
Measuring Programming Ability for Novice Programmers 573

*Corresponding Author: Yong Wang; E-mail: yongwang@ahpu.edu.cn
DOI: 10.53106/160792642022052303015

Measuring Programming Ability for Novice Programmers

Xue Wang1, Yong Wang1,2,4*, Fei Yang3, Wenge Le1, Shouhang Wang1

1 School of Computer and Information, Anhui Polytechnic University, China
2 State Key Laboratory for Novel Software Technology, Nanjing University, China

3 Zhejiang Lab, China
4 Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, China

2200720102@stu.ahpu.edu.cn, yongwang@ahpu.edu.cn, yangf@zhejianglab.com,
2200220114@stu.ahpu.edu.cn, 2200220107@stu.ahpu.edu.cn

Abstract

Coding is a key activity in the software development
process and a programmer’s programming ability determines
the software quality. Different from professional programmers,
novice programmers usually refers to programmers who have
learned a programming language for about three years. At this
stage, measuring their programming ability is of great
significance to improve their programming abilities. In
previous work, researchers have proposed a variety of ways to
measure programming ability for professional programmers.
We set out to find out the best way to measure novice
programming ability. We first exacted a questionnaire from
published comprehension experiments for measuring
programming ability. Then, we performed control
experiments to compare the answers to the questionnaire with
their performance. We found that module number and the
number of programming-related websites visited seem to be a
reliable way to measure programming ability for novice
programmers. Furthermore, we perform exploratory factor
analysis to generate a model to verify the effectiveness of our
findings.

Keywords: Programming ability, Measurement, Novice
programmers

1 Introduction

The software development process generally contains four
activities: plan, design, coding and test. Programming is a
necessary ability for programmers, and programming ability
is helpful for the smooth progress of related work in software
development. Different from professional programmers,
novice programmers usually refers to programmers who have
learned a programming language for about three years [12]. At
this stage, measuring their programming ability is of great
significance to improve their programming abilities. To meet
the requirements of enterprises, more attention should be
given to the programming ability of novice programmers.

From previous studies, programming ability was viewed

as an important confound factor in software engineering
experiments [1-2]. There is no consistent way to measure
programming ability in academia. Researchers often use
different ways to measure programming ability. The most

commonly ways can be divided into two categories; the first
is to measure through programming tasks directly [3-5, 10-11,
13], and the second is to use assessment methods indirectly,
including self-assessments [1-2, 6] and third-party
assessments [7-9]. However, for the second way, researchers
still experiment with programming tasks. Therefore, it can be
seen that it seems to be a reliable method to measure
programming tasks, but it is difficult to operate. It requires a
certain amount of time and experimental environments. To
resolve this problem, we propose to find out the best method
to measure novice programming ability through a
questionnaire survey. For practical reasons, we choose
graduates as novice programmers in our control experiment.

To measure programming ability, the first thing is to find
the best indicator. Therefore, we first exacted a questionnaire
from published comprehension experiments for measuring
programming ability. Then, we ask novice programmers to fill
out a questionnaire that contained questions related to
programming ability. Next, we collect

the scores of courses directly related to programming.
Finally, we make a comparative analysis of the novice
programmers’ course scores and the answers to the
questionnaire.

As result, we determine two variables as the best indicator
for programming ability using correlation analysis and
stepwise regression: the number of modules in the project and
the number of programming-related websites visited. In
addition, we hold a symposium, in which a list of people with
top programming ability among the 104 subjects are cited for
validation of results. Our main contributions are two-fold: (i)
we provide a reusable questionnaire that contains common
questions to measure programming ability; and (ii) we propose
a new model to measure programming ability of novice
programmers, which can provide suggestions and ideas for
future researchers in measuring programming ability.

The content of this article is arranged as follows: Section
2 discusses the related work. In Section 3, a questionnaire on
programming ability for novice programmers is presented.
Section 4 discusses the inspection criteria of the questionnaire
survey. Section 5 describes the experimental process and
results in detail. Section 6 discusses the research results and
Section 7 is the conclusion.

2 Related Work

574 Journal of Internet Technology Vol. 23 No. 3, May 2022

To learn how researchers measure programming, we
review the relevant literature. These literatures have proposed
possible standards to measure programming ability, which can
classify and predict the programming ability of subjects.

For example, Kleinschmager et al. assessed the impact of
self-estimation, university marks, and pre-tests on subjects’
programming experience [1]. They asked the subjects to carry
out two programming experiments and compared the
performance of the subjects in the experiment with self-
estimation, university marks, and pre-tests. The study found
that the self-estimation does not seem to be worse than
university marks and predictive tests, and may even be better
than the two.

In order to find a method to measure programming
experience, Feigenspan and other researchers extracted
questions for evaluating programming experience from
published literature and compiled it into a questionnaire [2].
They compared the answers in the questionnaire with the
subjects’ performance in program comprehension tasks.
Experiment shows that self-estimation seems to be an
effective method to measure programming experience. The
questionnaire is a common way of collecting data. For
example, in literature [14], the authors also let subjects fill out
the questionnaire before the experiment. This is related to our
work. We also aim to find a questionnaire for novice
programmers.

In addition, there are some papers that study the rationality
of students as subjects [15, 17, 19]. For example, in order to
study students’ understanding of demand selection, Svahnberg
et al. conducted a survey on demand selection [15]. Then, they
compared student answers to data from previous industry
practice studies. The result shows that there is a significant
correlation between the views of students and those of
professionals. Therefore, students as subjects have certain
applicability in research.

3 Questionnaire

There are many methods for measuring the programming

ability of subjects. Feigenspan et al. [2] have carried out a
detailed review on this, mainly including years, education,
self-estimation, unspecified questionnaire, size, unspecified
pretest, and supervisor.

Based on these methods, this paper designs a questionnaire
about programming ability, including the following questions:
years, self-estimation, size, and education. In addition, we add
problems related to programming ability found in practical
learning. We hope to propose a more standardized
questionnaire to provide more detailed indicators for
measuring programming ability.

In Table 1, we summarize the questionnaire and show the
specific questions of the programming questionnaire and how

subjects should answer them. Regarding the criteria for
evaluation of the question, we first refer to the content of the
questionnaire in [2], and then set it according to the opinions
of experts and the actual learning situation of students, hoping
to get more accurate answers about programming ability. In
the column source, we summarize the problem into five
categories. In the column abbreviation, the abbreviations of
each question are given to facilitate the use of the rest of this
article. Next, we give a detailed explanation of each question.

A. Years

This category is mainly use to examine the subjects'
contact programming time. This should start with the time of
subjects first programmed, including the first study of

programming grammar and writing hello-world-like
programs. In the answer, we set four options from primary
school to college. Generally speaking, the longer the subjects
are exposed to programming, the more source codes they write,
and the higher their programming ability.

B. Self-estimation

In this category, we ask the subjects to self-evaluate their
programming ability. However, before this, we do not give a
specific definition of programming ability as a reference,
which requires subjects to make the corresponding self-
estimation according to their intuitive understanding of
programming ability. In addition, we ask the subjects to
compare themselves with their classmates and professional
programmers with 10 years of programming experience. In
this way, subjects have a deeper understanding of their
programming ability.

C. Education

This category includes the assessment of educational
aspects. First, we ask the subjects how many data structure
algorithms and programming languages they think they are

familiar with. No matter data structure algorithms or
programming languages, we provide the most basic answers,
and these are all learned in university. We believe

that the more algorithms and programming languages
college students are familiar with, the higher their
programming ability. Besides, we also ask subjects to list their
favorite courses at university. Because the number of courses
and their relevance to programming roughly show how much
source code they implement. Thus, we get an indicator: the
more the number of programming-related courses college
students like, the more the programming ability they obtain
during the course study.

D. Size

For these questions, we examine the subjects’ project
experience and the amount of code in the programming task.
We believe that when subjects participate in project
writing more code, their programming ability must be higher
than those who write less code.

Table 1. Overview of questions to assess programming ability

Source Question Criteria for Evaluation Abbreviation

Years When did you start contacting programming? Primary / Junior / Senior /
University

s.Year

Self
estimation

How do you evaluate your programming ability?

How do you evaluate your programming ability
compared with your classmates?

How do you evaluate your programming ability

1: very inexperienced to 10:
very
experienced
1: very inexperienced to 10:
very

s.PE

s.Classmates

s.Experts

Measuring Programming Ability for Novice Programmers 575

compared with 10-year experienced
programmers?

experienced
1: very inexperienced to 10:
very
experienced

Education What data structure algorithms do you think you
are good at?

Which programming languages are you familiar
with?

What are your favorite courses?

Linear-List / Stack and Queue /
Tree and Binary / Sort and
Search
Graph
Java /C, C++/Python /.NET
PHP /Front-end development
Programming language / Data
Structure / Software
engineering...
(Not listed here in detail)

s.Algorithm

s.NumLanguag
es

s.NumCourses

Size How much have you participated in
programming
projects with more than 1000 lines?

How many modules (functions) do you have in
your largest programming project?

How many lines of code are included in the
maximum programming project you participate
in?

How many lines do you have the total number of
programming lines in four years of university?

no participants /1 – 2 / 3 – 4 /
5 or more

within 3 /3 – 5 /5 – 8 / more

lines within 100 / 101 – 1000 /
1001 – 10000 / above 10000

within 1000 lines / 1001-10000
lines / 10001-50000 lines / more

p.NumCode

p.NumModule

p.MaxProject

p.SumProject

Other Do you like programming?

Would you use your spare time to watch
programming- related video resources?

What websites have you visited related to
programming?

Very like / Like / General /
Dislike

Yes / No

MOOC / CSDN / GitHub /
Script house / Blog Park

s.Favor

s.Viedo

s.NumSites

In addition, we add other questions to the questionnaire.

First, we ask subjects how much they like programming, as we
think interest can improve student programming ability.
Secondly, we ask students about their study after class,
whether they would take the initiative to learn programming-
related online courses, and what programming-related
websites they have visited. We aim at have a more detailed
understanding of programming ability through this
questionnaire survey.

4 Inspection Criteria

In this paper, according to the characteristics of novice

programmers, we select some course scores as inspection
criteria. We put forward the following assumptions:

Assumption 1. The programming ability of the novice
programmers are related to the course group.

Assumption 2. The higher the score of novice
programmers, the stronger their programming ability.

To this end, we collect the scores of computer science. By
asking experts, we select courses related to programming
ability from many courses, including: C, C++, Java, Data
Structure, Java Web, and Python. The reason for selecting
these courses is that these courses require students to write
programs manually in the learning process. Therefore, we
think that the scores of these courses can be used to explain

student programming ability. Next, we verify our assumptions
by analyzing the selected courses.

First of all, we analyze the distribution of data. Figure 1
shows the relationship between the scores of courses and the
number of students. The horizontal axis represents the selected
courses, the vertical axis represents the number of students,
and four gray legends represent different scores interval. We
can find that the scores of examinations have an approximately
normal distribution relationship with the number of students.
This shows that the score is conducive to the identification and
selection of students. Therefore, it can be used in the following
data analysis.

Figure 1. Scores of examinations

576 Journal of Internet Technology Vol. 23 No. 3, May 2022

Furthermore, the relevance of each course in the course
group to programming ability can be measured by the
relevance of that course to other programming courses in the
course group. To this end, we conduct a correlation analysis
of these six courses. We choose Spearman rank correlation for
data analysis. The reason is that Spearman rank correlation is
mainly used to solve the correlation of ordered data, which can
better measure the correlation strength and direction between
two ordered variables [20], and the results are shown in the
Table 2. We find that except C++ and Python, there is a
significant correlation between all courses. For another thing,
there is no obvious correlation between C++ and Python
because of the huge differences in language style. But whether
C++ or Python, there is a significant correlation between these
two courses and other courses, indicating that these two
courses must be related to programming ability. Therefore, we
ignore the irrelevance between C++ and python and keep these
two courses in the course group. Finally, we calculate the
average score of each student in the course group and use it as
inspection criteria for the questionnaire.

Table 2. Spearman correlations between courses

 C++ Data
Structure Java C Java Web Python

C++ 1.000 .387** .407** .557** .399** .138

Data
Structure 1.000 .515** .596** .323** .392**

Java 1.000 .500** .359** .364**

C 1.000 .424** .419**

Java
Web 1.000 .258**

Python 1.000

**: denote significant correlations(p<.01)

However, for the criteria of verifying the answers to the

questionnaire, it is not only necessary to ensure the rationality
of curriculum selection, but also to test whether the scores can
be used as criteria to measure programming ability through a
third party. Therefore, in order to test whether the average
scores of these six courses can be used as a measure of
programming ability, we hold a symposium inviting some
teachers and some students from the School of Computer and
Information. During the symposium, we ask the teachers and
some students about their impressions of the subjects’
programming ability and ask them to make a list of people who
are good at programming. After the meeting, we integrate a
list of 26 students with some objectivity.

Finally, we sort the students according to their average
score and compare them with the 26 students. We find that 14
of the top 20 students are on the list and 4 of the top 5 students
are on the list. This is within a reasonable range, so we decide
to use the average score as the criteria to verify the
questionnaire answer.

5 Experiment

In this section, we describe the process and results of the
experiment in detail. First, preprocess the answers to the
questionnaire. Then, analyze the correlation between the
answers to the questionnaire and the student’s average course
scores to find several factors that are significantly related to
programming ability. Finally, other problems are excluded by
stepwise regression to obtain the best indicator to measure
programming ability.

5.1 Data Pre-processing

The data collected by questionnaire are mostly expressed
in words and cannot be analyzed directly. Therefore, in this
section we first preprocess the data. Mainly, we divide it into
data digitization and outlier processing. Then, we give a brief
overview of the answers to the pre-processed questionnaire.

5.1.1 Data Digitization

Most of the answers in the questionnaire appear in the

form of options A, B, C, and D, so our pre-processing method
is to replace A, B, C, and D in the data with 1,2,3,4. However,
s. Algorithm, s. NumLanguages, s. NumCourses, s. NumSites
in the questionnaire need another method for processing.
Firstly, for the three questions of s. Algorithm, s.
NumLanguages and s. NumSites, we give the same weight 1
to each option, and then the final answer is obtained by
weighted summation. In addition, for the problem of s.
NumCourses, we cannot simply give the same weight to each
option, because the correlation between each course and
programming ability is different.

Therefore, to solve this problem, we consult materials and
ask experts, and finally reach a unified conclusion, that is, to
assign different weights to each course according to its
relevance to programming ability, and finally get the final
answer by the weighted average. In Table 3, we show the
corresponding weight values of each course.

Table 3. The weight value of courses
Course Value
Programming Language
Data Structure
Software Engineering

3

Operating System
Principles of Compliers
Mathematics courses

2

Computer Organization
and Design Fundamentals
Network Engineering

1

The answers to other options include the following

categories: Database, Front-end courses, Artificial
intelligence big data courses, Back-end courses, Blockchain
courses. Considering the correlation between these courses
and programming ability, we give a weight of 2.

5.1.2 Outlier Processing

In this paper, we focus on data with logical errors. For
example, on the three questions of self-estimation,
comparative evaluation with classmates, and comparative
evaluation with experts. We can find some obvious

Measuring Programming Ability for Novice Programmers 577

phenomena that are not in line with common sense from the
data collected in the questionnaire. These phenomena mainly
include the same score of s.PE and s. Classmates and s. Expert,
or s. Expert scored the same or higher as s. Classmates. We
define this kind of data as abnormal data, because it accounts
for a small proportion, so we directly delete records containing
such data.

5.1.3 Overview

Table 4. Overview of answers in questionnaire

No Question Distribution N

1 s.Year

104

2 s.Algorithm

104

3 s.PE

104

4 s.Classmates

104

5 s.Experts

104

6 s.NumLanguages

104

7 p.NumCode

104

8 p.NumModule

104

9 p.MaxProject

104

10 p.SumProject

104

11 s.Favor

104

12 s.NumCourses

104

13 s.Viedo

104

14 s.NumSites

104

In Table 4, we show the answers to the preprocessed

questionnaire. Each image in the table represents the
distribution of answer to each question. In order to represent
the distribution of data more intuitively and avoid monotony
for the overall beauty, we use different images. We find that
most of the subjects start to learn programming from college,
and only a few subjects start to learn from senior middle
school. For self-estimation, most subjects give their
programming ability a score of 6 or 7 points. However, when
they are compared with professional programmers, they give
themselves a lower score, such as 2 points, which is in line
with our expectations. And for the project experience, we find
that most subjects’ code size is about 10000 lines, or within
10000-50000 lines. In general, there is a gap between the

programming ability of novice programmers and that of
professional programmers.

5.2 Correlations

In Table 5, we give an overview of the correlation between
the average score and the answers to the questionnaire. Here,
we still use Spearman correlation analysis. We find that
s.Classmates, p.NumModule, s.NumCourses and s.Numsites
with subjects’ average score have a significant correlation and
the highest correlation with p.NumModule. For the remaining
questions, we do not observe significant correlations.

Table 5. Spearman correlations of average scores with
answers in questionnaire

No Question ρ N

1 s.Year -.013 104

2 s.Algorithm .098 104

3 s.PE .127 104

4 s.Classmates .248* 104

5 s.Experts .012 104

6 s.NumLanguages .100 104

7 p.NumCode .049 104

8 p.NumModule .303** 104

9 p.MaxProject .187 104

10 p.SumProject .031 104

11 s.Favor .110 104

12 s.NumCourses .200* 104

13 s.Viedo .057 104

14 s.NumSites .214* 104

ρ: Spearman correlation.
N: number of subjects who completed this questionnaire.

For the completeness and accuracy of data analysis, we

show the correlation between the score of each course and
each question of our questionnaire in Table 6. We find that
there are different degrees of correlation between each
problem and each course. Of the 84 correlations, 16 are
significant. For so many correlations, there is no meaningful
conclusion without further exploration. But further research
needs a large number of subjects, so we leave the analysis to
work in the future. In the next section, we will continue to
conduct the exploratory study.

578 Journal of Internet Technology Vol. 23 No. 3, May 2022

Table 6. Spearman correlations of scores for each course with answers in questionnaire

 C++ Data
Structure Java C JavaWeb Python

s.Year -.107 .081 .018 .034 -.026 .061
s.Algorithm .107 .098 .048 .106 .054 .042
s.PE .129 -.058 .170 .211* .197* .041
s.Classmates .151 .072 .304** .249* .209* .156
s.Experts .097 -.084 .076 .149 -.079 -.079
s.NumLanguages .094 .114 .201* .051 .068 .078
p.NumCode -.009 -.074 .129 .119 .077 .059
p.NumModule .181 .144 .284** .332** .198* .252**
p.MaxProject .152 .035 .258** .236* .072 .186
p.SumProject -.006 -.110 .076 .124 .106 .054
s.Favor .099 -.033 .118 .112 .127 .012
s.NumCourses .023 .148 .089 .330** .147 .066
s.Viedo -.075 .022 .111 .037 .071 .036
s.NumSites .236* .312** .068 .172 .205* -.034
*: denote significant correlations (p<.05)
**: denote significant correlations (p<.01)

5.3 Exploratory Study

In this section, we will continue to explore the data and

look forward to using stepwise regression to find the best
indicator to measure programming ability. Stepwise
regression is widely used in economics and psychology, but
rarely used in software engineering [2]. Therefore, we first
introduce the method of stepwise regression.

5.3.1 Method

Stepwise regression is a process of selecting variables in

regression analysis. It introduces independent variables into
the model step by step; if variables are statistically significant,
they are included in the regression model and simultaneously
remove variables without statistical significance. In general, it
selects the most important variable from a set of candidate
variables to build a regression model.

First of all, why should we select a set of candidate
variables from many questions? From Table 5, we can find
that not all the problems are related to the average score of the
course. The candidate variables we select should be at least
moderately related to the average score of the course. Because
of the Spearman correlation analysis, the factors with
moderate correlation are usually considered to have a certain
relationship with the dependent variable, which has the value
of research, and those factors without correlation can be
ignored.

Second, why can’t all factors with medium correlation
with the dependent variable be selected as the measurement
indicator? If so, we ignore an important issue that these factors
themselves may be interrelated, even highly relevant. Now, we
assume that there is a correlation between the two selected
independent variables. If we use these two independent
variables to measure programming ability, we will calculate
the common part of the two independent variables one more
time when calculating, which will lead us to overestimate the

impact of variables on programming ability [18]. For example,
in our experiment, we found that s. ClassMates had a
significant correlation with p.NumModule through Spearman
correlation analysis, and their correlation degree was 0.350.

Therefore, in order to reduce the impact of the correlation
between the independent variables on the problem, we use the
stepwise regression method to explore [16]. To better
introduce independent variables to the model, we should input
independent variables with significant influence into the
regression model from large to small according to the
correlation between independent variables and dependent
variables. For example, in this paper, we should first consider
the problem with the highest correlation with the average score
of the curriculum, which is p. NumModule. Then, consider the
problem of high correlation, which is s.Classmates. If the
existing independent variables in the model are no longer
significant due to the introduction of the current independent
variables, they are eliminated. The same is true for the rest of
the problem, which is a repeated process. Through stepwise
regression, we build a regression model so that in the end only
significant variables are included in the model.

5.3.2 Results and Interpretation

In Table 7, we show the results of stepwise regression

(specifically, we use the step method). By stepwise regression,
we extract two questions: the number of

Table 7. Model results of stepwise regression

Question Beta t p
p.NumModule .289 3.092 .003
s.NumSites .230 2.461 .016

modules in the project (p.NumModule) and the number of

programming-related websites visited (s.NumSites). The beta
value in the table shows the impact of variables on the average
score of the courses. The higher the beta value, the greater the

Measuring Programming Ability for Novice Programmers 579

impact. The model is significant (p<.05), and the adjusted R2

is 0.15, which means that the explanatory rate of the extracted
two questions to the average course score is 15%.

Therefore, the result of the stepwise regression is that the
number of modules in the project and the number of websites
related to browsing programming contribute the most to the
average score of the course. That is to say, the more modules
college students participate in projects, and the more
frequently they browse programming-related websites, the
higher their average scores. In addition, the factor extracted
here is the number of modules in the project rather than the
total number of lines of code, because modular programming
can better reflect the programmer’s logical thinking during
programming and promote the improvement of programming
ability. Why are these correlated? First of all, we are clear that
the subjects of our survey are college students, who have
relatively weak programming ability compared to professional
programmers. If they are willing to look up learning and
programming-related websites after class, then such students
must have a certain interest in programming and are willing to
spend time learning to program, so their programming ability
must not be bad.

In general, we eliminate other problems in the
questionnaire by stepwise regression, and finally determine
the two problems of p. NumModule and s. NumSites as the
best indicators to measure programming ability.

5.3.3 Experimental Verification

A regression model is obtained by a stepwise regression

algorithm. The model gives the beta value of the question,
which represents the weight of each question. We can
calculate the value of students’ programming ability in this
model. We can set the programming ability as θ, the number
of project modules as α, and the number of programming-
related websites visited as β; then, the formula for calculating
the programming ability is (for simplicity, we ignore the
constant term of the equation):

 𝜃 = 𝛼 × 0.289 + 𝛽 × 0.230 (1)

Therefore, we can use this formula to calculate the
programming ability of all subjects and sort them and then
compare them with 26 students obtained from the symposium.
The result shows that 11 of the top 20 students are on the list.

6 Discussion

6.1 Implication

The main work of this paper is to systematically analyze

the relationship between novices’ programming ability,
relevant course scores, and other factors. By building a model
to evaluate programming ability, the significant factors are
analyzed. The result shows that p.NumModule and
s.NumSites have the greatest influence on novices’
programming ability. Although our research conclusion
cannot provide a perfect explanation for the programming
ability of novice programmers, it provides a reference.
Whether it is for business managers or university teachers,
they can combine our research conclusions with the actual
situation to assist and guide their work. For example, the
relevant conclusions can provide references for colleges and

universities to formulate training programs for computer
professionals, and can also provide a basis for companies to
evaluate graduates’ programming ability during recruitment.

6.2 Threats to Validity

The first threat to validity is inspection criteria. For

different inspection criteria, the conclusions may be different.
In this paper, according to the characteristics of research
objects, we select the course scores related to programming to
represent the programming level of novices. But we need to
consider how much the score of those courses can represent
the programming ability. If the content of examination related
to programming is less in proportion to the overall content,
then the score of this course cannot represent the programming
ability. In this paper, we examine the rationality of selected
course scores by asking experts and teachers. Therefore, we
believe we controlled this threat, and the inspection criteria
selected in this paper is suitable for our research purpose.

The second threat is the sample size. Due to the limitation
of practical reasons, we only can collect about 100 pieces of
data. Although there are only about 100 pieces of data, we still
consider using the existing mature methods to analyze the data
to obtain more reliable conclusions. Another threat is the
sample selection: we only select graduates as research objects.
Our conclusions are only applicable to novice programmers
with similar backgrounds, because our questions may have
different meanings for novice programmers who have
participated in the work. For example, s.Classmates is not
suitable for novice programmers who are already working. For
them, it should be compared with colleagues. When applying
the results to novice programmers at work, other indicators,
such as total code may be a better indicator. In the future work,
we plan to expand our sample size and invite more different
types of novice programmers to join our research, so as to
obtain more diverse data to reduce these threats.

In addition, the fourth threat is the subjectivity of data. In
the model of evaluating programming ability, we use highly
subjective data such as questionnaires. Since there

is no good method to verify whether the answers to the
questionnaire are in line with the actual situation, we ignore
the evaluation of the objectivity of the questionnaire results
and the screening of effective content in the current analysis
because it requires a lot of support work. But, we still consider
using other methods to deal with the subjectivity between self-
assessment answers. Therefore, we think that we have made a
certain effort to control this threat. In future research, we plan
to confirm and screen the results of the questionnaire to
improve the reliability of the results.

7 Conclusion

In this paper, we mainly focus on the programming ability
of novice programmers and explore the significant factors
affecting their programming ability. In order to carry out the
research smoothly, we ask novice programmers to complete a
questionnaire. We compare and analyze the answers of the
questionnaire and their course scores, and construct a linear
regression model to measure programming ability by stepwise
regression method. The model shows that the significant
factors affecting programming ability are the number of
modules in the project (p.NumModule) and the number of

580 Journal of Internet Technology Vol. 23 No. 3, May 2022

programming-related websites visited (s.NumSites). This
conclusion can not only provide some learning methods for
novice programmers to improve their programming ability,
but also provide reference for enterprises to recruit employees
and universities to train computer talents. In addition, this is a
preliminary study and more work is required to test and
improve this model. In future work, we plan to expand our
sample size and invite more different types of novice
programmers to join this study. We also need to confirm and
screen the answers of the questionnaire to reduce the influence
of the subjectivity of the questionnaire on the experiment and
further improve the quality of our measurement.

Acknowledgements

This work was supported by the Anhui Natural Science
Foundation (Grant No. 1908085MF183), Project 61976005,
61772270 supported by NSFC of China, Training Program for
Young and Middle-aged Top Talents of Anhui Polytechnic
University (Grant No. 201812), Natural Science Foundation
of Zhejiang Province (Grant No. LQ21F020004, State Key
Laboratory for Novel Software Technology(Nanjing
University) Research Program (Grant No. KFKT2019B23),
the Open Research Fund of Anhui Key Laboratory of
Detection Technology and Energy Saving Devices, Anhui
Polytechnic University(Grant No. DTESD2020B03), Anhui
Province Quality Engineering Teaching and Research Key
Project (Grant No. 2019jyxm0216, 2018jyxm0025) and Open
Fund Project of Fujian Provincial Key Laboratory of
Information Processing and Intelligent Control (Minjiang
University) (Grant No. MJUKF-IPIC202109).

References

[1] S. Kleinschmager, S. Hanenberg, How to rate

programming skills in programming experiments?: a
preliminary, exploratory, study based on university
marks, pretests, and self-estimation, Conference on

Systems, Programming, and Applications: Software for

Humanity, Portland, Oregon, USA, 2011, pp. 15-24.
[2] J. Siegmund, C. Kastner, J. Liebig, S. Apel, S.

Hanenberg, Measuring and modeling programming
experience, Empirical Software Engineering, Vol. 19,
No. 5, pp. 1299-1334, October, 2014.

[3] T. Effenberger, R. Pelanek, Measuring students’
performance on programming tasks, Sixth (2019) ACM

Conference on Learning @ Scale, Chicago, Illinois,
USA, 2019, pp. 1-4.

[4] J. Kittur, Measuring the programming self-efficacy of
electrical and electronics engineering students, IEEE

Transactions on Education, Vol. 63, No. 3, pp. 216-223,
August, 2020.

[5] S. Biffl, W. Grossmann, Evaluating the accuracy of
defect estimation models based on inspection data from
two inspection cycles, International Conference on

Software Engineering, Toronto, Canada, 2001, pp.145-
154.

[6] C. Bunse, Using patterns for the refinement and
translation of UML models: A controlled experiment,
Empirical Software Engineering, Vol. 11, No. 2, pp.
227-267, June, 2006.

[7] E. Arisholm, H. Gallis, T. Dyba, D. I. K. Sjøberg,
Evaluating pair programming with respect to system
complexity and programmer expertise, IEEE

Transactions on Software Engineering, Vol. 33, No. 2,
pp. 65-86, February, 2007.

[8] J. Carver, L. Hochstein, J. Oslin, Identifying
programmer ability using peer evaluation: An
exploratory study, Object-oriented Programming,

Systems, Languages, and Applications, Orlando, Florida,
2009, pp. 1-8.

[9] J. E. Hannay, E. Arisholm, H. Engvik, D. I. K. Sjøberg,
Effects of personality on pair programming, IEEE

Transactions on Software Engineering, Vol. 36, No. 1,
pp. 61-80, January-February, 2010.

[10] R. Bockmon, S. Cooper, J. Gratch, J. Zhang, M.
Dorodchi, Can students’ spatial skills predict their
programming abilities?, Innovation and Technology in

Computer Science Education, Trondheim, Norway,
2020, pp. 446-451.

[11] R. Bockmon, S. Cooper, W. Koperski, J. Gratch, S.
Sorby, M. Dorodchi, A CS1 spatial skills intervention
and the impact on introductory programming abilities,
The 51st ACM Technical Symposium on Computer

Science Education, Portland, Oregon, USA, 2020, pp.
766-772.

[12] R. Lister, On the cognitive development of the novice
programmer: and the development of a computing
education researcher, the 9th Computer Science

Education Research Conference, Leiden, Netherlands,
2020, pp. 1-15.

[13] G. R. Bergersen, D. I. K. Sjøberg T. Dybå, Construction
and validation of an instrument for measuring
programming skill, IEEE Transactions on Software

Engineering, Vol. 40, No. 12, pp. 1163-1184, December,
2014.

[14] H. Erdogmus, M. Morisio, M. Torchiano, On the
effectiveness of the test-first approach to programming,
IEEE Transactions on Software Engineering, Vol. 31,
No. 3, pp. 226-237, March, 2005.

[15] M. Svahnberg, A. Aurum, C. Wohlin, Using students as
subjects-an empirical evaluation, 2008 ACM-IEEE

International Symposium on Empirical Software

Engineering and Measurement, Kaiserslautern,
Germany, 2008, pp. 288-290.

[16] M. S. Lewis-Beck, Applied regression: An introduction,
Beverly Hills Calif, 1980.

[17] M. Host, B. Regnell, C. Wohlin, Using students as
subjects-a comparative study of students and
professionals in lead-time impact assessment, Empirical

Software Engineering, Vol. 5, No. 3, pp. 201-214,
November, 2000.

[18] J. Cohen, P. Cohen, Applied multiple

regression/correlation analysis for the behavioral

sciences, Addison Wesley, 1983.
[19] D. Boehm-Davis, L. Ross, Approaches to structuring

the software development process, General Electric Co
Arlington VA Data Information Systems, October, 1984.

[20] M. Carpenter, The new statistical analysis of data,
Technometrics, Vol. 42, No. 2, pp. 205-206, May, 2000.

Measuring Programming Ability for Novice Programmers 581

Biographies

Xue Wang received the B.S. degrees in
computer science and technology from
Lijiang College of Guangxi Normal
University. She is currently pursuing the
M.S. degree in software engineering at
Anhui Polytechnic University, China. Her
current research interests include software
testing, fault localization, and program

debugging.

Yong Wang received his B.S. and M.S.
degrees in computer science from Anhui
Polytechnic University, and he received his
Ph.D. degree in computer science and
technology from Nanjing University of
Aeronautics and Astronautics. His current
research interests include software testing,
fault localization, and program debugging.

Fei Yang received his B.S. and M.S.
degrees in computer science from
Shanghai Jiao Tong University, and he
received his Ph.D. degree in computer
science from Eindhoven University of
Technology. His current research interests
include deep learning, machine learning
systems, and concurrency theory.

Wenge Le received the B.S. degrees in
automation from Huangshan university.
He is currently pursuing the M.S. degree at
Anhui Polytechnic University, China. His
current research interests include software
testing, fault localization, and program
debugging.

Shouhang Wang received the B.S.
degrees in electrical engineering and
automation from Xuzhou Vocational
College of Industrial Technology. He is
currently pursuing the M.S. degree at
Anhui Polytechnic University, China. His
current research interests include software
testing, fault localization, and program
debugging.

	JIT2303 Cover
	JIT2303 Table of contents
	組合 1
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

	組合 2
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

	JIT2303-Information for Authors
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

