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Abstract 
 

When the number of outdoor wireless users surges and 
fixed base stations (BSs) can hardly accommodate high-load 
communication traffic, unmanned aerial vehicles (UAVs) 
carrying BSs can provide wireless communication services, 
and the location deployment of the UAV-mounted BSs 
directly influences the reliability of network communications. 
For the target area scenario where the UAVs uniformly cover 
user nodes, we propose a hybrid intelligent coverage 
algorithm called PSO-VFA to optimize the coverage of a fixed 
number of UAV-BSs. The PSO-VFA algorithm consists of 
two phases employing different intelligent algorithms. First, 
we adopt a particle swarm optimization (PSO) method for a 
global search of the coverage areas. Then, for local search, a 
virtual-repulsive-force-based firefly algorithm (VFA) is 
proposed in this paper to maximize the user coverage. In the 
VFA algorithm, the users are treated as the objects attracting 
the UAVs, and the virtual repulsive force is used for UAV 
location adjustment. Simulation results show that the proposed 
PSO-VFA hybrid algorithm has faster convergence and 
significantly increases the communication coverage of UAV-
mounted BSs compared with individual intelligent algorithms 
such as VFA, PSO, genetic algorithm (GA), and simulated 
annealing (SA). 
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1  Introduction 
 

With the development of 5G/6G technologies and the 
increasing demand of wireless network applications, 
unmanned aerial vehicles (UAVs) carrying communication 
base stations (BSs) can quickly and flexibly deploy aerial BSs 
[1], thereby temporarily solving the network congestion 
caused by insufficient outdoor ground BSs. Compared with 
traditional fixed BSs and emergency communication vehicles, 
the UAV-mounted BS (UAV-BS) can better compensate for 
deficiencies in terms of time and space dimensions, such as 
the high cost and resource overhead. Therefore, it is an ideal 
choice to use the UAV-BSs as a means of outdoor emergency 
communications. Additionally, when UAVs are mounted with 
wireless BSs, the deployment scheme of UAVs must be 
rationally planned to support practical applications due to the 

significant impact of their specific deployment on the user 
experience, network performance, and operational costs [2]. 

The research on UAV communication coverage mainly 
falls into the categories of scanning coverage and deployment 
coverage [3]. By applying scanning coverage, the UAV-BS 
can only briefly communicate with ground nodes in the 
scenarios where real-time communication is not required, such 
as collecting ground sensor information through reasonable 
path planning. On the contrary, the application of deployment 
coverage is suitable for providing long-time communication 
to user nodes, thus raising the demand for the reasonable 
deployment of UAV locations. 

Specifically, the deployment coverage algorithms are 
sorted into two categories: coarse-grained deployment and 
fine-grained deployment. Coarse-grained deployment focuses 
on regional coverage, and it is difficult to consider some 
factors, such as the UAV load capacity and user 
communication quality. On the contrary, the fine-grained 
deployment schemes can calculate a more appropriate UAV 
location according to the UAV and user information, 
mitigating the flaws of coarse-grained deployment. However, 
its operation costs more. It is essential for fine-grained 
deployment to minimize the time and space complexity while 
keeping an effective deployment. To address this issue, a 
hybrid intelligent scheme is proposed. It achieves optimal 
solutions while alleviating the problems caused by only using 
a single intelligent algorithm, e.g., the tendency to fall into 
local optimal solutions and slow convergence [4]. 

Recently, some solutions based on scanning coverage have 
been proposed. For scanning coverage, the approach proposed 
by D’Amato et al. optimizes the UAV trajectory and controls 
the power to maximize the throughput of the UAV network 
[5]. To deploy wireless sensors in a target area, Li et al. 
proposed a heuristic weighted target coverage algorithm to 
find an optimal path by considering the target weights and 
UAV performance constraints [6]. Wang et al. proposed a 
regularized fast path planning algorithm for uniformly 
distributed wireless sensor networks, which divides the path 
planning of the global region into squares and then combines 
the paths in the squares based on the line precedence principle 
[7]. In the absence of accurate user location information, Liu 
et al. adopted the Q-learning algorithm to optimize the UAV 
trajectories [8]. 

Research is also done on providing the maximum coverage 
area based on the deployment coverage. Azari et al. studied 
the outage probability of wireless networks, arriving at the 
relationship between the maximum coverage area of UAVs 
and the signal-to-noise ratio (SNR) [9]. This study proves that 
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the UAV has an optimal vertical height that can be used to 
maximize its communication coverage range. To meet the 
different quality of service (QoS) requirements of users, Chen 
et al. adopted an improved multi-swarm genetic algorithm to 
optimize the deployment of UAV-BSs [10]. An improved 
cuckoo algorithm is introduced to achieve the focused 
optimization of hotspot area coverage and achieves a higher 
coverage rate compared with the standard cuckoo algorithm 
[3]. However, this algorithm only covers a coarse-grained 
hotspot area, without considering the coverage of individual 
users meticulously. Qu et al. designed a K-mean-based 
algorithm for UAV deployment according to the user 
bandwidth requirements [11]. This method can reduce the 
number of UAVs, but it does not take the optimal coverage of 
UAVs into account. 

In summary, by optimizing the deployment of UAV 
locations, we can improve the reliability of UAV network 
communication, expand the communication coverage, and 
guarantee the QoS of UAV-BSs [12-13]. Nevertheless, the 
researches discussed above focus less on fine-grained 
deployment, in which the use of UAV information for 
deployment has not been fully considered. 

Deployment optimization of UAV-BS is an NP-hard 
problem, and some intelligent algorithms can solve such 
problems through self-learning and cooperation [14-15]. With 
good searchability as well as self-adaptability, some 
intelligent algorithms are employed in many application areas 
of wireless networks, including UAV-BS deployment [16-17]. 
Inspired by the mutual attraction of fireflies in the firefly 
algorithm (FA), in this paper, we propose a hybrid intelligent 
algorithm for UAV-BS deployment, i.e., the particle swarm 
optimization-virtual repulsive force firefly algorithm (PSO-
VFA), taking the wireless users as the object to attract UAVs. 

The PSO-VFA is a combination of two intelligence 
algorithms: the particle swarm optimization (PSO) algorithm 
[17], and the virtual-repulsive-force-based firefly algorithm 
(VFA), which is also proposed in this paper. We improve the 
FA algorithm by introducing virtual repulsive forces among 
UAVs to reduce the overlapping coverage areas [18]. This 
algorithm can effectively use the user information within the 
perception range of UAVs to adjust their locations. In addition, 
the PSO algorithm is employed as the overall algorithm 
framework for searching and further optimizing UAV 
deployment coverage. It can effectively make up for the weak 
global search capacity of the VFA algorithm. Each particle 
represents the deployment scheme of a UAV node-set. The 
update of each location is a process to move every particle 
towards the global and individual historical optimal particles. 
The main objective of this paper is to achieve a fine-grained 
deployment of UAVs with reduced algorithm iterations and 
better user coverage. 

Different from the existing work such as given in [11-13], 
in this paper, we consider using a fixed number of UAV-BSs 
to serve ground users in different scenarios, so as to maximize 
the coverage of UAVs and speed up the convergence rate of 
algorithm. Additionally, the communication perception range 
of UAV is taken as the search radius in the VFA algorithm to 
support the UAV deployment strategy in different scenarios 
and achieve a better fine-grained deployment under the 
framework of PSO algorithm. The following are the main 
contributions to the research of this paper: 

 We define and analyze the optimal perception radius
and vertical height of the UAV in suburban and

urban scenarios, which enables the UAV to fully 
utilize its own and user information for location 
adjustment while meeting the user communication 
requirements. 

 We have proposed a firefly search algorithm based
on virtual repulsive forces that is applied to the
coverage optimization of UAV-BSs and provides
the maximization of the user coverage.

 A hybrid intelligent algorithm is designed, in which
the PSO algorithm is introduced as the overall
algorithm framework, and the VFA algorithm
performs coverage optimization to quickly converge
to the global optimal solution.

 The performance of the proposed PSO-VFA
algorithm is evaluated and compared with the PSO,
VFA, genetic algorithm (GA), and simulated
annealing (SA) algorithms for suburban
environments with different numbers of UAVs.

2 System Model and Problem 

Formulation 

2.1 Application Scenarios 

It is necessary to deploy UAV-BSs on demand, 
considering the user locations and the size limitations of the 
UAV network. UAV deployment will face increases in 
outdoor users, such as the wireless users at hot scenic spots on 
Chinese holidays. Figure 1 presents the distributions of the 
tourists at a Chinese outdoor scenic spot in two different 
periods. Most of the tourists have Internet-capable mobile 
devices, therefore, they can be identified as wireless users. The 
darker the red area in the figure, the higher the tourist density 
in the area, and the more devices are connected to the mobile 
network outdoors. With the increase in outdoor users, more 
devices are connected to the mobile network outdoors. If the 
network is congested due to the traffic burst caused by the 
outdoor users’ devices, the ground BSs may not be able to 
provide communication services for the users in time. On the 
contrary, if the target area with an uneven distribution of users 
has full coverage, this is a waste of network resources. 

(a) Holiday (b) Non-holiday
Figure 1. Heat maps of the tourist volumes at the 
Huangguoshu Waterfall, a famous scenic spot in China  
(The Chinese characters below the English characters in the 
pictures indicate the corresponding Chinese addresses of the 
English addresses. Data from Tencent Location Big Data, 
https://heat.qq.com/) 
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2.2 Coverage Problem and Model 

Given that the UAVs are randomly assigned to different 
subareas of the target area during initial deployment, there 
might be two problems: more overlapping coverage areas and 
uncovered users. We consider using the FA algorithm to 
determine the positions of UAVs: more users can be covered 
and the overlapping coverage is reduced. However, one of the 
factors of UAV movement is the UAV’s perception radius 
[19], and the UAV is attracted by the users within the 
perception radius. When the projected two-dimensional (2D) 
distance between a user and a UAV is less than the perception 
radius Emax and greater than the actual coverage radius Rm, the 
communication quality required by users cannot be met, 
because the UAV can only sense the user, not establish a 
connection. 

After the UAV-BSs are deployed as shown in Figure 2, 
multiple UAVs hover in the air over the target area at an 
altitude of H to provide communication service for ground 
users. R is the maximum communication radius projected by 
the UAV to the ground, D is the maximum communication 
distance, and  is the horizontal angle of the ground. Let 𝒦= 
{1, 2, …, K} denote the set of users (note that the user’s 
altitude is not taken into account). The position of user k  𝒦, 
lock is (Xk,Yk), and they are randomly distributed in the 2D 
target area O, where O={(Xk,Yk) | Xmin  Xk  Xmax, Ymin  Yk  
Ymax}. Let ℳ = {1, 2, …, M} denote the set of UAVs, and 
the position of UAV m  ℳ is locm = (Xm, Ym, Hm). The 
UAVs are deployed in the 3D target region O = {(Xk, Yk, Hm)| 
Xmin  Xk  Xmax, Ymin  Yk  Ymax, Hmin  Hk  Hmax}, where 
(Xmin, Xmax) and (Ymin, Ymax) are the constraints on the X- and 
Y-axes of the target region, respectively. (Hmin, Hmax) are the
altitude constraints. The symbolic notation of the system
model is given in Table 1.

Figure 2. UAV-BS deployment 

Table 1. Key variables and notations 
Symbols Description 
𝒦 Set of users 
ℳ Set of UAVs 
k User k 
m UAV m 
K Number of user nodes 
M Number of UAV nodes 
(Xk, Yk) User k coordinates on the X- and Y-axes 
(Xk, Yk, Hm) UAV m coordinates on X-, Y-, and Z-axes 
rmk Horizontal distance from the UAV m to the user k  
dmk Projected 3D distance from the UAV m to the user k 
a, b Parameters corresponding to different environments 
LA2G Average air-to-ground link loss 
SNRmk Signal to the noise ratio between the UAV m and the 

user k 
Rm Actual coverage area of the UAV m 

2.3 Air-to-Ground Channel Model 

In wireless communications, the channel model is a very 
important factor. The vertical height of the UAV-BS 
deployment will affect the coverage and the reliability of 
communication links. According to the air-to-ground ch-
annel model proposed in [20], the advantage of UAV-BSs 
over fixed BSs is that the link between UAV and user has 
higher line-of-sight (LOS) propagation. At the same time, the 
communication link may be affected by the density and height 
of ground buildings, which results in non-line-of-sight (NLOS) 
propagation in the air-to-ground channel model. 

The path loss of the LOS communication link LLOS and 
NLOS communication link LNLOS  between a UAV m and user 
k are modeled by 

LOS
mkc

LOS δ
c
dπf4L +







=  20log (1) 

NLOS
mkc

NLOS δ
c
dπf4L +







=  20log (2) 

where LOS and NLOS are the other free space losses under LOS 
and NLOS links, respectively. fc, dmk, and c are the carrier 
frequency, the projected 3D distance from the UAV to the user, 
and the speed of light, respectively. The probability of the 
existence of a LOS communication link LLOS between the 
UAV m and user k are modeled by 
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

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
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where a and b are the environmental parameters, and H is the 
vertical distance of the UAV from the ground. The horizontal 
distance between the UAV m and the user k is calculated by 

22 )()( kmkmmk YYXXr −+−= (5) 

Since the communication link is affected by environmental 
obstructions, we can calculate the average path loss of the link 
between the UAV m and the user k in this model according to 
(6): 

( )LOSNLOSLOSLOSG2A PLPLL −+= 1 (6) 

Based on the air-to-ground channel model, we can define 
the communication perception range of UAVs. If the path loss 
between the UAV m and the user k is less than a threshold Lth, 
we assume that the user k can be sensed by the UAV m. 
However, the perception radius Emax cannot serve as the actual 
coverage of the service provided by the UAV. As discussed in 
[11, 21], the SNR of each user can be used to evaluate the 
communication quality of the channel without considering the 
interference between devices. It is calculated by (7), where 
Puav is the UAV transmission power, and  is the noise power: 



490 Journal of Internet Technology Vol. 23 No. 3, May 2022 

+
=

)( 22
uav

mkm
mk rH

PSNR (7) 

2.4 Problem Definition 

To simplify the UAV deployment problem, we map the 
UAV location deployment to a 2D plane, and assume that the 
vertical heights of all UAVs are the same during deployment. 
In order to maintain a good communication quality between 
the UAV-BS and the users, it is necessary to make the SNR 
greater than the threshold SNRth. Using (7), the actual coverage 
Rm of the UAV m can be derived, and when the users are 
within the coverage area of the UAV m, they are considered to 
be covered by the UAV m. In (8), UTG(m, k) = 1; this means 
that the user k is covered by the UAV m, and UTG(m, k) = 0 
otherwise. 

( )







=

mmk

mmk

R
R,   r

km,UTG
0  ,   r
 1

(8)

Then, we calculate the coverage rate COV of the UAV set 
ℳ for all users in 𝒦 through (9). The COV is an important 
factor to measure the pros and cons of a UAV deployment 
scheme, which needs to cover as many users as possible 
through appropriate path planning and location selection. 

COV = mℳ k𝒦 UTG(m,k)/ K (9) 

The optimization goal of our work is to use a certain 
number of UAVs to cover more users. The placement problem 
in the horizontal dimension is then formulated as where (10b) 
and (10c) are the constraints on the UAV location and user 
location, and (10d) indicates that each user is provided with 
communication service by at most one UAV. 

COVmax    (10a) 

Constraint: locm  G, ∀m  ℳ (10b)

lock   O, ∀k  𝒦 (10c)

k𝒦UTG(m,k) ≤ 1, ∀k  𝒦 (10d)

3  Proposed Algorithm 

In this section, the proposed PSO-VFA algorithm is 
described in detail.  

3.1 Firefly Algorithm Description 

The FA algorithm is a bio-inspired optimization algorithm 
proposed by Yang in [22], and its main idea is based on the 
mutual attraction behavior of fireflies. In other words, fireflies 
move to other brighter fireflies in their line of sight for 
optimization purposes [23]. The attractiveness ij between 
fireflies i and j is calculated by (11): 

2

0
ijλγ

ij eββ −= (11)

where 0 is the attractiveness at  = 0, and  is the distance 
between two fireflies. The parameter ij is the distance 
between fireflies i and j, and  is the light absorption 
coefficient. The position updating equation of a firefly is 

+−+=+ ))()(()(1)( txtxβtxtx ijijii  (12) 

xi(t+1) denotes the position of firefly i  in the (t+1)th 
iteration, [0, 1] is the step factor, and [-0.5, 0.5] is the 
random factor. 

3.2 Virtual-Repulsive-Force-based Firefly 

Algorithm  

To solve the problem of precise user coverage in fine-
grained deployment, in this subsection, we propose an 
improved firefly algorithm based on a virtual repulsive force, 
i.e., VFA.

Virtual forces include repulsive forces and attractive
forces. In the classical FA algorithm, fireflies are regarded as 
hermaphrodites, and any firefly may be attracted by other 
fireflies. To effectively deploy the UAV-BSs to user-intensive 
areas, we take the UAVs and users as fireflies of different 
genders. User-intensive areas have high attractions to UAVs, 
while there is no attraction between UAVs. Within the 
perception radius, the UAV selects the movement direction 
according to the fluorescent strengths of user nodes, and 
makes full use of the information of the user nodes to adjust 
its movement. mk, the attraction of the user k attraction to the 
UAV m, can be defined as follows: 

minmax

minmk
mk EE

Erγ
−
−

= (13)

2
mkλγ

kmk eBβ −= (14)

where Bk represents the user’s bandwidth requirement, and mk 
is the normalized value of the distance between the UAV m 
and the user k. Emax and Emin are the maximum and minimum 
search ranges of the UAV, respectively. In a user-intensive 
area with high attraction, multiple UAVs may approach in the 
same direction and are close to each other. Therefore, it is 
necessary to adjust the positions of the UAV nodes to further 
expand the UAV service range and reduce the overlap area. 

In addition, we introduce the virtual repulsion force for the 
position adjustment. For any two UAV nodes i and j, the 
horizontal distance between them is 

22 )()(d kjmikjmiij YYXX −+−= (15) 

and the distance threshold is dth. When dij  dth, there is no 
virtual repulsion between the UAVs i and j. On the contrary, 
the virtual repulsion force between UAVs i and j, Fij, is 
generated by the following: 
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where Q is the repulsion force coefficient. Then, the virtual 
repulsion forces of UAV i on the X-axis and Y-axis imposed 
by other UAV nodes are calculated as follows: 


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where fx and fy are the directions in which the UAV receives 
repulsive forces on the X-axis and Y-axis, respectively. 
Finally, combined with (14) and (17), the updated position of 
the UAV achieved by each iteration in the improved firefly 
search algorithm is as follows: 
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3.3 PSO Algorithm Applied to the UAV 

Coverage Search 

The PSO algorithm is an efficient parallel random search 
algorithm, where each particle represents a possible solution, 
and all particles form a population of particles. In order to find 
the optimal solution, the particle determines its moving speed 
and direction in solution space based on its historical 
information and group information. In the standard PSO 
algorithm [24], the formula for calculating the function of the 
ith particle in the d dimensional domain is  
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In this paper, each particle corresponds to a deployment 
solution for UAVs. The population consists of N particles, and 
S={x1

(t), x2
(t), …, xN

(t)} denotes the position vector of all 
particles after the tth iteration. The position of the ith particle 
in the search space is xi

(t)={loci1
(t), loci2

(t), …, lociM
(t)}for the tth 

iteration. A particle contains all UAV nodes for this 
deployment solution in a 2D planar location (Xm, Ym),∀mℳ. 
Different particles hold different location information for the 
UAV nodes and corresponding different user coverage rates. 

As shown in Figure 3, the particle continuously updates its 
speed and position to the globally optimized values, and each 
update presents a position adjustment of all UAV nodes in 
each particle. UAV coverage optimization is a process in 
which a single particle continuously moves to the individual 
historical optimal particle and the globally optimal particle. 
However, only relying on the update of these two particles 
may lead to poor local search ability, because it does not take 
full advantage of the information of the UAVs and users, 
thereby limiting the convergence rate of the algorithm. 

Figure 3. An instance of the process of a particle position 
update approaching to the globally optimal particle 

3.4 PSO-VFA Algorithm 

Compared with most of the other evolutionary algorithms, 
the PSO algorithm is a parallel search algorithm with historical 
memory for function. However, the PSO algorithm has some 
faults, such as its slow convergence rate in the later stages and 
its tendency to fall into local optimization, while the FA 
algorithm has strong local searchability [23]. Therefore, we 
combine the two algorithms and propose the PSO-VFA 
algorithm, which takes the process of the PSO algorithm as the 
algorithm framework. Each particle moves to the globally 
optimal particle and the historical individual optimal particle. 
After each iterative update of the position, the VFA algorithm 
is employed for local searching, which can make each particle 
adjust its position appropriately by using the information of 
user nodes. The PSO-VFA algorithm not only has the global 
parallel searchability of the PSO algorithm, it can also 
maintain the strong local search ability of the FA algorithm. It 
is described in Algorithm 1, where Swarm{x} and V{x} 
represent the position of x particles  and the update velocity 
of x particles, respectively. 

Algorithm 1. PSO-VFA 
Input: 

M: number of UAV, T: number of iterations 
N: number of particles 
Vmax: maximum speed of particles 
Vmin: minimum speed of particles 
𝜔: inertia weight, c1 and c2: acceleration factors 

Output:  locm, COV 
1: Random initialization of all particles Swarm and velocity V 
2: Calculate all particle objective function value COV, save gbest 

and pbest 
3: for i=1, 2, …, T do

4: for x=1, 2, …, N do 
5:  Calculate particle update velocity: 

V{x}⟵ 𝜔 ⋅ V{x} + c1⋅ rand() ⋅ (pbest{x}− 
Swarm{x}) + c2 ⋅ rand() ⋅(gbest − Swarm{x}) 

6: Process particle velocity: 
Vmin ≤ V{x} ≤ Vmax 

7: Update particle position: 
Swarm{x}⟵ Swarm{x} + V{x} 

8: Use the VFA algorithm to adjust UAV position 
9: Calculate objective function value COV 
10: Update gbest and pbest : 

if COV > fun(gbest) 
gbest ⟵ Swarm{x} 

end if 
if COV > fun ( pbest{x} ) 

pbest{x}⟵ Swarm{x} 
end if 

11: end for

12:  end for

13: locm ⟵ gbest (m) 
14:  return  locm ,  COV 
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4 Performance Evaluation and Analysis 

4.1 Simulation Settings 

In this paper, simulations are conducted on a computer 
with an Intel Core i5-9600KF processor (3.7 GHz) and 16 GB 
RAM. The proposed algorithm is coded in MATLAB and run 
on Windows10 1903. The target area is mapped to a 1000 m  
1000 m rectangular plane. The coordinates of the user and 
UAV nodes are generated using the rand() function of 
MATLAB. The number of ground user nodes is K. The 
number of more suitable UAV nodes M  is calculated based 
on the UB-K-Means algorithm [11], and the distance threshold 
dth is 3 Rm [19]. The specific experimental parameters are 
listed in Table 2. The algorithm parameters are set as follows: 
=0.5, c1=1.5, c2=1.5, [0, 10], and [-0.5, 0.5]. 

Table 2. Simulation parameters 
Param. Description Value 

A Region area 1000 m  1000 m 
K Number of user nodes 120 
M Number of UAV nodes 8 
Dx Max. moving step of UAV 

on X-axis 
20 m 

Dy Max. moving step of UAV 
on Y-axis 

20 m 

dth Distance threshold between 
UAVs 

3 Rm

Lth Path loss threshold 85 db 
N Number of particles 20 
T Number of iterations 100 
H1 Vertical height of the UAV 

in the Suburban 
73 m 

H2 Vertical height of the UAV 
in the Urban 

142 m 

Rm UAV communication 
coverage radius 

180 m 

Additionally, we should choose the maximum perception 
radius, the optimal vertical height, and the optimal perception 
radius of the UAV. In this work, we set the parameters of the 
simulation scenes as given in [20], and they are shown in 
Table 3. Second, we find the optimal vertical height and 
optimal perception radius of the UAV. In Figure 4, the blue 
and red curves depict the change in the UAV’s perceived 
radius with vertical height in the Suburban and Urban 
environments, respectively.  

According to these curves, we can see that the optimal 
perception radius of the UAV in the Suburban environment is 
264 m, and that of the Urban environment is 205 m. That is to 
say, the search radiuses in the VFA algorithm will be different 
due to the different perception radiuses in the two scenarios. 

Table 3. Environmental parameters 
Simulation Environment a b LOS NLOS

Suburban 4.88 0.43 0.1 20 
Urban 9.61 0.16 1 20 

Figure 4. Perception radiuses in different altitudes 

4.2 Results and Analysis 

In this section, we verify and evaluate the effectiveness of 
our proposed algorithms in terms of the coverage rate in the 
Suburban and Urban environments. 

The simulation scenario of the Suburban environment is 
presented in Figure 5(a), in which the users are randomly 
distributed, and the UAVs are deployed to their optimal 
vertical height to maximize the perception radius. Figure 5(b) 
to Figure 5(d) show the deployment locations of UAVs 
optimized by the VFA, PSO, and PSO-VFA algorithms, 
respectively. The orange circles represent the actual 
communication coverage of UAVs, and the blue lines are the 
wireless connections between UAVs and users. The VFA 
algorithm covers fewer overlapping areas than the PSO 
algorithm, and the UAV individuals tend to be distributed in 
more user-intensive areas than those in the PSO algorithm. 

(a) The distribution of users (b) VFA algorithm

(c) PSO algorithm (d) PSO-VFA algorithm
Figure 5. UAV deployments with different algorithms in the 
target area of suburban 

The perception radiuses of the Urban and Suburban 
scenarios are different, which is manifested in the different 
search radiuses in the VFA algorithm. Figure 6 shows the 
UAV deployment in the target area of the Urban environment. 
Compared with the VFA and PSO algorithms, the final 
deployment position of the UAVs based on the PSO-VFA 
algorithm makes the maximum number of user nodes covered 
by the UAVs. In particular, due to the combination of the 
advantages of the PSO and improved FA algorithms, the 
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overlapping area between UAVs is the smallest for the PSO-
VFA algorithm. 

(a) VFA algorithm (b) PSO algorithm

(c) PSO-VFA algorithm
Figure 6. UAV deployments with different algorithms in the 
target area of Urban 

We assume that the scenario of the Urban environment is 
the same as Figure 5(a). The coverage evolution curves of the 
three algorithms are shown in Figure 7. In the Suburban 
environment, the coverage reaches 91.7% after 100 iterations 
in the PSO-VFA case, while the coverage for both the VFA 
and PSO algorithms is 86.7%. In addition, the coverages of 
GA and SA reach 81.7% and 80.0%, respectively. The 
convergence rate of the VFA algorithm is faster than that of 
the PSO algorithm, while the PSO case has more feasible 
solutions than the FA case at the initial deployment, and its 
coverage is higher at initialization. Moreover, the initial 
coverage of the PSO-VFA algorithm is the same as that of the 
PSO algorithm, because the initial particles are the same. 

In the Urban environment, as shown in Figure 7(b), the 
coverages of the PSO-VFA, VFA, PSO, GA, and SA 
algorithms are 90%, 85%, 86.7%, 83.3%, and 77.5%, 
respectively. Compared with the Suburban environment, the 
searchability of VFA is weakened, and the convergence rate 
of the PSO-VFA algorithm is slowed down due to the 
reduction of the UAV perception radius. It turns out that the 
search radius affects the search performance of the VFA 
algorithm, and a higher search radius can speed up the 
convergence. The results given in Figure 7 indicate that the 
coverage rate of the PSO-VFA algorithm is higher than that of 
the other two, and the convergence rate is faster. Additionally, 
the number of iterations required to reach an exact coverage 
rate is also the smallest for PSO-VFA. 

(a) Suburban

(b) Urban
Figure 7. Coverage evolution curves of PSO-VFA, PSO, 
VFA, GA, and SA under different environments 

In terms of algorithm complexity, the VFA algorithm has 
the lowest complexity, followed by the PSO algorithm. The 
time complexity of VFA is O(TMK), because its 
optimization search is only carried out on the basis of a set of 
solutions. The PSO algorithm is second, and its time 
complexity is O(TSM). The proposed hybrid algorithm, 
PSO-VFA, integrates the VFA algorithm and the basis of the 
PSO algorithm to adjust the position of the UAVs in more 
detail, so its time complexity is O(TSMK). While the 
algorithm complexity of the PSO-VFA algorithm is higher 
than that of the two other algorithms, it has little impact on the 
normal system overhead. 

Figure 8 shows the average coverage of 120 users 
deployed after 100 iterations with different algorithms in a 
suburban environment, while increasing the number of UAVs. 
In terms of coverage index, it shows that the proposed PSO-
VFA algorithm is significantly better than the SA algorithm. 
When the number of UAVs is more than 5, the PSO-VFA 
algorithm is more significant than the other four algorithms. 
When the number of UAVs reaches 11, the PSO-VFA 
algorithm achieves full user coverage. 

Figure 8. Coverage rate in different number of UAVs 

5  Conclusion 

Aiming at target application environments where UAVs 
cover evenly distributed user nodes, we first deduced the best 
perception radius and vertical height of the UAV based on two 
different scenarios. Then, we improved the standard FA 
algorithm and proposed the VFA algorithm, taking the 
perception radius as the search range of the UAV. On this basis, 
introducing the PSO algorithm as a framework, the two 
intelligent algorithms are combined to make up for the weak 
global search ability of the VFA algorithm and the slow 
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convergence rate of the PSO algorithm in the later stage, 
which can easily fall into local optimization. The simulation 
results indicate that the proposed PSO-VFA algorithm, 
integrating the features of the PSO and VFA algorithms, can 
achieve a better optimization effect and is effective in the 
coverage optimization of the UAV nodes. 

In this work, we focus on the optimization of the fine-
grained deployment of UAVs, and we will consider the 
UAV’s energy consumption more in the future. Because the 
power of the battery carried by the UAV is limited in actual 
applications, it is necessary to balance the energy consumption 
between UAVs so as to prolong the service time of the entire 
network. Therefore, the next step is to consider how to prolong 
the flight time of UAVs and ensure the reliability of the 
network on the basis of optimizing the deployment coverage. 
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