
Mutation Operator Reduction for Cost-effective Deep Learning Software Testing via Decision Boundary Change Measurement 601

*Corresponding Author: Xing-Ya Wang; E-mail: xingyawang@outlook.com
DOI: 10.53106/160792642022052303018

Mutation Operator Reduction for Cost-effective Deep Learning

Software Testing via Decision Boundary Change Measurement

Li-Chao Feng1, Xing-Ya Wang1, 2*, Shi-Yu Zhang1, Rui-Zhi Gao3, Zhi-Hong Zhao1

1 College of Computer Science and Technology, Nanjing Tech University, China
2 Command and Control Engineering College, Army Engineering University of PLA, China

3 Sonos Inc., USA
lcfeng@njtech.edu.cn, xingyawang@outlook.com, syzhang0825@njtech.edu.cn,

ruizhi.gao@sonos.com, zhaozhih@njtech.edu.cn

Abstract

Mutation testing has been deemed an effective way to
ensure Deep Learning (DL) software quality. Due to the
requirements of generating and executing mass mutants,
mutation testing suffers low-efficiency problems. In regard to
traditional software, mutation operators that are hard to cause
program logic changes can be reduced. Thus, the number of
the mutants, as well as their executions, can be effectively
decreased. However, DL software relies on model logic to
make a decision. Decision boundaries characterize its logic. In
this paper, we propose a DL software mutation operator
reduction technique. Specifically, for each group of DL
operators, we propose and use DocEntropy to measure the
model’s decision boundary changes among mutants generated
and the original model. Then, we select the operator group
with the highest entropy value and use the involved operators
for further mutation testing. An empirical study on two DL
models verified that the proposed approach could lead to cost-
effective DL software mutation testing (i.e., 33.61% mutants
and their executions decreased on average) and archive more
accuracy mutation scores (i.e., 9.45% accuracy increased on
average).

Keywords: DL software, Mutation testing, Decision
boundary, Mutation operator reduction

1 Introduction

Recently, Deep Learning (DL) software has been widely
used in various safety-critical areas (e.g., face unlocking [1]
and autonomous driving [2]). The defects in DL software may
lead to disastrous consequences such as privacy leaks or car
accidents. Therefore, DL software should be thoroughly tested
[3]. Mutation testing is a conventional defect introducing
based test adequacy measurement method [4], and it has been
deemed an effective means to evaluate the adequacy of DL
software testing [5]. We obtain a series of mutants by using
mutation operators, and then we detect the defects in these
mutants. In regard to DL software, researchers have proposed
eight source-level mutation operators and eight model-level
mutation operators [5]. The former works on the training set
or the program, while the latter works on the trained model.
Each operator can generate plenty of mutants. For each mutant,

testers should record its executing results on all test data.
However, it costs too much time to complete a DL mutation
testing. Take the hand-written electronic dataset MNSIT [6] as
an example. It contains 10,000 test data. Assume applying one
DL mutation operator can generate ten mutants; we’ll get 160
mutants. To complete the MNSIT mutation testing, we must
conduct at least 1.6 million tests. These facts show that DL
mutation testing suffers low-efficiency problems, making it
difficult to use in practice.

Generally speaking, the evaluation indicators of mutation
testing are the cost of test overhead (the number of mutants
generated and executed) and the mutation score [7]. Mutation
operator reduction is an effective means to reduce the size of
mutants and improve the efficiency of mutation testing [8]. In
regard to traditional software, its executing result is
determined by program logic [9]. To conduct an adequate test,
the logic differences among the source and mutated programs
should be diverse. Then, testers can determine whether the test
data can detect various defects at different locations. For
example, by modifying the relational operators in each branch
statement, testers can fully evaluate the ability of test data to
detect boundary defects [10]. To speed up the mutation testing
of traditional software, mutation operators that are difficult to
cause program logic change can be reduced. Unlike traditional
software, the trained model determines the executing result of
DL software [11]. The training program fits the data features
to obtain the decision boundaries of the model. All decision
boundaries constitute the logic of the model [12]. Take a two-
classification model as an example. The decision boundary
divides two data classes into their respective decision spaces,
which completes the data classification. Therefore, to evaluate
the defect detection capabilities of DL test data, the difference
of the decision boundary among the source program and
mutants should be as diverse as possible.

In this paper, we propose a DL mutation operator
reduction method which relies on decision boundary change
measurement to select efficient mutation operators. In regard
to DL software, we first quantify the difference of the decision
boundary between the source program and each of the mutants
based on Manhattan distance [13].

Subsequently, we propose Decision Boundary Change
Entropy (DocEntropy) and use it to measure the decision
boundary change diversity of a set of generated mutants.
Finally, we select the operator group with the highest
DocEntropy values as the reduced result and use it for further

602 Journal of Internet Technology Vol. 23 No. 3, May 2022

mutation testing. The main contributions of this paper are as
follows:
⚫ We propose the first DL software mutation operator

reduction method. Specifically, we introduce
decision boundary change and propose DocEntropy
to measure the diversity of changes to select efficient
mutation operators.

⚫ We verify the effectiveness of the proposed method
through empirical study. The experiment results on
two DL models show that the technique can reduce
13 mutation operators to 8, decreasing the average of
33.61% mutants generated and executed. Moreover,
it improves nearly 9.45 % mutation score accuracy
on two models.

The remaining structure of this paper is organized as
follows. Chapter 2 introduces the background of the DL model
and its decision boundary, as well as DL mutation. Chapter 3
details the proposed reduction method. In Chapter 4, an
empirical study is carried out. Chapter 5 introduces related
work. Finally, the last Chapter summarizes our work.

2 Background

2.1 DL Model and Its Decision Boundary

Input
Layer

Y0

Y1

N

N

N
X0

X1

Output
Layer

Hidden
Layer1

N

N

N

...

Hidden
Layern

1
1

1
2

1
3

n

n
2

1

n
3

Figure 1. General structure of DL model

As mentioned earlier, DL software relies on a trained

model to make decisions. A DL model is a three-level Neuron-
Layer-Model structure [14]. As shown in Figure 1, it contains
one input layer, one output layer, and several hidden layers.
Each layer has a series of neurons. The neurons in the adjacent
layers are connected.

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏) (1)

Neurons are the primary computing units of the DL model,

each of which includes one linear transformation and one
activation function. Its output, y, is a continuous variable.
Formula (1) describes the structure of a neuron. 𝑤𝑖 and 𝑏
are the weights between neurons, which are the trainable
parameters in the model. Their values are obtained from the
training process. The activation function, 𝑓(), is the key to
realize feature extraction because it can capture the nonlinear
changes in the model.

To get a trained model, we first need to collect a training
data set and write a training program. The former provides the
learned characteristic, while the latter contains the structure of
the model and artificially defined hyper-parameters. Then, we
input the data set into the program, which fits the data
parameters, and finally get the trained model.

The decision boundaries constitute the internal logic of the
machine learning model. Regarding the DL model, the output
layer describes its decision boundaries. Assume the outputs of
all neurons in the output layer are 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑘} , 𝑦𝑖
denotes the probability of classifying the data into class i [15].
It satisfies ∑ 𝑦𝑖 = 1𝑘

𝑖=1 . If 𝑦𝑖 archives the highest value, the
data would be classified into class i by the decision boundaries.

BA

Model 1 's

Decision Boundary

DB1

Model 2 's

Decision Boundary

DB2

Figure 2. An example of decision boundaries in the DL
model

For example, regarding the two-classification problem,

data distributing in the decision space is divided into two
classes by the DL decision boundary. Figure 2 illustrates two
DL decision boundaries, DB1 and DB2. Each of them divides
the data into two classes (i.e., C1

A and C1
B, C2

A and C2
B). One

data in C1
A and one in C1

B are misclassified by DB1, while
two in C2

A and one in C2
B are misclassified by DB2 . It

indicates that the decision boundary directly influences the
classified results, and data close to the decision boundary are
intuitively easier to misclassify.

2.2 DL Mutation Testing

Mutation testing was firstly proposed to assess the quality

of the DL test set in 2018 [5]. It generates a large number of
mutants through mutation operators. If the test data can kill
more mutants, the dataset’s quality is higher. The workflow of
DL mutation testing is shown in Figure 3. It includes mutating,
training, and testing. The former chooses operators and
generates mutated models (i.e., mutants). The latter calculates
the mutation scores by original model and mutants.

Trained
Model tmts,tp

Mutated
Model mmmts,tp

Model-level
Mutation

(3)

Testing
set

Original Testing
Result

Mutated Testing
Result

Mutation
Score

Mutating and Training

Testing

Test

(4) (5)

Mutation Score
Calculation

Training
Program tp

Mutated Training
Program mtp

Program-level
Mutation

(2)

Mutated
Model mmts,mtp

Mutated
Model mmts,tp

Training
Set ts

Mutated
Training Set mts

Data-level
Mutation

(1)

Figure 3. Workflow of DL mutation testing

Mutation Operator Reduction for Cost-effective Deep Learning Software Testing via Decision Boundary Change Measurement 603

Table 1. DL mutation operators

Mutation Stage Mutation Object Mutation Operator Mutation Operator Description

Source-level
(Before training)

Data-level
(𝑀𝑂𝑑)

Data Repetition (DR) Duplicate training data
Label Error (LE) Falsify results (e.g., labels) of data
Data Missing (DM) Remove selected data
Data Shuffle (DF) Shuffle selected training data
Noise Perturb. (NP) Add noise to training data

Program-level
(𝑀𝑂𝑝)

Layer Removal (LR) Remove a layer before training
Layer Addition (LAs) Add a layer before training
Activation Function Removal (AFRs) Remove activation functions before training

Model-level
(After training)

Neuron-level
(𝑀𝑂𝑛)

Gaussian Fuzzing (GF) Fuzz weight by Gaussian Distribution
Weight Shuffling (WS) Shuffle selected weights
Neuron Switch (NS) Switch two neurons of the same layer
Neuron Effect Block (NEB) Block a neuron effect on following layers
Neuron Activation Inverse (NAI) Invert the activation status of a neuron

Layer-level
(𝑀𝑂𝑙)

Layer Deactivation (LD) Deactivate the effects of a layer
Layer Addition (LAm) Add a layer in the neuron network after training
Activation Function Removal (AFRm) Remove activation functions after training

Steps (1), (2), and (3) in Figure 3 are the process of mutating
and training. Testers apply data-level mutation operators to the
training set ts, generating the mutated training set mts. Testers
apply program-level mutation operators to the source program
tp, generating the mutated training set mtp. Then, the mutated
model is trained by mts and tp, or ts and mtp. Besides, testers
also can apply model-level mutation operators to the origin
model, trained by ts and tp in advance. After generating the
mutant set, the data is input into original and mutation models
to obtain corresponding results by steps (d) and (e). Finally,
testers calculate the mutation score, which reflects the quality
of test data.

Mutation operator plays the role of generating kinds of
mutants. Table 1 summarizes the characteristics of DL
mutation operators [5]. For each operator, its mutation stage
(column 1), mutation object (column 2), name (column 3), and
a brief description (column 4) are described. According to the
scopes, including the stage and object, mutation operators can
be divided into data-level, program-level, neuron-level, and
layer-level ones. The specific classification information is as
follows:
(1) Mutation operators at data-level (𝑀𝑂𝑑). They act on

the data of the training set, including five types: Data
Repetition (DR), Label Error (LE), Data Missing
(DM), Data Shuffle (DF), and Noise Perturb (NP).
They change the characteristics of single or multiple
data of the set, the distribution of the data set.

(2) Mutation operators at program-level (𝑀𝑂𝑝). They
act on the training program, including three types:
Layer Removal (LR), Layer Addition (LAs), and
Activation Function Removal (AFRs). They change
the structure settings of the model in the training
program.

(3) Mutation operators at neuron-level (𝑀𝑂𝑛). They act
on the neurons in the trained model, including five
types: Gaussian Fuzzing (GF), Weight Shuffling
(WS), Neuron Switch (NS), Neuron Effect Block
(NEB), and Neuron Activation Inverse (NAI). They
change the corresponding parameters of neurons.

(4) Mutation operators at layer-level (𝑀𝑂𝑙). They act on
the layers in the trained model, including three types:
Layer Deactivation (LD), Layer Addition (LAm),
and Activation Function Removal (AFRm). They
change the relevant information of the middle layer
of the model.

3 Reduction Method

DVSWD

DVSWP

DVSWN

DVSWL

(a) (b) (c)

Operators
Combination

DL Mutation
Operators

Operator
Groups

Decision
Boundary Change

Measurement

DocEntropy Values
Set

Group
 Selection

Reduced
DL Mutation

Operators

WD

WP

WL

WN

Figure 4. Framework of the proposed DL mutation operation
reduction method

Figure 4 presents the framework of the proposed DL

mutation operator reduction method. As previously mentioned,
its basis corresponds to maximizing the diversity among the
decision boundary changes of the original DL model and its
mutated ones. Thus, it requires a strategy of operator
combination to generate a series of candidate operator groups
and a measurement of change diversity for sets of DL models.
Therefore, our method works with the following two main
phases: (a) Operator combination. We ignore one level DL
mutation operator each time, and we get four operator groups.
(b) Decision Boundary Change Measurement. We propose
DocEntropy (i.e., Decision Boundary Change Entropy) to
measure the diversity of boundary changes w.r.t. an operator
group. Finally, we compare the DocEntropy values among all
operator groups and select the operators included in the group
that achieves the highest DocEntropy value on average as the
DL mutation operator reduced result.

604 Journal of Internet Technology Vol. 23 No. 3, May 2022

3.1 Operator Combination

Step F(a) in Figure 4 shows the specific operator subsets

generation method. We ignore one level of mutation operators
each time and combine the remaining levels of operators to
generate the operator groups, i.e., the group without data-level
operators (𝑀𝑂𝐺𝑝,𝑛,𝑙), the group without program-level
operators (𝑀𝑂𝐺𝑑,𝑛,𝑙), the group without neuron-level
operators (𝑀𝑂𝐺𝑑,𝑝,𝑙), and the group without layer-level
operators (𝑀𝑂𝐺𝑑,𝑝,𝑛).

There are two factors that explain this operation. First,
there is a specific contingency in single-type mutation
operators, creating the low indicator stability. For example,
there may be one good and one bad result of two mutants
generated by one operator. Keeping as many levels of
mutation operators as possible can make the quality of mutants
more stable. Second, although only one mutation operator is
used in one mutant, there is some potential relevance between
the scopes of the mutation operators. For example, the scopes
of 𝑀𝑂𝑑 and 𝑀𝑂𝑝 are the two interdependent objects of the
training process. The mutation scores calculated by different
levels of mutant combination are more meaningful.

In this paper, we refer to the reduction strategy for
traditional mutation operators [16]. We generate operator
groups by ignoring one of four levels operators 𝑀𝑂𝑑, 𝑀𝑂𝑝,
𝑀𝑂𝑛 , and 𝑀𝑂𝑙 . Compared with the single-level mutation
operator group, the mutation operator group formed by the
three levels has a larger cardinality. It can effectively alleviate
the contingency caused by the number of mutation operators,
making the result of the operator group more stable. Second,
the remaining three levels of mutation operators can maintain
the potential connection, making the method more
comprehensive in the consideration of the nature of mutation
operators.

3.2 Decision Boundary Change Measurement

As shown in Figure 4 (b), the corresponding changes in the

decision boundary needs to be measured. Figure 5 illustrates
the framework of decision boundary change measurement. It
includes mutant generation, sample selection, and DocEntropy
calculation.

Operator Group

Mutated Models and Their
Decision Boundaries

Distance Set of
Class i

Original Model and Its Decision
Boundary

DocEntropy
Calculation

Sample
Selection

Mutant
Generation

DocEntropy Values
of All Classes

1

2

k

(a) (b) (c)

Figure 5. Framework of decision boundary change measurement

Algorithm 1 outlines the details of three steps. For a task
of k classification, it treats the number of classes k, a training
set TR, the training program TP, the original model m, a testing
set TE, and a mutation operator group MOG as inputs. It
finally outputs a list of DocEntropy values DVS, where 𝐷𝑉𝑆𝑖
denotes the diversity of decision boundary changes w.r.t. the
𝑖𝑡ℎ class.

Step 1, mutant generation (lines 1-12). Each operator in
MOG generates the corresponding mutants, which are added
to the mutant set MUT. In this process, objects that correspond
to the operators in MOG are selected for mutating (lines 3-11).

Step 2, sample selection (lines 13-20). For the k
classification task, test data t in class 𝑖 (1 ≤ 𝑖 ≤ 𝑘) is
iteratively selected for classification (line 16). If t is correctly
classified by m but not correctly classified by 𝑚′, the decision
boundary of class i on 𝑚′ changes (lines 17-18). Then, using
formula (4), we calculate the boundary distance between m
and 𝑚′ (line 19) and 𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′) is added to the
distance set of the 𝑖𝑡ℎ class 𝐷𝑆𝑖 (line 20). After the distance

calculations of all classes, 𝐷𝑆 represents the distances of all
classes’ decision boundaries on mutant set MUT. 𝐷𝑆𝑖
contains the distance of the decision boundary changes of class
i.

The output of t at the 𝑖𝑡ℎ neuron on the output layer of m
is 𝑦𝑖 . For a k-classification problem, we assume the
probability of classifying a data to each class is 1 𝑘⁄ . As
shown in formulas (2) and (3), we use the Manhattan distance
[13] to quantify the distance (i.e., 𝑑1) between the decision
boundary of m and data t on class i, as well as the distance (i.e.,
𝑑2) between the decision boundary of 𝑚′ and data t on class
i. The decision boundary distance of class i between m and
𝑚′on t is defined as formula (4).

Step 3, DocEntropy calculation (lines 21-24). For the
distance set 𝐷𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑘), we use DocEntropy to measure
the degree of change of the decision boundary.
𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇)is added to DVS (line 24).

Mutation Operator Reduction for Cost-effective Deep Learning Software Testing via Decision Boundary Change Measurement 605

Algorithm 1. Decision boundary change measurement
Input: k, 𝑇𝑅, TP, m, 𝑇𝐸, MOG
Output: DVS
1: // Step 1: mutant generation
2: initialize the mutant set MUT = {};
3: foreach operator op in MOG:
4: if 𝑜𝑝 ∈ 𝑀𝑂𝑑: // data-level
5: Mutate TR to generate mutants 𝑀𝑈𝑇1;
6: else if 𝑜𝑝 ∈ 𝑀𝑂𝑝: // program-level
7: Mutate TP to generate mutants 𝑀𝑈𝑇2;
8: else if 𝑜𝑝 ∈ 𝑀𝑂𝑛: // neuron-level
9: Mutate m to generate mutants 𝑀𝑈𝑇3;
10: else: // layer-level
11: Mutate m to generate mutants 𝑀𝑈𝑇4;
12: MUT = 𝑀𝑈𝑇 ∪ 𝑀𝑈𝑇1 ∪ 𝑀𝑈𝑇2 ∪ 𝑀𝑈𝑇3 ∪ 𝑀𝑈𝑇4;
13: // Step 2: sample selection
14: for i in all classes (1, k):
15: initialize the distance set of the 𝑖𝑡ℎ class 𝐷𝑆𝑖={};
16: foreach test data t in 𝑇𝐸:
17: foreach mutant 𝑚′ in MUT:
18: if 𝑚(𝑡)=i and 𝑚′(𝑡)!=i:
19: calculate 𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′);
20: add 𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′) to 𝐷𝑆𝑖;
21: // Step 3: DocEntropy calculation
22: for i in all classes (1, k):
23: calculate 𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇);
24: add 𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇) to DVS;
25: output DVS.

𝑑1 = |𝑦𝑖 −

1

𝑘
| (2)

𝑑2 = |𝑦𝑖
′ −

1

𝑘
| (3)

𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′) = 𝑑1 + 𝑑2 (4)

𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇) =
𝑑𝑖𝑠𝑠𝑢𝑚

|𝑀𝑈𝑇|
∗ (− ∑

𝑑𝑖𝑠

𝑑𝑖𝑠𝑠𝑢𝑚
ln

𝑑𝑖𝑠

𝑑𝑖𝑠𝑠𝑢𝑚

|𝐷𝑆𝑖|

𝑗=1) (5)

Formula (5) presents the calculation of DocEntropy.
𝑑𝑖𝑠𝑠𝑢𝑚 denotes the sum of all distances in 𝐷𝑆𝑖 , |𝑀𝑈𝑇|
denotes total number of mutants, and |𝐷𝑆𝑖| denotes the
number of distances in the set 𝐷𝑆𝑖. Entropy is an indicator to
measure the degree of disorder [17], which has been proved to
be a better indicator to measure the variety of data than other
measurement indicators [18]. The more chaotic the object, the
greater the entropy value. The diversity of decision boundary
changes helps find test data close to the boundary. In mutation
testing, mutants whose decision boundaries close to the
original ones could misclassify fewer data. Mutants that have
similar decision boundaries could misclassify the exact data
close to the boundaries. They both have a negative
contribution to diversity. If the entropy is used to measure the
various changes of decision boundaries, the above mutants
could be found.

4 Empirical Study

We conduct an empirical study to verify the effectiveness
of the proposed method. This experiment is conducted on
Keras (ver.2.3.1) with Tensorflow (ver.1.15.2) backend,
which runs on a high-performance computer with an Ubuntu
system (ver.20.10) on I9-10900K CPU with 64 GB of RAM
and an NVIDIA RTX3080 GPU with 10G.

4.1 Experimental Design

We select MNIST [6], which is frequently used in DL

software testing research, as the experimental subject. MNIST
is a ten-classes classification number-picture dataset. The
number in it ranges from 0 to 9. MNIST contains 70,000
pictures, including 60,000 training pictures and 10,000 testing
pictures. The distribution of each class of pictures are the same.

We select model1 [19] and model2 [20] as the evaluation
subjects. Model1, named LeNet-5, is a classic ConvNet model
in the DL area. It performs well in solving classification
problems such as handwriting recognition [21]. Currently,
researchers have treated LeNet-5 as the benchmark model for
measuring DL testing adequacy [22]. We also selected model2
as a supplement because it is widely used in the DL mutation
testing area [5]. Table 2 summarizes the characteristics of the
models used in the experiments. For each model, its name
(column 1), the number of trainable parameters (column 2),
the number of convolutional layers (column 3), the number of
pooling layers (column 4), and their classification accuracies
(columns 5 and 6) are described. As is shown, both models
achieve a high classification accuracy on the MINIST dataset.

Table 2. Evaluation subjects

Model #Trainable
parameters

#Convolutional
layers

#Pooling
layers

Training
accuracy

on MNIST

Testing
accuracy

on MNIST
model1 107,786 2 2 99.14% 98.89%

model2 694,402 4 2 98.45% 97.71%

Operator LR works on the Dense layer and

BatchNormalization layer. The input shape and the output
shape should be consistent. Since both model1 and model2
do not meet these requirements, LR cannot generate mutants.

With regards to operators LD and LAm, they work on the layer
that has the consistent shape of input and output. Model1 and
Model2 do not meet this requirement. Thus, LD and LAm also
cannot be used. We discard them in our empirical study.

606 Journal of Internet Technology Vol. 23 No. 3, May 2022

Usually, the threshold of defect detected rate on the test set is
20% [5]. Mutants that have a higher defect detected rate will
be discarded. For each of the remaining thirteen operators, we
randomly generate 30 mutants, where the detected rate of each
is equal to or lower than 20%. Note that fewer AFRm mutants
(i.e., one for model1, two for model2) exist. To summarize,
as shown in Table 3, thirteen DL mutation operators and 723
mutants (i.e., 361 for model1, 362 for model2) are used in our
empirical study.

Mutation operator reduction aims to decrease the number
of mutants. Generating, compiling, and executing a mutant
will cost a specific time. Thus, the more mutants, the more
time we’ll spend on mutation testing. Therefore, we use the
reduction ratio (i.e., |𝑀𝑈𝑇𝑟𝑒𝑑𝑢𝑐𝑒𝑑|/|𝑀𝑈𝑇𝑎𝑙𝑙|) to evaluate the
effectiveness of mutation operator reduction. Mutation
operator reduction can also improve the accuracy of mutation
testing. We use mutation score to evaluate the ability of
accuracy improvement [5].

Table 3. Number of candidate mutants
Operators 𝑀𝑂𝑑 𝑀𝑂𝑝 𝑀𝑂𝑛 𝑀𝑂𝑙 Total

No. of
mutants

model1 150 60 150 1 361
model2 150 60 150 2 362

Figure 6. DocEntropy values of all classes

Figure 7. Mutation scores of all classes

Table 4. Result of operators and mutants reduction

Results model1 model2

Before
reduction

After
reduction

Reduction
radio

Before
reduction

After
reduction

Reduction
radio

No. of
operators 13 8 38.46% 13 8 38.46%

No. of mutants 361 240 33.52% 362 240 33.70%

4.2 Experimental Results and Analysis

Figure 6 depicts the DocEntropy values corresponding to

the operator groups, 𝑀𝑂𝐺𝑝,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑝,𝑙 , and

𝑀𝑂𝐺𝑑,𝑝,𝑛. For each class of model1, the mutants generated by
𝑀𝑂𝐺𝑑,𝑝,𝑙 archive the highest DocEntropy values, shown in
Figure 6 (a). For example, in class 8, the value of 𝑀𝑂𝐺𝑑,𝑝,𝑙 is
124.07, which is an increase of nearly 47.39% compared to the

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

𝑀𝑂𝐺𝑝,𝑛,𝑙 𝑀𝑂𝐺𝑑,𝑛,𝑙 𝑀𝑂𝐺𝑑,𝑝,𝑙 𝑀𝑂𝐺𝑑,𝑝,𝑛

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9

𝑀𝑂𝐺𝑝,𝑛,𝑙 𝑀𝑂𝐺𝑑,𝑛,𝑙 𝑀𝑂𝐺𝑑,𝑝,𝑙 𝑀𝑂𝐺𝑑,𝑝,𝑛

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0 1 2 3 4 5 6 7 8 9

Before reduction After reduction

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0 1 2 3 4 5 6 7 8 9

Before reduction After reduction

Mutation Operator Reduction for Cost-effective Deep Learning Software Testing via Decision Boundary Change Measurement 607

second 𝑀𝑂𝐺𝑑,𝑝,𝑛, 84.18. The average value of 𝑀𝑂𝐺𝑑,𝑝,𝑙 is
65.51, and the second is 47.44 of 𝑀𝑂𝐺𝑑,𝑝,𝑛. It is an increase
of nearly 38.09%. This shows that the change of decision
boundaries of the mutants generated by 𝑀𝑂𝐺𝑑,𝑝,𝑙 is more
diverse than the change of the other three groups. Compared
with 𝑀𝑂𝑑 , 𝑀𝑂𝑝 , and 𝑀𝑂𝑙 , 𝑀𝑂𝑛 is not included
in 𝑀𝑂𝐺𝑑,𝑝,𝑙 , but is included in 𝑀𝑂𝐺𝑝,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑛,𝑙 , and
𝑀𝑂𝐺𝑑,𝑝,𝑛. The mutants generated by 𝑀𝑂𝑛 have a negative
effect on the change of decision boundaries. Therefore, 𝑀𝑂𝑛

should be reduced in model1 . Operators in 𝑀𝑂𝐺𝑑,𝑝,𝑙

composed of 𝑀𝑂𝑑, 𝑀𝑂𝑝, and 𝑀𝑂𝑙 and should be selected
as the reduced result.

In model1, the mutation scores of mutants generated by
𝑀𝑂𝐺𝑑,𝑝,𝑙 are compared with ones generated by all mutation
operators. The result is shown in Figure 7 (a). After 𝑀𝑂𝑛 are
reduced, the mutation score of each class is improved. Among
them, the most considerable improvement is class 0. The
mutation score increases by nearly 34.86%, from 6.57% to
8.86%. In classes 2 and 9, the mutation score reaches the
highest value of 10%. The average mutation score of all
classes increases by nearly 9.61%. This shows that the mutants
generated by the reduced mutation operator group can be
killed by more data, which improves mutation score accuracy.

As shown in Table 4, the total number of mutation
operators is reduced from thirteen to eight after selecting
𝑀𝑂𝐺𝑑,𝑝,𝑙, and the reduction ratio is 38.46%. The total number
of mutants generated and executed was decreased from 361 to
240, and the reduction ratio was 33.52%.

For each class of Model2, we perform a similar analysis.
The difference is that the mutants generated by 𝑀𝑂𝐺𝑝,𝑛,𝑙

have the highest DocEntropy values, shown in Figure 6 (b).
Take class 3 for an example. The value of 𝑀𝑂𝐺𝑝,𝑛,𝑙 is 125.94,
which is an increase of nearly 50.59 % compared to the second
𝑀𝑂𝐺𝑑,𝑝,𝑛 , 83.63. The average value of 𝑀𝑂𝐺𝑝,𝑛,𝑙 is 84.17,
and the second is 55.97 of 𝑀𝑂𝐺𝑑,𝑛,𝑙. It is an increase of nearly
50.28%. This shows that the change of decision boundaries of
mutants generated by 𝑀𝑂𝐺𝑝,𝑛,𝑙 is more diverse than the
change of other three groups. Compared with 𝑀𝑂𝑝, 𝑀𝑂𝑙 ,

𝑎𝑛𝑑 𝑀𝑂𝑙, 𝑀𝑂𝑑 is not included in 𝑀𝑂𝐺𝑝,𝑛,𝑙, but is included
in 𝑀𝑂𝐺𝑑,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑝,𝑙 , and 𝑀𝑂𝐺𝑑,𝑝,𝑛 . The mutants
generated by 𝑀𝑂𝑑 have a negative effect on the change of
decision boundaries. Therefore, 𝑀𝑂𝑑 should be reduced.
Operators in 𝑀𝑂𝐺𝑝,𝑛,𝑙 composed of 𝑀𝑂𝑝, 𝑀𝑂𝑛 , and 𝑀𝑂𝑙

and should be selected as the reduced result.
In model2, the mutation scores of mutants generated by

𝑀𝑂𝐺𝑝,𝑛,𝑙 are compared with ones of all mutants. The result is
shown in Figure 7 (b). After 𝑀𝑂𝑑 are reduced, the mutation
score of each class is improved. Among them, the most
considerable improvement is class 8. The mutation score
increased nearly 13.43%, from 8.56% to 9.71%. The average
score of all classes increased by almost 9.29%, from 8.40% to
9.18%. This shows that the method improves the mutation
score accuracy.

As is shown in Table 4, the total number of mutation
operators is reduced from 13 to 8 after selecting 𝑀𝑂𝐺𝑝,𝑛,𝑙, and
the reduction ratio is 38.46%. The total number of mutants
generated and executed was decreased from 362 to 240, and
the reduction ratio was 33.70%.

It is observed that the level of mutation operators reduced
on model1 and model2 is different. Still, both can

effectively select the operator set corresponding to the mutants
with the most diverse decision boundary changes. The
conclusion is that the mutation operator reduction method on
model1 and model2 can effectively reduce the mutants,
decrease the number of mutants generated and executed, and
improve the accuracy of mutation scores.

4.3 Threats to Validity

This chapter mainly analyzes the threats from internal
validity and external validity.

The internal validity mainly includes two aspects. First,
the way the operator combination is worthy of analysis. One
level of operators is ignored to form a group of the aggregation
of multiple types of mutation operators. In the experiment, we
can always find a mutation operator group with much high
DocEntropy for all classes, proving the method has strong
stability. On model1, the mutation operators 𝑀𝑂𝑑 and 𝑀𝑂𝑝,
which act on the two related objects before training, produce
higher quality mutants. With the increase of the model’s
trainable parameters, the operators 𝑀𝑂𝑝 and 𝑀𝑂𝑛 related to
the model are more effective on model2 . The above two
aspects show that the combination of mutation operators is
effective and reduces the threat. Second, the reliability of some
artificial setting parameters in the experiment is worthy of
analysis. To avoid contingency, 30 mutants are generated for
each effective mutation operator to make the results
convincing. Moreover, the mutation rate was set to 1%, 5%,
and 10% to generate more effective mutants. After comparing
the number of non-valid mutants generated, we select 1% of
the least non-valid mutants to increase overall quality. It
effectively ensures the conduct of the experiment.

The external validity is mainly the effect of the
equivalence [23] and redundancy [24], which are the objects
that need to be considered in mutation testing. In the paper,
decision boundary change measurement takes them into full
consideration by DocEntropy calculation. Specifically,
mutants with decision boundaries similar to the original model
have fewer changed boundary distances to be measured,
negatively contributing to DocEntropy. This shows that the
reduction method proposed is sensitive to equivalences. In
addition, mutants with similar decision boundaries can reduce
the diversity of decision boundary changes. DocEntropy
would rapidly decrease in the set of low-diversity mutants.
This shows that the reduction method proposed is sensitive to
redundancies. Thus, the reduction method proposed can
reduce the mutation operators of the generated equivalences
and redundancies.

5 Related Work

5.1 DL Software Testing

With DeepXplore [25] presented in 2018, the testing of DL
software has gradually been valued by researchers. For a time,
research directions such as test input generation, test coverage
indicators, and test input selection have been developed one
after another.

Test input generation is mainly used to generate data that
the model can misjudge. The most used is the adversarial
sample generation technology. They add interference to the
data that is not visible to the human eye, causing errors in the

608 Journal of Internet Technology Vol. 23 No. 3, May 2022

model output [26]. Adversarial models are another effective
way to test input generation. DeepTest [27] synthesizes the
autopilot scene with various weather backgrounds and
generates images that make the autopilot decision model
errors. Test coverage indicators are such as neuron coverage
[28]. These methods seek to find more model defects by
increasing the coverage of the DL model. However, coverage
indicators are still difficult to interpret [29]. The test input
selection is mainly to improve the effectiveness of the test by
selecting data in the dataset. DeepGini [15] uses a statistical
method to identify data that can misclassify the model quickly.
The quality of the model is improved by training these data.
From the uncertainty of the model output, Ma et al. [30]
selected data that could be classified incorrectly by the model.
Experiments showed that this method is more efficient than
test coverage indicators.

5.2 Mutation Testing Cost Reduction

Traditional program-based mutation testing is often
divided into three steps: select mutation operators, generate
mutations, and calculate mutation scores. According to
whether a mutant is generated before reduction, mutation
reduction is divided into mutation operator reduction and
mutant reduction.

Since the reduction of mutation operators was proposed in
1991, it has been used quite a lot. Mathur. Offutt et al. [31]
presented 2-selective, 4-selective, and 6-selective mutation
strategies for the mothra mutation operator set, which ignores
2, 4, or 6 mutation operators to achieve the effect of reducing
the number of mutants. Namin et al. [32] chose to use a
statistical analysis program to identify the characteristic of
mutation operators and achieve mutation operators reduction.
Experimental results show that this method can fully predict
the mutation score using a small number of mutants. Silva et
al. [33] applied the search-based testing method to mutation
testing, selecting a more efficient mutation operator and
effectively reducing the cost of testing.

The reduction method of mutants, which is more regular,
is mainly divided into three random selections, specific kinds
of mutants selection, and multiple operators acting as one
mutant. The random selection method selects mutants from the
generated mutants according to a certain ratio, such as 10%,
20%. According to the experiment of Wong et al. [34], it can
be concluded that when the ratio exceeds 10%, the random
selection method is feasible. Zhang et al. [35] proved that
randomly selecting mutants is better than mutants selection
oriented by mutation operators. Meanwhile, this also shows
that reduction based on mutants is more valuable for research.
However, Yao et al. [36] reduced the mutants based on the
characteristic of the mutation operators. Experimental results
show that this method can effectively reduce equivalent
mutants and make mutation scores more accurate. Harman et
al. [37] found that injecting multiple mutation operators into a
program can achieve mutant reduction. Simultaneously, by
increasing the requirements for killing mutants, the set of test
cases is increased. This also reflects that the method of
multiple operators acting as one mutant is efficient.

6 Summary

In the paper, we firstly propose a mutation operator
reduction method for DL mutation testing. Specifically, we
calculate the distances of the decision boundaries between the
original model and each mutant. Then, we apply DocEntropy
to evaluate the diversity of distances, representing the decision
boundary changes. Finally, we select the operators with the
highest value as the reduction result. In the experiment, this
method successfully reduced thirteen mutation operators to
eight, decreasing nearly 33.61% mutants generated and
executed. Moreover, the accuracy of mutation scores
improves an average of 9.45%. In the future, we will try to use
high-order mutants to improve the efficiency of DL software
mutation testing.

Acknowledgements

The work is partly supported by the Postgraduate Research
& Practice Innovation Program of Jiangsu Province
(KYCX21_1140), the General Project of Basic Natural
Science in Colleges and Universities of Jiangsu Province
(21KJB520027), the Key Project of University Education
Information Research (2021JSETKT023) and the Project of
University-Industry Collaborative Education (202002180001).

References

[1] J. Li, J. Wang, X. Chen, Z. Luo, Z. Song, Multiple Task-
driven Face Detection Based on Super-resolution
Pyramid Network, Journal of Internet Technology, Vol.
20, No. 4, pp. 1263-1272, July, 2019.

[2] C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving:
Learning Affordance for Direct Perception in
Autonomous Driving, Proceedings of the IEEE
International Conference on Computer Vision (ICCV),
Santiago, Chile, 2015, pp. 2722-2730.

[3] Z. Wang, M. Yan, S. Liu, J. Chen, D. Zhang, Z. Wu, X.
Chen, Survey on Testing of Deep Neural Networks,
Journal of Software, Vol. 31, No. 5, pp. 1255-1275, May,
2020.

[4] A. P. Mathur, W. E. Wong, A Theoretical Comparison
between Mutation and Data Flow based Test Adequacy
Criteria, Proceedings of 1994 ACM Computer Science
Conference (CSC’94), Phoenix, Arizona, USA, 1994, pp.
38-45.

[5] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. J. Xu, C. Xie,
L. Li, Y. Liu, J. Zhao, Y. Wang, DeepMutation: Mutation
Testing of Deep Learning Systems, 2018 IEEE 29th
International Symposium on Software Reliability
Engineering (ISSRE), Memphis, TN, USA, 2018, pp.
100-111.

[6] L. Deng, The Mnist Database of Handwritten Digit
Images for Machine Learning Research [Best of the
Web], IEEE Signal Processing Magazine, Vol. 29, No. 6,
pp. 141-142, November, 2012.

[7] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, W. E.
Wong, Model-based Mutation Testing—Approach and
Case Studies, Science of Computer Programming, Vol.
120, pp. 25-48, May, 2016.

[8] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon,
M. Harman, Mutation Testing Advances: An Analysis

Mutation Operator Reduction for Cost-effective Deep Learning Software Testing via Decision Boundary Change Measurement 609

and Survey, Advances in Computers, Vol. 112, pp. 275-
378, 2019.

[9] T.-G. Tsuei, C. H. Ting, H.-C. Chao, Laws of Computing:
A View from Forth, Journal of Internet Technology, Vol.
1, No. 2, pp. 59-66, December, 2000.

[10] M. E. Delamaro, J. Offutt, P. Ammann, Designing
Deletion Mutation Operators, IEEE Seventh
International Conference on Software Testing,
Verification and Validation, Cleveland, OH, USA, 2014,
pp. 11-20.

[11] W. Shen, Y. Li, L. Chen, Y. Han, Y. Zhou, B. Xu,
Multiple-boundary Clustering and Prioritization to
Promote Neural Network Retraining, Proceedings of the
35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Melbourne,
VIC, Australia, 2020, pp. 410-422.

[12] H. Karimi, J. Tang, Decision Boundary of Deep Neural
Networks: Challenges and Opportunities, Proceedings
of the 13th International Conference on Web Search and
Data Mining (WSDM), Houston, TX, USA, 2020, pp.
919-920.

[13] W. Y. Chiu, G. G. Yen, T. K. Juan, Minimum Manhattan
Distance Approach to Multiple Criteria Decision
Making in Multiobjective Optimization Problems, IEEE
Transactions on Evolutionary Computation, Vol. 20, No.
6, pp. 972-985, May, 2016.

[14] G. F. C. Contreras, H. J. Dulcé-Moreno, R. A. Melo,
Arduino Data-logger and Artificial Neural Network to
Data Analysis, 5th International Meeting for
Researchers in Materials and Plasma Technology, San
José de Cúcuta, Colombia, 2019, pp. 1-7.

[15] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, Z. Chen,
Deepgini: Prioritizing Massive Tests to Enhance the
Robustness of Deep Neural Networks, Proceedings of
the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Virtual Event,
USA, 2020, pp. 177-188.

[16] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M.
Kurtz, N. Gökçe, Analyzing the Validity of Selective
Mutation with Dominator Mutants, Proceedings of the
2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), Seattle,
WA, USA, 2016, pp. 571-582.

[17] C. Ezeh, T. Ren, Y. Xu, S. Sun, Z. Li, Entropy and
Structural-Hole Based Node Ranking Methods, Journal
of Internet Technology, Vol. 22, No. 5, pp. 1011-1019,
September, 2021.

[18] Q. Shi, Z. Chen, C. Fang, Y. Feng, B. Xu, Measuring the
Diversity of a Test Set with Distance Entropy, IEEE
Transactions on Reliability, Vol. 65, No. 1, pp. 19-27,
March, 2016.

[19] Y. LeCun, LeNet-5, Convolutional Neural Networks,
URL:http://yann.lecun.com/exdb/lenet.

[20] C. Xiao, B. Li, J. Zhu, W. He, M. Liu, D. Song,
Generating Adversarial Examples with Adversarial
Networks, January, 2018,
https://arxiv.org/abs/1801.02610.

[21] A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi, A Survey
of the Recent Architectures of Deep Convolutional
Neural Networks, Artificial Intelligence Review, Vol. 53,
No. 8, pp. 5455-5516, December, 2020.

[22] S. Yan, G. Tao, X Liu, J. Zhai, S. Ma, L. Xu, X. Zhang,
Correlations Between Deep Neural Network Model

Coverage Criteria and Model Quality, 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering (ESEC/FSE), Virtual Event, USA, 2020, pp.
775-787.

[23] L. Madeyski, W. Orzeszyna, R. Torkar, M. Józala,
Overcoming the Equivalent Mutant Problem: A
Systematic Literature Review and a Comparative
Experiment of Second Order Mutation, IEEE
Transactions on Software Engineering, Vol. 40, No. 1,
pp. 23-42, January, 2014.

[24] C. Iida, S. Takada, Reducing Mutants with Mutant
Killable Precondition, 2017 IEEE International
Conference on Software Testing, Verification and
Validation Workshops, Tokyo, Japan, 2017, pp. 128-133.

[25] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated
Whitebox Testing of Deep Learning Systems,
Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, 2017, pp. 1-18.

[26] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and
Harnessing Adversarial Examples, December, 2014,
https://arxiv.org/abs/1412.6572.

[27] Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated
Testing of Deep-neural-network-driven Autonomous
Cars, Proceedings of the 40th International Conference
on Software Engineering (ICSE), Gothenburg, Sweden,
2018, pp. 303-314.

[28] L. Ma, F. J. Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu, J. Zhao, Y. Wang, Deepgauge: Multi-
granularity Testing Criteria for Deep Learning Systems,
Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE),
Montpellier, France, 2018, pp. 120-131.

[29] J. Chen, M. Yan, Z. Wang, Y. Kang, Z. Wu, Deep Neural
Network Test Coverage: How Far Are We?, October,
2020, https://arxiv.org/abs/2010.04946.

[30] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, Y. L.
Traon, Test Selection for Deep Learning Systems, ACM
Transactions on Software Engineering and Methodology,
Vol. 30, No. 2, pp. 1-22, April, 2021.

[31] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf,
An Experimental Determination of Sufficient Mutant
Operators, ACM Transactions on Software Engineering
and Methodology, Vol. 5, No. 2, pp. 99-118, April, 1996.

[32] A. S. Namin, J. Andrews, D. Murdoch, Sufficient
Mutation Operators for Measuring Test Effectiveness,
2018 ACM/IEEE 30th International Conference on
Software Engineering (ICSE), Leipzig, Germany, 2008,
pp. 351-360.

[33] R. A. Silva, S. R. S de Souza, P. S. L. Souza, A
Systematic Review on Search Based Mutation Testing,
Information and Software Technology, Vol. 81, pp. 19-
35, January, 2017.

[34] W. E. Wong, A. P. Mathur, Reducing the Cost of
Mutation Testing: An Empirical Study, Journal of
Systems and Software, Vol. 31, No. 3, pp. 185-196,
December, 1995.

[35] L. Zhang, S. S. Hou, J. J. Hu, T. Xie, H. Mei, Is Operator-
based Mutant Selection Superior to Random Mutant
Selection?, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering
(ICSE), Cape Town, South Africa, 2010, pp. 435-444.

610 Journal of Internet Technology Vol. 23 No. 3, May 2022

[36] X. Yao, M. Harman, Y. Jia, A Study of Equivalent and
Stubborn Mutation Operators Using Human Analysis of
Equivalence, Proceedings of the 36th International
Conference on Software Engineering (ICSE), Hyderabad,
India, 2014, pp. 919-930.

[37] M. Harman, Y. Jia, W. B. Langdon, A Manifesto for
Higher Order Mutation Testing, Third International
Conference on Software Testing, Verification, and
Validation Workshops, Paris, France, 2010, pp. 80-89.

Biographies

Li-Chao Feng received his B.S. degree in
computer science and technology from
Nanjing Tech University, Jiangsu, China, in
2020. He is currently pursuing an M.S.
degree in Nanjing Tech University, Jiangsu,
China. His current research interest is
intelligent software testing.

Xing-Ya Wang received his B.S. and Ph.D.
degrees in computer science and technology
from China University of Mining and
Technology, Jiangsu, China, in 2012 and
2017. He is currently the Associate
Professor at Nanjing Tech University. His
current research interest includes AI
software testing and smart contract testing.

Shi-Yu Zhang received his B.S. degree in
computer science and technology from
Nanjing Tech University, Jiangsu, China, in
2021. He is currently pursuing an M.S.
degree in Nanjing Tech University, Jiangsu,
China. His current research interest includes
intelligent software testing, Blockchain
(smart contract) analysis and testing.

Rui-Zhi Gao received his B.S. degree from
Nanjing University and then received his
M.S. degree and Ph.D. degree under the
supervision of Professor W. Eric Wong at
UTD. Dr. Gao focuses on software testing
and program debugging. He is now working
as a Principal Software Development
Engineer at Sonos Inc.

Zhi-Hong Zhao received his B.S., M.S.,
and Ph.D. degrees in computer science and
technology from Nanjing University,
Jiangsu, China, from 1993 to 2002. He is
currently the Professor in computer science
and technology at Nanjing Tech University.
His current research interest includes
Software engineering, information system

engineering, machine learning.

	JIT2303 Cover
	JIT2303 Table of contents
	組合 1
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

	組合 2
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

	JIT2303-Information for Authors
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

