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Abstract 
 

Coding is a key activity in the software development 
process and a programmer’s programming ability determines 
the software quality. Different from professional programmers, 
novice programmers usually refers to programmers who have 
learned a programming language for about three years. At this 
stage, measuring their programming ability is of great 
significance to improve their programming abilities. In 
previous work, researchers have proposed a variety of ways to 
measure programming ability for professional programmers. 
We set out to find out the best way to measure novice 
programming ability. We first exacted a questionnaire from 
published comprehension experiments for measuring 
programming ability. Then, we performed control 
experiments to compare the answers to the questionnaire with 
their performance. We found that module number and the 
number of programming-related websites visited seem to be a 
reliable way to measure programming ability for novice 
programmers. Furthermore, we perform exploratory factor 
analysis to generate a model to verify the effectiveness of our 
findings. 
 

Keywords: Programming ability, Measurement, Novice 
programmers 

 

1  Introduction 
 

The software development process generally contains four 
activities: plan, design, coding and test. Programming is a 
necessary ability for programmers, and programming ability 
is helpful for the smooth progress of related work in software 
development. Different from professional programmers, 
novice programmers usually refers to programmers who have 
learned a programming language for about three years [12]. At 
this stage, measuring their programming ability is of great 
significance to improve their programming abilities. To meet 
the requirements of enterprises, more attention should be 
given to the programming ability of novice programmers.  

 
From previous studies, programming ability was viewed 

as an important confound factor in software engineering 
experiments [1-2]. There is no consistent way to measure 
programming ability in academia. Researchers often use 
different ways to measure programming ability. The most 

commonly ways can be divided into two categories; the first 
is to measure through programming tasks directly [3-5, 10-11, 
13], and the second is to use assessment methods indirectly, 
including self-assessments [1-2, 6] and third-party 
assessments [7-9]. However, for the second way, researchers 
still experiment with programming tasks. Therefore, it can be 
seen that it seems to be a reliable method to measure 
programming tasks, but it is difficult to operate. It requires a 
certain amount of time and experimental environments. To 
resolve this problem, we propose to find out the best method 
to measure novice programming ability through a 
questionnaire survey. For practical reasons, we choose 
graduates as novice programmers in our control experiment. 

To measure programming ability, the first thing is to find 
the best indicator. Therefore, we first exacted a questionnaire 
from published comprehension experiments for measuring 
programming ability. Then, we ask novice programmers to fill 
out a questionnaire that contained questions related to 
programming ability. Next, we collect  

the scores of courses directly related to programming. 
Finally, we make a comparative analysis of the novice 
programmers’ course scores and the answers to the 
questionnaire. 

As result, we determine two variables as the best indicator 
for programming ability using correlation analysis and 
stepwise regression: the number of modules in the project and 
the number of programming-related websites visited. In 
addition, we hold a symposium, in which a list of people with 
top programming ability among the 104 subjects are cited for 
validation of results. Our main contributions are two-fold: (i) 
we provide a reusable questionnaire that contains common 
questions to measure programming ability; and (ii) we propose 
a new model to measure programming ability of novice 
programmers, which can provide suggestions and ideas for 
future researchers in measuring programming ability. 

The content of this article is arranged as follows: Section 
2 discusses the related work. In Section 3, a questionnaire on 
programming ability for novice programmers is presented. 
Section 4 discusses the inspection criteria of the questionnaire 
survey. Section 5 describes the experimental process and 
results in detail. Section 6 discusses the research results and 
Section 7 is the conclusion. 

 

2  Related Work 
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To learn how researchers measure programming, we 
review the relevant literature. These literatures have proposed 
possible standards to measure programming ability, which can 
classify and predict the programming ability of subjects.  

For example, Kleinschmager et al. assessed the impact of 
self-estimation, university marks, and pre-tests on subjects’ 
programming experience [1]. They asked the subjects to carry 
out two programming experiments and compared the 
performance of the subjects in the experiment with self-
estimation, university marks, and pre-tests. The study found 
that the self-estimation does not seem to be worse than 
university marks and predictive tests, and may even be better 
than the two. 

In order to find a method to measure programming 
experience, Feigenspan and other researchers extracted 
questions for evaluating programming experience from 
published literature and compiled it into a questionnaire [2]. 
They compared the answers in the questionnaire with the 
subjects’ performance in program comprehension tasks. 
Experiment shows that self-estimation seems to be an 
effective method to measure programming experience. The 
questionnaire is a common way of collecting data. For 
example, in literature [14], the authors also let subjects fill out 
the questionnaire before the experiment. This is related to our 
work. We also aim to find a questionnaire for novice 
programmers. 

In addition, there are some papers that study the rationality 
of students as subjects [15, 17, 19]. For example, in order to 
study students’ understanding of demand selection, Svahnberg 
et al. conducted a survey on demand selection [15]. Then, they 
compared student answers to data from previous industry 
practice studies. The result shows that there is a significant 
correlation between the views of students and those of 
professionals. Therefore, students as subjects have certain 
applicability in research. 

 
3  Questionnaire 

 
There are many methods for measuring the programming 

ability of subjects. Feigenspan et al. [2] have carried out a 
detailed review on this, mainly including years, education, 
self-estimation, unspecified questionnaire, size, unspecified 
pretest, and supervisor. 

Based on these methods, this paper designs a questionnaire 
about programming ability, including the following questions: 
years, self-estimation, size, and education. In addition, we add 
problems related to programming ability found in practical 
learning. We hope to propose a more standardized 
questionnaire to provide more detailed indicators for 
measuring programming ability. 

In Table 1, we summarize the questionnaire and show the 
specific questions of the programming questionnaire and how 

subjects should answer them. Regarding the criteria for 
evaluation of the question, we first refer to the content of the 
questionnaire in [2], and then set it according to the opinions 
of experts and the actual learning situation of students, hoping 
to get more accurate answers about programming ability. In 
the column source, we summarize the problem into five 
categories. In the column abbreviation, the abbreviations of 
each question are given to facilitate the use of the rest of this 
article. Next, we give a detailed explanation of each question. 

A. Years 

This category is mainly use to examine the subjects' 
contact programming time. This should start with the time of 
subjects first programmed, including the first study of  

programming grammar and writing hello-world-like 
programs. In the answer, we set four options from primary 
school to college. Generally speaking, the longer the subjects 
are exposed to programming, the more source codes they write, 
and the higher their programming ability. 

B. Self-estimation 

In this category, we ask the subjects to self-evaluate their 
programming ability. However, before this, we do not give a 
specific definition of programming ability as a reference, 
which requires subjects to make the corresponding self-
estimation according to their intuitive understanding of 
programming ability. In addition, we ask the subjects to 
compare themselves with their classmates and professional 
programmers with 10 years of programming experience. In 
this way, subjects have a deeper understanding of their 
programming ability. 

C. Education 

This category includes the assessment of educational 
aspects. First, we ask the subjects how many data structure 
algorithms and programming languages they think they are  

familiar with. No matter data structure algorithms or 
programming languages, we provide the most basic answers, 
and these are all learned in university. We believe  

that the more algorithms and programming languages 
college students are familiar with, the higher their 
programming ability. Besides, we also ask subjects to list their 
favorite courses at university. Because the number of courses 
and their relevance to programming roughly show how much 
source code they implement. Thus, we get an indicator: the 
more the number of programming-related courses college 
students like, the more the programming ability they obtain 
during the course study. 

D. Size 

For these questions, we examine the subjects’ project 
experience and the amount of code in the programming task. 
We believe that when subjects participate in project  
writing more code, their programming ability must be higher 
than those who write less code. 
 

 
Table 1. Overview of questions to assess programming ability 

Source Question Criteria for Evaluation Abbreviation 

Years When did you start contacting programming? Primary / Junior / Senior / 
University 

s.Year 

Self 
estimation 

How do you evaluate your programming ability? 
 

How do you evaluate your programming ability 
compared with your classmates? 
 

How do you evaluate your programming ability 

1: very inexperienced to 10: 
very 
experienced 
1: very inexperienced to 10: 
very 

s.PE 
 
s.Classmates 
 
s.Experts 
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compared with 10-year experienced 
programmers? 
 

experienced 
1: very inexperienced to 10: 
very 
experienced 
 

Education What data structure algorithms do you think you 
are good at? 
 
Which programming languages are you familiar 
with? 
 
What are your favorite courses? 

Linear-List / Stack and Queue / 
Tree and Binary / Sort and 
Search 
Graph 
Java /C, C++/Python /.NET 
PHP /Front-end development 
Programming language / Data 
Structure / Software 
engineering... 
(Not listed here in detail) 
 

s.Algorithm 
 
 
s.NumLanguag
es 
 
 
s.NumCourses 

Size How much have you participated in 
programming 
projects with more than 1000 lines? 
 

How many modules (functions) do you have in 
your largest programming project? 
 

How many lines of code are included in the 
maximum programming project you participate 
in? 
 

How many lines do you have the total number of 
programming lines in four years of university? 
 

no participants /1 – 2 / 3 – 4 / 
5 or more 
 

within 3 /3 – 5 /5 – 8 / more 
 
 

lines within 100 / 101 – 1000 / 
1001 – 10000 / above 10000 
 

within 1000 lines / 1001-10000 
lines / 10001-50000 lines / more 

p.NumCode 
 
p.NumModule 
 
 
p.MaxProject 
 
 

p.SumProject 

Other Do you like programming? 
 

Would you use your spare time to watch 
programming- related video resources? 
 

What websites have you visited related to 
programming? 

Very like / Like / General / 
Dislike 
 

Yes / No 
 

MOOC / CSDN / GitHub / 
Script house / Blog Park 

s.Favor 
 
s.Viedo 
 
s.NumSites 
 

 
In addition, we add other questions to the questionnaire. 

First, we ask subjects how much they like programming, as we 
think interest can improve student programming ability. 
Secondly, we ask students about their study after class, 
whether they would take the initiative to learn programming-
related online courses, and what programming-related 
websites they have visited. We aim at have a more detailed 
understanding of programming ability through this 
questionnaire survey.                                                                                 

 
4  Inspection Criteria 

 
In this paper, according to the characteristics of novice 

programmers, we select some course scores as inspection 
criteria. We put forward the following assumptions: 

Assumption 1. The programming ability of the novice 
programmers are related to the course group. 

Assumption 2. The higher the score of novice 
programmers, the stronger their programming ability. 

To this end, we collect the scores of computer science. By 
asking experts, we select courses related to programming 
ability from many courses, including: C, C++, Java, Data 
Structure, Java Web, and Python. The reason for selecting 
these courses is that these courses require students to write 
programs manually in the learning process. Therefore, we 
think that the scores of these courses can be used to explain 

student programming ability. Next, we verify our assumptions 
by analyzing the selected courses. 

First of all, we analyze the distribution of data. Figure 1 
shows the relationship between the scores of courses and the 
number of students. The horizontal axis represents the selected 
courses, the vertical axis represents the number of students, 
and four gray legends represent different scores interval. We 
can find that the scores of examinations have an approximately 
normal distribution relationship with the number of students. 
This shows that the score is conducive to the identification and 
selection of students. Therefore, it can be used in the following 
data analysis. 

 

 
Figure 1. Scores of examinations 
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Furthermore, the relevance of each course in the course 
group to programming ability can be measured by the 
relevance of that course to other programming courses in the 
course group. To this end, we conduct a correlation analysis 
of these six courses. We choose Spearman rank correlation for 
data analysis. The reason is that Spearman rank correlation is 
mainly used to solve the correlation of ordered data, which can 
better measure the correlation strength and direction between 
two ordered variables [20], and the results are shown in the 
Table 2. We find that except C++ and Python, there is a 
significant correlation between all courses. For another thing, 
there is no obvious correlation between C++ and Python 
because of the huge differences in language style. But whether 
C++ or Python, there is a significant correlation between these 
two courses and other courses, indicating that these two 
courses must be related to programming ability. Therefore, we 
ignore the irrelevance between C++ and python and keep these 
two courses in the course group. Finally, we calculate the 
average score of each student in the course group and use it as 
inspection criteria for the questionnaire. 

 
Table 2. Spearman correlations between courses 

 C++ Data 
Structure Java C Java Web Python 

C++ 1.000 .387** .407** .557** .399** .138 

Data  
Structure  1.000 .515** .596** .323** .392** 

Java   1.000 .500** .359** .364** 

C    1.000 .424** .419** 

Java 
Web     1.000 .258** 

Python      1.000 

**: denote significant correlations(p<.01) 
 
However, for the criteria of verifying the answers to the 

questionnaire, it is not only necessary to ensure the rationality 
of curriculum selection, but also to test whether the scores can 
be used as criteria to measure programming ability through a 
third party. Therefore, in order to test whether the average 
scores of these six courses can be used as a measure of 
programming ability, we hold a symposium inviting some 
teachers and some students from the School of Computer and 
Information. During the symposium, we ask the teachers and 
some students about their impressions of the subjects’ 
programming ability and ask them to make a list of people who 
are good at programming. After the meeting, we integrate a 
list of 26 students with some objectivity. 

Finally, we sort the students according to their average 
score and compare them with the 26 students. We find that 14 
of the top 20 students are on the list and 4 of the top 5 students 
are on the list. This is within a reasonable range, so we decide 
to use the average score as the criteria to verify the 
questionnaire answer. 

 
5  Experiment 

 

In this section, we describe the process and results of the 
experiment in detail. First, preprocess the answers to the 
questionnaire. Then, analyze the correlation between the 
answers to the questionnaire and the student’s average course 
scores to find several factors that are significantly related to 
programming ability. Finally, other problems are excluded by 
stepwise regression to obtain the best indicator to measure 
programming ability. 

  
5.1 Data Pre-processing 

 

The data collected by questionnaire are mostly expressed 
in words and cannot be analyzed directly. Therefore, in this 
section we first preprocess the data. Mainly, we divide it into 
data digitization and outlier processing. Then, we give a brief 
overview of the answers to the pre-processed questionnaire. 

 

5.1.1 Data Digitization 

 
Most of the answers in the questionnaire appear in the 

form of options A, B, C, and D, so our pre-processing method 
is to replace A, B, C, and D in the data with 1,2,3,4. However, 
s. Algorithm, s. NumLanguages, s. NumCourses, s. NumSites 
in the questionnaire need another method for processing. 
Firstly, for the three questions of s. Algorithm, s. 
NumLanguages and s. NumSites, we give the same weight 1 
to each option, and then the final answer is obtained by 
weighted summation. In addition, for the problem of s. 
NumCourses, we cannot simply give the same weight to each 
option, because the correlation between each course and 
programming ability is different.  

Therefore, to solve this problem, we consult materials and 
ask experts, and finally reach a unified conclusion, that is, to 
assign different weights to each course according to its 
relevance to programming ability, and finally get the final 
answer by the weighted average. In Table 3, we show the 
corresponding weight values of each course. 

 
Table 3. The weight value of courses 
Course Value 
Programming Language 
Data Structure 
Software Engineering 
 

3 

Operating System 
Principles of Compliers 
Mathematics courses 
 

2 

Computer Organization 
and Design Fundamentals 
Network Engineering 

1 

 
The answers to other options include the following 

categories: Database, Front-end courses, Artificial 
intelligence big data courses, Back-end courses, Blockchain 
courses. Considering the correlation between these courses 
and programming ability, we give a weight of 2. 

 
5.1.2 Outlier Processing 

 

In this paper, we focus on data with logical errors. For 
example, on the three questions of self-estimation, 
comparative evaluation with classmates, and comparative 
evaluation with experts. We can find some obvious 
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phenomena that are not in line with common sense from the 
data collected in the questionnaire. These phenomena mainly 
include the same score of s.PE and s. Classmates and s. Expert, 
or s. Expert scored the same or higher as s. Classmates. We 
define this kind of data as abnormal data, because it accounts 
for a small proportion, so we directly delete records containing 
such data. 

 
5.1.3 Overview 

 
Table 4. Overview of answers in questionnaire 

No Question Distribution N 

1 s.Year 
 

104 

2 s.Algorithm 
 

104 

3 s.PE 
 

104 

4 s.Classmates 
 

104 

5 s.Experts 
 

104 

6 s.NumLanguages 
 

104 

7 p.NumCode 
 

104 

8 p.NumModule 
 

104 

9 p.MaxProject 
 

104 

10 p.SumProject 
 

104 

11 s.Favor 
 

104 

12 s.NumCourses 
 

104 

13 s.Viedo 
 

104 

14 s.NumSites 
 

104 

 
In Table 4, we show the answers to the preprocessed 

questionnaire. Each image in the table represents the 
distribution of answer to each question. In order to represent 
the distribution of data more intuitively and avoid monotony 
for the overall beauty, we use different images. We find that 
most of the subjects start to learn programming from college, 
and only a few subjects start to learn from senior middle 
school. For self-estimation, most subjects give their 
programming ability a score of 6 or 7 points. However, when 
they are compared with professional programmers, they give 
themselves a lower score, such as 2 points, which is in line 
with our expectations. And for the project experience, we find 
that most subjects’ code size is about 10000 lines, or within 
10000-50000 lines. In general, there is a gap between the 

programming ability of novice programmers and that of 
professional programmers. 

 
5.2 Correlations 

 

In Table 5, we give an overview of the correlation between 
the average score and the answers to the questionnaire. Here, 
we still use Spearman correlation analysis. We find that 
s.Classmates, p.NumModule, s.NumCourses and s.Numsites 
with subjects’ average score have a significant correlation and 
the highest correlation with p.NumModule. For the remaining 
questions, we do not observe significant correlations. 

 
Table 5. Spearman correlations of average scores with  
answers in questionnaire 

No Question ρ N 

1 s.Year -.013 104 

2 s.Algorithm .098 104 

3 s.PE .127 104 

4 s.Classmates .248* 104 

5 s.Experts .012 104 

6 s.NumLanguages .100 104 

7 p.NumCode .049 104 

8 p.NumModule .303** 104 

9 p.MaxProject .187 104 

10 p.SumProject .031 104 

11 s.Favor .110 104 

12 s.NumCourses .200* 104 

13 s.Viedo .057 104 

14 s.NumSites .214* 104 

ρ: Spearman correlation. 
N: number of subjects who completed this questionnaire. 

 
For the completeness and accuracy of data analysis, we 

show the correlation between the score of each course and 
each question of our questionnaire in Table 6. We find that 
there are different degrees of correlation between each 
problem and each course. Of the 84 correlations, 16 are 
significant. For so many correlations, there is no meaningful 
conclusion without further exploration. But further research 
needs a large number of subjects, so we leave the analysis to 
work in the future. In the next section, we will continue to 
conduct the exploratory study. 
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Table 6. Spearman correlations of scores for each course with answers in questionnaire 

 C++ Data 
Structure Java C JavaWeb Python 

s.Year -.107 .081 .018 .034 -.026 .061 
s.Algorithm .107 .098 .048 .106 .054 .042 
s.PE .129 -.058 .170 .211* .197* .041 
s.Classmates .151 .072 .304** .249* .209* .156 
s.Experts .097 -.084 .076 .149 -.079 -.079 
s.NumLanguages .094 .114 .201* .051 .068 .078 
p.NumCode -.009 -.074 .129 .119 .077 .059 
p.NumModule .181 .144 .284** .332** .198* .252** 
p.MaxProject .152 .035 .258** .236* .072 .186 
p.SumProject -.006 -.110 .076 .124 .106 .054 
s.Favor .099 -.033 .118 .112 .127 .012 
s.NumCourses .023 .148 .089 .330** .147 .066 
s.Viedo -.075 .022 .111 .037 .071 .036 
s.NumSites .236* .312** .068 .172 .205* -.034 
*: denote significant correlations (p<.05) 
**: denote significant correlations (p<.01) 
 

5.3 Exploratory Study 
 
In this section, we will continue to explore the data and 

look forward to using stepwise regression to find the best 
indicator to measure programming ability. Stepwise 
regression is widely used in economics and psychology, but 
rarely used in software engineering [2]. Therefore, we first 
introduce the method of stepwise regression. 

 
5.3.1 Method 

 
Stepwise regression is a process of selecting variables in 

regression analysis. It introduces independent variables into 
the model step by step; if variables are statistically significant, 
they are included in the regression model and simultaneously 
remove variables without statistical significance. In general, it 
selects the most important variable from a set of candidate 
variables to build a regression model. 

First of all, why should we select a set of candidate 
variables from many questions? From Table 5, we can find 
that not all the problems are related to the average score of the 
course. The candidate variables we select should be at least 
moderately related to the average score of the course. Because 
of the Spearman correlation analysis, the factors with 
moderate correlation are usually considered to have a certain 
relationship with the dependent variable, which has the value 
of research, and those factors without correlation can be 
ignored. 

Second, why can’t all factors with medium correlation 
with the dependent variable be selected as the measurement 
indicator? If so, we ignore an important issue that these factors 
themselves may be interrelated, even highly relevant. Now, we 
assume that there is a correlation between the two selected 
independent variables. If we use these two independent 
variables to measure programming ability, we will calculate 
the common part of the two independent variables one more 
time when calculating, which will lead us to overestimate the 

impact of variables on programming ability [18]. For example, 
in our experiment, we found that s. ClassMates had a 
significant correlation with p.NumModule through Spearman 
correlation analysis, and their correlation degree was 0.350. 

Therefore, in order to reduce the impact of the correlation 
between the independent variables on the problem, we use the 
stepwise regression method to explore [16]. To better 
introduce independent variables to the model, we should input 
independent variables with significant influence into the 
regression model from large to small according to the 
correlation between independent variables and dependent 
variables. For example, in this paper, we should first consider 
the problem with the highest correlation with the average score 
of the curriculum, which is p. NumModule. Then, consider the 
problem of high correlation, which is s.Classmates. If the 
existing independent variables in the model are no longer 
significant due to the introduction of the current independent 
variables, they are eliminated. The same is true for the rest of 
the problem, which is a repeated process. Through stepwise 
regression, we build a regression model so that in the end only 
significant variables are included in the model. 

 
5.3.2 Results and Interpretation 

 
In Table 7, we show the results of stepwise regression 

(specifically, we use the step method). By stepwise regression, 
we extract two questions: the number of  

 
Table 7. Model results of stepwise regression 

Question Beta t p 
p.NumModule .289 3.092 .003 
s.NumSites .230 2.461 .016 

 
modules in the project (p.NumModule) and the number of 

programming-related websites visited (s.NumSites). The beta 
value in the table shows the impact of variables on the average 
score of the courses. The higher the beta value, the greater the 
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impact. The model is significant (p<.05), and the adjusted R2 

is 0.15, which means that the explanatory rate of the extracted 
two questions to the average course score is 15%. 

Therefore, the result of the stepwise regression is that the 
number of modules in the project and the number of websites 
related to browsing programming contribute the most to the 
average score of the course. That is to say, the more modules 
college students participate in projects, and the more 
frequently they browse programming-related websites, the 
higher their average scores. In addition, the factor extracted 
here is the number of modules in the project rather than the 
total number of lines of code, because modular programming 
can better reflect the programmer’s logical thinking during 
programming and promote the improvement of programming 
ability. Why are these correlated? First of all, we are clear that 
the subjects of our survey are college students, who have 
relatively weak programming ability compared to professional 
programmers. If they are willing to look up learning and 
programming-related websites after class, then such students 
must have a certain interest in programming and are willing to 
spend time learning to program, so their programming ability 
must not be bad. 

In general, we eliminate other problems in the 
questionnaire by stepwise regression, and finally determine 
the two problems of p. NumModule and s. NumSites as the 
best indicators to measure programming ability. 

 
5.3.3 Experimental Verification 

 
A regression model is obtained by a stepwise regression 

algorithm. The model gives the beta value of the question, 
which represents the weight of each question. We can 
calculate the value of students’ programming ability in this 
model. We can set the programming ability as θ, the number 
of project modules as α, and the number of programming-
related websites visited as β; then, the formula for calculating 
the programming ability is (for simplicity, we ignore the 
constant term of the equation): 

            𝜃 = 𝛼 × 0.289 + 𝛽 × 0.230         (1) 

Therefore, we can use this formula to calculate the 
programming ability of all subjects and sort them and then 
compare them with 26 students obtained from the symposium. 
The result shows that 11 of the top 20 students are on the list. 

 
6  Discussion 

 

6.1 Implication 
 
The main work of this paper is to systematically analyze 

the relationship between novices’ programming ability, 
relevant course scores, and other factors. By building a model 
to evaluate programming ability, the significant factors are 
analyzed. The result shows that p.NumModule and 
s.NumSites have the greatest influence on novices’ 
programming ability. Although our research conclusion 
cannot provide a perfect explanation for the programming 
ability of novice programmers, it provides a reference. 
Whether it is for business managers or university teachers, 
they can combine our research conclusions with the actual 
situation to assist and guide their work. For example, the 
relevant conclusions can provide references for colleges and 

universities to formulate training programs for computer 
professionals, and can also provide a basis for companies to 
evaluate graduates’ programming ability during recruitment. 

 
6.2 Threats to Validity 

 
The first threat to validity is inspection criteria. For 

different inspection criteria, the conclusions may be different. 
In this paper, according to the characteristics of research 
objects, we select the course scores related to programming to 
represent the programming level of novices. But we need to 
consider how much the score of those courses can represent 
the programming ability. If the content of examination related 
to programming is less in proportion to the overall content, 
then the score of this course cannot represent the programming 
ability. In this paper, we examine the rationality of selected 
course scores by asking experts and teachers. Therefore, we 
believe we controlled this threat, and the inspection criteria 
selected in this paper is suitable for our research purpose.  

The second threat is the sample size. Due to the limitation 
of practical reasons, we only can collect about 100 pieces of 
data. Although there are only about 100 pieces of data, we still 
consider using the existing mature methods to analyze the data 
to obtain more reliable conclusions. Another threat is the 
sample selection: we only select graduates as research objects. 
Our conclusions are only applicable to novice programmers 
with similar backgrounds, because our questions may have 
different meanings for novice programmers who have 
participated in the work. For example, s.Classmates is not 
suitable for novice programmers who are already working. For 
them, it should be compared with colleagues. When applying 
the results to novice programmers at work, other indicators, 
such as total code may be a better indicator. In the future work, 
we plan to expand our sample size and invite more different 
types of novice programmers to join our research, so as to 
obtain more diverse data to reduce these threats. 

In addition, the fourth threat is the subjectivity of data. In 
the model of evaluating programming ability, we use highly 
subjective data such as questionnaires. Since there  

is no good method to verify whether the answers to the 
questionnaire are in line with the actual situation, we ignore 
the evaluation of the objectivity of the questionnaire results 
and the screening of effective content in the current analysis 
because it requires a lot of support work. But, we still consider 
using other methods to deal with the subjectivity between self-
assessment answers. Therefore, we think that we have made a 
certain effort to control this threat. In future research, we plan 
to confirm and screen the results of the questionnaire to 
improve the reliability of the results. 

 
7 Conclusion 

 

In this paper, we mainly focus on the programming ability 
of novice programmers and explore the significant factors 
affecting their programming ability. In order to carry out the 
research smoothly, we ask novice programmers to complete a 
questionnaire. We compare and analyze the answers of the 
questionnaire and their course scores, and construct a linear 
regression model to measure programming ability by stepwise 
regression method. The model shows that the significant 
factors affecting programming ability are the number of 
modules in the project (p.NumModule) and the number of 
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programming-related websites visited (s.NumSites). This 
conclusion can not only provide some learning methods for 
novice programmers to improve their programming ability, 
but also provide reference for enterprises to recruit employees 
and universities to train computer talents. In addition, this is a 
preliminary study and more work is required to test and 
improve this model. In future work, we plan to expand our 
sample size and invite more different types of novice 
programmers to join this study. We also need to confirm and 
screen the answers of the questionnaire to reduce the influence 
of the subjectivity of the questionnaire on the experiment and 
further improve the quality of our measurement. 
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