
LighterKGCN: A Recommender System Model Based on Bi-layer Graph Convolutional Networks 621

*Corresponding Author: Xiaosheng Yu; E-mail: yuxiaosheng@ctgu.edu.cn
DOI: 10.53106/160792642022052303020

LighterKGCN: A Recommender System Model Based on

Bi-layer Graph Convolutional Networks

Peng Chen, Jiancheng Zhao, Xiaosheng Yu*

College of Computer and Information Technology, China Three Gorges University, China
chenpeng@ctgu.edu.cn, 994106602@qq.com, yuxiaosheng@ctgu.edu.cn

Abstract

Recommender systems have been extensively utilized to
meet users’ personalized needs. Collaborative filtering is one
of the most classic algorithms in the recommendation field.
However, it has problems such as cold start and data sparsity.
In that case, knowledge graphs and graph convolutional
networks have been introduced by scholars into recommender
systems to solve the above problems. However, the current
graph convolutional networks fail to give full play to the
advantages of graph convolution since they are employed
either in the embedding representations of users and
commodity entities, or in the embedding representations
between entities of the knowledge graphs. Therefore,
LighterKGCN, a recommender system model based on bi-
layer graph convolutional networks was proposed in
accordance with the KGCN model and the LightGCN model.
In the first layer of GCN, the model first learned the
embedding representations of users and commodity entities on
the user-commodity entity interaction graph. Then, the
attained user embedding and commodity embedding were
used as the data source for the second layer of GCN. In the
second layer, the entity v and its neighborhoods were
calculated using the hybrid aggregation function proposed in
this paper. The result was taken as the new entity v. According
to tests on three public datasets and comparison results with
the KGCN, LighterKGCN improved by 0.52% and 51.16% in
terms of AUC and F1 performances, respectively on the
dataset of MovieLens-20M; LighterKGCN improved by
0.67% and 45.0% in terms of AUC and F1 performances,
respectively on the dataset of Yelp2018; and the number was
0.67% and 36.35% in AUC and F1 performances, respectively
on the dataset of Last.FM.

Keywords: LighterKGCN, Embedding, Recommender
system, Collaborative filtering, Knowledge
graph

1 Introduction

In order to meet users’ personalized needs, recommender
systems have been extensively applied in fields such as social
media, e-commerce, and news recommendation [1]. Its kernel
is to predict commodities that users are most likely to click or
purchase next time and show these commodities to users

according to historical interactions such as user purchases and
clicks.

Collaborative filtering (CF), one of the most classic
recommendation algorithms in recommender systems, can
predict commodities based on embedding representations of
users and commodities obtained through the user-commodity
interaction graph [2-7]. However, it faces problems such as
cold start and data sparsity. In early stages, user ID and
product ID were directly mapped into embedding
representations in matrix factorization (MF) [8]. SVD is a
classic content-based model which is recommended by
potential (hidden) factors [9]. LibFM is a feature-based
decomposition model in the CTR scenario [10]. The model
connects user identification with commodity identification as
the inputs of LibFM. LibFM is extended by appending the
entity representations learned by TerE to each pair of user and
commodity in LibFM +TerE [11]. Afterwards, the MF
interaction function was replaced by a nonlinear neural
network in the neural collaborative filtering model [4].
Recently, knowledge graphs (KG) or graph convolutional
networks (GCN) have been introduced into the recommender
systems to address cold start and enhance model performance.
Besides, KGCN samples the neighbors of each entity of KG
as its receptive field prior to calculating the representations of
given entities by combining the neighbor information with the
deviation so that the high-order structural information and
semantic information of KG can be automatically discovered
[12]. KGAT is oriented at embedding attention into the
propagation layer that can adaptively propagate the
embeddings from node neighbors to update node
representations [13]. Inspired by graph convolutional
networks [14-15], NGCF follows the same propagation rules as
GCN, namely, further clarifying the embedding representations of
entities through feature conversion, neighborhood aggregation, and
nonlinear activation [6]. Moreover, LightGCN enhances the model
performance by removing feature conversion and nonlinear
activation based on NCGF [16].

The above methods significantly improve recommendation
performance, especially the recommender systems adopting KG
and GCN. However, they apply CGN either in the embedding
representations of users and commodities, or in the embedding
representations between entities in KG, failing to take full
advantage of CGN’s capability of extracting feature
information by combining KG and CGN.

To address the above problems, LighterKGCN, a
recommender system model based on bi-layer GCN (KGCN
model and the LightGCN model), was proposed in the paper.
The first layer of GCN was utilized to learn the embedding

622 Journal of Internet Technology Vol. 23 No. 3, May 2022

representations of users and commodity entities on the user-
commodity entity interaction graph. Then, the acquired user
embeddings and commodity embeddings were deemed as the
data source for the second layer of GCN. In the second GCN
layer, the entity v and its neighborhoods were calculated using
the proposed hybrid aggregation function, with the result as
the new entity v. According to the tests on two public datasets
(MovieLens-20M and Last.FM), the LighterKGCN model is
superior to other latest benchmark models. Compared with
KGCN, LighterKGCN enhanced the performances of AUC
and F1 by 0.52% and 51.16% on the dataset MovieLens-20M;
compared with KGCN, LighterKGCN improved the
performances of AUC and F1 by 0.67% and 45.0% on the
dataset Yelp2018. compared with KGCN, LighterKGCN
improved the performances of AUC and F1 by 0.48% and
36.35% on the dataset Last.FM.

The author’s contributions in this paper are summarized as
follows:

LighterKGCN was proposed. The first layer of GCN was
adopted to learn embedding representations of users and
commodity entities, and the above embedding representations
were considered the data source of the second GCN layer.

Based on three commonly-used aggregate functions, a
hybrid aggregate function was obtained.

The model was proved to perform better than the most
advanced comparison model on three real-world data sets.

2 Related Work

2.1 LightGCN

2.1.1 Fundamental Principles

Light Graph Convolution Network (LightGCN) model, as
illustrated in Figure 1. In LGC, only the normalized sum of
neighbor embeddings is performed towards the next layer; other
operations like self-connection, feature transformation, and
nonlinear activation are all removed, which largely simplifies
GCNs. In Layer Combination, sum over the embeddings at each
layer to obtain the final representations. LightGCN is designed for
simplifying GCN, making it more concise and suitable for
recommender systems [16]. Based on NGCF, LightGCN
eliminates feature conversion and nonlinear activation, two
common designs in GCN. Experimental results prove that
feature conversion and nonlinear activation can increase
training difficulty without improving the CF performance.
Hence, neighborhood aggregation is retained in LightGCN for
CF. Finally, the experiments show that LightGCN performs
better than NGCF. The propagation rule in LightGCN is
defined as [6]:

(1) ()1e

u

k k
u i

i N u i

e
N N

+

=
 (1)

(1) ()1e
i

k k
i u

u N i u

e
N N

+

=
 (2)

Where, is the number of neighbors of the user ;

is the number of neighbors of the commodity ; and

is symmetrical normalization in line with the

design of the standard GCN [15], avoiding the case in which
the scale of embeddings increases with the graph convolution
operation [16].

Figure 1. An illustration of LightGCNmodel architecture
[16]

Assuming that the embedding propagation layer has a total
of L layers, the final embedding representations of users and
commodities are presented in (3):

() ()

0 0
;

L L
k k

u k u i k i
k k

e e e e
= =

= = (3)

Where, represents the weight of the kth layer during

the formation of the final embedding. The experiments show
that the best performance can be found when is unified

as .

Finally, the model prediction results are served as the final
recommendation and defined as:

 (4)

2.1.2 Matrix Representation

Let be the interaction matrix between users
and commodity entities in KG, where M is the number of users;
and N is the number of commodities. If user interacts
with the commodity , then , otherwise .
On this basis, the adjacency matrix of the user’s commodity
graph can be obtained as:

0

0T

R
A

R

=

 (5)

uN u

iN i

1

u iN N

Normalized Sum

Layer1

Layer2

Layer3

Normalized Sum

Layer1

Layer2

Layer3

Prediction

Layter Combination
（weighted sum）

Light Graph Convolution
（LGC）

k

k

1
1L +

y T
ui u ie e=

M NR R

u
i 1uiR = 0uiR =

LighterKGCN: A Recommender System Model Based on Bi-layer Graph Convolutional Networks 623

Let the 0th layer of the embedding matrix be
, where is the embedding size, and

therefore the equivalent form of the first GCN layer matrix can
be expressed as:

1 1

(1) ()2 2()k kE D AD E
− −+ = (6)

where, D is a diagonal matrix, where

 stands for the number of non-zero records in the ith-row
vector of the adjacency matrix A.

The final embedding matrix applied for model prediction
can be expressed as:

(0) (1) (2) ()

0 1 2 ... K
KE E E E E = + + + + (7)

It can also be expressed as:

 (8)

Where, is the symmetric normalized

matrix.

2.2 KGCN

To ease the sparsity and cold start of the recommender
systems based on CF, Wang Hongwei et al. proposed KGCN
and effectively captured the correlations between entities by
mining their association attributes on the KG [12]. Moreover,
KGCN sampled the neighbors of all entities on KG as their
receptive fields and then combined the neighbor information
with the deviation in calculating the representation of a given
entity to automatically detect the high-order structural
information and semantic information of KG. Note that the
receptive field could be extended beyond multiple hops to
simulate high-order adjacent information and capture users’
potential long-distance interest. Moreover, in the above paper,
the proposed KGCN was implemented in a small batch. In this
way, the KGCN model could be operated on larger datasets
and more complicated KG.

An example of two layers of receptive fields (green entities)
of blue entities in KG with k=2 is presented in Figure 2. An
iterative process of the KGCN algorithm is shown in Figure 3,
where, the entity of a given node is represented by

and the neighbor representation (green nodes) is

mixed to form the next-iterative representation
(blue nodes).

h=1

h=2

Figure 2. An example of two layers of receptive fields
between entities, K=2 [12]

Figure 3. An iteration of the KGCN algorithm [12]

3 LighterKGCN

LighterKGCN is a recommendation system model based

on a two-layer graph convolutional network. It is divided into
two layers. In the first layer of GCN, the embedded
representation of users and commodity entities is learned on
the user-commodity entity interaction diagram, and then the
obtained user and commodity embeddings are used as the data
source for the second layer of GCN. In the second layer of
GCN, the entity and its neighborhood are calculated using the
hybrid aggregation function proposed in this paper, and the
calculated result is used as a new entity. Finally, the embedded
representation of users and commodity entities obtained by the
second layer of GCN is used to calculate the predicted
matching score.

3.1 A The First Layer of GCN

3.1.1 Aggregation Propagation Rule

The first GCN layer is designed to calculate embedding
representations of users and commodities in KG. Feature
conversion which is most commonly-used in GCN and
nonlinear activation functions used in aggregation functions
are removed from this layer. A new type of propagation rule
adopted by the first GCN layer in this paper can be defined as:

(1) ()e

u

k k
u i

i N
e+

= (9)

(1) ()e

i

k k
i u

u N
e+

= (10)

What differs the propagation rules and the most adopted in

the first GCN layer and LightGCN is the elimination of
symmetric normalization. Furthermore, the function of
adjusting the node loss rate is added in the model to facilitate
model training and avoid over-fitting.

3.1.2 Hierarchical Embedding Representation

The higher-level embedding representations of users and
commodities can be calculated via (9) and (10). After L-layer
calculation, weighted summation is performed by (3) on the
embeddings of various layers to obtain the end user
embedding representation and the commodity

(0) ()M N TE R + T

() ()M N M N+ +

iiD

(0) (0) 2 (0) (0)
0 1 2 ... K

KE E AE A E A E = + + + +

1 1
2 2A D AD

− −
=

[]ue h
[]u

ie h

[1]ue h +

ue

624 Journal of Internet Technology Vol. 23 No. 3, May 2022

embedding representation upon the calculation of the
first GCN layer.

3.1.3 Matrix Form

Let be the interaction matrix between users
and commodity entities in KG. Where, is the number of
users; and is the number of entities in KG. If the user

interacts with the commodity , then , otherwise

. Based on this, the adjacency matrix of the
commodity graph of the user can be obtained as:

0

0T

R
A

R

=

 (11)

Let the embedding matrix in the 0th layer be

, where T is the embedding size, and thus
the equivalent form of the first GCN layer matrix can be
expressed as:

(1) ()k kE AE+ = (12)

At last, the final embedding matrix of the first GCN layer

after the L-layer calculation is obtained as:

(0) (1) (2) ()
0 1 2 ... L

LE E E E E = + + + + (13)

It can also be expressed as:

 (14)

3.2 The Second Layer of GCN

The KGCN model is the essence of the second GCN layer.
Specifically, the initialization matrix of the original trainable
user U and the initialization matrix of the trainable entity E are
replaced by the embedding matrices of the user U and the
entity E trained by the first GCN layer, respectively.

u and v are adopted to represent users and commodity
entities, respectively. stands for the collection of
entities directly connected with v; and r indicates the entity
relationship. The function g(⚫) is adopted to calculate the
score between the users and the entity relationship:

𝜋𝑟
𝑢 = 𝑔(𝑢, 𝑟) = 𝑢 ⊙ 𝑟 (15)

The neighborhood aggregation of the entity v is expressed

as:

 (16)

Where, is the standardized result of ,

indicates the score between the entity v and the neighbor e
under the relationship r for the user u. Based on this, As shown
in (17):

 (17)

Since the number of neighbors of the commodity v is

uncertain, the neighboring representation is changed from
 to to ensure the simplicity and feasibility of the

model, where, and K are configurable constants
for describing K neighbors that capture v.

After that, the entity v and its neighborhood representation
 are aggregated into a new entity v. In other words, a

new aggregation method is created in addition to KGCN
aggregation to obtain a new entity v through aggregation. The
new aggregation is expressed in (18) as below:

 (18)

Where, , , and are trainable weight

coefficients. The calculation result of the new entity v is
derived from three aggregation methods. In this paper, (18)
was named as a hybrid aggregation function. Agg is an
aggregate function with three settings:
⚫ Summator: Two representation vectors are summed

before performing a nonlinear transformation:

 (19)

Where, W and b are the transformation weight and offset,

respectively, and is the activation function.
⚫ Connection aggregator: Two representation vectors

are firstly connected before the nonlinear
transformation [14]:

 (20)

⚫ Neighbor aggregator: The neighbor representation of
the entity v is regarded as the output representation
[17]:

 (21)

The obtained entity v is considered as the input of the next

training. Embedding representations of the entity v and user u
are finally obtained upon iterations, which are then
introduced into the function upon L2 regularization
processing for probability prediction:

= 𝑓(𝑢, 𝑣) = 𝑢 ⊙ 𝑣 (22)

Where, represents the probability of the user u

interacting with the commodity v. Precisely, when a model is
greater than or equal to 0.5, the user u will be considered to
interact with the commodity v, otherwise no interaction is
considered between the user u and the commodity v.

ie

M NR R
M

N u
i 1uiR =

0uiR =

(0) ()M N TE R +

(0) (0) 2 (0) (0)
0 1 2 ... L

LE E AE A E A E = + + + +

(v)N

,() () v e

u u
N v re N v

v e

=

,v e

u
r ,v e

u
r ,v e

u
r

,

,

,()

exp()
exp()

v e

v e

v e

u
ru

r u
e N v r

=

()
u
N vv ()

u
S vv

() =S v K

()
u
S vv

sum () () ()(,) (,) (,)u u u
S v concat S v neighbor S vv agg v v agg v v agg v v = + +

()(())u
sum S vagg W v v b= + +

()((,))u
concat S vagg W concat v v b= +

()()u
neighbor S vagg W v b= +

H
()f

uvy

uvy

LighterKGCN: A Recommender System Model Based on Bi-layer Graph Convolutional Networks 625

At last, a negative sampling strategy is adopted in training
to enhance the calculation efficiency. At the same time, the
loss function set in KGCN is maintained [12], as shown in (23):

 (23)

Where, is the loss of cross entropy; is the

negative sampling distribution; is the negative sampling

number of the user u; and P are in line
with homogeneous distribution. ∥ 𝐹 ∥2

2 represents L2
regularization.

4 Experiment

In this paper, three real-world datasets were experimented in

order to evaluate the proposed method and answer the
following three questions.

Q1: How does LighterKGCN perform in comparison with
the existing methods?

Q2: Is the model affected by the number of different
aggregation layers in the first layer of GCN?

Q3: How is the performance of the proposed hybrid
aggregate function compared with other aggregate functions?

4.1 Dataset

To assess the effectiveness of LighterKGCN, MovieLens-
20M, Yelp2018 and Last.FM, two public datasets, were
experimented with. Statistics of the two datasets is
summarized in Table 1.

MovieLens-20M 1 This is a benchmark dataset widely
used in movie recommendations, comprising of
approximately 20 million scores ranging from 1 to 5 on the
MovieLens website.

Yelp20182 This dataset is adopted from the 2018 edition
of the Yelp challenge. Here we view the local businesses like
restaurants and bars as the items.

Last.FM 3 This is the music listening dataset collected
from Last.FM online music systems. Wherein, the tracks are
viewed as the items.

MovieLens-20M, as explicit feedback, should be
converted into implicit feedback in the experiment. Therefore,
the datasets provided by KGCN are implicit feedback in this
paper [12]. In order to ensure the consistency of the results
processed by the dataset Yelp2018 and Last.FM, the dataset
provided in KGAT is used [13]. About Yelp2018 and Last.FM
dataset, X. Wang et al. strongly suggested to use the trained
user and item embeddings of BPR-MF to initialize the user
and item embeddings of all models [13]. Therefore, all codes
in this paper first use BPR-MF trained user and project
embedding to initialize models. The code implementation of
the comparison method uses the code provided in KGAT [13].
Because our method and KGCN do not explicitly specify the
division into training set and test set in the code
implementation, this paper divides the item interacted by users
into training set and test set in the form of 8:2. In addition, the

1 https://grouplens.org/datasets/movielens/
2 https://www.yelp.com/dataset/challenge

evaluation method is also implemented according to the
original code.

Table 1. Statistics of datasets

 Movie Yelp2018 Last.FM
#users 138,159 45,919 23,566
#items 16,954 45,538 48,123
#interactions 13,501,622 1,185,068 3,034,796
#entities 102,569 90,961 58,266
#relations 32 42 9
#KG triples 499,474 1,853,704 464,567

4.2 Comparison Method

To prove the model effectiveness, LighterKGCN is
compared with the following methods:
⚫ CKE adopt a heterogeneous network embedding method

[18], termed as TransR [19], to extract items’ structural
representations by considering the heterogeneity of
both nodes and relationships.

⚫ CFKG propose a knowledge-base representation
learning framework to embed heterogeneous entities for
recommendation [20]. The model applies TransE [11]
on the unified graph including users, items, entities, and
relations.

⚫ KGAT explicitly models the high-order connectivities
in KG in an end-to-end fashion [13]. It recursively
propagates the embeddings from a node’s neighbors
(which can be users, items, or attributes) to refine the
node’s embedding, and employs an attention
mechanism to discriminate the importance of the
neighbors.

⚫ The RippleNet model enriches their representations with
a multi-hop path rooted at each user in KG and makes
predictions on the representations using MF [21].

⚫ KGCN can capture high-order structures and semantic
information in KG automatically with the key logic of
gathering and merging neighborhood information with
deviations in the process of calculating the
representations of a given entity in KG [12].

4.3 Parameter Setting

The node_dropout hyper-parameter was added in
LighterKGCN to set the node dropout rate within the range
between 0.0 and 1.0. In addition, the node_dropout_flag
hyper-parameter was utilized to decide whether node dropout
is enabled. The mat hyper-parameter was used to set the
aggregation mode of the first GCN layer within the integer
range between 0 and 3. To sum up, four aggregation modes
are available, namely, not normalized, the left side is
normalized after adding the identity matrix, the normalization
on the left,the left normalization and the right normalization.
The n_layers hyper-parameter is for setting the number of
aggregation layers of the first GCN layer. H represents the
number of aggregation layers of the second GCN layer. The
aggregator represents the aggregation mode of the second
GCN layer, including sum, concat, neighbor, and mix. To be
specific, mix is the proposed hybrid aggregation method,

3 https://grouplens.org/datasets/hetrec-2011/

2
() 2

: 1 1
((,) (,))

u

i i i i

uv

T

uv uv v P v uv uv
u U v y i

y y E y y F
 = =

= − +

 P
uT

{ : 1}u
uvT v y= =

626 Journal of Internet Technology Vol. 23 No. 3, May 2022

which is presented in (18). Specific parameter settings of
LighterKGCN are shown in Table 2.

Table 2. Parameter setting of LighterKGCN

 Movie Yelp2018 Last.FM
K 4 8 8
d 64 64 64
H 3 1 1
 710− 62 10− 610−
 45 10− 55 10− 55 10−
batch size 16384 1024 1024
aggregator mix mix mix
node_dropout 0.0 0.0 0.0
mat 0 3 3
n_layers 1 1 1

Note: K: neighbor sampling size, d: embedding dimension, λ:
L2 regularized weight, η: learning rate.

Moreover, AUC and F1 were also taken as the evaluation

indicators in the experiment like the evaluation method in
KGCN. The formula for calculating the F1 value is shown in
formula (26), where formula (24) is the precision rate, and
formula (25) is the recall rate. The value of AUC is the area
under the ROC curve, the ordinate of the ROC curve is the
“True Case Rate” (TFR), and the abscissa is the “False
Positive Rate” (FPR). From the definition, it can be seen that
AUC can be obtained by summing the area of each part under
the ROC curve. Assuming that the ROC curve is formed by

connecting points with coordinates
 in a sequence (x1=0, xm=1),

the AUC can be estimated as the formula (27) Shown. In the
experiment, in order to evaluate the effectiveness of top-K
recommendation and to facilitate comparison with other
methods, we set K to 20 when calculating the F1 value, that is,
each user calculates the item with the highest recommended
value. The first 20 items corresponding to the test set are
calculated to obtain the F1 value.

precision= TP
TP FP+

 (24)

recall= TP
TP FN+

 (25)

21 precision recallF

precision recall

=
+

 (26)

m 1

1 1
1

1 () ()
2 i i i i

i
AUC x x y y

−

+ +
=

= − + (27)

Where, TP is a true positive, FP is a false positive, and FN

is a false negation.

Table 3. Comparison between LighterKGCN and other methods

Model Movie Yelp2018 Last.FM
 AUC F1 AUC F1 AUC F1
CKE 0.9770 0.1611 0.9502 0.0216 0.9157 0.0433
CFKG 0.9704 0.1227 0.9434 0.0206 0.8836 0.0419
KGAT 0.9782 0.1809 0.9625 0.0262 0.9514 0.0626
RippleNet 0.9729 0.0983 0.9571 0.0254 0.9420 0.0557
KGCN 0.9788 0.1210 0.9694 0.0380 0.9645 0.0861
LighterKGCN 0.9839 0.1829 0.9759 0.0551 0.9692 0.1174

%Improv. 0.52% 51.16% 0.67% 45.0% 0.48% 36.35%
Note: %Improv. is calculated based on KGCN

4.4 Result

4.4.1 Performance Comparison

The performance comparison results in Table 3 show the

following points:
⚫ KGCN has almost the best performance in the AUC

and F1 scores of both the MovieLens-20M dataset,
Yelp2018 dataset and Last.FM dataset. KGCN
extends the non-spectral GCN method to the KG and
gathers neighborhood information in a selective and
biased manner, which can not only learn the structural
information and semantic information of KG, but also
learn the users’ personalized needs and potential
interests, thus being conducive to performance
improvement.

⚫ It can be found that the performance of KGAT on the
AUC and F1 scores is better than that of CKE, CFKG
and RippleNet. This is because KGAT can explore
high-level connectivity in an explicit way, thereby

effectively capturing cooperative signals. This verifies
the importance of capturing knowledge of
collaborative signaling.

⚫ LighterKGCN always produces the best performance
in MovieLens-20M dataset, Yelp2018 dataset and
Last.FM dataset. On the MovieLens-20M dataset,
compared with KGCN, AUC and F1 have improved
by 0.52% and 51.16%, respectively. On the Yelp2018
dataset, compared with KGCN, AUC and F1 have
improved by 0.67% and 45.0%, respectively. On the
Last.FM dataset, compared with KGCN, AUC and F1
have increased by 0.48% and 36.35%, respectively.
This also verifies that by adding a layer of GCN to
calculate the embedded representation of users and
commodity entities, the performance of the model can
be significantly improved.

⚫ At the same time, it can also be found that in the
performance of the above three datasets,
LighterKGCN’s AUC has improved very little, but it
has improved a lot in F1. The possible reason is that
the AUC value of KGCN in these three datasets is

()() () 1 1 2 2, , ... ,m mx y x y x y

LighterKGCN: A Recommender System Model Based on Bi-layer Graph Convolutional Networks 627

already very high, even if the LighterKGCN is used,
the AUC improvement is very limited.

4.4.2 Influence of Different Layers on the First Layer of

GCN

The model depth is changed, and the range of layers is set
{1,2,3} to examine whether the first round of GCN of
LighterKGCN benefits from multiple layers of embedding
propagation. Experimental results are summarized in Table 4.
LighterKGCN-3 indicates a model with three embedding
propagation layers. It is worth noting that similar symbols can
also be found in other models. The “-” in the table shows that
a given model is omitted due to its poor performance and
excessively long training time. From the analysis in Table 4,
the following results can be obtained:
⚫ In the three datasets, the lower the number of

embedding propagation layers, the better the

performance. The reason for this phenomenon is that
the data in the data can be embedded and propagated
at only one layer to obtain a wealth of information. If
the number of layers of embedding and propagation is
further increased, more useless information will be
obtained.

⚫ It can also be found from the above table that the more
data in the dataset, the more obvious the performance
degradation of increasing the number of embedding
propagation layers, especially on the MovieLens-20M
dataset, followed by Yelp2018, and finally Last.FM.

On the MovieLens-20M dataset, in the presence of over
two embedding propagation layers, the model performance
will be impaired dramatically accompanied by a huge increase
in training time. Evidently, multiple propagation layers don’t
necessarily enhance model performance. Hence, the
appropriate number of layers should be selected as per the
actual situation.

Table 4. Influence of the number of layers of embedding propagation

Model Movie Yelp2018 Last.FM
 AUC F1 AUC F1 AUC F1
LighterKGCN-1 0.9839 0.1829 0.9725 0.0551 0.9692 0.1174

LighterKGCN-2 0.9671 0.1752 0.9688 0.0431 0.9641 0.0961
LighterKGCN-3 - - 0.9663 0.3762 0.9590 0.0902

4.4.3 Comparison of Different Aggregation Methods in

the First Layer of GCN

The following points can be concluded from the test results
of all the aggregate functions shown in Table 5:

Table 5. Influence of varied aggregate functions

Model Movie Yelp2018 Last.FM
 AUC F1 AUC F1 AUC F1
LighterKGCNsum 0.9822 0.1779 0.9641 0.0365 0.9618 0.0655

LighterKGCNconcat 0.9826 0.1807 0.9695 0.0383 0.9496 0.0673
LighterKGCNneighbor 0.9775 0.1424 0.8713 0.0175 0.9160 0.0221
LighterKGCNmix 0.9839 0.1829 0.9725 0.0551 0.9692 0.1174

⚫ The proposed hybrid aggregate function produces the

best model performance.
⚫ The concat aggregate function has the smallest gap

with the mix aggregate function in terms of
performance.

⚫ No matter which dataset it is in, the performance of
neighbor aggregation function is the worst.

4.4.4 Hypothesis Testing

In order to compare the advantages of LighterKGCN and

other comparison methods in AUC and F1 more
comprehensively, hypothesis testing is used here for testing.

The null hypothesis about the AUC value is: H0: In 3
different experimental datasets, there is no difference in AUC
between LighterKGCN and the popular comparison method.
In order to reject this hypothesis, the Friedman rank sum test
was used in this experiment to test the significant difference
between multiple methods. First, the Friedman rank sum test
ranks the AUC values, where the highest F1 value is assigned
to the first level, the second highest F1 value is assigned to the
second level, and so on. Finally, Friedman’s test compares the
average ranks of the methods. Table 6 shows the AUC grades
of LighterKGCN and popular comparison methods and their
average grades in the 3 datasets.

Table 6. The AUC level of LighterKGCN and the popular comparison method and the average level of the 3 datasets

Dataset CKE CFKG KGAT RippleNet KGCN LighterKGCN
MovieLens-20M 4 6 3 5 2 1
Yelp2018 5 6 3 4 2 1
Last.FM 5 6 3 4 2 1
AVG 4.66 6 3 4.33 2 1

Note: AVG is the average.

628 Journal of Internet Technology Vol. 23 No. 3, May 2022

If the experimental result satisfies the null hypothesis, it

means that the execution of all algorithms is similar, so their
average rank Rj should be equal. For the calculation of
Friedman statistics, please refer to formula (28):

2

2 212 (1)[]
(1) 4F jj

N k kR
k k

 +

= −
 +

 (28)

Because Iman and Davenport [22] claimed that

Friedman’s was too conservative, they introduced better new
statistics, see formula (29):

2

2

(1)
(k 1)

F
F

F

NF
N

−
=

 − −
 (29)

The metric is assigned according to the F distribution with

k-1 and (1) (1)k N− − degrees of freedom. If the negative
hypothesis is rejected, a post-test is required to discover the
key difference between the average levels of these models.

This article uses the 95% confidence interval (0.05 =)
as the threshold for rejecting the null hypothesis, and uses
Friedman’s test to calculate the F distribution:

2
2 2 2 2 2 2 2

2

2

12 3 6 (6 1)[(4.66 6 3 4.33 2 1)] 14.541
6 (6 1) 4

(3 1) 2 14.541 63.359
3 (6 1) 15 14.541

F

F
F

F

F

 +
= + + + + + − =

 +

−
= = =

 − − −

This experiment has 3 datasets and 6 comparison methods.

According to the FF distribution, it has 6-1=5 and (6-1)·(3-
1)=10 degrees of freedom, the critical value 0.05 = of the
significance level of (2,10)F is 4.354. (2,10)FF F is
observed, so the null hypothesis is rejected. This also means
that there is a difference in the performance of AUC between
LighterKGCN and the popular comparison method on the
considered dataset.

The null hypothesis about the F1 value is: H0: In 3
different experimental datasets, there is no difference between
LighterKGCN and the popular comparison method in F1. In
order to reject this hypothesis, the Friedman rank sum test was
used in this experiment to test the significant difference
between multiple methods. First, the Friedman rank sum test
ranks F1 values, where the highest F1 value is assigned to the
first level, the second highest F1 value is assigned to the
second level, and so on. Finally, Friedman’s test compares the
average ranks of the methods. Table 7 shows the F1 grades of
LighterKGCN and the popular comparison method and their
average grades in the 3 datasets.

Table 7. The F1 level of LighterKGCN and the popular comparison method and the average level of the 3 datasets

Dataset CKE CFKG KGAT RippleNet KGCN LighterKGCN
MovieLens-20M 3 4 2 6 5 1
Yelp2018 5 6 3 4 2 1
Last.FM 5 6 3 4 2 1
AVG 4.33 5.33 2.66 4.66 3 1

Note: AVG is the average.

2
2 2 2 2 2 2 2

2

2

12 3 6 (6 1)[(4.33 5.33 2.66 4.66 3 1)] 10.671
6 (6 1) 4

(3 1) 2 10.671 4.930
3 (6 1) 15 10.671

F

F
F

F

F

 +
= + + + + + − =

 +

−
= = =

 − − −

The critical value 0.05 = of the significance level of

(2,10)F is 4.354. (2,10)FF F is observed, so the
null hypothesis is rejected. This also means that there is a
difference in the performance of F1 between LighterKGCN
and the popular comparison method on the considered dataset.

5 Conclusion

In this paper, LighterKGCN, a recommender system

model based on bi-layer graph convolutional networks was
proposed in accordance with the KGCN model and the
LightGCN model. The first layer of GCN learned embedding
representations of user-commodity entities on the user-
commodity entity interaction graph. Next, the obtained user
embedding and commodity embedding representations were
used as the data source for the second layer of GCN. In the
meantime, the proposed hybrid aggregate function was
adopted as the aggregate function of the second layer of GCN.

In the end, various experiments were performed on three real-
world datasets, proving that it is effective and feasible to learn
the embedding representations between users and entities in
knowledge graphs by adding a layer of GCN besides KGCN.

In future work, the attention mechanism will be introduced
in the first layer of GCN to enhance the model performance.
In addition, more supporting information such as social
networks will be used for recommendations [23].

References

[1] A. A. J. Jothi, R. A. Sulthana, A Review on the Literature

of Fashion Recommender System using Deep Learning,
International Journal of Performability Engineering,
Vol. 17, No. 8, pp. 695-702, August, 2021.

[2] Z. Y. Cheng, Y. Ding, L. Zhu, M. Kankanhalli, Aspect-
Aware Latent Factor Model: Rating Prediction with
Ratings and Reviews, The International Conference of
World Wide Web, Lyon, France, 2018, pp. 639-648.

[3] T. Ebesu, B. Shen, Y. Fang, Collaborative Memory
Network for Recommendation Systems, Special Interest
Group on Information Retrieval, Ann Arbor, Michigan,
USA, 2018, pp. 515-524.

[4] X. N. He, L. Z. Liao, H. W. Zhang, L. Q. Nie, X. Hu, T.-
S. Chua, Neural Collaborative Filtering, The

LighterKGCN: A Recommender System Model Based on Bi-layer Graph Convolutional Networks 629

International Conference of World Wide Web, Perth,
Australia, 2017, pp. 173-182.

[5] D. W. Liang, Rahul. G. Krishnan, D. M. Hoffman, T.
Jebara, Variational Autoencoders for Collaborative
Filtering, The International Conference of World Wide
Web, Lyon, France, 2018, pp. 689-698.

[6] X. Wang, X. N. He, M. Wang, F. L. Feng, T.-S. Chua,
Neural Graph Collaborative Filtering, Special Interest
Group on Information Retrieval, Paris, France, 2019, pp.
165-174.

[7] C. Su, D. Huang, Hybrid Recommender System based
on Deep Learning Model, International Journal of
Performability Engineering, Vol. 16, No. 1, pp. 118-129,
January, 2020.

[8] Y. Koren, R. Bell, C. Volinsky, Matrix Factorization
Techniques for Recommender Systems, IEEE Computer,
Vol. 42, No.8, pp. 30-37, August, 2009.

[9] Y. Koren, Factorization Meets the Neighborhood: a
Multifaceted Collaborative Filtering Model, ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, Las Vegas, Nevada, USA, 2008, pp. 426-
434.

[10] S. Rendle, Factorization Machines with Libfm, ACM
Transactions on Intelligent Systems and Technology
(TIST), Vol. 3, No. 3, pp. 1-22, May, 2012.

[11] A. Bordes, N. Usunier, A. G. Duran, J. Weston, O.
Yakhnenko, Translating Embeddings for Modeling
Multi-relational Data, Neural Information Processing
Systems, Lake Tahoe, Nevada, USA, 2013, pp. 2787-
2795.

[12] H. Wang, M. Zhao, X. Xie, W. Li, M. Guo, Knowledge
Graph Convolutional Networks for Recommender
Systems, The International Conference of World Wide
Web, San Francisco, CA, USA, 2019, pp. 3307-3313.

[13] X. Wang, X. N. He, Y. X. Cao, M. Liu, T.-S. Chua,
KGAT: Knowledge Graph Attention Network for
Recommendation, ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Anchorage,
Alaska, USA, 2019, pp. 950-958.

[14] W. L. Hamilton, R. Ying, J. Leskovec, Inductive
Representation Learning on Large Graphs, Neural
Information Processing Systems, Long Beach, CA, USA,
2017, pp. 1025-1035.

[15] T. N. Kipf and M. Welling, Semi-supervised
Classification with Graph Convolutional Networks, in
Proc. International Conference on Learning
Representations, Toulon, France, 2017, pp. 24-26.

[16] X. N. He, K. Deng, X. Wang, Y. Li, Y. D. Zhang, M.
Wang, LightGCN: Simplifying and Powering Graph
Convolution Network for Recommendation, Special
Interest Group on Information Retrieval, Virtual Event,
China, 2020, pp. 639-648.

[17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P.
Lio, Y. Bengio, Graph attention networks, International
Conference on Learning Representations, Vancouver,
Canada, 2018, pp. 1-12.

[18] F. Z. Zhang, N. J. Yuan, D. Lian, X. Xie, W. Y. Ma,
Collaborative Knowledge Base Embedding for
Recommender Systems, ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, 2016, pp. 353-362.

[19] S. Z. Dai, Y. C. Liang, S. Y. Liu, Y. Wang, W. L. Shao,
X. X. Lin, X. Y. Feng, Learning Entity and Relation

Embeddings with Entity Description for Knowledge
Graph Completion, Proceedings of 2018 2nd
International Conference on Artificial Intelligence:
Technologies and Applications (ICAITA2018), Chengdu,
China, 2018, pp. 194-197.

[20] Q. Y. Ai, V. Azizi, X. Chen, Y. F. Zhang, Learning
Heterogeneous Knowledge Base Embeddings for
Explainable Recommendation, Algorithms, Vol. 11, No.
9, Article No. 137, September, 2018.

[21] H. W. Wang, F. Z. Zhang, J. L. Wang, M. Zhao, W. J. Li,
X. Xie, M. Y. Guo, RippleNet: Propagating User
Preferences on the Knowledge Graph for Recommender
Systems, ACM International Conference on Information
and Knowledge Management, Lingotto Turin, Italy,
2018, pp.417-426.

[22] R. L. Iman, J. M. Davenport, Approximations of the
critical region of the fbietkan statistic, Communications
in Statistics- Theory ＆ Methods, Vol. 9, No. 6, pp.
571-595, September, 1980.

[23] L. Wu, P. J. Sun, Y. J. Fu, R. C. Hong, X. T. Wang, M.
Wang, A Neural Influence Diffusion Model for Social
Recommendation, in Proc. Special Interest Group on
Information Retrieval, Paris, France, 2019, pp. 235-244.

Biographies

Peng Chen was born in Enshi, Hubei,
China in 1973. He received the Ph.D. in
system analysis and integration from the
Huazhong University of Science and
Technology. Now, he has been a Professor
with Computer and Information Institute of
China Three Gorges University. His
research interests include Artificial

Intelligence, Big Data.

Jiancheng Zhao received his B.S. degree
in Information management and
information system from Henan
Polytechnic University, Henan, China, in
2018. Now he is studying for a master’s
degree at China Three Gorges University.

Xiaosheng Yu was born in Jianli, Hubei,
China in 1973. He received the Ph.D.
degree in information science from Wuhan
University in 2007. Since 2010, he has
been an associate professor with Computer
and Information Institute of China Three
Gorges University. His research interests
include big data analysis, information

fusion.

	JIT2303 Cover
	JIT2303 Table of contents
	組合 1
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

	組合 2
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

	JIT2303-Information for Authors
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

