Z depends on 
the Y. 

3.3.2 TBN Parameters of OR Gate 

The OR gate has more than two input components, which 
can be primary components or subsystems. When at least one 
of the input components fails, the OR gate subsystem fails. 
According to the OR gate failure mechanism, the dependence 
of the OR subsystem Z and the input components X, Y is 

OR | , = ( ) ( )( ( ) ( ) )f z x y u x y z y u y x z xd d- - + - - (2)

where ( ) ( )u x y z yd- -  indicates that the X fails after the Y 
and the failure of the Z depends on the Y. ( ) ( ) u y x z xd- -

indicates that the X fails before the Y and failure of the Z 
depends on failure of the X. 

3.3.3 TBN Parameters of PAND Gate 

The PAND has more than two input components, which 
can be primary components or subsystems. The PAND 
subsystem fails when the components fail by the order from 
left to right. According to the PAND failure mechanism, the 
dependence of the PAND subsystem Z and the input 
components X, Y is  

PAND = ( ) ( ) ( ) (( | , ) - )f u y x z y u zx y xz y − − + −  (3)

where ( ) ( )u y x z y− −  indicates that the X fails before the Y 
and the failure of the Z depends on the Y. ( ) ( - )u x y z− 

indicates that the X fails after the Y and the subsystem Z does 
not fail. 

3.3.4 TBN Parameters of SP Gate 

The spare gate has one primary component and one or 
more spare parts. When the primary component fails, it is 
replaced by the first spare. When the spare fails, it is replaced 
by the next spare, and so on. When all spares fail, the spare 
gate fails. We first map the semantics of the WSP into TBN. 
According to the failure mechanism of the WSP, the CPD of 
Z is the same as that of the AND gate and the CPD of Y is 
given by Theorem 1. 
Theorem 1. In the TBN structure corresponding to the WSP, 
the CPD of the node Y is expressed by 

1 1
WSP | ( - )α 1- ( ) + (( ) ( )( ) ( )( ( ))- ) 1-Y Y Y Yf y x u x y f y F y u y x f y F x − −=  (4) 
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where fY (y) and FY (y) represent the PDF and the CDF of Y, 
respectively. α is the dormancy factor of the spare gate and α 
∈ (0, 1). 
Proof. The failure rate of Y is determined by its working state. 
When Y is active, its failure rate is ( )λ t ; When Y is in standby, 
its failure rate is ( )λ ta . Thus, the conditional failure rate of Y 
is expressed as follows: 

( )  ( ) ( ) ( ) ( )|λ y x u x y λ y u y x λ ya= - + - (5)

According to the relationship between failure rate and failure 
distribution, the CPD WSP ( | )f y x of Y is expressed by

0
| d( )

WSP

t
( ) )| ( |

y
t x

y xy x ef



−= (6)

Substituting Equation (5) into Equation (6), then we get the 
following expression: 
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The first term indicates that the Y fails before the X. Since 
the Y is independent of the X, ( - ) 1u x t = and ( - ) 0u t x = . The 
second term indicates that the Y fails after the X, where the 
first integral term indicates that the Y is in the standby state 
and the second integral term indicates that the X has failed, and 
the Y transitions from the standby state to the active state. 

Substituting l (t) = f (t)/ (1- F(t)), where 0
( )

( ) 1
t

d
F t e

  −= − into 
the above formula we have: 
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According to the failure mechanism of the HSP gate, the 
CPD of Z is represented by Equation (1), which is equivalent 
to that of the AND gate. Substituting α=1 into Equation (4), 
we can get the CPD of Y as follows: 

(7)

For the CSP gate, substituting α=1 into Equation (4) we 
have: 1(( | ) ( )( )) )1 (CSP Y Yf y x u y x f y F x -= - - . Since Y is in 
the cold standby state before X fails, fY(y)is replaced by 

( )Yf y x- and ( ) 0YF x = . Therefore, the CPD of Y is reduced 
to 

(8)

According to the failure mechanism of the CSP gate, 
When the Y fails, the Z fails, that is, the failure behaviors of Y 
and Z are the same. Therefore, we get the CPD of Z as follows: 

CSP ( | ) ( )zf yy zd= - (9)

Theorem 2. Equations (1) to (4), (7) to (9) are all normalized 
CPDs. 
Proof. For the AND gate, according to definition 1 and 
Equation (1), we get:  

∫
0

∞fAND (zІx, y)dz = u(x−y) ∫
0

∞
𝛿(z−x)dz

+ u(y−x) ∫
0

∞
𝛿(z−y)dz

= u(x−y) + u(y−x) = 1.

For the PAND gate, according to definition 1 and Equation (3), 
we get: 

∫
0

∞fPAND (zІx, y)dz = u(y−x) ∫
0

∞
𝛿(z−y)dz

+ u(x−y) ∫
0

∞
𝛿(z−∞)dz

= u(y−x) + u(x−y) = 1.

For the WSP gate, according to definition 2 and Equation (4), 
we get: 

∫
0

∞fWSP (yⅠx)dy = ∫
0

∞u(x−y)αfY(y)(1−FY(y))α−1dy

+ ∫
0

∞ u(y−x)fY(y)(1−FY(y))α−1dy

= ∫
0

𝑥 αfY(y)(1−FY(y)) α−1dy

+ ∫
𝑥

∞ fY(y)(1−FY(x)) α−1dy = 1.

Similarly, the CPDs of the OR gate, HSP gate and CSP gate 
are also all normalized.  

4  Equivalence of Conversion 

In order to ensure the correctness of the DFT to TBN 
structural conversion (Figure 2 and Figure 3) and semantic 
mapping (Equation (1) to (4), Equation (7) to (9)), in this 
section, from the perspective of probability calculation, we 
prove equivalence of DFT gate and corresponding node of 
TBN. 
Definition 4. Probability Calculations Equivalence. Let 
PrDFT(z’ ≤ t) denote the failure probability of gate Z’ in DFT, 
and PrTBN(z  ≤  t) denote the failure probability of 
corresponding node Z in TBN, if PrDFT(z’ ≤ t) = PrTBN(z ≤ t) , 
then it is said that the gate Z’ and the node Z are probability 
calculations equivalence. 
Theorem 3. The failure distributions of the corresponding 
TBN nodes Z of the AND, OR, and PAND gates are 
represented by Equations (10) to (12), respectively, which are 
normalized failure distributions and satisfy the probability 
calculations equivalence. 

(10) 

        (11) 

HSP ( (| ) )Yy xf f y=

CSP (( | ) ( )) Yf u y x xfy x y= - -

ANDZ ( ) ( ) () )( ) (X Y Y Xz z zf F f z F f z= +

ORZ ( ) ( )( ) ( ( ))( ) 'X Y X Yz zf f z f z F F z+ -=
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fzPAND (z) Fx(z) fY(z)+ 𝛿(z−∞) ∫
0

∞ fY(y)(1−FY(y))dy (12)

Proof. Let the factors of the TBN nodes X, Y and Z in Figure 
2 be ( )xf , ( )yf , ( , , )x y zf , respectively and 

( ) ( )Xx f xf = , ( ) ( )Yy f xf = , ( | ,( , , )) Z|X,Y z yx z f xyf = . 
According to the BN principle, the marginalized distribution 
of node Z is represented as follows. 

{ , }
Z ( ) ( ) ( , , ))
( ( ) ( , , )) ( )
( ) (
( )

X Y

X Y
f x y x y z

x x y y
z

z
f f f

f f f

-

- -

=
=

(13) 

A. AND gate
Substituting Equation (1) into Equation (13) and

eliminating variable x, we get: 

((⏀(x)⏀(x, y, z))−x 
=∫

0

∞ (u(y−x) 𝛿(z− y) + u(x− y)𝛿(z− x))fX(x)dx

=𝛿(z− y) ∫
0

∞ u(y−x) fX(x)dx

+∫
0

∞ u(x−y)𝛿(z− x) fX(x)dx
=𝛿(z− y)FX(y) + u(z− y) fX(z). 

Next, eliminating the variable Y, we get: 

((⏀(x)⏀(x, y, z))−X⏀(y)) −Y 
=∫

0

∞ 𝛿(z− y) FX(y)fY(y)dy + ∫
0

∞
 u(z− y) fX(z)fY(y)dy

=FX(z)fY(z) + FY(z)fX(z) 

Therefore, Equation (10) holds. Since the integral of Equation 
(10) ∫ 𝑓𝑍AND

(𝑧)dz
∞

0
= [𝐹𝑋(𝑧)𝐹𝑌(𝑧)]0

∞ = 1, it is a normalized 
probability density distribution. The failure probability of Z in 
the interval[0, 𝑡] 𝐹𝑍(𝑡) = 𝑃𝑟( 𝑧 ≤ 𝑡) = 𝐹𝑋(𝑡) 𝐹𝑌(𝑡), which is 
equivalent to the result of the algebraic analysis method [12]. 
Similarly, the OR gate can be proved. 

B. PAND gate
Substituting Equation (3) into Equation (13) and

eliminating variable x, we get: 

((⏀(x)⏀(x, y, z))−X 
=∫

0

∞ (u(y− x) 𝛿(z− y) + u(x− y) 𝛿(z−∞))fX(x)dx
= 𝛿(z− y) ∫

0

∞(u(y− x) fX(x)dx
+ 𝛿(z−∞)) ∫

0

∞u(x− y)fX(x)dx
= 𝛿(z− y) FX(y) + 𝛿(z−∞)(1− FX(y)). 

Next, eliminating the variable Y, we get: 

((f(x)f(x, y, z))−X f(y))−Y 

= ∫
0

∞ d(z− y)FX(y)fY(y)dy+d(z− ∞) ∫
0

∞
 (1−FX(y))fY(y)dy

= FX(z)fY(z) + d(z− ∞) ∫
0

∞
 (1− FX(y))fY(y)dy

Therefore, Equation (12) holds. Since the integral of 
Equation (12) 

PANDZ 0 0

0 0

0 0

0 0

0

( )dz ( )dz ( ) 1 d

( )dz
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It is also a normalized PDF. The failure probability of Z in the 
interval [0, t] 

FzPAND (t) = Pr (z ≤ t) ∫
0

𝑡 FX(z)fY(z)dz
+ (1− ∫

0

𝑡 FX(y)fY(y)dy) ∫
0

∞
𝛿(z− ∞)dz

= ∫
0

𝑡 FX(z)fY(z)dz,

which is equivalent to the calculation of the algebraic analysis 
method [12]. 
Theorem 4. The failure distributions of TBN nodes Z in 
Figure 3(b), Figure 3(c) and Figure 2(d) are represented by 
Equations (14) to (16), respectively, which are normalized 
failure distributions and satisfy the probability calculations 
equivalence. 

fzWSP (z) = fY (z) ∫
0

𝑧 fX(x)(1−FY(x))α−1dx

+ fX(z)(1− (1−FY(z)α) (14) 

HSPZ ( ) ( ) () )( ) (Y X X Yf f z F z f z Fz z+=  (15)

fzCSP (z) = ∫
0

𝑧 fX(x) fY(z− x) dx (16)

Proof. The marginal distribution of the corresponding TBN 
node Z of the WSP gate can be represented as follows. 

WSP

{
Z

, }( ) ( , ) ( , , ))
( ( , ) ( , , )) ( )

) (
( )

( X Y

Y X
f x x y x y z

x y x y y
z

z
f f f

f f f

-

- -

=

=
(17)

Substituting Equation (4) into Equation (17) and eliminating 
variable X, we get: 

(⏀(x, y)⏀(x, y, z)) −Y 
= ∫

0

∞ (u(y− x) 𝛿(z− y) + u(x− y) 𝛿(z−𝑥))fX|Y(x|y)dy
= ∫

0

∞ (u(y− x) 𝛿(z− y) u(x− y)αfY(y)(1−FY(y))α−1dy
+∫

0

∞ (u(y− x) 𝛿(z− y) u(y− x) fY(y)(1−FY(x))α−1dy
+∫

0

∞ (u(x− y) 𝛿(z− x) u(x− y)αfY(y)(1−FY(y))α−1dy
+∫

0

∞ (u(x− y) 𝛿(z− x) u(y− x)fY(y)(1−FY(x))α−1dy
= ∫

0

∞ (u(y− x) 𝛿(z− y) fY(y)(1−FY(x))α−1dy
+∫

0

∞ (u(x− y) 𝛿(z− x)αfY(y)(1−FY(y))α−1dy
= (u(z− x) fY(z)(1−FY(x))α−1

+ 𝛿(z− x) ∫
0

∞
αfY(y)(1−FY(y))α−1dy

= u(z− x) fY(z)(1−FY(x))α−1+ 𝛿(z− x) (1− (1−FY(x))α

Next, eliminating the variable Y, we get Equation (14) 

((⏀(x, y)⏀(x, y, z)) −Y⏀(x)) − x 
= ∫

0

∞ (u(z− x) fY(z)(1−FY(x))α−1fX(x)dx
+∫

0

∞ 𝛿(z− x) (1− (1−FY(x))α) fX(x)dx
= fY(z) ∫

0

∞ fX(x)(1−FY(x)) α−1dx + fX(z)(1− (1−FY(z) α).
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For the HSP gate (i.e., α = 1), Equation (14) reduces into 
Equation (15) which is the same as Equation (10). This is 
because in the HSP gate, the spare part is in a hot backup state, 
that is, the spare part and the main part work at the same time, 
the failure behavior of the two is completely independent, and 
its failure mechanism is the same as the AND gate. 

For the CSP gate, the marginal distribution of the 
corresponding TBN node Z can be represented as follows. 

CSP

{ }
Z

,( ) ( , ) ( , ))
            =( ( , ) ( , )) (

(
)

) (
)(

X Y

Y X
f x x y y z

x y y z x
z f f f

f f f

-

- -

=
(18)

Substituting Equation (8) and (9) into Equation (18) and 
eliminating variable Y, we get: 

(⏀(x, y)⏀(y, z)) −Y

=∫
0

∞ 𝛿(z− y)u(y− x)fY(y− x)dy
= u(z− x)fY(z− x)fX(x). 

Next, eliminating the variable Y, we get Equation (16). 
Since the integral in Equation (14) and Equation (16) may 

not have an analytic solution, the equivalence of the 
calculation of failure probability under arbitrary distribution 
cannot be proved. However, we can prove the equivalence of 
failure probability calculation under exponential distribution. 
Assuming that the failure distribution of components X and Y 
follow the exponential distribution with parameter l , then, 

𝑓𝑍𝑊𝑆𝑃
(𝑧) = 𝜆𝑒−𝜆𝑧 ∫ 𝜆𝑒−𝛼𝜆𝑧

𝑧

0

𝑑𝑥 + 𝜆𝑒−𝜆𝑧(1 − 𝑒−𝛼𝜆𝑧) 

=
1 + 𝛼

𝛼
(𝜆𝑒−𝜆𝑧 − 𝜆𝑒−(1+𝛼)𝜆𝑧) 

and the failure probability of 𝑍WSP in the interval [0, t] 

𝐹𝑍WSP(𝑡) = Pr(𝑧 ≤ 𝑡) = ∫
1 + 𝛼

𝛼
(𝜆𝑒−𝜆𝑧 − 𝜆𝑒−(1+𝛼)𝜆𝑧)

𝑡

0

𝑑𝑧 

=
1 + 𝛼

𝛼
(1 − 𝑒−𝜆𝑡) −

1

𝛼
(1 − 𝑒−(1+𝛼)𝜆𝑡). 

Similarly, for the CSP gate 

𝑓𝑍CSP
(𝑧) = ∫ 𝑓𝑋(𝑥)𝑓𝑌(𝑧 − 𝑥)

𝑧

0

𝑑𝑥 = 𝜆2𝑧𝑒−𝜆𝑧 

and the failure probability of Z_CSP in the interval [0, t] 

𝐹𝑍CSP
(𝑡) = Pr(𝑧 ≤ 𝑡) = 1 − 𝑒−𝜆𝑡 − 𝜆𝑡𝑒−𝜆𝑡 . 

The failure probabilities of ZWSP and ZCSP in the interval [0, 
t] are equal to those calculated by Markov chain analysis
method [1].

5  Case Study 

In this section, we verify the effectiveness of the TBN 
method by analyzing the DFT model of the X2000 avionics 
system in [13], and use SamIamv3.0 
(http://reasoning.cs.ucla.edu/samiam) as an auxiliary tool to 
analyze TBN and DTBN models.

5.1 Model Conversion 

According to the method of conversion DFT to TBN in 
Section 3, we first convert the structure of the DFT of the 
X2000 system in [13] to the structure of TBN as shown in 
Figure 4. The leaf node NC in TBN indicates a top event which 
is that the network is cut off due to the failure of the bus set or 
computer nodes. 

Figure 4. TBN of X2000 avionics system 

Then, we map the logic semantics of gates of The DFT into 
the corresponding nodes of the TBN. The detailed mapping is 
shown in Table 1.  

5.2 Safety Analysis for the X2000 

We conduct 2 groups of experiments to verify the safety 
analysis capability of the TBN method. The first group 
assumes that the failure distribution of each primary 
component follows an exponential distribution, in which 
traditional DFT analysis methods, such as CTMC, can give 
exact solutions. The second group assumes that the primary 
components follow different types of distributions (mixture 
distributions), in which traditional analytical methods are 
intractable.  

The parameters of the two groups of experiments are set 
as follows: In the first group, the failure distribution of each 
primary component follows the exponential distribution with 
parameter l  = 0.05, and the DTBN time granularity n is 20. 
In the second group, the failure distribution of components FC, 
MC1, MC2, MC3 and MC4 follow the exponential 
distribution with a parameter of 0.05,l = respectively, and 
the remaining components follow the Weibull distribution 
with a shape parameter of 5 and a scale parameter of 100, 
respectively. In the two groups, the failure rate coefficient α in 
WSP is equal to 0.5, and the TBN uses a 3-piece and 5-degree 
polynomial to fit the node's failure probability distribution 
function. Figure 5 plots the cumulative failure distribution of 
the top event which are calculated by the TBN method during 
100h mission time using two different sets of parameters, 
which also shows that TBN method can effectively analyze 
models with mixed distribution. 

5.3 Performance Analysis 

Under the first group of parameter settings in Section 5.2, 
we use CTMC, TBN and DTBN to analyze the DFT of X2000, 
respectively. In this setting, the CTMC method can obtain an 
analytical solution, that is, an exact solution. Therefore, the 
performance of the TBN method and the DTBN method can 
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be compared based on the exact solution. Figure 6 plots the 
change trend of absolute error between the solution of TBN 
and the solution of DTBN and the exact solution respectively 
within the mission time of 100h.  

Here, the absolute error is the absolute value of the 
difference between the numerical solution and the exact 
solution at the same time point, the maximum absolute error 
is the maximum value of the absolute error at the same time 
point, and the average error is the average of the absolute 
errors over the mission time. 

The maximum error of the TBN method is 2.1‰, and the 
average error is 0.227‰. However, the DTBN method has a 
maximum error of 15.4‰ and an average error of 3.2‰. The 
error shows that the accuracy of the TBN method is 
significantly better than that of the DTBN method. The 
running time of TBN is 12.62ms and the DTBN is 79.82m 
without considering the fitting time of failure distribution in 
the TBN and the discretization time of failure distribution in 
the DTBN. 

Table 1. The relationship between TBN nodes 

Sub-system Component/ 
Subsystem 

Logic 
Relationship Semantics Representation 

NC BSS, NF OR 
The semantics of the NC is represented by Equation (2), 
where z represents NC, x represents BSS, and y represents 
NF. 

BSS BS1, BS2 WSP 

The semantics of between BS1 and BS2 is represented by 
Equation (4), where x represents BS1, and y represents 
BS2.The semantics of the BSS is represented by Equation 
(1), where z represents BSS. 

NF SI, N1-N5 AND The semantics of NF is represented by a three-level AND 
subsystem. 

N1 IOI,NVM1,FC OR The semantics of N1 is represented by a two-level OR 
subsystem. 

N2 MC4, GMM OR 
The semantics of the N2 is represented by Equation (2), 
where z represents N2, x represents MC4, and y represents 
GMM. 

N3 MC1, TEL OR 
The semantics of the N3 is represented by Equation (2), 
where z represents N3, x represents MC1, and y represents 
TEL. 

N4 MC2, HL OR 
The semantics of the N4 is represented by Equation (2), 
where z represents N4, x represents MC2, and y represents 
HL. 

N5 MC3, TPS OR 
The semantics of the N5 is represented by Equation (2), 
where z represents N5, x represents MC3, and y represents 
TPS. 

HL HSS, LSS AND The semantics of HL is represented by Equation (1), where z 
represents HL, x represents HSS, and y represents LSS. 

TPS TS, PC, SM AND The semantics of TPS is represented by a two-level AND 
subsystem. 

Figure 5. CDF of the X2000 system under exponential 
and mixed distributions respectively 

Figure 6. Absolute error of TBN and DTBN 
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6  Conclusion 

In this paper, we propose a method in which the analysis 
of the mixture failure model is reduced to the TBN inference 
problem. The approach can trade-off between computational 
efficiency and accuracy by adjusting the parameters k and n, 
and effectively avoid the local state explosion problem of the 
DTBN method. Further research is to extend the method to 
analyze the cascade spare gate and the spare gate with a shared 
pool. 
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