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Abstract 
 

Location awareness has been widely used for cooperative 
localization of target in wireless sensor networks (WSN). But 
as the number of agent node increases, cooperative 
localization based on nonparametric belief propagation (BP) 
causes high communication and computation burden. In 
addition, high localization accuracy is also the goal of this 
paper. To this end, this paper based on parameterized BP 
strategy proposed a distributed cubature Kalman filter (DCKF) 
algorithm named BP-DCKF. Firstly, basing on joint posterior 
probability density function of all nodes, this paper constructs 
a factor graph (FG) model, then the edge posterior distribution 
of the nodes is obtained by BP strategy. Secondly, considering 
Gaussian parameterized BP which reconstruct the 
parameterized message of agents transmitting, this paper 
proposed the improved DCKF method, moreover, obtaining 
the locating model of agent node related to posterior 
distribution of each node in the FG. Finally, based on the 
localization model, the location estimation of mobile agent 
node can be obtained utilizing DCKF method to iteratively 
solve the edge posterior distribution of agent node. Simulation 
results show that comparing with traditional algorithm, the 
proposed algorithm is higher on localization accuracy, lower 
on communication burden. 
 
Keywords: Wireless sensor networks (WSN), Node 

localization, Cubature Kalman filter (CKF), 
Factor graph (FG), Belief propagation (BP) 

 
1  Introduction 
 

The localization is a fundamental issue in wireless sensor 
networks (WSN). It is a challenging to obtain the accurate 
location of sensors (or nodes). Different with non-cooperative 
localization (CL), the CL technology estimate location of 
sensor node itself by cooperating with each other, which can 
effectively solve the localization fail caused by the insufficient 
reference (or anchor) nodes in the traditional technology [1-2]. 
Since additional infrastructures are unnecessary, the CL 
technology are already widely used in some fields such as 
navigation, vehicle network, environmental and agricultural 
detection, internet of things and so on [3-8]. Therefore, to 
improve the overall localization performance of WSN, some 
researchers have focused on CL. 

 
1.1  Related Work 

In WSN, some researchers focused on non-Bayesian CL 
methods, but their error accumulation caused by deterministic 
state estimation. To solve the problem, Wymeersch et al. 
presented a framework of CL based on the FG and message 
passing schedule, and named a sum-product algorithm for 
wireless network (SPAWN) [9], which the belief propagation 
(BP) method was applied to estimate the posterior marginal 
probability density function (PDF) of the agent nodes location. 
To extend the application of SPAWN, Ihler et al. proposed a 
non-parametric BP (NBP) to locate agent nodes in the 
nonlinear system [10-11]. Savic et al. extended NBP to 
localization related to mobile agent nodes network. Slavic 
employed cooperative between agent nodes to transmit non-
parametric messages firstly, then obtained weighted particles 
of localization node variables by distributed computation 
method, leading to the posterior probability distribution of 
node localization variables [12]. Wymeersch et al. proposed a 
weighted BP method to weight and quantify the message 
transmission posterior probability of variable nodes in the FG, 
enhancing stability of message transmission [13]. Although 
the above method can better improve the localization accuracy 
of agent nodes, leading to the increase of communication 
burden between agent nodes. 

In order to reduce the communication burden between 
agent nodes, Pedersen proposed the variational message 
passing (VMP) algorithm, but it needed to minimize Kullback-
Leibler (KL) divergence [14]. Xiong et al. proposed a 
localization method based on extended Kalman filter 
algorithm to improve localization accuracy [15], but the 
linearization of this method produced systematic error. Meyer 
et al. proposed a distributed CL named SPBP based on sigma 
point BP, and obtained the posterior PDF of each variable 
node in FG with lower communication burden and 
computational consumption [16]. However, in static network 
with many adjacent nodes, the SPBP algorithm caused higher 
dimensionality of transmitting message, leading to non-
positive covariance matrix. Arasaratnam et al. proposed a 
CKF algorithm [17], which uses a deterministic particle 
sampling without linearization. At the same time, the agent 
node can pass only the mean and covariance matrices, which 
reduce the communication burden between the nodes. In 
addition, relative to a centralized localization method, the 
distributed localization method has a lower computation 
burden. In distributed localization, the agent node updates its 
own location by receiving the message of the neighboring 
node, and can effectively improve the localization accuracy 
while effective reducing the communication burden between 
the nodes. 
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1.2  Contributions and Paper Organization 
 
In summary, CL is one of the most important issues in 

WSN. In order to solve the problems of heavy communication 
burden and low localization accuracy. This paper proposes 
BP-DCKF algorithm based on parametric messages passing 
scheme, the main contributions as follows: 
(1) Compared with some traditional methods without CL, the 
proposed algorithm considers cooperative among agent nodes, 
leading to higher localization accuracy, the deployment of 
reference nodes can be reduced and the network cost can be 
saved. 
(2) The proposed algorithm can autonomously process 
message of each agent node by CKF algorithm. Thus, it is 
essentially a distributed structure, thus it has better robustness 
and lower computation burden than traditional centralized 
methods. 
(3) Compared with non-parametric messages passing, the 
proposed algorithm only transmits parameterized messages 
(i.e., mean vector, covariance matrix), thus it has lower 
communication burden and better real time performance. 

The rest of this paper is organized as follows:  section 2 
gives a system model to describe WSNs, section 3 briefly 
introduces involved knowledge about belief propagation 
between nodes, section 4 detailly introduces proposed 
algorithm, section 5 verifies feasibility of the proposed 
algorithm through simulation and analyzes performance, 
section 6 gives some conclusions of this paper. 
 

2  System Model of WSN 
 
Distributed CL is shown in Figure 1(a), in which an 

unmanned aerial vehicle (UAV) detects other unmanned aerial 
vehicles (UAVs) and ground auxiliary equipments (GAEs). 
Assuming localization error of GAE is not considered, and 
UAV can obtain distance between itself and other UAVs or 
GAEs, thus communication link for message transmission can 
be established. In this scene, every UAV's own localization 
estimation is received by cooperating with ground equipment 
and other UAVs. 

The UAV and the GAE in Figure 1(a) are denoted as 
mobile agent node, reference node, respectively. Without loss 
of generality, localization problem of a micro-UAV network 
can be modelled as a mobile sensor network which can be 
described in two-dimension space [18]. As shown in Figure 
1(b), where A N is a set of all reference nodes and mobile 
agent nodes, ( )', ,a a k A  represents a reference node, an 
agent node, and an arbitrary node, respectively. At time t , ,a t

C

and ,a t
M  denote set of the within communication radius

C
r and 

measurement radius
M

r  topology nodes associated with agent 
node a , respectively. When node k  is within the 
communication range and measurement range of node a , 
adjacent communication node ,a t

k C , ,a t
C  is a subset of A

and denoted by ( ), \
a t

M A a . 

communication link among UAVs

UAV
GAE

measurement link among UAVs
communication link among 
UAV and GAE
measurement link among 
UAV and GAE

 
(a) Cooperative localization scene 

 

 
(b) Cooperative localization model 

 
Figure 1. Distributed mobile agent nodes cooperative 
localization 
 

Assuming a mobile agent node a  has state ,a t
x  at time 

t , and measured , ;a k t
y  between its own and adjacent node k , 

which can be described using Equations (1)-(3): 
 

( ), , 1 ,, ,  ,  1, 2, , .
a t a t a t

g a A t T−=  =x x u          (1) 
 

( ), ; , , , ; ,,  ,  ,  ,  .
a k t a t k t a k t a t

y h a A k M=  x x        (2) 
 

, ; , , , ; ,,  ,  .
a k t a t k t a k t a t

y a A k M= − +  x x         (3) 
 
where, ,

n

a t
Rnx  is n  dimensions state vectors, 𝑢𝑎,𝑡 −

𝑁(0， 𝛿2𝐼)  is white Gaussian process noise, ( )g   is a 
linear/nonlinear function of state transition. Here, the 
statistical relation between , 1a t−x  and ,a t

x  can also be 

described by the state-transition PDF ( ), , 1|
a t a t

f −x x . , ;a k t
y  is 

the measurement between agent node a  and adjacent node 
k , 𝜈𝑎,𝑘;𝑡 − 𝑁(0, 𝜎2) is white Gaussian measure noise, ( )h   
is a nonlinear measurement function which may specified by 
Euclidean norm described as Equation (3). The statistical 
dependence of , ;a k t

y  on ,a t
x  and ,k t

x  can be described by 

the local likelihood function ( ), ; , ,| ,
a k t a t k t

f y x x . 
Assuming the state of all agent nodes and measurement at 

time  1,2, ,t T  is ( ),t a t
=x x , ( ), ;t a k t

y y= , respectively. 
So, states and measurements at all total time can be described 
as ( )TT T

1: 1 , ,
T T
=x x x  and ( )T

1: 1 , ,
T T

y y=y , respectively, 
and the nodes satisfy assumption that are consistent in [16]. 
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According to Bayesian estimation, the joint posterior PDF of 
all nodes state 1:Tx  can be factorized as Equation (4), 
therefore, local state estimation of agent nodes according to 
the edge posterior PDF, then global state estimation can be 
achieved by BP: 

 
( ) ( )

( ) ( )
,

1: 1: ,0

, , 1 , ; , ,
1

|

             | | ,  
a t

T T a

a A

T

a t a t a k t a t k t

t a A k M

f f

f f y



−
=  



 
  

 



  

x y x

x x x x
(4) 

 
3  Belief Propagation Between Nodes 

 
The SPAWN algorithm is very suitable for distributed CL 

in WSNs, based on its advantage, this paper uses the 
distributed message transmission between adjacent nodes to 
realize CL of nodes. 

The FG of the joint posterior PDF ( )1: 1:|
T T

f x y  contains 
variable nodes, factor nodes, the edge structure connecting 
variable nodes and the factor nodes based on Equation (4). To 
describe the process, insert a specific example, such as Figure 
2 shows the connection state between the agent node 

 ,  1,2
a

ax  and the reference node  ',  ' 1,2,3
a

a x , from 
the time 1t −  to t . 

 

 
Figure 2. Message passing in the FG 

 
Supposing an agent node a  can observe the adjacent 

node k , the state relationship between adjacent node and 
agent node can be described by the factor node 

( ), ; , ; , ,| ,  
a k t a k t a t k t

f f y= x x , ( ), , , 1|
a t a t a t

f f −= x x  is the factor 

node to describe state transition probability between ,a t
x  and 

, 1a t−x . It can be found that the message passing in the FG is 
divided into two types, i.e., from variable nodes to factor 
nodes, and from factor nodes to variable nodes. The process 
of message passing and nodes state updating is shown in 
Figure 2. 

According to message passing strategy in the FG, edge 
posterior PDF ( ), 1:|

a t t
f x y  of the agent node ,a t

x  can be 

approximated by belief ( ) ( ),
n

a t
b x  described by Equation (5) 

as follows: 
 

( ) ( ) ( ) ( ) ( )
,

, , ,a

a t

n n

a t f a a t k a a t

k M

b m → →


 x x x        (5) 

 
where,  1, ,

iter
n N  is the number of message iterations in 

loopy FG at time t , the predicted message ( ),af a a t
 → x  from 

the factor node 
a

f  to the variable node ,a t
x , it can be 

obtained by Equation (6): 
 

( ) ( ) ( ) ( ), , , 1 , 1 , 1|
a

n

f a a t a t a t a t a t
f b d → − − −= x x x x x         (6) 

 
where, the state transition probability function and the belief 
at time 1t −  are defined as ( ), , 1|

a t a t
f −x x  and ( ) ( ), 1

n

a t
b −x , 

respectively. In Equation (5), the measurement message 
( ) ( ),
n

k a a t
m → x  passed form the factor node , :a k t

f  to the variable 

node ,a t
x  is obtained by (7), and the belief of adjacent nodes 

passed form the variable node to the factor node is obtained by 
(8) as follow: 
 

( ) ( ) ( ) ( ) ( )1
, , ; , , , ,| ,  n n

k a a t a k t a t k t k t k t
m f y b d

−
→ = x x x x x     (7) 

 
( ) ( ) ( ) ( ) ( )

( ),

1 1
, , ,

\
k

k t

n n

k t f k k t u k k t

u M a

b m
− −

→ →


  x x x       (8) 

 
where, ( ) ( )1

,
n

k t
b

− x  represents the belief adjacent node k  of 
mobile agent node a , u  is the adjacent node of node k . 

Directly solving Equation (7) is difficult due to 
nonlinearity of Equation (3), iterative approximate method 
based on random particle sampling may can handle above 
problem with high computational burden [19]. In this paper, 
we employ cubature Kalman filter which is based on 
deterministic sampling method to solve Equation (7) with low 
computational burden. 

Belief ( ) ( ),
n

a t
b x  of the mobile agent node a  is 

iteratively calculated n  times at time t , and the belief is 
approximated to the edge posterior PDF of the localization 
variable, so the minimum mean square error (MMSE) 
estimation of each node can be calculated. So the agent node 
belief ( ) ( ),

n

a t
b x  is obtained by n  times iteration to 

approximate the edge posterior PDF ( ), 1:|
a t t

f x y  of the 

localization variable, leading to ,ˆ MMSE

a t
x  with respect to 

location estimation of agent node a  [15]: 
 

( ), , , 1: ,ˆ |MMSE

a t a t a t t a t
f d= x x x y x            (9) 

 
4  BP-DCKF Cooperative Localization 

 Algorithm 
 

Based on section 3, this section mainly presents the 
implementation of Gaussian parameterized BP and message 
reconstruction strategies, as well as derives the 
multidimensional Gaussian model representation of the belief 
and the posterior distribution of variable nodes in the FG. The 
agent node uses DCKF update message to realize localization. 
Finally, details of the BP-DCKF algorithm is given. 
 
4.1 Gaussian Parameterized BP and 

Reconstruction Strategy 
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Gaussian parameterized BP and message reconstruction 
strategy, which use adjacent agent nodes to transmit Gaussian 
parameters representing their own belief firstly, and then 
reconstruct a combined message including adjacent nodes 
state and measurements, calculate the posterior distribution of 
agent nodes state variables in a high-dimensional space finally. 
Since effective using the belief of adjacent nodes, this strategy 
can enhance the localization accuracy of the agent, leading to 
the localization performance of network improving. 

The number of agent node a  adjacent nodes is denoted 
by , {1, 2, , }

a t
N N  at time t . High dimensional combined 

state vector consisted of agent node state ,a t
x  and the 

adjacent agent node state ,k t
x  can be defined as 

( )1 ,

T
T T T

, , ,,  , ,
Na t

a,t a t k t k t
=X x x x . High-dimensional combined 

measurement vector consisted of distance measurements 
related to the agent node a  can be defined as 

( )
,

T

, , 1; , 2; , ;,  , ,  
Na t

a t a k t a k t a k t
y y y=Y . Thus, the dimension of ,a t

X  

can be describe as ,

1

a tN

a a kk
D d d

=
= + , where 

a
d  represents 

the dimension of ,a t
x  , and 

k
d  represents the dimension of 

the adjacent node state ,k t
x . According to the BP strategy, we 

can obtain Equation (10) by substituting Equation (7) into 
Equation (5): 

 
( ) ( ) ( ) ( ) ( ) ( )

,

1
, , , ; , , ,| ,  

a t

n n

a t a t a k t a t k t k a k t

k M

b f f y b
−

→


  x x x x x  (10) 

 
Note that ( ),a t

f x  to be the prior distribution of the agent 

node and to be describes as ( ),af a a t
 → x , and then the agent 

node belief can be calculated by the combining state ,a t
X  and 

the measurement message ,a t
Y . The belief calculation 

Equation (10) can be rewritten as Equation (11): 
 

( ) ( ) ( ) ( ) ( )1
, , , , ,|n n a

a t a t a t a t a t
b f f d

− → x Y X X X        (11) 
 
where, the combination state ,

a

a t

→X  can be obtained by the 

removal of the sub-vector ,a t
x  from ,a t

X , ( ), ,|
a t a t

f Y X  
denotes the likelihood function described as Equation (12), 

( ) ( )1
,

n

a t
f

− X  is given by Equation (13) is the independent prior 
probability distribution related to iterative process: 
 

( ) ( )
,

, , , ; , ,| | ,  
a t

a t a t a k t a t k t

k M

f f y


= Y X x x       (12) 

 
( ) ( ) ( ) ( ) ( )

,

1 1
, , ,

a t

n n

a t a t k a k t

k M

f f b
− −

→


 X x x       (13) 

 
According to the Bayesian estimation theory, to obtain the 

measurement message, it is necessary to calculate the 
combination measurement message represented by Equation 
(14): 

 
( ), , ,a t a t a t

H= +Y X V               (14) 

 

where, ( ) ( ) ( )( )1

T

, , , , ,, , , ,
Na t a t k t a t k t

H h h=X x x x x
a,t

 ,a t
=V  

( )1 ,

T

, ; , ;, ,
Na t

a k t a k t
  , and Equation (11) can be rewritten as 

Equation (15), which ( ) ( ),
n

a t
b X  represent the combined 

belief that is calculated by Equation (16): 
 

( ) ( ) ( ) ( ), , ,
n n a

a t a t a t
b b d → x X X          (15) 

 
( ) ( ) ( ) ( ) ( )1

, , , ,|n n

a t a t a t a t
b f f

−
 X Y X X      (16) 

 
The localization variables of the agent node need satisfy 

the Gaussian distribution, the belief and probability 
distribution of the variable nodes in the FG accord with the 
multi-dimensional Gaussian distribution model. Employing 
the CKF algorithm into the FG, this paper defines the 
combined mean vector ( )

,

1

a t

n−
X  and the combined covariance 

matrix ( )
,

1

a t

n−
XC  to represent the combined prior distribution 

message ( ) ( )1
,

n

a t
f

− X according to the Gaussian parameterized 

BP and reconstruction strategy, and the defined ( )
,

1

a t

n−
X  and  

( )
,

1

a t

n−
XC  as follows, respectively: 

 

 ( ) ( )( ) ( )( ) ( )( ), , ,

TTT T1 1 1 1
1 , ,, , ,

a t a t Na t

n n n n

k a t k a t

− − − −
→ →

 =  
 

X X       (17) 

 
( ) ( ) ( ) ( )( ), , 1 ,

1 1 1 1
, ,diag , , ,

a t a t Na t

n n n n

k a t k a t

− − − −
→ →=XC C C C      (18) 

 
where, the dimension of ( )

,

1

a t

n−
X  is 1

a
D  , and the 

dimension of  ( )
,

1

a t

n−
XC  is 

a a
D D  . The Gaussian 

parameterization of the belief  ( ) ( )1
,

n

k a k t
b

−
→ x  related to the 

adjacent nodes can be expressed as the mean vector ( )1
,

n

k a t

−
→  

and the covariance matrix ( )1
,

n

k a t

−
→C , respectively. ( )diag   is a 

high-dimensional block diagonal matrix composed of multiple 
agent node covariance matrices. Each agent node uses the 
CKF algorithm to calculate the mean vector ( )

,
n

a t
  and the 

covariance matrix ( )
,
n

a t
C , and approximates the belief 

( ) ( ),
n

a t
b x   of the node state ,a t

x  to its edge posterior PDF, 

denoted as 𝑓(𝒙𝑎,𝑡|𝒚1:𝑡) − 𝑁(𝒙𝑎,𝑡|𝝁𝑎,𝑡
(𝑛)

, 𝑪𝑎,𝑡
(𝑛)

). 
 
4.2  DCKF Message Processing 

 
Based on above sections, the detailed steps of the DCKF 

cooperative localization algorithm based on BP method, that 
is, the proposed algorithm is described in Figure 3. 
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Complete current 
localization     ,      

Initialization

| 1a,t t−μ

Start

Mobile agents prediction
, | 1a,t t−C

  Obtain message of 
adjacent nodes 

Distributed CL

N

Y ?t T

End

N

?itern N

CKF localization 
, Transmit      ,      ( )

,
n

a tμ ( )
,
n

a tC

Y

( )
,

1
a t

n−
Xμ ( )

,

1
a t

n−
XC

Message reconstruction
, 

( )
,
n

a tμ ( )
,
n

a tC

,a tμ ,a tC1t t= +

1n n= +

Figure 3. Flow chart of the BP-DCKF 
 
At the initial time, the mobile agent node performs the 

initial message representation according to the neighboring 
reference nodes. According to [20], we assume that the 
message of the mobile agent node may satisfy Gaussian 
distribution when mobile agent has three reference nodes. 

Parametric message CL mainly includes three parts: 
mobile agent nodes predict message, message reconstruc- tion 
and message update, they are introduced as follows: 

(1) Mobile agent nodes predict message 
All mobile agent nodes a A  predicted state vector and 

covariance matrix are gotten by the function of state transition, 
the prior distribution message ( ),a t

f x  can be denoted by 
Gaussian distribution whose mean vector and covariance 
matrix are described as , | 1a t t−  and , | 1a t t−C , respectively, and 
they can be obtained by Equation (19) and (20) as follows: 

 
( ) ( )( )

( )

, | 1 , 1 , 1

2

, | 1 , | 1
1

,  ,  1, , 2

1
2

a

i i

a t t a t a t a

d
i

a t t a t t

ia

g i d

d

− − −

− −
=

 = =



=




x u

x




       (19) 

 
( )( ) ( )( )

2 T

, | 1 , | 1 , | 1 , | 1 , | 1 1
1

1
2

ad
i i

a t t a t t a t t a t t a t t t

ia
d

− − − − − −
=

= −  − +C x x Q      (20) 

 
where, ( )

, 1
i

a t−  represents the i th−  cubature point of the state 
of agent node a , 1t−Q  is the covariance matrix of process 
noise at time 1t − . 

(2) Message reconstruction 
The number of message iterations is denoted by 
 1, ,

iter
n N . The combined mean vector ( )

,

1

a t

n−
X and the 

combined covariance matrix ( )
,

1

a t

n−
XC  are described in Equation 

(17) and (18) by the message reconstruction strategy to 
represent the prediction of combined prior distribution 
message ( ) ( )1

,
n

a t
f

− X . 
(3) Updated nodes message 
The mobile agent obtains the mean and covariance as its 

belief. Table 1 is a segment of the proposed BP-DCKF 
algorithm, which mainly describes the update process of the 
agent nodes. 

 
 

Table 1. Update node message 
Algorithm 1. DCKF message update 
1. Agent a A  in parallel 
2. Computing combine cubature points: 

    ( ) ( ) ( ) ( )
, ,

1 1
,

ˆˆ ,  1, , 2
a t a t

i n n i

a t a
i D

− −= + =X XX C   

3. Computing cubature points propagation and measur- 
ement prediction: 

     ( ) ( )( ), , ,
ˆ ˆ ,  1, , 2i i

a t a t a t a
H i D= + =Y X V  

     ( ) ( )
2

, ,
1

1 ˆ
2

aD
n i

a t a t

ia
D =

= m Y  

4. Computing covariance and cross-covariance matrix: 
( ) ( ) ( )( ) ( ) ( )( )

2 T

, , , , ,
1

1 ˆ ˆ +
2

aD
n i n i n

YY a t a t a t a t a t

ia
D =

= − −P Y m Y m R  

( ) ( ) ( )( ) ( ) ( )( ), ,

2 T
1 1

, ,
1

1 ˆ ˆ
2

a

a t a t

D
n i n i n

XY a t a t

ia
D

− −

=

= − − X XS X X   

5. Computing filter gain [6]: 
     ( ) ( ) ( )( ) 1

,
n n n

a t XY YY

−
=K S P  

6. Computing mobile agent’s mean and covariance: 
     ( ) ( ) ( ) ( )( )1

, , , , ,
n n n n

a t a t a t a t a t

−= + −K Y m   

     ( ) ( ) ( ) ( ) ( )( )T1
, , , ,
n n n n n

a t a t a t YY a t

−= −C C K P K  
7. Computing nodes belief message: 
      b (𝒙𝑎,𝑡)~ N (𝒙𝑎,𝑡Ⅰ𝒖𝑎,𝑡 , 𝑪𝑎,𝑡) 

8. end parallel 
 
4.3 BP-DCKF Algorithm Analysis and 

Comparison 
 
Base on above Section 4.1 and 4.2, this paper proposed 

BP-DCKF algorithm is described in Table 2. 
 In the 15 th−  step of Table 2, the number of cubature 

points required by BP-DCKF algorithm is 2
a

D , which the 
mean and covariance matrix can be obtained by Gaussian 
parameterization. Only passed mean and covariance matrix 
using this way, so the communication burden of the proposed 
algorithm is 6

a
N , and state updating computational cost of 

agent node need to handle 2 8
a

N elements. While the 
communication burden of non-parametric BP strategy based 
SPAWN1 and SPAWN2 is 2

a
J N and 2

a
J N , respectively, 

and calculated overhead are 2
a

J N  and 22
a

J N , where J

and 
a

N  indicated particle number and number o  adaacent 
nodes. The communication burden o  VMP algorithm based 
on parameterized-BP is 3

a
N  , but computational cost is 

3 2
a

N J+ due to minimizing particles KL divergence. As can 
be seen  rom Table 3, the overhead o  the proposed algorithm 
is the lowest, because usually the number 

a
N   o  adaacent 

nodes is much less than the number J o  particles. 
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Table 2. Pseudo-code of the proposed algorithm 

Algorithm 2. BP-DCKF 
1.  Initialization 
2.  Agent node a A  in parallel 
3.  end parallel 
5.  for 1:t T=  do 
6.     Nodes a A  in parallel 
7.     Computing prediction message ( ),af a a t

 → x
according to Equation (19) and (20) 

8.     Computing measurement message ( )' ,a a a t
m → x   

        using Equation (7) 
9.     Computing initialize belief message ( ),a t

b x
using Equation (10) 

10.    end parallel 
11.    for 1:

iter
n N=  do 

12.         Nodes a A  in parallel 
13.         Receiving adjacent nodes message 
            ( ) ( )( )1 1

, , ,N |  n n

k t k t k t

− −，x C  

14.         Computing combine message ( ) ( )1
,

n

a t
f

− X   
             according to Equation (17) and (18) 
15.         Running Algorithm 1 
16.         Estimating state ( )

,ˆ n

a t
x  of agent node a  

17.         Transmitting message 𝑏(𝒙𝑎,𝑡) − 
            ( ) ( )( ), , ,N | ,  n n

a t a t a t
x C  

18.         end parallel 
19.         if 

iter
n N  

20.            1n n= +  
21.         end if 
22.     end for 
23.      if t T  
24.         1t t= +  
25.      end if 
26. end for 

 
Table 3. Cost of different algorithms 

Algorithm Calculated Cost Communicated Cost 
SPAWN1 2

a
J N  2

a
J N  

SPAWN2 22
a

J N  2
a

J N  
VMP 3 2

a
N J+  3

a
N  

BP-DCKF 2 8
a

N  6
a

N  
 
5  Simulation Results and Analysis 

 
Two scenes are made in this simulation section: static link 

networks scene and dynamic link networks scene, which are 
designed to illustrate the feasibility and effectiveness of the 
proposed BP-DCKF algorithm. Besides, the performance of 
the BP-DCKF algorithm is verified by comparing with some 
algorithms including VMP [14], the one NBP based sum-
product algorithm for wireless network named SPAWN1 [11] 
and another NBP based sum-product algorithm for wireless 
network named SPAWN2 [12] algorithm. 

In simulation, two models are used to describe the motion 
of mobile agents as follows: 

 
, , 1 , ,  ,  1, ,

a t a t a t
a A t T−= +  =x Fx Ru  

 
where, the one is uniform linear model and state transition 
matrix F  can be defined as 1G . Another is curve model and 
state transition matrix F  can be defined as 

1 ,

2 ,

,  0
,  0

a t

a t





== 


G
F

G
, R  is driving matrix, 1G  and 2G  are 

set as follows: 
 

1

1 0 0
0 1 0
0 0 1 0
0 0 0 1





 
 
 =
 
 
 

G  

 
( ) ( )( )
( )( ) ( )
( ) ( )
( ) ( )

, , , ,

, , , ,
2

, ,

, ,

1 0 sin / cos 1 /

0 1 1 cos / sin /

0 0 cos sin

0 0 sin cos

a t a t a t a t

a t a t a t a t

a t a t

a t a t

     

     

   

   

 −
 
 −
 =
 −
 
 
 

G  

 
where,   is the sampling interval, ,a t

  is the turning 
angular velocity. The initial state of all agent nodes is 
represented by ,0a

  and the initial covariance matrix 

( ),0 diag 10,  10,  0.01,  0.01
a
=C . 

The main parameters related to experiment simulation are 
shown in Table 4. 

In order to evaluate the performance of the BP-DCKF 
algorithm, the average root mean square error (ARMSE) and 
average running time are used to evaluate them, and the 
ARMSE is also used to measure the localization performance 
of all algorithms: 

 
2

,

1 1

ˆ
c aM A a j a

j a

a c

ARMSE
A M= =

−
=  

x x
 

 
where, 

a
A  is the number of agent nodes to be located, ,ˆ

a j
x  

is the state estimation localization vector of mobile agent node 
a  in the j th−  Monte Carlo run and 

a
x  is the actual 

location vector. 
 
5.1 Scene 1: Agent Node Linear Moving in the 

Static Link Network 
 
In this scene, agents move along a straight line in the area 

which was deployed static link network. In addition, the 
connection relationship between all nodes in the static link 
network will not be changed in the time of agents moving. The 
mobile agent nodes can measure all nodes and transmit 
Gaussian parameterized message to adjacent mobile agent 
nodes. The localization trajectories of the four algorithms are 
shown in Figure 4, which the VMP, SPAWN1, SPAWN2 
algorithms take the particle number of 250 as an example, 
respectively and the proposed BP-DCKF algorithm only uses 
72 cubature points. 
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In Figure 4, it is can be seen that trajectories with respect 
to the VMP, SPAWN1, and SPAWN2 algorithms are 
significantly deviated from the real trajectories of agent nodes, 
while trajectories of the BP-DCKF algorithm is close to real 
trajectories of agent nodes. Meanwhile, it can also find that the 
deviation of four trajectories between each algorithm and the 

real trajectory, and the BP-DCKF algorithm is very close to 
the real trajectory in the four trajectories. For example, 
location of four agent nodes are localization by the four 
algorithms at the 89s, which can be shown in the Table 5. In 
this table, the BP-DCKF algorithm has higher localization 
accuracy than the VMP, SPAWN1 and SPAWN2 algorithms. 

 
Table 4. Simulation parameters 

Parameter name Symbol Scene 1 Scene 2 
Area of simulation (m²) S  100 100  100 100  
Number of agent node a

A  4 8 
Number of reference node 'a

A  4 41 
Number of total nodes A  8 49 
Location vector of the reference node 'a

x  ( )T

1, ' 2, ',  
a a

x x  ( )T

1, ' 2, ',  
a a

x x  

State vector of agent node a
x  ( )T

1, 2, 1, 2,,  ,  ,  
a a a a

x x x x  ( )T

1, 2, 1, 2,,  ,  ,  
a a a a

x x x x  

Real location vector of agent node a
x  ( )T

1, 2,,  
a a

x x  ( )T

1, 2,,  
a a

x x  
Simulation time (s) T  100 100 
Simulation times c

M  100 100 
Number of the iterations iter

N  2 2 
Measurement radius of the reference node 

'aM
r  100 20 

Communication radius of the reference node 
'aC

r  100 20 
Measurement radius of the agent node 

aM
r  200 50 

Communication radius of the agent node 
aC

r  200 50 
Process noise variance 2  10-4 10-4 
Measurement noise variance 2  1 1 

 
Table 5. Localization performance comparison of different algorithms 

Agent node 1 2 3 4 

Actual coordinates (74.39, 70.81) (30.67, 76.18) (64.46, 32.51) (29.77, 28.56) 

Estimations by already 
existing algorithms 

SPAWN1 (73.81, 71.41) (30.98, 75.96) (64.87, 32.35) (30.78, 27.94) 

SPAWN2 (74.46, 71.09) (30.82, 75.76) (64.94, 32.62) (30.29, 28.05) 

VMP (74.06, 70.75) (30.95, 75.98) (64.26, 32.03) (29.17, 28.14) 

Estimations by 
proposed algorithm BP-DCKF (74.21, 70.78) (30.69, 76.04) (64.21, 32.19) (29.70, 28.06) 

Localization error with 
di  erent algorithms 
(meter) 

SPAWN1 0.8345 0.3801 0.4401 1.1851 

SPAWN2 0.2886 0.4460 0.4924 0.7284 

VMP 0.3354 0.3441 0.5200 0.7324 

BP-DCKF 0.1825 0.1414 0.4061 0.5049 

 
Figure 4. Traaectories o  mobile agent nodes      Figure 5. The ARMSE o  mobile agent nodes localization
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The ARMSE results of the four algorithms are shown in 
Figure 5. It can be seen that the localization accuracy of the 
four algorithms listed from high to low are BP-DCKF, 
SPAWN2, VMP, SPAWN1 algorithm, in addition, ARMSE 
of SPAWN2, VMP, SPAWN1 algorithm show apparent 
fluctuations comparing with that of BP-DCKF. Compared 
with the other three algorithms, the ARMSE of four 
algorithms and the percentage of the ARMSE decreasing of 
the BP-DCKF algorithm are shown in Table 6. To demonstrate 
the localization performance of proposed algorithm, this paper 
compares its CDF (cumulative distribution function) and 
ARMSE with those of BP-DCKF, SPAWN1, SPAWN2 and 
VMP at the 72 cubature points. Figure 6 shows the CDF of the 
localization errors of the BP-DCKF, SPAWN1, SPAWN2 and 
VMP algorithms. It is clearly that the BP-DCKF algorithm has 
the best localization performance. 

In Figure 7, the number of particles related to the VMP, 
SPAWN1 and SPAWN2 algorithms are set to be 250, 500 and 
1000, respectively. In the case of different particles, since the 
localization information of the adjacent cooperating nodes 
will change with the time slot during the movement of the 
agent node, resulting in localization accuracy changing. The 
ARMSE of four algorithms change with time are given. It is 
that accuracies of four algorithms are rowed from high to low 
in order: the BP-DCKF, SPAWN1, SPAWN2 and VMP 
algorithm, moreover, the ARMSE curves of the VMP, 
SPAWN2 and SPAWN1 algorithm greatly fluctuate when the 
number of particles is small. Except BP-DCKF algorithm, 
other three algorithms with 500 particles are severely 
fluctuation at the 25s, and the ARMSE of the four algorithms 
the percentage of the ARMSE decreasing of the BP-DCKF 
algorithm are shown in Table 7. It is clearly that the BP-DCKF 
algorithm has higher localization accuracy. 

  
Figure 6. The CDF o  mobile agent nodes ARMSE   Figure 7. The ARMSE o  mobile agent nodes localization 

 
Table 6. ARMSE and the improved per ormance percentage 

Algorithms SPAWN1 SPAWN2 VMP BP-DCKF 
ARMSE (m) 1.3 1.18 1.2 0.3 

Percentage (%) 76.92 74.58 75.00 - 
 

Table 7. ARMSE and the improved per ormance percentage 
Algorithms SPAWN1 SPAWN

2 
VMP BP-DCKF 

ARMSE (m) 0.8 0.89 0.9 0.3 
Percentage (%) 62.50 66.29 66.67 - 

 
 

Besides, in Figure 7, with the number of particles 
increasing from 250 to 1000, the ARMSEs of the VMP, 
SPAWN1 and SPAWN2 algorithm are significantly enhanced, 
when the number of particles is 1000, the ARMSE of the 
SPAWN1 and SPAWN2 algorithm are close to the BP-DCKF 
algorithm, but the BP-DCKF algorithm only uses 72 cubature 
points. Compared with the three algorithms, the BP-DCKF 
algorithm effectively improves the low time execution 
efficiency caused by increasing the number of particles, 
improves the performance of the three algorithms in the case 
of fewer particles, so it has higher time execution efficiency. 

The average running time of the four algorithms are shown 
in Table 8, it shows that average running time of the BP-
DCKF algorithm is the shortest in the four algorithms. The 
average running time of the SPAWN1, SPAWN2 and VMP 
algorithm are increasing rapidly as the number of particles 
increases, but the BP-DCKF algorithm has not changed 

because the number of particles is only related to the number 
of adjacent nodes, the number of particles (72 cubature points) 
does not change when the adjacent nodes do not change. 

From above Figure 7, it is that the number of particles in 
the SPAWN1, SPAWN2 and VMP algorithm is 1000, 
respectively, the ARMSE is relatively close to the BP-DCKF 
algorithm, however, the average running time is 22.4277s, 
36.2856s and 1.2754s, respectively. The BP-DCKF algorithm 
only uses 0.3580s, time consumption decreasing percentage of 
proposed algorithms over SPAWN1, SPAWN2 and VMP are 
shown in Table 9. Moreover, the average running time of the 
SPAWN1 and SPAWN2 algorithm increased an order of 
magnitude increase, the VMP algorithm is superior to the two 
SPAWN algorithms in terms of average running time, but it 
has insufficient accuracy. Therefore, the BP-DCKF algorithm 
has high localization accuracy and high time execution 
efficiency in the static link network. 
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Table 8. Average running time (s) 
Particles SPAWN1 SPAWN2 VMP BP-DCKF 

250 1.8180 2.8303 0.3791 - 
500 6.3811 10.6526 0.7030 - 

1000 22.4722 36.2856 1.2754 - 
72 - - - 0.3580 

 
Table 9. Improved performance percentage 

Algorithms SPAWN1 SPAWN2 VMP BP-DCKF 

Percentage 
(%) 

98.40 99.00 71.30 - 

 
5.2 Scene 2: Agent Interactive Moving in the 

Dynamic Link Network 
 
In this scene, agents move according to straight line and 

curves interactive multiple model (IMM) in the area, which is 
deployed dynamic link network. In addition, the connection 
relationship between all nodes in the dynamic link network 
may be changed during the time of agent moving, while the 
mobile agents can only obtain the measurement and belief 
from the reference nodes and the mobile agent nodes within 
the measuring range of mobile agents. The localization 
trajectories of the four algorithms are shown in Figure 8, 
which the particle numbers of the VMP, SPAWN1 and 
SPAWN2 algorithms are all set to be 250 and the BP-DCKF 
algorithm are 8

a
N  cubature points that the number of 

particles is only related to the number 
a

N  of adjacent nodes. 

 
Figure 8. Traaectories o  mobile agent nodes 

 
In Figure 8, it can be seen that the real trajectories of agent 

nodes are changing with time, it is because of the localization 
information of the adjacent cooperating nodes changing with 
time slot during the movement of the agent node, the trajectory 
of the VMP, SPAWN1 and SPAWN2 algorithms significantly 
deviate from the real trajectory, while trajectories of the BP-
DCKF algorithms is close to real trajectories of agents. It can 
also find that all trajectories do not always deviate greatly. 
Usually, the VMP, SPAWN1 and SPAWN2 algorithms will 
deviate significantly from the real trajectory at the starting 
point. After a period of time, the localization error gradually 
decreases and the trajectories are close to the real trajectory. 
The BP-DCKF algorithm is very close to the real trajectory 
during the entire running. Since the three algorithms all use 
random sampling methods to realize node localization, 
although the operation is simple, they are greatly affected by 

the number of particles, and have a larger localization error 
when the number of particles is small, but, the BP-DCKF 
algorithm uses a deterministic sampling method with fewer 
particles and does not appear to be significantly deviated from 
the real trajectories. In conclusion, it is obvious that the BP-
DCKF algorithm has higher localization accuracy than the 
VMP, SPAWN1 and SPAWN2 algorithms. 

Figure 9 shows that the ARMSE of four algorithms 
changed with time t . The number of particles related to the 
VMP, SPAWN1 and SPAWN2 algorithms are set to be 250, 
500 and 1000, respectively, the BP-DCKF algorithm use 8

a
N  

cubature points. It can be found that the ARMSE of the four 
algorithms show a decline trend as a whole, which localization 
accuracies are rowed from high to low in order: the BP-DCKF, 
SPAWN1, SPAWN2 and VMP algorithm. Moreover, the 
ARMSE of the VMP, SPAWN2 and SPAWN1 algorithm 
greatly fluctuate when the number of particles is 250, the three 
algorithms that the number of 250 particles are largely 
fluctuation when t  is 40s, and the ARMSE and the ARMSE 
decreasing percent- age of proposed algorithms over 
SPAWN1, SPAWN2 and VMP are shown in Table 10. 

 
Figure 9. The ARMSE o  mobile agent nodes localization 

 
Table 10. ARMSE and improved per ormance percentage 

Algorithms SPAWN
1 

SPAWN
2 

VMP BP-DCKF 
ARMSE (m) 0.5 0.80 1.00 0.2 

Percentage 
(%) 

60.00 75.009 80.00 - 

 
With the number of particles increasing, the localization 

accuracy of the VMP, SPAWN2 and SPAWN1 algorithms are 
significantly enhanced, and they close to the BP-DCKF 
algorithm in the number of particles to be 1000, but the BP-
DCKF algorithm uses low cubature points. Compared with the 
three algorithms, the BP-DCKF algorithm effectively 
improves the low time execution efficiency caused by the 
increase in the number of particles, improves the performance 
of the three algorithms in the case of fewer particles. Thus, the 
BP-DCKF algorithm has higher time execution efficiency. 

The average running time of the four algorithms in the 
IMM models are shown in Table 11, it shows that the average 
running time of the SPAWN1, SPAWN2 and VMP algorithms 
are increasing rapidly as the number of particles increases, 
however, the BP-DCKF algorithm has not changed because 
the cubature points is only related to the number of adjacent 
nodes. From above Figure 9, it shows that the number of 
particles in the SPAWN2, SPAWN1 and VMP algorithms is 
1000, respectively, which the ARMSE is relatively close to the 
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BP-DCKF algorithm, but the average running time is 
265.5315s, 172.2324s and 6.0408s, respectively. 

 
Table 11. Average running time (s) 

Particles SPAWN1 SPAWN2 VMP BP-DCKF 
250 15.1455 20.6177 1.8129 - 
500 48.4743 76.8544 3.1337 - 

1000 172.2324 265.5315 6.0408 - 
8

a
N  - - - 2.1459 

 
The BP-DCKF algorithm only uses 2.1459s, time 

consumption decreasing percentage of proposed algorithms 
over SPAWN1, SPAWN2 and VMP are shown in Table 12. 
Moreover, the average running time of the SPAWN1 and 
SPAWN2 algorithm increased an order of magnitude increase. 
The VMP algorithm is superior in terms of average running 
time, while it has insufficient accuracy. Thus, the BP-DCKF 
algorithm has high localization accuracy and high time 
execution efficiency in the dynamic link network. 

 
Table 12. Improved performance percentage 

Algorithms SPAWN1 SPAWN2 VMP BP-DCKF 

Percentage 
(%) 

98.70 99.19 60.40 - 

 
Figure 10 shows ARMSE of the BP-DCKF algorithm is 

changing with time at different measurement noise conditions. 
It can be seen that the ARMSE of the BP-DCKF algorithm is 
decreasing with time increasing. Moreover, higher 
measurement accuracy is lead smaller localization error. 
Figure 11 shows the CDF of the localization error of the BP-
DCKF algorithm at different measurement noise conditions. It 
can be seen that the localization performance of the BP-DCKF 
algorithm is positively correlated with the measurement noise. 

 
Figure 10. The ARMSE of mobile agent nodes localization 

 
From above simulation results, it is obvious that the BP-

DCKF algorithm has higher localization accuracy than that of 
traditional algorithms in both the static link network model 
and the dynamic link network model, moreover, it is superior 
to the VMP and SPAWN algorithm with non-parametric BP 
method in the aspects including time execution efficiency, 
communication burden, and so on. So, the BP-DCKF 
algorithm is tractable in practical application. 

 
Figure 11. The CDF of mobile agent nodes ARMSE 

 
6  Conclusion 

 
The BP-DCKF algorithm is proposed for node localization 

of WSN. Using the deterministic sampling of CKF algorithm 
and parameterized message transmitting of BP strategy, state 
variable of mobile agent node is modeled as an edge posterior 
probability estimation problem of multivariable nodes. The 
posterior distribution of the message for each variable node in 
the FG by parameterized message transmission, 
reconstruction strategy and DCKF algorithm. The agent node 
estimates its own localization by parameter message from 
other adjacent nodes, and sends its own localization message 
to adjacent agent nodes. Simulation experiments show that 
localization accuracy of proposed algorithm is higher about 
86% than that of traditional algorithm. Moreover, since only 
to transmit the mean vector and covariance matrix between the 
adjacent agent nodes, proposed algorithm has lower about 
75% communication burden than that of traditional algorithm. 
In conclusion, the proposed CL framework has good 
localization performance. 
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