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Abstract 
 

Self-Admitted Technical Debt (SATD) is an intentionally 
introduced software code comment describing potential 
defects or other technical debt. Currently, deep learning is 
widely used in fields such as Natural Language Processing. 
Deep learning can be used for SATD detection, but there is a 
class imbalance problem and a large number of easily 
classified SATD instances that may potentially affect the loss 
value. As a result, we proposed a weighted focal loss function 
based on particle swarm to address the problem. Meanwhile, 
there is no empirical research based on local explanations for 
SATD detection. We have investigated local interpretation 
models such as Saliency Maps, Integrated Gradients, which 
are currently widely used in deep learning, and conducted 
empirical research for shared data sets. The research results 
show that our proposed weighted focal loss function can 
achieve the best performance for SATD detection; our model 
achieves 12.27%, 5.97%, and 5.62% improvement in 
Precision, Recall, and AUC compared to the baseline model, 
respectively; Local explanation models, including Saliency 
Maps and Integrated Gradients can cover nearly half of the 
manually labeled paradigms; these two interpretation models 
can also discover potential new paradigms. 
 

Keywords: Self-Admitted Technical Debt, Deep learning, 
Explainability, Class imbalance, Focal loss 

 

1  Introduction 
 

Self-Admitted Technical Debt (SATD) is an intentionally 
introduced software code comment describing potential 
defects or other technical debt [1]. At present, software tests 
for software defects can be arranged by detecting SATD [2]. 
For example, the software comment, “TODO (@author fdietz): 
show error dialog here”, shows that there is a potential bug. 
The lines of code related to this code comment should be the 
first to be paid attention to and test arranged. In the software 
development process, there is always a contradiction between 
rapid software development and the limited project budget and 
project delivery time. Technical debt is used to describe the 
sub-optimal solution in the software development process to 
meet the short-term needs of the project . Generally speaking, 
these technical debts allow the software development process 
to move forward quickly, at the cost of leaving a security risk 

for the longterm maintenance of the project. For technical debt, 
they should be paid rapidly in time. Otherwise, it will have 
negative effects and corresponding software errors. For 
example, architectural decay belongs to technical debt. 
Architectural decay incurs inadvertently. However, we focus 
more on deliberately introduced technical debt, called 
Selfadmitted technical debt (SATD). SATD was first 
proposed by Potdar and Shihab.  Compared with traditional 
technical debt using source code analysis, SATD detection is 
more lightweight by only using source code comments. The 
SATD should be paid. Otherwise, an artificial software bug 
will be introduced into the software project. Therefore, in 
software engineering, detecting SATD is necessary for 
ensuring software quality.A binary classification technique is 
used to predict whether a comment shows SATD. There are 
many machine learning techniques, such as pattern-based 
SATD detection [3], traditional text-mining-based SATD 
classification [4], and Convolutional Neural Network (CNN) 
based approach [2]. 

 The CNN-based approach achieved the best performance 
for within-project and cross-project in terms of F1-score, 
Recall, Precision metrics. Some key issues, including variant 
term frequency, key words project uniqueness, variable length 
of software comments, and semantic variation can be handled 
using CNN correctly [2, 5]. However, the CNN model is a 
black box. Why this CNN model can achieve the best 
performance is valuable for software engineering practitioners. 
Appropriate explanations can assist front-line developers to 
better locate potential software defects. But so far, there is no 
empirical research on the explainability of SATD models. 
Why do we need Explainable ML? Loan issuers are required 
by law to explain their models. The medical diagnosis model 
is responsible for human life. There should be no BlackBox-
based diagnosis. If a self-driving car suddenly acts abnormally, 
we need to explain why. Explainable ML is important for 
decisions. The European Union’s General Data Protection 
Regulation states that any algorithm with decision-making 
capability requires to be explained [6]. For SATD detection, 
we not only need a high-precision classification model, but we 
also need to be able to quickly locate problems based on the 
classification model. The SATD comments will be rapidly 
located using the CNN model and explained using gradient-
based explainability techniques so that software testers can 
quickly locate potential defects and fix bugs. 

The main contributions of this article are as follows: 
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(1) We proposed a weighted focal loss function based on 
particle swarm to address the class imbalance and the potential 
calculation error for a large number of easily classified 
instances when detecting SATD. 

(2) Based on the gradient-based interpretability models, a 
small part of paradigms can be covered compared with 62 
manually labeled paradigms; 

(3) Based on the gradient-based interpretability models, 
there are almost the same paradigms that are discovered by 
different models; 

(4) New paradigms are discovered based on gradient-
based interpretability models. 

The rest of the article is organized as follows. In Section 2, 
we illustrate SATD detection model using weighted 
Convolutional Neural Network and gradient-based 
explainability techniques. In Section 3, we then describe our 
experiment setup, including research questions, research 
methods, data collections, and commonly used evaluation 
metrics. In Section 4, we report and analyze our experimental 

results. In Section 5, we conclude this article and discuss key 
directions for future work. 

 
2 Approach  

 
The software development process requires the 

collaboration of different stakeholders (e.g., users, developers, 
and managers) and integrated development tools can provide 
intelligent support for software development, such as software 
defect prediction [7-8], SATD detection [2], bug location [9-
10]. These development tools can not only provide intelligent 
decision-making for collaborative development but also 
should be able to provide a basis for decision-making. In 
recent years, some scholars have done interpretability research 
on software defect prediction to provide a detailed basis for 
decision-making [11].  

In this section, we will describe our proposed deep 
learning model for SATD detection The deep learning flow for 
SATD detection is shown in Figure 1. 

 

 

Figure 1. Deep learning flow of SATD detection 
 
 

In this paper, we will describe Gradient-based 
Explainability Techniques for SATD detection. The Weighted 
TextCNN model achieves the best performance for SATD 
detection [2, 12]. Global explanation [13] and local 
explanation [14-18] can be used for the CNN model. The 
global interpretation model pays more attention to the overall 
characteristics of the input examples, while the local 
interpretation pays more attention to the impact of different 

input features on the classification results. For the SATD 
detection, we use a gradient-based local explanation model. 
For local explanation, we pay more attention to which 
component is critical for the CNN model. Below we present 
the formal definition of a gradient-based local explanation 
model. The explainability analysis process is shown in Figure 
2. 
 

 

 

Figure 2. Explainability analysis process 
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2.1 SATD Detection Model using Weighted 

Convolutional Neural Network  
 

In this section, we will describe the SATD detection model 
used in our experiment. The model takes the programmer’s 
code comments as input. The words are inputted to the CNN 
using word-embedding technology, and the neural network is 
trained by the weighted focal loss function. Finally, the input 
code comments are classified as SATD or not. 

First, we provide a formal definition of the SATD 
detection model. 

Definition 2.1: a SATD detection model. A SATD 
detection model is a function: 

 
(𝑥1, 𝑥2, 𝑥3 … … 𝑥𝑚) → 𝑦             (1) 

 
x is the software comment word sequences with the length 

of word sequences  𝑚  and 𝑦  is the outcome space (e.g., 
SATD or non-SATD). Typically training data 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 is 
used to train the CNN model and test data 𝐷𝑎𝑡𝑎𝑡𝑒𝑠𝑡 is used 
to evaluate the CNN model.  

 
2.1.1 The Architecture of Convolutional Neural Network 

 

Our CNN is inspired by Ren [2]. This architecture is 
originated from TextCNN [12], which can handle sentence 
classification tasks using a shallow neural network. As shown 
in Figure 1, our deep learning framework is stacked by the 
following layers, including the word embedding layer of code 
comments, the convolutional network layer, the pooling layer, 
the fully connected layer, and the final loss function 
calculation layer. 

First we will show the word embedding layer of code 
comments. The pre-training vector used in the framework is 
based on Global Vectors for Word Representation (Glove). It 
is a word representation tool based on count-based and overall 
statistics. During the training process, the output word vector 
dimension is 300 dimensions, the length of n-grams is set to 5, 
the CBOW (continuous bag of word) model is used in the 
training process, the low-frequency threshold is 5, and the 
number of iterations is 5. The output layer adopts the negative 
sampling method, that is, each time 5 labels other than the 
current label are selected as negative samples, they are added 
to the loss function as the probability of negative samples. In 
the word vector embedding layer, the code comment is 
converted into a word vector matrix, and the output value is 
used as the input of the convolutional neural layer. 

Next, we will describe the convolutional layer. The deep 
semantic understanding of words is filtered through different 
convolution kernels. The semantic learning framework for 
SATD detection originated from the TextCNN framework 
proposed by Kim et al. [12]. The framework uses a shallow 
neural network to analyze the semantics of the text. The 
network structure is simple and the processing speed is faster. 
The code comments are V, and the word is represented as W, 
so each word comment can be represented as a sequence of 
words. These words are represented as a vector matrix. 
According to the different requirements, we set the size of 
each filter in the convolutional layer of TextCNN. Later we 
will describe the specific method of setting the 
hyperparameter of different filter sizes. The filter window 
represents the number of co-occurring words that the network 

architecture focuses on at the same time in TextCNN. This 
parameter is a hyperparameter and needs to be optimized. 
Generally speaking, the filter window size filter_size ∈
[1,2,3,4,5,6] . In the English corpus, simple English word 
segmentation can be achieved by using spaces. The different 
sizes of multiple filters enable CNN to find different co-
occurring words based on semantics. As shown in Figure 1, in 
the convolutional layer, the red output represents the semantic 
filtering result with a convolution kernel of 5, and the blue 
output represents the semantic filtering result with a 
convolution kernel of 6. 

In the pooling layer, the maximum pooling operation is 
performed for the feature map obtained by each convolution 
kernel to complete feature extraction, achieve dimensionality 
reduction, and reduce potential overfitting. Finally, a fully 
connected linear classifier in the output layer is trained. 

The loss function of our CNN framework will be described 
in the next section in detail. 

 
2.1.2 Our Weighted Focal Loss Function 

 

Assuming that an input comment is marked as SATD 
labeled as 𝑦 = 1, we use cross entropy Loss to calculate the 
loss between the classification result p of the classification 
model and the true label y. 

 

𝐿𝑜𝑠𝑠(𝑝, 𝑦) = {
− log(𝑝) , 𝑦 = 1

0, 𝑦 = 0
       (2) 

 
However, this Loss function does not work well in our 

SATD detection model. Because the code comments with 
SATD will be much smaller than the code comments without 
SATD in actual work, this is a natural class imbalance problem 
[2]. In Ren’s experiment, a weighted cross-entropy loss was 
proposed to their CNN. Assuming there are n SATD 
comments and m non-SATD comments, then they defined the 
weights 𝛼. 

 
𝛼 =

𝑚

𝑚+𝑛
   (3) 

 
The Loss can be rewritten in the following format with the 

tuning parameter  𝛼 . The wrong classification of SATD 
instances is penalized more based on Equation (4). 

 
𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − 𝛼 ∗ log(𝑝)       (4) 

 
However, there is another problem. In our dataset, the 

highest percentage of SATD comments is only 5.57%. A large 
number of non-SATD examples have obvious characteristics, 
and the accumulation of their loss will most likely exceed the 
weighted rare SATD instances [19]. That is to say, although 
the adjustment factor 𝛼  is used to solve the problem of 
insufficient punishment for the minority class, in the face of 
the majority class which is far more than the minority class, 
the adjustment factor is lacking to deal with easy-to-classify 
examples. We need to add more parameters to adjust the loss 
value of easy-to-classify examples. To deal with this problem, 
FocalLoss was proposed [19]. 

 
𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − (1 − 𝑝)𝛾 ∗ log(𝑝) (5) 
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By combining with FocalLoss, the loss function (4) is 
transformed. 

 
𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − 𝛼(1 − 𝑝)𝛾 ∗ log(𝑝)  (6) 

 
In Lin’s experiment,𝛾 ∈ [0,5]. 𝛾 is a hyperparameter that 

was chosen using empirical study. In our experiment, we will 
describe the specific method of setting the hyperparameter 𝛾. 

From Equation (6), we can see that: (1) When a SATD 
instance is misclassified, 𝐿𝑜𝑠𝑠(𝑝, 𝑦) will be tuned by 𝛼(1 −
𝑝)𝛾. The parameter (1 − 𝑝)𝛾  increases the loss contribution 
value to the samples that are not easy to classify in the SATD 
class. The parameter  𝛼  increases the penalty for minor 
classification errors. (2) When a SATD instance is correctly 
classified,  𝐿𝑜𝑠𝑠(𝑝, 𝑦)  will not be tuned by the parameter 
(1 − 𝑝)𝛾 . In addition, the parameter  𝛼  only increases the 
penalty for SATD instances. 

 
2.1.3 Hyperparameter Optimization Method Based on 

Particle Swarm 

 

The SATD detection model based on TextCNN uses a 
shallow neural network instead of a multi-layer deep neural 
network. The hyperparameter optimization process does not 
require special optimization of the structure of the neural 
network. The parameters to be optimized include the 
dimension of the vector, the learning rate, the size of the filter, 
the size of the filter window, etc. The word vector is 300 
dimensions for Glove so the dimension of the word embedding 
vector is set to 300; The initial filter window size set in the 
frame is (1,2,3,4,5), different from the six sizes of filter 
window size (1,2,3,4,5,6) in the TextCNN network 
architecture of Ren et al [2]. For the optimization of 
parameters such as the number of network layers of the 
convolutional neural network, the genetic algorithm is more 
effective. The hyperparameter optimization method based on 
the particle swarm optimization algorithm is suitable for the 
hyperparameters of the convolutional neural network. 

Set the initial value of the learning rate, the size of the filter, 
the size of the filter window, and use the particle swarm 
optimization algorithm to optimize the hyperparameters, 
which is based on the social sharing of information to find the 
best position of the particles. The training data set 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 
is repeated ten times and ten-fold cross-validation is 
performed. The average value of the performance results on 
the test data sets is used as the result of the particle swarm 
optimization algorithm. Define a particle p in particle swarm 
optimization algorithm as: 

 
𝑝 = (γ, lr, filter_size, window_size, )  (7) 

 
The dimension of each particle is 4. Other main parameters 

in the particle swarm algorithm, including the number of 
particle swarms, inertia weights, stopping criteria, etc., are the 
same as the values in Bratton’s experiments [20]. In the 
process of particle search, each particle finds a position that 
satisfies the best fitness value through information sharing and 
ends the algorithm. The hyperparameter optimization 
algorithm based on the particle swarm algorithm is shown in 
the following steps. 

Step 1: Set the performance function in the training set of 
the convolutional neural network as the objective function of 
the particle swarm algorithm; 

Step 2: Encode each parameter in Equation (7) to form a 
particle swarm; 

Step 3: Set the main parameters in the particle swarm 
algorithm and limit the search space of each parameter; 

Step 4: Run the algorithm until the performance criteria 
requirements are met; 

Step 5: If the performance cannot meet the requirements, re-run 
step 3 of the algorithm. 

 
 

2.2 Gradient-based Explainability Techniques 
 

Below we introduce gradient-based local explanation 
models for SATD detection. 

 
2.2.1 Saliency Maps 

 

Zeiler et. al analyzed critical pixels for classification by 
using occlusion sensitive [13]. Karen et. al used Saliency 
Maps to visualize the image classification model [14]. 
Considering this sharp fluctuation, the direct gradient at any 
given pixel is not as meaningful as the local average gradient 
value. By adding random noise to the inputs many times, the 
transformed image is combined and averaged to achieve the 
effect of "introducing noise" to "eliminate noise" [15, 21]. For 
SATD detection, Saliency Maps is used to visualize the model. 
There are 4 key steps for instance explanation. 

Firstly, the weighted TextCNN model is trained based on 
the training data 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 . Word embedding is used for 
inputs and the class imbalance problem is resolved using the 
weighted focal loss function. 

Secondly, the instance of interest is inputted. Loss is 
calculated using forward computing.  

Thirdly, backpropagation is executed based on the 
calculated loss. For the SATD detection mapped function f, 
when the element 𝑥𝑚  changes to 𝑥𝑚 + ∆𝑥 , the output 
changes from 𝑦 to 𝑦 + ∆𝑦.  

Finally, the gradient for the output of the input’s word 
embedding is gathered. The gradient is used to indicate the 
ratio of the change in 𝑦 to the change in (𝑥1, 𝑥2, 𝑥3 … … 𝑥𝑚). 

 
𝜕𝑦

𝜕𝑥𝑚
=

Δ𝑦

Δ𝑥
       (8) 

 
2.2.2 Integrated Gradients 

 

There may be gradient saturation so that gradient cannot 
always reflect importance. This is a limitation for gradient-
based explainable techniques. By integrating the gradient 
along different paths, it is easy to calculate the contribution of 
the non-zero gradient in the unsaturated zone to the 
importance of decision-making [18, 22].  

Compared with the previously used Saliency Maps 
algorithm, Integrated Gradients focuses on the gradient 
saturation phenomenon in a special area, where key features 
affect the classification model. When the key feature is in the 
saturated area, increasing the amount of change of the key 
feature does not bring about a significant change in the 
gradient value. The reason for the problem is that the key 
feature has entered the saturation interval, and the gradient 
cannot reflect the key feature. The Integrated Gradients 
algorithm can be represented as: 
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∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) = (𝑥 − 𝑥′) × ∫
𝛿𝑓(𝑥,+𝜃(𝑥−𝑥,))

𝛿𝑥
𝑑𝜃

1

𝜃=0
   (9) 

 
𝑥′  represents the baseline. For SATD detection, the 

baseline is Zero vector which is the value of PAD. 
∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) is the Integrated Gradients value. When 𝜃 = 0, 
∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,)  represents the baseline. When 𝜃 = 1 , 
∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,)  represents the input instance, for example, 
‘probably buggy code’. When 𝜃 ∈ (0,1) ,  ∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) 
represents the integral value from 𝑥 to 𝑥 ,. 

Compared with DeepLift [17] and Layer-wise relevance 
propagation (LRP) [23] algorithm, Integrated Gradients can 
satisfy three important properties, such as sensitivity, 
completeness, and symmetry-preserving. There are 4 key 
steps for instance explanation. 

Firstly, train the weighted TextCNN model and choose the 
baseline, Zero vector. 

Secondly, calculate the predicted output of the instance 
using forward computing. 

Thirdly, backpropagation is executed based on the 
predicted output. Based on (9), the integral gradient of each 
input feature is calculated by the linear interpolation method.  

Finally, the gradient for the output of the input’s word 
embedding is gathered. The gradient is used to indicate the 
importance for every feature. 

 
3 Experimental Design 

 
In this section, three research questions are proposed. Next, 

we describe the baseline paradigms and two gradient-based 
methods. Then, we discuss our selected datasets, the 
evaluation metrics, and the experimental environment. 

 
3.1 Research Questions 
 

We propose three research questions we investigate in our 
experiments to conduct the empirical study. The first question 

is to determine whether our proposed detection model can 
achieve the best performance. The other two research 
questions investigate different aspects of the gradient-based 
interpretability model for SATD detection. 

(1) How effective is our weighted focal loss function for 
imbalance software comments compared with the cross 
entropy loss function? 

(2) Can the gradient-based interpretability model cover 
62 manually labeled paradigms? 

(3)  Can different interpretability models discover new 
SATD paradigms? 

 
3.2 Research Methods 
 

Two methods are compared in the experiment. The 
baseline paradigms are based on manually labeled data [1]. 

(1)  Baseline Paradigms. There are 62 manually labeled 
paradigms from fore large open-source projects – namely 
Eclipse, Chromium OS, ArgoUML, and Apache httpd [1]. The 
statistics of manually labeled paradigms are shown in Table 1. 
From Table 1, we can see that 95.16% of paradigms contain 
words ranging from 1 to 5. In particular, paradigms with three 
words account for the highest proportion, 29.03%. 

(2)  Saliency Maps. As shown in Equation (2), the 
gradient for software comment is calculated. 

(3)  Integrated Gradients. As shown in Equation (3), the 
Integrated Gradients for software comment is calculated along 
the linear path. 

Saliency Maps and Integrated Gradients are used for the 
weighted TextCNN model so that the gradient of inputs is 
gathered. These gradients can reflect the importance of 
different features. We first investigate whether these two 
methods can discover 62 manually labeled paradigms. Then, 
we investigate whether these can discover new paradigms. 

 

 
Table 1. Statistics of manually labeled paradigms 

Length of paradigms 
 

Manually labeled paradigms Count of paradigms 

One word hack; retarded; stupid; ugly; nuke; hacky; silly; kludge; fixme; barf; yuck; 
crap; inconsistency; kaboom; 

14 

Two words take care; is problematic; give up; temporary solution; causes issue; 
temporary crutch; toss it; certainly buggy; bail out; 

9 

Three words at a loss; remove this code; may cause problem; trial and error; this is 
wrong; cause for issue; some fatal error; this is bs; just abandon it; 
probably a bug; something bad happened; fix this crap; this is uncool; 
abandon all hope; prolly a bug; don’t use this; something’s gone wrong; 
workaround for bug; 

18 

Four words there is a problem; something serious is wrong; get rid of this; hope 
everything will work; remove me before production; it doesn’t work yet; 
this isn’t quite right; this doesn’t look right; this isn’t very solid; 

9 

Five words hang our heads in shame; this can be a mess; give up and go away; is this 
next line safe; is this line really safe; doubt that this would work; risk of 
this blowing up; you can be unhappy now; something bad is going on; 

9 

Six words 
 

unknown why we ever experience this; treat this as a soft error; 2 

Seven words 
 

this is temporary and will go away; 1 
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3.3 Data Collection 
 

To perform our research, we use open source datasets. 
These datasets are derived from ten open source projects, 
including ArgoUML, Columba, Hibernate, JMeter, Apache 
Ant, EMF, JEdit, JFreeChart, JRuby, and SQuirrel. These ten 
open source projects have different application areas, and the 
complexity of the projects is not the same. After the source 
codes of these open source projects have been collected, 
Eclipse plug-in, called JDeodorant [24], is used to perform 
data analysis on these source codes to obtain the start and end 
positions of the corresponding code comments and the type of 
code comments. 

This data set was collected and labeled by Maldonado et 
al. . The process of data collection is shown three main 
steps.Firstly, an eclipse plug-in tool, named JDeodorant, was 
used to parse the source code and extract the comments 
information, including the line that each comment starts, 
finishes and the different type of comments. A total of 259,229 
lines of code comments were obtained from these 10 open 
source projects, with an average of 25,923 lines per project. 
Only a small part of the code contains SATD, and manual 
labeling of these source codes will be time-consuming and 
labor-intensive. 

Secondly, as only a small ratio of the source code 
comments was described as SATD in the raw dataset, five 
filtering heuristics are developed to identify comments with 
SATD and eliminate comments that are unlikely to be 
classified as SATD. After automatically cleaning, a large 
number of unrelated machine-generated comments were 
eliminated. The number of code comments that need to be 
manually annotated has become 62,566. The use of heuristic 
strategies greatly reduces the workload of manual labeling, 
and at the same time can effectively improve the classification 
accuracy of the machine learning model. 

After cleaning the raw dataset, finally, each comment was 
labeled with SATD or non-SATD by Maldonado and Shihab 
using manually examining each comment. These manually 
labeled data sets may have personal biases of users, and 
inaccurate data sets will affect the subsequent training of 
machine learning models. Therefore, stratified sampling was 
performed on the full data set, and the stratified sampling 
results of Maldonado et al. showed that a confidence level of 
99% and a confidence interval of 5% were achieved [3]. To 
further confirm the validity of this data set, another 
independent individual was invited to sample the data 
hierarchically and label the data set. Comparative experiments 
show that the hierarchical sampling results of different user 
groups have extremely high consistency, with Cohen’s Kappa 
coefficient of 0.81. The experimental results of sampling and 
labeling of different user groups prove that the data set has 
strong statistical reliability. 

 
3.4 Evaluation Metrics 

 
To evaluate the classification performance of the SATD 

detection model we proposed, we define TP (True Positive) to 
represent the number of SATD instances that are predicted as 
SATD instances; we define TN(True Negative) to represent 
the number of non-SATD instances which are predicted as 
non-SATD instances; we define FP (False Positive) to 
represent the number of non-SATD instances which are 

predicted as SATD instances; we define FN(False Negative) 
to represent the number of SATD instances which are 
predicted as non-SATD instances. 

The Precision indicator is used to represent the proportion 
of the correctly classified SATD instances among the 
instances classified as SATD. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
             (10) 

 
The Recall indicator is used to represent the proportion of 

the correctly classified SATD instances among the instances 
which are labeled as SATD. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                (11) 

 
Recall also is called TPR. In contrast, The FPR indicator 

is used to represent the proportion of the correctly classified 
non-SATD instances among the instances which are labeled 
as non-SATD. 

 
𝐹𝑃𝑅 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
                  (12) 

 
For SATD detection, because of the class imbalance 

problem, AUC (Area Under Curve) is used to measure the 
performance of the CNN model. Given a binary classification 
model and its threshold, a coordinate point (X=FPR, Y=TPR) 
can be calculated from the true value and predicted value of 
all samples (positive/negative). When the value is closer to 1, 
it means that the classification performance of the model is 
better; if the value is close to 0.5, it means that the 
performance of the model is roughly the same as the random 
classification effect. 

The evaluation metrics for the local explainability of the 
model are divided into two categories. One is to evaluate the 
result of interpretation manually, and the other is to evaluate 
the model by using algorithm indicators. Yeh et al. [26] 
proposed that the Infidelity and Sensitivity indicators can be 
used to quantitatively evaluate the algorithm model. In this 
experiment, our research goal is to compare the relationship 
between the local explainability model and the code review 
paradigms. We use the method of manual verification to 
evaluate the explainability model. 

Given the same training dataset, the same test dataset, and 
the CNN model for SATD detection, the scores of critical 
factors are ranked. The Top-N phases with Top-N highest 
scores are gathered. These phrases are used to evaluate the 
effectiveness of the interpretability model. 

 
3.5 Experiment Environment 
 

The experiment equipment is a desktop workstation, 
equipped with a Intel Core i5 CPU, 24G RAM, and Nvidia 
RTX 2070 GPU, running on Windows 10 Operating System. 

 
4 Experimental Results 

 
We present the results of our case study to our two research 

questions. 
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4.1 How Effective is Our Weighted Focal Loss 

Function for Imbalance Software Comments 

Compared with The Cross Entropy Loss 

Function? 
 

Motivation: The SATD detection model can be formalized 
as a binary classification problem using natural language 
processing technology. Our goal is to accurately divide the 
software comments into whether they are SATD or not. Based 
on the consideration of the naturalness of software code 
comments, we merged the datasets. Kim’s TextCNN model is 
used to perform in-depth semantic analysis. For the class 
imbalance problem that naturally exists in the data set, we 
propose to use the weighted focal loss function to calculate the 
loss of instances. The SATD detection model with the best 
classification performance is the basis for interpretability 
analysis. Therefore, we need to study whether the performance 
of our proposed detection model can exceed the baseline 
model. 

Approach: To address RQ1, we use the loss function in 
Equation (6) to calculate the loss value for the examples in the 
training data set; the hyperparameter optimization method 
based on particle swarm is used to determine the best 

hyperparameter in Equation (6). The classification model used 
as the baseline is a classification model using the cross-
entropy information loss function in Equation  (2). We did 
not compare with the model in reference [2]. The reason is that 
we preprocessed the dataset and obtained classification 
models with different concerns. The indicators used to 
evaluate the classification model include Precision, Recall, 
and AUC. These evaluation metrics are often used in machine 
learning to compare the classification performance of different 
classification models. We repeat the process 10 times on the 
training data set. We perform random stratified sampling 
every time and take the average of the results on the test 
dataset as the result of model evaluation. 

Results: The statistics of the performance of different 
SATD detection models are shown in Table 2. We can see that 
our model using weighted focal loss function outperforms the 
baseline model only using cross entropy loss function. On 
average, our model achieves 12.27%, 5.97%, and 5.62% 
improvement in Precision, Recall, and AUC compared to the 
baseline model, respectively. Therefore, we can say that our 
proposed model achieves the best SATD detection 
performance and can be used as a classification model for 
subsequent interpretability analysis. 

 
 
Table 2. Performance of different SATD detection model 

Model Precision Recall AUC 
Baseline model using cross entropy loss function 0.717 0.904 0.902 

Our model using weighted focal loss function 0.805 0.958 0.953 
 
 
4.2 Can the Gradient-based Interpretability 

Model Cover 62 Manually Labeled 

Paradigms? 
 

Motivation: Although there have been preliminary studies 
on the interpretability analysis of SATD detection, the 
TextCNN model we used has not been studied from the 
perspective of the gradient of the model. In image processing, 
gradient-based methods can be used to analyze the key factors 
in the picture. What we need to study is whether we can get 
the same result when using different gradients to interpret the 
model for the TextCNN model. If the same results can be 
obtained, it shows the validity of the interpretability model, 
and it also shows that the follow-up research on the SATD 
detection problem can adopt a gradient-based model. 

Approach: To address RQ2, we use two gradient-based 
interpretability models. The specific calculation process is 
shown in Equation (8) and (9). Both models are based on the 
TextCNN model. After the model training is completed, 
interpretability analysis is performed on all code comments, 
and keywords that affect the model classification are extracted. 
The explanation process is to perform word embedding for 
each code comment and input the trained model. Perform 

backpropagation on the neural network to obtain the gradient 
of the word embedding output. Therefore, it is necessary to 
perform a summation calculation in the length dimension of 
the output to obtain the attribution of each word. If the 
attributable importance value of the word is greater than the 
threshold, the word is stored. 

Results: The statistics of paradigms using Saliency Maps 
are shown in Table 3. The statistics of paradigms using 
Saliency Maps are shown in Table 4. In the tables, the verified 
phrases are shown in bold italics. When using Saliency Maps, 
27 paradigms are verified with a percentage of 43.5%. When 
using Integrated Gradients, 28 paradigms are verified with a 
percentage of 45.2%. In the results of the two gradient-based 
interpretability models, less than half of the paradigms were 
verified. The two algorithms showed consistency in the ratio 
of paradigms. However, we still need to analyze how many 
same paradigms are verified. A total of 24 paradigms in the 
analysis results of the two algorithms are the same. This result 
can show that the two algorithms have strong consistency 
when interpreting the model based on the gradient. However, 
from another point of view, only less than half of the 
paradigms have been verified, indicating that there is still 
room for improvement in gradient-based interpretable models. 
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Table 3. Statistics of paradigms using Saliency Maps 
Length of paradigms Paradigms Count of paradigms 

One word hack; retarded; stupid; ugly; nuke; hacky; silly; kludge; 
fixme; barf; yuck; crap; inconsistency; kaboom; 

14/9 

Two words take care; is problematic; give up; temporary solution; causes 
issue; temporary crutch; toss it; certainly buggy; bail out; 

9/5 

Three words at a loss; remove this code; may cause problem; trial and 
error; this is wrong; cause for issue; some fatal error; this is 
bs; just abandon it; probably a bug; something bad happened; 
fix this crap; this is uncool; abandon all hope; prolly a bug; 
don’t use this; something’s gone wrong; workaround for bug; 

18/2 

Four words there is a problem; something serious is wrong; get rid of 

this; hope everything will work; remove me before 
production; it doesn’t work yet; this isn’t quite right; this 
doesn’t look right; this isn’t very solid; 

9/2 

Five words hang our heads in shame; this can be a mess; give up and go 
away; is this next line safe; is this line really safe; doubt that 
this would work; risk of this blowing up; you can be unhappy 
now; something bad is going on; 

9/4 

Six words unknown why we ever experience this; treat this as a soft 

error; 
2/2 

Seven words 
 

this is temporary and will go away; 1/1 

 
Table 4. Statistics of paradigms using Integrated Gradients 

Length of paradigms Manually labeled paradigms Count of paradigms 
One word hack; retarded; stupid; ugly; nuke; hacky; silly; kludge; 

fixme; barf; yuck; crap; inconsistency; kaboom; 
14/11 

Two words take care; is problematic; give up; temporary solution; causes 
issue; temporary crutch; toss it; certainly buggy; bail out; 

9/6 

Three words at a loss; remove this code; may cause problem; trial and 
error; this is wrong; cause for issue; some fatal error; this is 
bs; just abandon it; probably a bug; something bad happened; 
fix this crap; this is uncool; abandon all hope; prolly a bug; 
don’t use this; something’s gone wrong; workaround for bug; 

18/3 

Four words there is a problem; something serious is wrong; get rid of 

this; hope everything will work; remove me before 
production; it doesn’t work yet; this isn’t quite right; this 
doesn’t look right; this isn’t very solid; 

9/2 

Five words hang our heads in shame; this can be a mess; give up and go 
away; is this next line safe; is this line really safe; doubt that 
this would work; risk of this blowing up; you can be unhappy 
now; something bad is going on; 

9/4 

Six words unknown why we ever experience this; treat this as a soft 
error; 

2/1 

Seven words this is temporary and will go away; 
 

1/1 

 
 
4.3 Can Different Interpretability Models 

Discover New SATD Paradigms? 
 

Motivation: Code comments are technical debts that 
programmers use to actively introduce in the process of 
program development. These technical debts have variable 
lengths and uncertain technical specification definitions, etc., 
which belong to the category of natural language. Therefore, 
there may be missed technical debts in the paradigm of manual 
labeling. Based on the CNN model, these SATD can be 
uniformly coded and modeled to use the local interpretability 
model to discover new potential paradigms. 

Approach: To address RQ3, we use the interpretability 
model to backpropagate all SATDs and find the corresponding 
gradient of each word. Then, the gradients corresponding to 
each of these words are summed to obtain all the contributions 
values of each word in the entire project. Based on the 
contribution value, we manually judge the importance of the 
word. 

Results: The top-100 importance value of the one-word 
paradigm using Saliency Maps and Integrated Gradients are 
shown in Table 5 and Table 6. Firstly, compared with 62 
manually labeled paradigms, “fixme”, “hack”, “workaround” 
et.al are validated when using Saliency Maps and Integrated 
Gradients. Moreover, “todo”, “needed et.al are proposed. 



An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 639 
 

 

Through an in-depth study of code comments, it is found that 
these words have a greater possibility of being used as iconic 
words indicating whether software comments show SATD. 

 

 
Table 5. Top-100 importance value of one-word paradigm using Saliency Maps 

Key word Importance Key word Importance Key word Importance Key word Importance Key word Importance 
pad 2829.1 do 37.1 i 21.6 that 16.6 so 13.1 
todo 1515.9 ! 35.1 i18n 21.4 handle 16.5 note 13.1 
this 222.7 > 34.0 get 20.8 from 16.2 fix 13.0 
fixme 191.8 value 33.8 use 20.8 by 16.1 have 12.6 
the 148.2 it 30.3 check 20.4 make 16.0 probably 12.6 
we 137.6 checking 28.7 argouml 20.0 really 15.8 as 12.3 
to 117.6 param 27.7 workaround 19.6 null 15.4 needs 12.0 
a 75.0 tfm 27.4 add 19.1 { 15.1 string 12.0 
be 67.8 of 27.2 user 19.0 or 15.0 out 11.8 
if 62.9 < 26.6 method 18.8 but 15.0 2 11.7 
for 59.1 used 25.6 what 18.7 can 14.8 does 11.4 
n't 57.7 xxx 25.2 1 18.7 better 14.7 p 11.3 
hack 54.9 an 24.9 why 18.3 implement 14.2 only 11.2 
; 54.1 all 24.7 defer 18.2 more 14.0 need 11.1 
should 53.4 and 24.5 sss 18.0 $ 13.7 on 10.8 
not 50.5 default 24.4 way 18.0 file 13.6 set 10.7 
here 50.2 work 24.4 are 17.7 pop 13.6 model 10.7 
is 44.9 into 23.7 fdietz 17.6 ’s 13.4 now 10.4 
in 40.5 no 23.1 uml 17.6 ] 13.2 namespace 10.3 
needed 38.3 with 22.5 argument 17.5 code 13.2 create 10.1 

 
Table 6. Top-100 importance value of one-word paradigm using Integrated Gradients 

Key word Importance Key word Importance Key word Importance Key word Importance Key word Importance 
todo 2136.9 in 32.2 remove 17.7 implemented 10.6 how 7.4 
fixme 289.8 implement 31.6 handle 17.4 yuck 9.7 broken 7.3 
this 240.5 i 31.5 does 16.6 kludge 9.6 uml2 7.3 
should 132.8 why 29.2 i18n 16.6 very 9.2 good 7.3 
not 105.9 defer 28.5 require 16.2 check 9.2 from 7.2 
hack 102.8 it 27.3 author 15.6 tfm 9.0 note 7.2 
to 89.1 argument 26.6 know 14.7 bad 8.9 thing 7.2 
needed 65.2 way 26.6 ugly 14.6 ! 8.8 efficient 7.1 
we 62.9 really 25.7 maybe 14.4 more 8.8 correct 7.1 
do 58.1 used 25.6 renederer 14.4 of 8.8 when 6.9 
be 51.4 fdietz 24.9 could 14.3 support 8.7 addtrigger 6.9 
is 48.4 needs 24.0 use 14.1 temporary 8.5 think 6.7 
a 48.2 don’t 22.3 with 13.9 these 8.5 out 6.6 
workaround 46.5 probably 21.3 around 13.7 dms 8.2 unused 6.5 
xxx 44.7 into 21.0 make 13.5 tweak 8.0 nice 6.5 
here 41.8 fix 20.3 would 11.8 that 7.9 necessary 6.3 
need 41.3 bug 19.9 some 11.7 stupid 7.8 can 6.2 
checking 41.0 perhaps 19.7 on 11.6 but 7.8 an 5.9 
better 40.3 for 19.5 and 11.2 code 7.6 replace 5.7 
work 39.4 move 18.3 may 11.0 implementation 7.4 bit 5.7 

 
 
5 Conclusion 

 
SATD is an intentionally introduced software code 

comment describing potential defects. Although it is possible 
to process code comments based on methods such as pattern 
recognition and natural language text processing, deep 
learning is better at embedding and categorizing variable-
length code comments. However, there is no empirical 
research on explanatory aspects of CNN-based gradients. We 
have investigated local interpretation models such as Saliency 
Maps and Integrated Gradients, which are currently widely 
used in image processing, and conducted empirical research 
based on open data sets. The research results show that these 
models can cover nearly half of the manually labeled 
paradigms; at the same time, these models can also fully 

analyze the code comments and discover potential new 
paradigms. In the future, it is necessary to study new 
interpretable algorithms for SATD so that more paradigms can 
be discovered and the quality of software development can be 
improved. The class overlap problem in the dataset is also an 
important factor that may affect the SATD detection model. In 
subsequent research, we should also pay attention to the 
impact of the class overlap problem on the detection model 
[26]. The effect of term weighting on the SATD classifier is 
also an issue to be considered later [27]. 
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