
An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 631

*Corresponding Author: Yubin Qu; E-mail: quyubin@hotmail.com
DOI: 10.53106/160792642022052303021

An Empirical Study of Gradient-based Explainability Techniques for

Self-admitted Technical Debt Detection

Guoqiang Zhuang1,2, Yubin Qu1,2*, Long Li1, Xianzhen Dou2, Mengao Li3

1 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, China
2 School of Information Engineering, Jiangsu College of Engineering and Technology, China

3 Systems Engineering Research Institute, China State Shipbuilding Corporation, China
zgq@jcet.edu.cn, quyubin@hotmail.com, lilong@guet.edu.cn, douxianzhen@163.com, 18632154@qq.com

Abstract

Self-Admitted Technical Debt (SATD) is an intentionally
introduced software code comment describing potential
defects or other technical debt. Currently, deep learning is
widely used in fields such as Natural Language Processing.
Deep learning can be used for SATD detection, but there is a
class imbalance problem and a large number of easily
classified SATD instances that may potentially affect the loss
value. As a result, we proposed a weighted focal loss function
based on particle swarm to address the problem. Meanwhile,
there is no empirical research based on local explanations for
SATD detection. We have investigated local interpretation
models such as Saliency Maps, Integrated Gradients, which
are currently widely used in deep learning, and conducted
empirical research for shared data sets. The research results
show that our proposed weighted focal loss function can
achieve the best performance for SATD detection; our model
achieves 12.27%, 5.97%, and 5.62% improvement in
Precision, Recall, and AUC compared to the baseline model,
respectively; Local explanation models, including Saliency
Maps and Integrated Gradients can cover nearly half of the
manually labeled paradigms; these two interpretation models
can also discover potential new paradigms.

Keywords: Self-Admitted Technical Debt, Deep learning,
Explainability, Class imbalance, Focal loss

1 Introduction

Self-Admitted Technical Debt (SATD) is an intentionally
introduced software code comment describing potential
defects or other technical debt [1]. At present, software tests
for software defects can be arranged by detecting SATD [2].
For example, the software comment, “TODO (@author fdietz):
show error dialog here”, shows that there is a potential bug.
The lines of code related to this code comment should be the
first to be paid attention to and test arranged. In the software
development process, there is always a contradiction between
rapid software development and the limited project budget and
project delivery time. Technical debt is used to describe the
sub-optimal solution in the software development process to
meet the short-term needs of the project . Generally speaking,
these technical debts allow the software development process
to move forward quickly, at the cost of leaving a security risk

for the longterm maintenance of the project. For technical debt,
they should be paid rapidly in time. Otherwise, it will have
negative effects and corresponding software errors. For
example, architectural decay belongs to technical debt.
Architectural decay incurs inadvertently. However, we focus
more on deliberately introduced technical debt, called
Selfadmitted technical debt (SATD). SATD was first
proposed by Potdar and Shihab. Compared with traditional
technical debt using source code analysis, SATD detection is
more lightweight by only using source code comments. The
SATD should be paid. Otherwise, an artificial software bug
will be introduced into the software project. Therefore, in
software engineering, detecting SATD is necessary for
ensuring software quality.A binary classification technique is
used to predict whether a comment shows SATD. There are
many machine learning techniques, such as pattern-based
SATD detection [3], traditional text-mining-based SATD
classification [4], and Convolutional Neural Network (CNN)
based approach [2].

 The CNN-based approach achieved the best performance
for within-project and cross-project in terms of F1-score,
Recall, Precision metrics. Some key issues, including variant
term frequency, key words project uniqueness, variable length
of software comments, and semantic variation can be handled
using CNN correctly [2, 5]. However, the CNN model is a
black box. Why this CNN model can achieve the best
performance is valuable for software engineering practitioners.
Appropriate explanations can assist front-line developers to
better locate potential software defects. But so far, there is no
empirical research on the explainability of SATD models.
Why do we need Explainable ML? Loan issuers are required
by law to explain their models. The medical diagnosis model
is responsible for human life. There should be no BlackBox-
based diagnosis. If a self-driving car suddenly acts abnormally,
we need to explain why. Explainable ML is important for
decisions. The European Union’s General Data Protection
Regulation states that any algorithm with decision-making
capability requires to be explained [6]. For SATD detection,
we not only need a high-precision classification model, but we
also need to be able to quickly locate problems based on the
classification model. The SATD comments will be rapidly
located using the CNN model and explained using gradient-
based explainability techniques so that software testers can
quickly locate potential defects and fix bugs.

The main contributions of this article are as follows:

632 Journal of Internet Technology Vol. 23 No. 3, May 2022

(1) We proposed a weighted focal loss function based on
particle swarm to address the class imbalance and the potential
calculation error for a large number of easily classified
instances when detecting SATD.

(2) Based on the gradient-based interpretability models, a
small part of paradigms can be covered compared with 62
manually labeled paradigms;

(3) Based on the gradient-based interpretability models,
there are almost the same paradigms that are discovered by
different models;

(4) New paradigms are discovered based on gradient-
based interpretability models.

The rest of the article is organized as follows. In Section 2,
we illustrate SATD detection model using weighted
Convolutional Neural Network and gradient-based
explainability techniques. In Section 3, we then describe our
experiment setup, including research questions, research
methods, data collections, and commonly used evaluation
metrics. In Section 4, we report and analyze our experimental

results. In Section 5, we conclude this article and discuss key
directions for future work.

2 Approach

The software development process requires the

collaboration of different stakeholders (e.g., users, developers,
and managers) and integrated development tools can provide
intelligent support for software development, such as software
defect prediction [7-8], SATD detection [2], bug location [9-
10]. These development tools can not only provide intelligent
decision-making for collaborative development but also
should be able to provide a basis for decision-making. In
recent years, some scholars have done interpretability research
on software defect prediction to provide a detailed basis for
decision-making [11].

In this section, we will describe our proposed deep
learning model for SATD detection The deep learning flow for
SATD detection is shown in Figure 1.

Figure 1. Deep learning flow of SATD detection

In this paper, we will describe Gradient-based
Explainability Techniques for SATD detection. The Weighted
TextCNN model achieves the best performance for SATD
detection [2, 12]. Global explanation [13] and local
explanation [14-18] can be used for the CNN model. The
global interpretation model pays more attention to the overall
characteristics of the input examples, while the local
interpretation pays more attention to the impact of different

input features on the classification results. For the SATD
detection, we use a gradient-based local explanation model.
For local explanation, we pay more attention to which
component is critical for the CNN model. Below we present
the formal definition of a gradient-based local explanation
model. The explainability analysis process is shown in Figure
2.

Figure 2. Explainability analysis process

An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 633

2.1 SATD Detection Model using Weighted

Convolutional Neural Network

In this section, we will describe the SATD detection model
used in our experiment. The model takes the programmer’s
code comments as input. The words are inputted to the CNN
using word-embedding technology, and the neural network is
trained by the weighted focal loss function. Finally, the input
code comments are classified as SATD or not.

First, we provide a formal definition of the SATD
detection model.

Definition 2.1: a SATD detection model. A SATD
detection model is a function:

(𝑥1, 𝑥2, 𝑥3 … … 𝑥𝑚) → 𝑦 (1)

x is the software comment word sequences with the length

of word sequences 𝑚 and 𝑦 is the outcome space (e.g.,
SATD or non-SATD). Typically training data 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 is
used to train the CNN model and test data 𝐷𝑎𝑡𝑎𝑡𝑒𝑠𝑡 is used
to evaluate the CNN model.

2.1.1 The Architecture of Convolutional Neural Network

Our CNN is inspired by Ren [2]. This architecture is
originated from TextCNN [12], which can handle sentence
classification tasks using a shallow neural network. As shown
in Figure 1, our deep learning framework is stacked by the
following layers, including the word embedding layer of code
comments, the convolutional network layer, the pooling layer,
the fully connected layer, and the final loss function
calculation layer.

First we will show the word embedding layer of code
comments. The pre-training vector used in the framework is
based on Global Vectors for Word Representation (Glove). It
is a word representation tool based on count-based and overall
statistics. During the training process, the output word vector
dimension is 300 dimensions, the length of n-grams is set to 5,
the CBOW (continuous bag of word) model is used in the
training process, the low-frequency threshold is 5, and the
number of iterations is 5. The output layer adopts the negative
sampling method, that is, each time 5 labels other than the
current label are selected as negative samples, they are added
to the loss function as the probability of negative samples. In
the word vector embedding layer, the code comment is
converted into a word vector matrix, and the output value is
used as the input of the convolutional neural layer.

Next, we will describe the convolutional layer. The deep
semantic understanding of words is filtered through different
convolution kernels. The semantic learning framework for
SATD detection originated from the TextCNN framework
proposed by Kim et al. [12]. The framework uses a shallow
neural network to analyze the semantics of the text. The
network structure is simple and the processing speed is faster.
The code comments are V, and the word is represented as W,
so each word comment can be represented as a sequence of
words. These words are represented as a vector matrix.
According to the different requirements, we set the size of
each filter in the convolutional layer of TextCNN. Later we
will describe the specific method of setting the
hyperparameter of different filter sizes. The filter window
represents the number of co-occurring words that the network

architecture focuses on at the same time in TextCNN. This
parameter is a hyperparameter and needs to be optimized.
Generally speaking, the filter window size filter_size ∈
[1,2,3,4,5,6] . In the English corpus, simple English word
segmentation can be achieved by using spaces. The different
sizes of multiple filters enable CNN to find different co-
occurring words based on semantics. As shown in Figure 1, in
the convolutional layer, the red output represents the semantic
filtering result with a convolution kernel of 5, and the blue
output represents the semantic filtering result with a
convolution kernel of 6.

In the pooling layer, the maximum pooling operation is
performed for the feature map obtained by each convolution
kernel to complete feature extraction, achieve dimensionality
reduction, and reduce potential overfitting. Finally, a fully
connected linear classifier in the output layer is trained.

The loss function of our CNN framework will be described
in the next section in detail.

2.1.2 Our Weighted Focal Loss Function

Assuming that an input comment is marked as SATD
labeled as 𝑦 = 1, we use cross entropy Loss to calculate the
loss between the classification result p of the classification
model and the true label y.

𝐿𝑜𝑠𝑠(𝑝, 𝑦) = {
− log(𝑝) , 𝑦 = 1

0, 𝑦 = 0
 (2)

However, this Loss function does not work well in our

SATD detection model. Because the code comments with
SATD will be much smaller than the code comments without
SATD in actual work, this is a natural class imbalance problem
[2]. In Ren’s experiment, a weighted cross-entropy loss was
proposed to their CNN. Assuming there are n SATD
comments and m non-SATD comments, then they defined the
weights 𝛼.

𝛼 =

𝑚

𝑚+𝑛
 (3)

The Loss can be rewritten in the following format with the

tuning parameter 𝛼 . The wrong classification of SATD
instances is penalized more based on Equation (4).

𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − 𝛼 ∗ log(𝑝) (4)

However, there is another problem. In our dataset, the

highest percentage of SATD comments is only 5.57%. A large
number of non-SATD examples have obvious characteristics,
and the accumulation of their loss will most likely exceed the
weighted rare SATD instances [19]. That is to say, although
the adjustment factor 𝛼 is used to solve the problem of
insufficient punishment for the minority class, in the face of
the majority class which is far more than the minority class,
the adjustment factor is lacking to deal with easy-to-classify
examples. We need to add more parameters to adjust the loss
value of easy-to-classify examples. To deal with this problem,
FocalLoss was proposed [19].

𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − (1 − 𝑝)𝛾 ∗ log(𝑝) (5)

634 Journal of Internet Technology Vol. 23 No. 3, May 2022

By combining with FocalLoss, the loss function (4) is
transformed.

𝐿𝑜𝑠𝑠(𝑝, 𝑦) = − 𝛼(1 − 𝑝)𝛾 ∗ log(𝑝) (6)

In Lin’s experiment,𝛾 ∈ [0,5]. 𝛾 is a hyperparameter that

was chosen using empirical study. In our experiment, we will
describe the specific method of setting the hyperparameter 𝛾.

From Equation (6), we can see that: (1) When a SATD
instance is misclassified, 𝐿𝑜𝑠𝑠(𝑝, 𝑦) will be tuned by 𝛼(1 −
𝑝)𝛾. The parameter (1 − 𝑝)𝛾 increases the loss contribution
value to the samples that are not easy to classify in the SATD
class. The parameter 𝛼 increases the penalty for minor
classification errors. (2) When a SATD instance is correctly
classified, 𝐿𝑜𝑠𝑠(𝑝, 𝑦) will not be tuned by the parameter
(1 − 𝑝)𝛾 . In addition, the parameter 𝛼 only increases the
penalty for SATD instances.

2.1.3 Hyperparameter Optimization Method Based on

Particle Swarm

The SATD detection model based on TextCNN uses a
shallow neural network instead of a multi-layer deep neural
network. The hyperparameter optimization process does not
require special optimization of the structure of the neural
network. The parameters to be optimized include the
dimension of the vector, the learning rate, the size of the filter,
the size of the filter window, etc. The word vector is 300
dimensions for Glove so the dimension of the word embedding
vector is set to 300; The initial filter window size set in the
frame is (1,2,3,4,5), different from the six sizes of filter
window size (1,2,3,4,5,6) in the TextCNN network
architecture of Ren et al [2]. For the optimization of
parameters such as the number of network layers of the
convolutional neural network, the genetic algorithm is more
effective. The hyperparameter optimization method based on
the particle swarm optimization algorithm is suitable for the
hyperparameters of the convolutional neural network.

Set the initial value of the learning rate, the size of the filter,
the size of the filter window, and use the particle swarm
optimization algorithm to optimize the hyperparameters,
which is based on the social sharing of information to find the
best position of the particles. The training data set 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛
is repeated ten times and ten-fold cross-validation is
performed. The average value of the performance results on
the test data sets is used as the result of the particle swarm
optimization algorithm. Define a particle p in particle swarm
optimization algorithm as:

𝑝 = (γ, lr, filter_size, window_size,) (7)

The dimension of each particle is 4. Other main parameters

in the particle swarm algorithm, including the number of
particle swarms, inertia weights, stopping criteria, etc., are the
same as the values in Bratton’s experiments [20]. In the
process of particle search, each particle finds a position that
satisfies the best fitness value through information sharing and
ends the algorithm. The hyperparameter optimization
algorithm based on the particle swarm algorithm is shown in
the following steps.

Step 1: Set the performance function in the training set of
the convolutional neural network as the objective function of
the particle swarm algorithm;

Step 2: Encode each parameter in Equation (7) to form a
particle swarm;

Step 3: Set the main parameters in the particle swarm
algorithm and limit the search space of each parameter;

Step 4: Run the algorithm until the performance criteria
requirements are met;

Step 5: If the performance cannot meet the requirements, re-run
step 3 of the algorithm.

2.2 Gradient-based Explainability Techniques

Below we introduce gradient-based local explanation
models for SATD detection.

2.2.1 Saliency Maps

Zeiler et. al analyzed critical pixels for classification by
using occlusion sensitive [13]. Karen et. al used Saliency
Maps to visualize the image classification model [14].
Considering this sharp fluctuation, the direct gradient at any
given pixel is not as meaningful as the local average gradient
value. By adding random noise to the inputs many times, the
transformed image is combined and averaged to achieve the
effect of "introducing noise" to "eliminate noise" [15, 21]. For
SATD detection, Saliency Maps is used to visualize the model.
There are 4 key steps for instance explanation.

Firstly, the weighted TextCNN model is trained based on
the training data 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 . Word embedding is used for
inputs and the class imbalance problem is resolved using the
weighted focal loss function.

Secondly, the instance of interest is inputted. Loss is
calculated using forward computing.

Thirdly, backpropagation is executed based on the
calculated loss. For the SATD detection mapped function f,
when the element 𝑥𝑚 changes to 𝑥𝑚 + ∆𝑥 , the output
changes from 𝑦 to 𝑦 + ∆𝑦.

Finally, the gradient for the output of the input’s word
embedding is gathered. The gradient is used to indicate the
ratio of the change in 𝑦 to the change in (𝑥1, 𝑥2, 𝑥3 … … 𝑥𝑚).

𝜕𝑦

𝜕𝑥𝑚
=

Δ𝑦

Δ𝑥
 (8)

2.2.2 Integrated Gradients

There may be gradient saturation so that gradient cannot
always reflect importance. This is a limitation for gradient-
based explainable techniques. By integrating the gradient
along different paths, it is easy to calculate the contribution of
the non-zero gradient in the unsaturated zone to the
importance of decision-making [18, 22].

Compared with the previously used Saliency Maps
algorithm, Integrated Gradients focuses on the gradient
saturation phenomenon in a special area, where key features
affect the classification model. When the key feature is in the
saturated area, increasing the amount of change of the key
feature does not bring about a significant change in the
gradient value. The reason for the problem is that the key
feature has entered the saturation interval, and the gradient
cannot reflect the key feature. The Integrated Gradients
algorithm can be represented as:

An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 635

∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) = (𝑥 − 𝑥′) × ∫
𝛿𝑓(𝑥,+𝜃(𝑥−𝑥,))

𝛿𝑥
𝑑𝜃

1

𝜃=0
 (9)

𝑥′ represents the baseline. For SATD detection, the

baseline is Zero vector which is the value of PAD.
∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) is the Integrated Gradients value. When 𝜃 = 0,
∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) represents the baseline. When 𝜃 = 1 ,
∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,) represents the input instance, for example,
‘probably buggy code’. When 𝜃 ∈ (0,1) , ∅𝐼𝐺(𝑓, 𝑥, 𝑥 ,)
represents the integral value from 𝑥 to 𝑥 ,.

Compared with DeepLift [17] and Layer-wise relevance
propagation (LRP) [23] algorithm, Integrated Gradients can
satisfy three important properties, such as sensitivity,
completeness, and symmetry-preserving. There are 4 key
steps for instance explanation.

Firstly, train the weighted TextCNN model and choose the
baseline, Zero vector.

Secondly, calculate the predicted output of the instance
using forward computing.

Thirdly, backpropagation is executed based on the
predicted output. Based on (9), the integral gradient of each
input feature is calculated by the linear interpolation method.

Finally, the gradient for the output of the input’s word
embedding is gathered. The gradient is used to indicate the
importance for every feature.

3 Experimental Design

In this section, three research questions are proposed. Next,

we describe the baseline paradigms and two gradient-based
methods. Then, we discuss our selected datasets, the
evaluation metrics, and the experimental environment.

3.1 Research Questions

We propose three research questions we investigate in our
experiments to conduct the empirical study. The first question

is to determine whether our proposed detection model can
achieve the best performance. The other two research
questions investigate different aspects of the gradient-based
interpretability model for SATD detection.

(1) How effective is our weighted focal loss function for
imbalance software comments compared with the cross
entropy loss function?

(2) Can the gradient-based interpretability model cover
62 manually labeled paradigms?

(3) Can different interpretability models discover new
SATD paradigms?

3.2 Research Methods

Two methods are compared in the experiment. The
baseline paradigms are based on manually labeled data [1].

(1) Baseline Paradigms. There are 62 manually labeled
paradigms from fore large open-source projects – namely
Eclipse, Chromium OS, ArgoUML, and Apache httpd [1]. The
statistics of manually labeled paradigms are shown in Table 1.
From Table 1, we can see that 95.16% of paradigms contain
words ranging from 1 to 5. In particular, paradigms with three
words account for the highest proportion, 29.03%.

(2) Saliency Maps. As shown in Equation (2), the
gradient for software comment is calculated.

(3) Integrated Gradients. As shown in Equation (3), the
Integrated Gradients for software comment is calculated along
the linear path.

Saliency Maps and Integrated Gradients are used for the
weighted TextCNN model so that the gradient of inputs is
gathered. These gradients can reflect the importance of
different features. We first investigate whether these two
methods can discover 62 manually labeled paradigms. Then,
we investigate whether these can discover new paradigms.

Table 1. Statistics of manually labeled paradigms

Length of paradigms

Manually labeled paradigms Count of paradigms

One word hack; retarded; stupid; ugly; nuke; hacky; silly; kludge; fixme; barf; yuck;
crap; inconsistency; kaboom;

14

Two words take care; is problematic; give up; temporary solution; causes issue;
temporary crutch; toss it; certainly buggy; bail out;

9

Three words at a loss; remove this code; may cause problem; trial and error; this is
wrong; cause for issue; some fatal error; this is bs; just abandon it;
probably a bug; something bad happened; fix this crap; this is uncool;
abandon all hope; prolly a bug; don’t use this; something’s gone wrong;
workaround for bug;

18

Four words there is a problem; something serious is wrong; get rid of this; hope
everything will work; remove me before production; it doesn’t work yet;
this isn’t quite right; this doesn’t look right; this isn’t very solid;

9

Five words hang our heads in shame; this can be a mess; give up and go away; is this
next line safe; is this line really safe; doubt that this would work; risk of
this blowing up; you can be unhappy now; something bad is going on;

9

Six words

unknown why we ever experience this; treat this as a soft error; 2

Seven words

this is temporary and will go away; 1

636 Journal of Internet Technology Vol. 23 No. 3, May 2022

3.3 Data Collection

To perform our research, we use open source datasets.
These datasets are derived from ten open source projects,
including ArgoUML, Columba, Hibernate, JMeter, Apache
Ant, EMF, JEdit, JFreeChart, JRuby, and SQuirrel. These ten
open source projects have different application areas, and the
complexity of the projects is not the same. After the source
codes of these open source projects have been collected,
Eclipse plug-in, called JDeodorant [24], is used to perform
data analysis on these source codes to obtain the start and end
positions of the corresponding code comments and the type of
code comments.

This data set was collected and labeled by Maldonado et
al. . The process of data collection is shown three main
steps.Firstly, an eclipse plug-in tool, named JDeodorant, was
used to parse the source code and extract the comments
information, including the line that each comment starts,
finishes and the different type of comments. A total of 259,229
lines of code comments were obtained from these 10 open
source projects, with an average of 25,923 lines per project.
Only a small part of the code contains SATD, and manual
labeling of these source codes will be time-consuming and
labor-intensive.

Secondly, as only a small ratio of the source code
comments was described as SATD in the raw dataset, five
filtering heuristics are developed to identify comments with
SATD and eliminate comments that are unlikely to be
classified as SATD. After automatically cleaning, a large
number of unrelated machine-generated comments were
eliminated. The number of code comments that need to be
manually annotated has become 62,566. The use of heuristic
strategies greatly reduces the workload of manual labeling,
and at the same time can effectively improve the classification
accuracy of the machine learning model.

After cleaning the raw dataset, finally, each comment was
labeled with SATD or non-SATD by Maldonado and Shihab
using manually examining each comment. These manually
labeled data sets may have personal biases of users, and
inaccurate data sets will affect the subsequent training of
machine learning models. Therefore, stratified sampling was
performed on the full data set, and the stratified sampling
results of Maldonado et al. showed that a confidence level of
99% and a confidence interval of 5% were achieved [3]. To
further confirm the validity of this data set, another
independent individual was invited to sample the data
hierarchically and label the data set. Comparative experiments
show that the hierarchical sampling results of different user
groups have extremely high consistency, with Cohen’s Kappa
coefficient of 0.81. The experimental results of sampling and
labeling of different user groups prove that the data set has
strong statistical reliability.

3.4 Evaluation Metrics

To evaluate the classification performance of the SATD

detection model we proposed, we define TP (True Positive) to
represent the number of SATD instances that are predicted as
SATD instances; we define TN(True Negative) to represent
the number of non-SATD instances which are predicted as
non-SATD instances; we define FP (False Positive) to
represent the number of non-SATD instances which are

predicted as SATD instances; we define FN(False Negative)
to represent the number of SATD instances which are
predicted as non-SATD instances.

The Precision indicator is used to represent the proportion
of the correctly classified SATD instances among the
instances classified as SATD.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10)

The Recall indicator is used to represent the proportion of

the correctly classified SATD instances among the instances
which are labeled as SATD.

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11)

Recall also is called TPR. In contrast, The FPR indicator

is used to represent the proportion of the correctly classified
non-SATD instances among the instances which are labeled
as non-SATD.

𝐹𝑃𝑅 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 (12)

For SATD detection, because of the class imbalance

problem, AUC (Area Under Curve) is used to measure the
performance of the CNN model. Given a binary classification
model and its threshold, a coordinate point (X=FPR, Y=TPR)
can be calculated from the true value and predicted value of
all samples (positive/negative). When the value is closer to 1,
it means that the classification performance of the model is
better; if the value is close to 0.5, it means that the
performance of the model is roughly the same as the random
classification effect.

The evaluation metrics for the local explainability of the
model are divided into two categories. One is to evaluate the
result of interpretation manually, and the other is to evaluate
the model by using algorithm indicators. Yeh et al. [26]
proposed that the Infidelity and Sensitivity indicators can be
used to quantitatively evaluate the algorithm model. In this
experiment, our research goal is to compare the relationship
between the local explainability model and the code review
paradigms. We use the method of manual verification to
evaluate the explainability model.

Given the same training dataset, the same test dataset, and
the CNN model for SATD detection, the scores of critical
factors are ranked. The Top-N phases with Top-N highest
scores are gathered. These phrases are used to evaluate the
effectiveness of the interpretability model.

3.5 Experiment Environment

The experiment equipment is a desktop workstation,
equipped with a Intel Core i5 CPU, 24G RAM, and Nvidia
RTX 2070 GPU, running on Windows 10 Operating System.

4 Experimental Results

We present the results of our case study to our two research

questions.

An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 637

4.1 How Effective is Our Weighted Focal Loss

Function for Imbalance Software Comments

Compared with The Cross Entropy Loss

Function?

Motivation: The SATD detection model can be formalized
as a binary classification problem using natural language
processing technology. Our goal is to accurately divide the
software comments into whether they are SATD or not. Based
on the consideration of the naturalness of software code
comments, we merged the datasets. Kim’s TextCNN model is
used to perform in-depth semantic analysis. For the class
imbalance problem that naturally exists in the data set, we
propose to use the weighted focal loss function to calculate the
loss of instances. The SATD detection model with the best
classification performance is the basis for interpretability
analysis. Therefore, we need to study whether the performance
of our proposed detection model can exceed the baseline
model.

Approach: To address RQ1, we use the loss function in
Equation (6) to calculate the loss value for the examples in the
training data set; the hyperparameter optimization method
based on particle swarm is used to determine the best

hyperparameter in Equation (6). The classification model used
as the baseline is a classification model using the cross-
entropy information loss function in Equation (2). We did
not compare with the model in reference [2]. The reason is that
we preprocessed the dataset and obtained classification
models with different concerns. The indicators used to
evaluate the classification model include Precision, Recall,
and AUC. These evaluation metrics are often used in machine
learning to compare the classification performance of different
classification models. We repeat the process 10 times on the
training data set. We perform random stratified sampling
every time and take the average of the results on the test
dataset as the result of model evaluation.

Results: The statistics of the performance of different
SATD detection models are shown in Table 2. We can see that
our model using weighted focal loss function outperforms the
baseline model only using cross entropy loss function. On
average, our model achieves 12.27%, 5.97%, and 5.62%
improvement in Precision, Recall, and AUC compared to the
baseline model, respectively. Therefore, we can say that our
proposed model achieves the best SATD detection
performance and can be used as a classification model for
subsequent interpretability analysis.

Table 2. Performance of different SATD detection model

Model Precision Recall AUC
Baseline model using cross entropy loss function 0.717 0.904 0.902

Our model using weighted focal loss function 0.805 0.958 0.953

4.2 Can the Gradient-based Interpretability

Model Cover 62 Manually Labeled

Paradigms?

Motivation: Although there have been preliminary studies
on the interpretability analysis of SATD detection, the
TextCNN model we used has not been studied from the
perspective of the gradient of the model. In image processing,
gradient-based methods can be used to analyze the key factors
in the picture. What we need to study is whether we can get
the same result when using different gradients to interpret the
model for the TextCNN model. If the same results can be
obtained, it shows the validity of the interpretability model,
and it also shows that the follow-up research on the SATD
detection problem can adopt a gradient-based model.

Approach: To address RQ2, we use two gradient-based
interpretability models. The specific calculation process is
shown in Equation (8) and (9). Both models are based on the
TextCNN model. After the model training is completed,
interpretability analysis is performed on all code comments,
and keywords that affect the model classification are extracted.
The explanation process is to perform word embedding for
each code comment and input the trained model. Perform

backpropagation on the neural network to obtain the gradient
of the word embedding output. Therefore, it is necessary to
perform a summation calculation in the length dimension of
the output to obtain the attribution of each word. If the
attributable importance value of the word is greater than the
threshold, the word is stored.

Results: The statistics of paradigms using Saliency Maps
are shown in Table 3. The statistics of paradigms using
Saliency Maps are shown in Table 4. In the tables, the verified
phrases are shown in bold italics. When using Saliency Maps,
27 paradigms are verified with a percentage of 43.5%. When
using Integrated Gradients, 28 paradigms are verified with a
percentage of 45.2%. In the results of the two gradient-based
interpretability models, less than half of the paradigms were
verified. The two algorithms showed consistency in the ratio
of paradigms. However, we still need to analyze how many
same paradigms are verified. A total of 24 paradigms in the
analysis results of the two algorithms are the same. This result
can show that the two algorithms have strong consistency
when interpreting the model based on the gradient. However,
from another point of view, only less than half of the
paradigms have been verified, indicating that there is still
room for improvement in gradient-based interpretable models.

638 Journal of Internet Technology Vol. 23 No. 3, May 2022

Table 3. Statistics of paradigms using Saliency Maps
Length of paradigms Paradigms Count of paradigms

One word hack; retarded; stupid; ugly; nuke; hacky; silly; kludge;
fixme; barf; yuck; crap; inconsistency; kaboom;

14/9

Two words take care; is problematic; give up; temporary solution; causes
issue; temporary crutch; toss it; certainly buggy; bail out;

9/5

Three words at a loss; remove this code; may cause problem; trial and
error; this is wrong; cause for issue; some fatal error; this is
bs; just abandon it; probably a bug; something bad happened;
fix this crap; this is uncool; abandon all hope; prolly a bug;
don’t use this; something’s gone wrong; workaround for bug;

18/2

Four words there is a problem; something serious is wrong; get rid of

this; hope everything will work; remove me before
production; it doesn’t work yet; this isn’t quite right; this
doesn’t look right; this isn’t very solid;

9/2

Five words hang our heads in shame; this can be a mess; give up and go
away; is this next line safe; is this line really safe; doubt that
this would work; risk of this blowing up; you can be unhappy
now; something bad is going on;

9/4

Six words unknown why we ever experience this; treat this as a soft

error;
2/2

Seven words

this is temporary and will go away; 1/1

Table 4. Statistics of paradigms using Integrated Gradients

Length of paradigms Manually labeled paradigms Count of paradigms
One word hack; retarded; stupid; ugly; nuke; hacky; silly; kludge;

fixme; barf; yuck; crap; inconsistency; kaboom;
14/11

Two words take care; is problematic; give up; temporary solution; causes
issue; temporary crutch; toss it; certainly buggy; bail out;

9/6

Three words at a loss; remove this code; may cause problem; trial and
error; this is wrong; cause for issue; some fatal error; this is
bs; just abandon it; probably a bug; something bad happened;
fix this crap; this is uncool; abandon all hope; prolly a bug;
don’t use this; something’s gone wrong; workaround for bug;

18/3

Four words there is a problem; something serious is wrong; get rid of

this; hope everything will work; remove me before
production; it doesn’t work yet; this isn’t quite right; this
doesn’t look right; this isn’t very solid;

9/2

Five words hang our heads in shame; this can be a mess; give up and go
away; is this next line safe; is this line really safe; doubt that
this would work; risk of this blowing up; you can be unhappy
now; something bad is going on;

9/4

Six words unknown why we ever experience this; treat this as a soft
error;

2/1

Seven words this is temporary and will go away;

1/1

4.3 Can Different Interpretability Models

Discover New SATD Paradigms?

Motivation: Code comments are technical debts that
programmers use to actively introduce in the process of
program development. These technical debts have variable
lengths and uncertain technical specification definitions, etc.,
which belong to the category of natural language. Therefore,
there may be missed technical debts in the paradigm of manual
labeling. Based on the CNN model, these SATD can be
uniformly coded and modeled to use the local interpretability
model to discover new potential paradigms.

Approach: To address RQ3, we use the interpretability
model to backpropagate all SATDs and find the corresponding
gradient of each word. Then, the gradients corresponding to
each of these words are summed to obtain all the contributions
values of each word in the entire project. Based on the
contribution value, we manually judge the importance of the
word.

Results: The top-100 importance value of the one-word
paradigm using Saliency Maps and Integrated Gradients are
shown in Table 5 and Table 6. Firstly, compared with 62
manually labeled paradigms, “fixme”, “hack”, “workaround”
et.al are validated when using Saliency Maps and Integrated
Gradients. Moreover, “todo”, “needed et.al are proposed.

An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 639

Through an in-depth study of code comments, it is found that
these words have a greater possibility of being used as iconic
words indicating whether software comments show SATD.

Table 5. Top-100 importance value of one-word paradigm using Saliency Maps

Key word Importance Key word Importance Key word Importance Key word Importance Key word Importance
pad 2829.1 do 37.1 i 21.6 that 16.6 so 13.1
todo 1515.9 ! 35.1 i18n 21.4 handle 16.5 note 13.1
this 222.7 > 34.0 get 20.8 from 16.2 fix 13.0
fixme 191.8 value 33.8 use 20.8 by 16.1 have 12.6
the 148.2 it 30.3 check 20.4 make 16.0 probably 12.6
we 137.6 checking 28.7 argouml 20.0 really 15.8 as 12.3
to 117.6 param 27.7 workaround 19.6 null 15.4 needs 12.0
a 75.0 tfm 27.4 add 19.1 { 15.1 string 12.0
be 67.8 of 27.2 user 19.0 or 15.0 out 11.8
if 62.9 < 26.6 method 18.8 but 15.0 2 11.7
for 59.1 used 25.6 what 18.7 can 14.8 does 11.4
n't 57.7 xxx 25.2 1 18.7 better 14.7 p 11.3
hack 54.9 an 24.9 why 18.3 implement 14.2 only 11.2
; 54.1 all 24.7 defer 18.2 more 14.0 need 11.1
should 53.4 and 24.5 sss 18.0 $ 13.7 on 10.8
not 50.5 default 24.4 way 18.0 file 13.6 set 10.7
here 50.2 work 24.4 are 17.7 pop 13.6 model 10.7
is 44.9 into 23.7 fdietz 17.6 ’s 13.4 now 10.4
in 40.5 no 23.1 uml 17.6] 13.2 namespace 10.3
needed 38.3 with 22.5 argument 17.5 code 13.2 create 10.1

Table 6. Top-100 importance value of one-word paradigm using Integrated Gradients

Key word Importance Key word Importance Key word Importance Key word Importance Key word Importance
todo 2136.9 in 32.2 remove 17.7 implemented 10.6 how 7.4
fixme 289.8 implement 31.6 handle 17.4 yuck 9.7 broken 7.3
this 240.5 i 31.5 does 16.6 kludge 9.6 uml2 7.3
should 132.8 why 29.2 i18n 16.6 very 9.2 good 7.3
not 105.9 defer 28.5 require 16.2 check 9.2 from 7.2
hack 102.8 it 27.3 author 15.6 tfm 9.0 note 7.2
to 89.1 argument 26.6 know 14.7 bad 8.9 thing 7.2
needed 65.2 way 26.6 ugly 14.6 ! 8.8 efficient 7.1
we 62.9 really 25.7 maybe 14.4 more 8.8 correct 7.1
do 58.1 used 25.6 renederer 14.4 of 8.8 when 6.9
be 51.4 fdietz 24.9 could 14.3 support 8.7 addtrigger 6.9
is 48.4 needs 24.0 use 14.1 temporary 8.5 think 6.7
a 48.2 don’t 22.3 with 13.9 these 8.5 out 6.6
workaround 46.5 probably 21.3 around 13.7 dms 8.2 unused 6.5
xxx 44.7 into 21.0 make 13.5 tweak 8.0 nice 6.5
here 41.8 fix 20.3 would 11.8 that 7.9 necessary 6.3
need 41.3 bug 19.9 some 11.7 stupid 7.8 can 6.2
checking 41.0 perhaps 19.7 on 11.6 but 7.8 an 5.9
better 40.3 for 19.5 and 11.2 code 7.6 replace 5.7
work 39.4 move 18.3 may 11.0 implementation 7.4 bit 5.7

5 Conclusion

SATD is an intentionally introduced software code

comment describing potential defects. Although it is possible
to process code comments based on methods such as pattern
recognition and natural language text processing, deep
learning is better at embedding and categorizing variable-
length code comments. However, there is no empirical
research on explanatory aspects of CNN-based gradients. We
have investigated local interpretation models such as Saliency
Maps and Integrated Gradients, which are currently widely
used in image processing, and conducted empirical research
based on open data sets. The research results show that these
models can cover nearly half of the manually labeled
paradigms; at the same time, these models can also fully

analyze the code comments and discover potential new
paradigms. In the future, it is necessary to study new
interpretable algorithms for SATD so that more paradigms can
be discovered and the quality of software development can be
improved. The class overlap problem in the dataset is also an
important factor that may affect the SATD detection model. In
subsequent research, we should also pay attention to the
impact of the class overlap problem on the detection model
[26]. The effect of term weighting on the SATD classifier is
also an issue to be considered later [27].

Acknowledgment

This work was supported by National Natural Science

Foundation of China （62172350）, Philosophy and Social

640 Journal of Internet Technology Vol. 23 No. 3, May 2022

Science Research Projects in Jiangsu (2020SJB0836),
Nantong Science and Technology Project (JC2021124),
Guangxi Key Laboratory of Trusted Software(kx202046,
kx202013), Scientific Research Projects of Jiangsu College of
Engineering and Technology (GYKY/2020/4), Research
Project of Modern Educational Technology in Jiangsu
Province (2021-R-94735), Special Project of China Higher
Education Association(21SZYB23) . Sponsored by Special
Foundation for Excellent Young Teachers and Principals
Program of Jiangsu Province and Qing Lan Project of Jiangsu
province.

References

[1] A. Potdar, E. Shihab, An Exploratory Study on Self-

admitted Technical Deb, 2014 IEEE International
Conference on Software Maintenance and Evolution.
IEEE, Victoria, British Columbia, Canada, 2014, pp. 91-
100.

[2] X. X. Ren, Z. C. Xing, X. Xia, D. Lo, X. Y. Wang, J.
Grundy, Neural Network-based Detection of Self-
admitted Technical Debt: From Performance to
Explainability, ACM transactions on software
engineering and methodology, Vol. 28, No. 3, pp. 1-45,
August, 2019.

[3] E. S. Maldonado, E. Shihab, Detecting and Quantifying
Different Types of Self-admitted Technical Debt, 2015
IEEE 7Th international workshop on managing
technical debt, Bremen, Germany, 2015, pp. 9-15.

[4] Q. Huang, E. Shihab, X. Xia, D. Lo, S. P. Li, Identifying
Self-admitted Technical Debt in Open Source Projects
using Text Mining, Empirical Software Engineering, Vol.
23, No. 1, pp. 418-451, February, 2018.

[5] Z. Zhang, X. Cui, P. Li, J. Jiang, X. Ji, Hyperspectral
Data Analysis based on Integrated Deep
Learning, International Journal of Performability
Engineering, Vol. 16, No. 8, pp. 1225-1234, August,
2020.

[6] General Data Protection Regulation, Regulation (EU)
2016/679 of the European Parliament and of the Council
of 27 April 2016. Official Journal of the European Union
(OJ), Vol. 59, No. L119, pp. 1-88, May, 2016.

[7] Y. B. Qu, X. Chen, Y. Q. Zhao, X. L. Ju, Impact of Hyper
Parameter Optimization for Cross-project Software
Defect Prediction, International Journal of
Performability Engineering, Vol. 14, No. 6, pp. 1291-
1299, June, 2018.

[8] S. Wang, Y. Li, W. Mi, Y. Liu, Software Defect
Prediction Incremental Model using Ensemble Learning,
International Journal of Performability Engineering,
Vol. 16, No. 11, pp. 1771-1780, November, 2020.

[9] R. Gao, W. E. Wong, MSeer-An Advanced Technique for
Locating Multiple Bugs in Parallel, IEEE Transactions
on Software Engineering, Vol. 45, No. 3, pp. 301-318,
March, 2019.

[10] V. Debroy, W. E. Wong, A Consensus-based Strategy to
Improve the Quality of Fault Localization, Software:
Practice and Experience, Vol. 43, No. 8, pp. 989-1011,
August, 2013.

[11] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, J.
Grundy, An Empirical Study of Model-agnostic
Techniques for Defect Prediction Models, IEEE
Transactions on Software Engineering,

https://doi.org/10.1109/TSE.2020.2982385, March,
2020.

[12] Y. Kim, Convolutional Neural Networks for Sentence
Classification, Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, 2014, pp. 1746-1751.

[13] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson,
Understanding Neural Networks Through Deep
Visualization, arXiv preprint arXiv:1506.06579, June,
2015.

[14] M. D. Zeiler, R. Fergus, Visualizing and understanding
convolutional networks, in: D. Fleet, T. Pajdla, B.
Schiele, T. Tuytelaars (Eds.), European conference on
computer vision, Springer, Cham, 2014, pp. 818-833.

[15] K. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside
Convolutional Networks: Visualising Image
Classification Models and Saliency Maps, arXiv
preprint arXiv:1312.6034, December, 2013.

[16] D. Smilkov, N. Thorat, B. Kim, F. Viégas, M.
Wattenberg, SmoothGrad: Removing Noise by Adding
Noise, arXiv preprint arXiv:1706.03825, June, 2017.

[17] A. Shrikumar, P. Greenside, A. Kundaje, Learning
Important Features through Propagating Activation
Differences, Thirty-fourth International Conference on
Machine Learning, Sydney, Australia, 2017, pp. 3145-
3153.

[18] M. Sundararajan, A. Taly, Q. Yan, Axiomatic Attribution
for Deep Networks, Thirty-fourth International
Conference on Machine Learning, Sydney, Australia,
2017, pp. 3319-3328.

[19] T. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal
Loss for Dense Object Detection, Proceedings of the
IEEE international conference on computer vision,
Venice, Italy, 2017, pp. 2999-3007.

[20] D. Bratton, J. Kennedy, Defining a Standard for Particle
Swarm Optimization, 2007 IEEE swarm intelligence
symposium, Honolulu, Hawaii, USA, 2007, pp. 120-127.

[21] T. Wei, X. Zhao, L. Pei, L. Li, A Co-Saliency Object
Detection Model for Video Sequences, International
Journal of Performability Engineering, Vol. 16, No. 11,
pp. 1793-1802, November, 2020.

[22] M. Sundararajan, A. Taly, Q. Yan, Gradients of
Counterfactuals, arXiv preprint arXiv:1611.02639,
November, 2016.

[23] A. Binder, S. Bach,G. Montavon,K. Müller,W. Samek,
Layer-wise Relevance Propagation for Deep Neural
Network Architectures, in: K. Kim, N. Joukov (Eds.),
Information science and applications, Springer,
Singapore, 2016, pp. 913-922.

[24] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou,
JDeodorant: Identification and Removal of Type-
checking Bad Smells, 12th European Conference on
Software Maintenance and Reengineering, Athens,
Greece, 2008, pp. 329-331.

[25] C. Yeh, C. Hsieh, A. Suggala, D. Inouye, P. Ravikumar,
On the (In)fidelity and Sensitivity of Explanations,
Advances in Neural Information Processing Systems 32
(NeurIPS 2019), Vancouver, Canada, 2019, pp. 10965-
10976.

[26] Y. Qu, X. Chen, L. Li, Cross-Version Software Defect
Prediction Method for Relieving Class Overlap Problem,
Journal of Jilin University (Science Edition), Vol. 59, No.
2, pp. 372-378, March, 2021.

An Empirical Study of Gradient-based Explainability Techniques for Self-admitted Technical Debt Detection 641

[27] K.-H. Tseng, C.-H. R. Lin, J.-S. Liu, C.-M. A. Huang,
Y.-H. Wang, A Study on Text Classification: Term
Weighting Algorithm Analysis, Journal of Internet
Technology, Vol. 22, No. 2, pp. 311-325, March, 2021.

Biographies

Guoqiang Zhuang received the M.S.
degree in Soochow University. His research
interests include software engineering, and
software defect prediction.

Yubin Qu was born in Nanyang, China in
1981. He received the B.S. and M.S.
degrees in Computer Science and
Technology from Henan Polytechnic
University in China in 2004 and 2008.
Since 2009, he has been a lecture with
Information Engineering Institute, Jiangsu

College of Engineering and Technology. He is the author of
more than 10 articles. His research interests include software
maintenance, software testing, and machine learning.

Long Li received his Ph.D. degree from
Guilin University of Electronic Technology,
Guilin, China in 2018. He is now a lecturer
at the School of Computer Science and
Information Security, Guilin University of
Electronic Technology, Guilin, China. His
research interests include cryptographic
protocols, privacy-preserving technologies

in big data and IoT.

Xianzhen Dou was born in Xuzhou, China
in 1987. He received the M.S. degree in
School of Electronics and Information from
Nantong University in China in 2013. Since
2019, he has been a lecture with Information
Engineering Institute, Jiangsu College of
Engineering and Technology. His research
interests include software engineering, and

machine learning.

Mengao Li was born in Shaoyang, China
in 1983. He received the M.S. degree in
computer system architecture from Jilin
University in China in 2008. Since 2008, he
has been working in CCSC Systems
Engineering Research Institute. He is the
author of many excellent articles. His
research interests include system

architecture, software development and artificial intelligence.

	JIT2303 Cover
	JIT2303 Table of contents
	組合 1
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

	組合 2
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

	JIT2303-Information for Authors
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

