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Abstract 
 
Internet of Medical Things (IOMT) based systems provide 

a framework for remote health monitoring. Liver tumors tend 
to have parallel intensities with neighboring lesions and may 
have an abnormal apparent form that directly depends on the 
stage, state, type, and luminosity setup. In this research, a 
segmentation model based on improved UNet has been 
deployed to segment the tumors by incorporating the side-by-
side convolution layers based on Filter Response 
normalization layers (FRN) along with Threshold Linear 
Units (TLU). This combination of FRN along with TLU has a 
very strong impact on the performance of the model as the 
FRN layer operates on each batch sample and each response 
filter during training, and thus it eliminates the problem of 
batch dependence. Furthermore, we have also switched from 
the traditional up-sampling layers to fractionally strided 
convolutions in UNet which performs up-sampling of the 
required image with proper learning.  Moreover, the tumors 
are directly segmented by the proposed framework from the 
given CT scan without any extraction of ROIs. To evaluate the 
performance of our proposed method, we use a publicly 
available 3DIRCADb dataset. The proposed technique has 
shown excellent results with 93.0% accuracy and 71.2% 
Jaccard score. 
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1  Introduction 
 

Multimedia-based medical diagnostic systems provide 
efficient end-to-end solutions to assist physicians and brings 
revolution in smart industries [1-3]. Liver cancer is one of the 
most common cancers causing all over the world and falls in 
the sixth position according to statistics [4]. In the statistical 
figures given by WHO in 2017, deaths caused by liver cancer 
in Ethiopia were 0.16% out of the total number [5]. 
Hepatocellular carcinoma falls under one of the two types of 
liver cancer which are primary and secondary. HCC belongs 
to primary cancer and is accountable for 80% of deaths, 
causing the deaths of almost 700,000 people yearly [6]. The 
root cause of primary liver cancers is cirrhosis which comes 
into being by consuming alcohol, hepatitis B and C viruses, 
and liver disorder due to obesity [7]. Its diagnosis can be 

performed by making use of various imaging tests including 
ultrasound, MRI, and CT.  

Among all these tests, CT or computed tomography is 
most widely used as it provides detailed cross-sectional 
images of the abdomen. By making use of abdominal CT, 
further processing is done to perform liver tumor segmentation 
[8]. However, there are some intensity similarities found 
between the tumor region and other neighboring lesions which 
makes tumor detection a difficult task to perform [9]. To 
address this issue, images are preferred to be enhanced for 
improved and accurate detection of a cancerous lesion. In a 
CT scan, a cancerous entity is detected by identifying the 
difference in pixel intensity of that region in the liver [10]. 
This difference is termed as hypodense if it is darker as 
compared to the surrounding healthy liver or termed as hyper-
dense if it is brighter than the surrounding liver region. The 
traditional approach of manual segmentation is a time-taking 
task for a clinical setup [11]. The human liver consists of 150 
slices in a given volume of CT and along with this reason, 
there is the irregular shape of the lesion, low-intensity contrast 
between tumor and neighboring tissue, the variation of liver 
shape as well as size among patients [12]. Keeping in 
consideration all these reasons, researchers have been working 
on CAD systems to segment the liver from the CT scan image 
as well as tumor. In current times, all the conventional 
approaches used for tumor extraction are not as effective as 
they should be. 

Among all these tests, CT or computed tomography is 
most widely used as it provides detailed cross-sectional 
images of the abdomen. By making use of abdominal CT, 
further processing is done to perform liver tumor segmentation 
[8]. However, there are some intensity similarities found 
between the tumor region and other neighboring lesions which 
makes tumor detection a difficult task to perform [9]. To 
address this issue, images are preferred to be enhanced for 
improved and accurate detection of a cancerous lesion. In a 
CT scan, a cancerous entity is detected by identifying the 
difference in pixel intensity of that region in the liver [10]. 
This difference is termed as hypodense if it is darker as 
compared to the surrounding healthy liver or termed as hyper-
dense if it is brighter than the surrounding liver region. The 
traditional approach of manual segmentation is a time-taking 
task for a clinical setup [11]. The human liver consists of 150 
slices in a given volume of CT and along with this reason, 
there is the irregular shape of the lesion, low-intensity contrast 
between tumor and neighboring tissue, the variation of liver 
shape as well as size among patients [12]. Keeping in 
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consideration all these reasons, researchers have been working 
on CAD systems to segment the liver from the CT scan image 
as well as tumor. In current times, all the conventional 
approaches used for tumor extraction are not as effective as 
they should be. 

Many of these approaches are manual or semi-automatic 
which implies their dependency on detectors such as edge 
detectors instead of considering pixels as images. [13]. Some 
examples of these methods include graphical models [14], 
atlas-based models [15], and deformable models [16]. 
Although these methods provide a good segmentation quality, 
but the parametric steps involved in these algorithms limit 
their use in real-time scenarios. A diverse range of machine 
learning techniques as well as deep learning techniques has 
been designed now for performing semi-automated or 
automated segmentation of tumors. In traditional machine 
learning techniques, the result of automatic segmentation is 
highly dependent upon careful engineering of features. The 
high value of sensitivity towards these constructed features 
makes the learning-based models unstable for all clinical 
scenarios. However, the most widely used method nowadays 
is artificial neural networks which further includes Recurrent 
Neural Networks (RNNs) [17] and Convolutional Neural 
Networks (CNN) [18]. They are used in several domains such 
as medical imaging [19-21], as well as in image segmentation 
[22-23]. Many researchers have made use of CNN as well as 
its extensions for liver tumor segmentation [24], brain tumor 
segmentation [25], and skin lesion segmentation [26]. 

More specifically, semantic segmentation conventionally 
assigns a category label for all the pixels found in an image 
and yields encouraging results as far as accuracy is concerned. 
There are various challenging aspects in medical imaging, 
including the shape of the lesion or a limited number of cases 
that are dealt with using semantic CNNs [27]. Moving on to 
the architecture of semantic CNNs it can be observed that such 
methods acquire semantic representations from input images 
[28]. These methods traditionally obtain rich contextual data 
by enhancing convolution layers. Kernel of convolution 
acquires specific contextual data via specific receptive 
locations [29]. A minute or outsized receptive field keeps up a 
correspondence to small or large scale features, in that order. 
On the other hand, convolution features pay attention to the 
region of interest for a particular receptive field and ignore 
contextual data. Research has shown that there are extremely 
fine boundaries among the lesions in medical images which 
ought to be having the same features [30]. This provides 
grounds for many issues and confusion in performing accurate 
segmentation. For this reason, it is mandatory to gain 
maximum contextual data dealing with the region of interest. 
To address this, various researchers have used patch-based 
techniques [31]. The key step to these techniques is to convert 
the medical image into little patches and to perform 
segmentation after that but these techniques are very costly 
and time-consuming Further, liver tumor detection first 
requires accurate identification of the liver, and then the tumor 
is identified. However, despite advancements in CAD systems, 
direct liver tumor detection remains an open research area and 
more automated end-to-end solutions are still required to be 
designed. Moreover, the fine and accurate segmentation of 
liver tumors assists in planning procedures of liver therapy and 
also resulted in classification response of more reliable 
diagnosis of liver tumors. 

In this research work, we have used an improved U-Net-
based semantic segmentation method for liver tumor 
segmentation. Previously, this has been done by many of the 
researchers. However, their approaches involved the process 
of segmenting out the liver first from the CT scan and then 
tumor segmentation is performed. Tumor segmentation is 
rather a challenging job as compared to liver segmentation. 
Here, the proposed technique performs tumor segmentation 
directly. We have incorporated side-by-side convolutions 
based on FRN layers and TLU units to the exiting UNet 
architecture to improve the performance. Due to pre-
activations and weights of filter, these FRN layers eliminate 
the scaling problem and the same relative importance is 
ensured to all weight matrices. For performance evaluation, a 
3dircadb dataset is used and compare our approach with the 
existing techniques which have been used for tumor 
segmentation in the recent past. This comparison shows that 
our proposed model exhibits encouraging results. The 
proposed study has the following contributions: 

• We propose an end to end fully automated method 
for liver tumor detection 

• The proposed model can detect liver tumors directly 
from the CT scans without extracting liver ROIs 

• The proposed method integrates side-by-side 
convolutions along with the FRN layers and TLU units to 
improve U-Net performance 

The rest of the paper is organized as: Section II gives an 
account of elaborated literature in our specified domain. 
Section III of this research article discusses our proposed 
methodology and its details. Section IV presents the results 
and discussion. Section V of this research paper deals with the 
conclusion. 

 
2  Related Work 

 
There exist numerous research studies for both liver and 

liver tumor segmentation. In the context of traditional 
approaches of segmentation, Li et al. [32] proposed the new 
model based on a unified level set algorithm. This method 
integrates the prior information, region competition, and 
gradient of an image to segment the tumors from a given CT 
scan. Stawiaski et al. [33] also uses the traditional method of 
Markov random field and minimal surfaces. In this work, the 
watershed transform graph of region adjacency is applied with 
these models to mark tumors in CT scans. Zhang et al. [34] 
performs tumor segmentation from CT scan by using an 
interactive method. In this work, the tumor segmentation starts 
from the preprocessing steps which include contrast 
enhancement of liver followed by segmentation. The seed 
points are selected by a user and give as an input support 
vector machine (SVM) classifier for training and tumors are 
extracted in the next step. The segmentation results generated 
by SVM are further refined by applying the morphological 
operations. All these methods perform accurate segmentation 
but require a lot of preprocessing steps and extra operations to 
refine the results. 

The liver and tumor segmentation using deep learning-
based techniques are also well researched by different 
researchers. Christ et al. [35] presented an approach in which 
they segmented liver and lesions with cascaded deep neural 
networks and 3D conditional random fields. They have made 
use of two cascaded U-Net models for both liver and tumor in 
their research work. After that, outputs obtained from these 
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models were passed as inputs to 3D conditional random fields 
(CRF) for improvement. In their work, the whole process is 
divided into three stages i-e in the first stage liver is segmented 
and passed as a region of interest to the second model for 
tumor segmentation. Later on, the 3D CRF is used to further 
improve the performance.  The dice similarity coefficient 
achieved is 0.943 in liver segmentation. However, they 
excluded their tumor segmentation results in their research 
study.  

Subsequently, Sun et al. [36] proposed liver tumor 
segmentation using a multichannel fully convolutional 
network (FCN) from contrast-enhanced multiphase CT scan 
images. The Single channel of FCN consists of 8 
convolutional layers, 3 subsampling layers, 3 deconvolution 
layers, and two feature fusion layers. The convolutional layers 
carry out convolutional operations over the output of the 
preceding layer with diverse kernel sizes and obtain features 
from an image by sustaining spatial correlations. The sub-
sampling layer minimizes the size of an image without 
impacting its resolution. After that, the deconvolution layer 
and fusion layers have been exploited for up sampling and 
fusion process correspondingly. They have used three FCN 
layers for feature extraction out of three diverse phases of CT 
scan images. All FCN channels went through an independent 
training phase and their features were also combined to 
achieve improved segmentation. They used various 
performance measures to evaluate the results. They had got a 
volumetric overlap error (VOE) of 8.1±4.5. Afterward, 
Chlebus et al. [5] also used the U-Net model for the 
segmentation of liver tumors. They revised the already 
implemented U-Net model by further adding up the dropout 
layer. Furthermore, they also added short skip connections for 
parameter updates as well as for the escalating speed of the 
model in the phase of training. After that, the output from this 
model had been gone through the post-processing phase using 
3D connected component, a shape-based processing method, 
and classified again using a random forest classifier for 
improved results. They got an average DSC of 0.58 in their 
segmentation result. However, the shape-based process did 
not seem to be much efficient as tumors are found in various 
shapes and sizes. 

Furthermore, the most recent works in the liver tumor 
include the work of Lei et al. [37]. They proposed a 
segmentation approach using GIU-Net which incorporates 
improved U-Net along with a graph cut algorithm. In their 
proposed model, they enhanced the depth of structure for 
better semantic segmentation results and make the skip 
connections be from the pooling layers output, unlike the 
original UNet which concatenates the up-sampling layer 
output with the output of the corresponding convolutional 
layer, to reduce the lost information and called this new UNet 
structure IU-Net. In the next step, they merged this structure 
with the graph cut technique and as a result, provided their 
latest segmentation approach. At first, they segmented out the 
liver from a liver CT sequence with the help of their improved 
U-Net model. In the next step, they improved their result by 
making use of graph cuts. For the evaluation of results 
generated by their proposed algorithm, they used various 
evaluation measures. By calculating the DSC, the value was 
0.9505. Similarly, Li et al. [38] and similar work proposed by 
others. They exploited a convolutional neural network for the 
detection of HCC similar to the work of Christ et al. In this 
research, it can be seen that they performed two major 

activities which include segmentation of liver and its 
pathology, HCC using a fully convolutional neural network, 
and classification of HCC into massive classes [39]. During 
the segmentation phase, they were completely relying on the 
FCN-8s structure. This model comprises four max-pooling 
layers along with two skip structures for concatenation of the 
last two outputs of the max-pooling layer with the 
corresponding up-sampling layer. The proposed model had 
further two skip connections which were there for the 
concatenation of remaining outputs of the max-pooling layer 
with the corresponding up-sampling layer. This was important 
for boosting the number of features being used in predicting 
the output. Their proposed model comprises two major parts. 
To begin with, the first part of the model has 13 convolution 
layers of standard VGG-16 model that performed convolution 
operation with a kernel size of 3 x 3 and ReLU as activation 
function and four max-pooling layers. In the second part of 
their structure up-sampling using deconvolution was 
performed on the up-sampling layer and the output was fused 
with the corresponding output from the first half of the model 
on fusion layers. The accuracy could have been 0.994 via 100 
epochs training but due to noise blotches in the output, the 
algorithm had a dissatisfying performance during the 
segmentation process.  

Moreover, Budak et al. [29] designed two cascaded 
encoder-decoder-based networks to achieve accurate 
segmentation of tumors present in the liver along with the liver 
itself. They put forward an EDCNN algorithm that is made up 
of two symmetric parts of encoder and decoder. Both parts 
have ten convolutional layers with batch normalization and 
ReLU activation followed by a max-pooling layer. In every 
convolutional layer, they exploited a total of 64 filters, by 
which they minimized the number of required parameters. For 
segmentation, they made use of two cascaded deep neural 
networks, one for liver and one for tumor. The output of the 
first network is passed as input to the next network. The 
average DSC value of 0.9522 and 0.634 was achieved on liver 
and tumor segmentation in that order.  

In the presented literature, most of the research works 
segment the tumor from liver ROIs. Here we slightly changed 
the approach and segment the tumors directly from CT scan 
with FRN and TLU units based UNet architecture.  The 
proposed methodology is shown in Figure 1. 

 
3 Material and Methods  

 
An improved UNet based semantic segmentation method 

is proposed and presented in this section. 
 

3.1 Dataset Extraction  

 
Images used for this thesis are collected from publicly 

datasets, 3Dircadb01 (3D Image Reconstruction for 
Comparison of Algorithm Database). The 3DIRCADb dataset 
provides a wide range of data that has been exploited for this 
research work. The dataset we have used incorporates huge 
diversity of medical images including tumor complexity with 
up to 20 venous phases enhanced CT volumes from different 
European hospitals with numerous CT scanners. The dataset 
has assorted 3D CT scans of 10 women and 10 men diagnosed 
with a tumor in 75% of cases. Every folder of this dataset has 
4 sub-folders which are “PATIENT_DICOM”, 
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“LABELLED_DICOM”, “MASKS_DICOM”, and 
“MESHES_VTK”. Patient images are found to be in DICOM 
format and its corresponding label images include images with 
a region of interest in DICOM format. The dataset of 3D-

ircadb01 comprised up of twenty folders. For each patient, the 
actual image along with tumor annotation is given. The details 
are given in Table 1. 

 

 
Figure 1. The proposed methodology for fully automated liver tumor segmentation 

 
Table 1. Samples from the dataset 

S. No Gender YOB Liver size 
(cm) 

Image 
Size 

(Pixels) 

Liver 
Average 
Density 

Voxel Size (mm) Segmentation 
Drawbacks 

1 F 1944 18,3 
15,1 
14.1 

512 
512 
129 

111 0,57 
0,57 
1,6 

Stomach, 
pancreas, 
duodenum 

2 F 1987 20,1 
16,9 
15,7 

512 
512 
172 

84 0,78 
0,78 
1,6 

Pancreas, 
duodenum 

3 M 1956 16,7 
14,9 
15,2 

512 
512 
200 

108 0,62 
0,62 
1,25 

Artifact due to 
metal 

4 M 1942 16,9 
12,0 
17,2 

512 
512 
91 

107 0,74 
0,74 

2 

Heart 

5 M 1957 19,8 
16,8 
19,1 

512 
512 
139 

69 0,78 
0,78 
1,6 

Diaphragm, 
duodenum 

 
3.2 Preprocessing 

 
Medical imaging datasets tend to have unnecessary objects 

which do not fall in the region of interest in most cases. 
Usually, the data to be used for further experimentation needs 
preprocessing so that images become clearer and are 
processed easily. For this reason, the step of data 
preprocessing is mandatory, and it is performed over raw data 
to enhance the information that is required. Various 
techniques are normally exploited for this purpose. In this 
research, we have performed image enhancement to achieve 
good quality images that are further used for processing.  
Mainly, we tried to improve the contrast by applying a contrast 
stretching approach which has enhanced the raw image to a 
certain extent. Figure 2 shows sample raw images extracted 
from the dataset. 

 
3.3 Segmentation  

 

The detailed analysis of literature brings us to our 
proposed technique, and we have used U-Net architecture to 
achieve accurate segmentation. Segmentation refers to 
segregating the image into various parts. In this research, we 
have directly segmented out the liver tumor and for this 
purpose, we exploited U-Net architecture along with some 
modifications. 

 
3.4 U-Net Architecture  

 
U-Net architecture is a widely used framework that has 

emerged in the area of deep learning over the years. The U-
Net framework was first developed by Ronneberger et al. [40] 
in the year 2015. Since then, many researchers have exploited 
this architecture in the field of deep learning. We continue to 
use a similar model which comprises the contracting path, 
expansive path, and bottleneck. However, we do introduce 
some alterations and modify the traditional U-Net architecture 
accordingly. Figure 3 shows the standard U-Net model. Our 
proposed U-Net model along with modifications is explained 
below in detail. 
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Figure 2. (a, b, c, d, e, f, g, h, i, j) Raw images from 3DIRCADb dataset 
 

 
Figure 3. Diagrammatic representation of U-Net model 

 
3.4.1 Encoder  

 
The U-Net model is comprised mainly and a total of three 

parts. The first one is called an encoder and the second one is 
called a bottleneck and the third one is called a decoder. The 
encoder has 4 major blocks, every block comprising of three 
convolution layers operating on input with 1*1, 3*3, and 5*5 
filters.  Along with this, FRN layers are incorporated along 
with TLU units [41]. An FRN is the filter response 
normalization layer and exhibits the joint combination of both 
normalization and non-linear activation. This layer operates 
on each batch sample and each response filter during training, 
and thus it eliminates the problem of batch dependence. This 
layer mainly consists of two components. First is that for each 
response of the filter all the values are normalized 
independently and then dividing the resulting values by the 
square root of their un-centered second moment. With the help 
of this operation, there is no need to perform the mean 
operation. Later on, the second component Thresholded 

Linear Unit (TLU). This unit is parametrized by rectification 
threshold that is to be learned and hence it is as pointwise 
activations. The combination of FRN along with TLU has a 
very strong impact on the performance of the model. A 
schematic structure of FRN layers-based convolution block is 
shown in Figure 4. For the mathematical description, consider 
the two-dimensional feature vectors which after passing from 
the convolution layer produce the 4D-tensor of shape  
[𝐵, 𝑊, 𝐻, 𝐶]. Here the B represents the size of the mini-batch 
and W and H are the dimension of the input and C denotes the 
total filters used in the layer of convolution. Let 𝑥 = 𝑋𝑏,,,,,,,𝑐 ∈

ℝ𝑁 where N is the tensor result from the convolution layer 
and considered as responses of the filter. So for every sample 
batch point 𝑏𝑡ℎ  and 𝑐𝑡ℎ  filter, and let the mean squared 
norm value of x is 𝑣2 = ∑ 𝑥𝑖

2
𝑖 /𝑁.  Then the FRN layer is 

described as in equation (1): 
 

�̂� =
𝑥

√𝑣2+𝜀
    (1) 
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In the above equation, the invalid operation of division by 

zero is handled by a small constant 𝜀. Moreover, the TLU in 
the FRN is computed by equation (2): 

 
𝑧 = max(𝑦, 𝑇)    (2) 

 

After this, we have used the down-sampling layer known 
as a max-pool layer in which the total size of the window is 
2*2. Moreover, the parameter of stride is having a value of 2. 
Max-pooling layer is present after every convolutional block 
over the down-sampling path and usually, a dropout layer of 
0.05 is introduced after each max-pooling layer. To solve and 
handle the problems of deep neural networks such as 

overfitting in the network, there is a dropping of the 
information carried by the different sets of neurons in the 
model. The first layer which is termed as convolution layer in 
the model consists of 16 kernels matrices to be applied to the 
image. Similarly, in the upcoming layers, the number of 
kernels is ultimately increased such as 32, 64, and 128. This 
path of U-Net is designed to extract a different set of features 
from the given image. From this process, the model is such a 
capacity that it identifies that what the image represents. This 
process is completed by incorporating a different number of 
layers which includes both the pooling and convolution but 
with loss of spatial information. 

 

 
Figure 4. Diagrammatic representation of proposed FRN layers based convo block 

 
 

3.4.2 Bottleneck path 

 
Among the encoder and decoder path follows the 

bottleneck part. The bottleneck path has three side-by-side 
layers of the convolution on input along with weight kernel 
sizes of 1*1,3*3 and 5*5 followed by FRN and TLU units 
respectively. 

 
3.4.3 Decoder Path 

 
Structurally comprising of 4 blocks, the decoder path is 

also called the expanding and up-sampling path. All of the 4 
blocks have a deconvolution layer with filter size 3*3 and 
stride 2. For up-sampling, the deconvolution layer here used 
is named as transposed convolution layer. The 
Conv2DTranspose is complicated as compared to traditional 
up-sampling.  This layer performed an invert the process of 

traditional convolution over the given input. When we input 
the given image then this layers up samples the provided input 
with the help of proper learning of weights. On the other, when 
the same input is given to the traditional and simple up-
sampling layer only doubles that is duplicating columns and 
rows the dimensions of a given input image.  The other term 
that is used for transposed convolutions in the existing 
literature is fractionally strided convolutions.  First, suppose 
if we have a kernel w that has some suitable weights which is 
going to perform convolution over the image with a parameter 
of stride is 1. Moreover, consider that the process does not 
involve the padding so the inputs that we provided and outputs 
that are produced are n from unrolled vectors. In the given 
scenario, the resulting matrix of convolution is denoted by the 
sparse matrix 𝐶 in which the kernel elements in both x and y 
directions are represented by 𝑤𝑖, 𝑗. This sparse matrix makes 
the computation of backward pass faster and easier. 
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Furthermore, the backpropagation of weights is done only 
when we perform the multiplication of transpose matrix and 
loss. More specifically, the calculation of both passes in a 
network such as forward and backward is done only when the 
multiplication is performed between transpose matrix and 
sparse matrix. So, in the case of transposed convolutions, these 
passed are computed as if we perform the process of 
multiplication on the given 𝐶 and (𝐶𝑇)𝑇 respectively. After 
deploying these transposed convolutions, we add another 
operation called concatenation. The responsibility of this 
operation is to combine the outputs of the encoder and decoder. 
After this, a side-by-side convolution layer is also employed 
in which kernel size is defined as 1*1,3*3, and 5*5. Then the 
output is passed as an input to the FRN layer and TLU Units. 
The objective of this path is to restore the information that we 
lose during down-sampling. The context information of 
tumors is integrated with the localization information of 
tumors.   This process is completed by incorporating the 
skip connections utilizing the concatenation operation that we 
defined earlier. This involves combining the outputs produced 
and generated by the encoder with the decoder-produced 
outputs. 

 
3.4.4 Training Details and Hyper-parameters 

 
The proposed model designed with the U-Net framework is 

trained on the dataset of 3DIRCADb for tumor segmentation 
with a split ratio of 80-20.  The data of images and their ground 
mask of highlighted tumors is given as input to further initiate 
the process of training. The model weights are updated with 
the help of an optimizer called “Adam” optimizer. The 
learning rate specified for the trained model is 0.01. The 
RMSprop is combined with the Adam optimizer. It also 
involves the new term called momentum. The stochastic 
gradient is also utilized with it. To update the weights 
associated with each neuron of the model is given by in 
equation (3): 

𝑊𝑡 = 𝑊𝑡−1 − Ƞ
�̂�𝑡

√�̂�𝑡+∈
        (3) 

 

In equation (7), 𝑊 shows weights associated with each 
neuron, and step size is indicated by ղ. The value of given step 
size ղ contributes larger towards the iteration. The 
computation of values for the terms of �̂�𝑡 and �̂�𝑡 are done 
by equation (4): 

 
 �̂�𝑡 =

𝑚𝑡

1−𝛽1
𝑡  𝑎𝑛𝑑 �̂�𝑡 =

𝑣𝑡

1−𝛽2
𝑡     (4)  

 
In equation (8), 𝛽1  and 𝛽2  have employed the default 

values that are 0.9 and 0.999 respectively.  They are usually 
considered hyper-parameters. Moreover, during training of the 
model, we have used the loss function of binary cross-entropy 
which effectively computes the loss over predicted values 
generated by the model, and actual masks annotated by 
radiologists. It is mentioned below:  

 
𝐵𝐶𝐸 =

−1

𝑁
∑ 𝑦𝑖 ∗ log(𝑃(𝑦𝑖)) + (1 − 𝑦𝑖) ∗ log(1 − 𝑝(𝑦𝑖))𝑁

𝑖=1    (5) 
 

In equation (9), the term BCE means binary cross-entropy  
𝑦𝑖 shows the class generated or predicted by the model while 
𝑃 (𝑦𝑖) denotes probability. This probability means that how 
much it is certain that a given is a pixel of the image belongs 
to either class of liver tumor or other backgrounds. A total of 

150 epochs is set to train the network in which the value of 
batch size is set to 16 and an input image dimension is 
256*256. 

 
4 Results and Discussion 
 

4.1 Performance Metrics 

 

4.1.1 Dice Similarity Coefficient (DSC) 

 
Dice similarity coefficient (DSC) is defined as the total 

size of overlap between two masks and then the resulting term 
is divided by the size of objects present in the two binary 
masks. Its value is calculated by the following mentioned 
equation:  

 
DSC =

2TP

2TP+FP+FN
   (6) 

 

4.1.2 Jaccard Similarity Coefficient (JSC) 

 
Jaccard Similarity Coefficient (JSC) is defined as 

intersection ratio among two which includes both binary 
masks of actual and predicted with the union term. It is defined 
by equation (7): 

 
JSC =

TP

TP+FP+FN
  (7) 

 

4.1.3 Accuracy 

 
Accuracy [42-47] shows the total number of pixels that are 

present in the given input image and hence correctly classified 
and can be calculated using the following equation: 

 
Accuracy =

TP+TN

TP+TN+FP+FN
  (8) 

 
4.1.4 Symmetric Volume Difference (SVD) 

 
SVD gives the difference found in segmented images with 

ground truth. When SVD is approximated as zero, it denotes 
encouraging segmentation results, and it is defined in equation 
(9): 

 
SVD = 1 − DSC  (9) 

 
In the above equations (6-9), TP represents true positive, 

TN represents a true negative, FN shows false-negative, and 
FP denotes false positive.  

 
4.2 Results 

 
A deep learning-based segmentation algorithm is used for 

tumor segmentation directly from abdominal CT scan images 
in this research work. The proposed technique is based on U-
Net architecture and segmentation of the tumor is performed 
with significant results. The dataset which has been used for 
this research work is 3DIRCADb which provides a diverse 
range of tumor images. Our proposed model has been trained 
over this dataset and the images were preprocessed to achieve 
clarity. We have performed an enhancement operation and the 
contrast of images has been improved as shown in Figure 5. 
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Once the contrast of images gets improved, it becomes 
easy to process that data further for segmentation purposes. 
After applying the enhancement operation on enhanced 
images of our dataset, we have further passed the input to our 
proposed model which is based on the architecture of U-Net. 
The result is analyzed as that the tumor is segmented out 
directly from the CT scan image achieving 93% accuracy. It 
shows that our proposed technique outperformed other 
existing techniques that have been used for this purpose. The 
results happened to be highly encouraging when other 
evaluation measures have been observed. It is worth 
mentioning that our proposed technique achieved an average 
dice score of 78.96%, Jaccard similarity score of 71.2%, and 
SVD with a value of 0.21. These scores are reported by taking 
an average of scores of the model by running it three different 

times as presented in Table 2. The resultant output images are 
given below in Figure 8. Column (a) shows the CT scan 
images, column (b) shows the original tumor annotations 
column(c) shows the overlay images with actual annotations 
of tumors, column (d) shows tumor segmented image by the 
model, and column (e) shows red-colored part represents the 
segmented tumor region in output overlay images. Moreover, 
there are some tumors which model finds difficult to correctly 
segment as shown in Figure 8 row 3. It is due to the 
heterogeneous nature of tumors in terms of shape and sizes, 
and it is very difficult to overcome all of these variations. The 
proposed model still lacks and is limited to overcome these 
shape variations. 

 

 

 
 

    

 
 

    

Figure 5. (Left to Right, Top to Bottom) Raw and corresponding enhanced images 
 

Table 2. Comparative results of proposed model and Unet 

Architecture Dice Score Jaccard Accuracy SVD 

U-Net [40] 67.5% 56.0% 92% 0.33 

1st Run 79.3% 71.4% 93.13% 0.21 

2nd Run 79.0% 71.2% 93% 0.21 

3rd Run 78.6% 71% 93.1% 0.22 

Proposed Method 

(Average) 
78.96% 71.2% 93.0% 0.21 

 

 

To achieve validation, we also perform a comparative 
analysis of results with the original U-Net architecture. With 
U-Net, the value of dice score achieved is 67.5%. Moreover, 
the other scores which include the Jaccard, SVD, and accuracy 
are 56.0%, 0.33, and 92% respectively. It is perceived that 
side-by-side convolution based on FRN layers and TLU units 
brings a rise in performance. The up-sampling transpose 
convolution layers also play a significant role in architecture. 
Moreover, in standard U-Net there are only two convolution 
layers in convo block but here we applied side-by-side 
convolutions with different matrix sizes of kernels on the input 
images, and later on, the results of all convolution layers are 

combined and pass them to FRN layers and TLU Units.  
Furthermore, training graphs of accuracy and loss are also 
plotted for both standard U-Net and the proposed model. The 
graph plotted for accuracy shows how close the obtained result 
is to a particular target. For instance, Epoch is plotted on the 
x-axis, and Accuracy is plotted on the y-axis as shown in 
Figure 6. In the same way, a loss can also be determined as 
shown in Figure 7 below shows plotted values of model loss. 
According to Figure 7, Epoch is plotted on the x-axis, and Loss 
is plotted on the y-axis. 
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Figure 6. Graph plotted to determine model accuracy    Figure 7. Graph plotted to determine model loss 
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Figure 8. (a) Original enhanced image (b) Actual mask (c) Actual overlay image (d) Predicted mask (e) Predicted overlay 
 
 

In this section, we compare the results of our proposed 
model along with the results acquired from some previous 
techniques and validate our results. Christ et al. [48] 
segmented the tumor from the liver in their research work. 

They performed their experimentations over images obtained 
from the 3DIRCADb dataset by using cascaded FCNs and 
achieved a dice score of 56%. Later on, Budak et al. [29] 
improved the previous dice score percentage and obtained 
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63% with encoder-decoder-based CNNs (EDCNN). They 
have also segmented out the liver tumor from the CT scan and 
used the 3DIRCADb dataset for the experimental setup. 
Although their results were significantly improved there was 
more room left to achieve finer segmentation results. 
Therefore, Ayalew et al. [49] have also performed 
segmentation of tumors. In their work, they combined the 
images of two datasets namely LITs and 3DIRCADd and 
achieved the 63% dice score. If a comparison is to be made 
among all the above-mentioned techniques, our model shows 

some improvements. Table 3 provides a comparative analysis 
of the proposed technique along with other approaches. To add 
more, it is also evident from the comparative analysis that the 
most significant dice score has been presented by a technique 
we have put forward in this research work. This validates our 
technique being used in the current study and proves it to be 
efficient enough for tumor segmentation. It subsequently 
assists in achieving accurate liver tumor segmentation results. 

 

 

Table 3. Comparative analysis with existing work 

Authors Technique used Dice Score Year 

Christ et al. [48] Tumor segmentation 
from liver 

56% 2017 

Budak et al. [29] 
 

Tumor segmentation 
from liver 

63.4% 2019 

Ayalew et al. [49] 
 

Tumor directly 
segmented from CT 

scan 

63% 2020 

Proposed Method Tumor directly segmented using 

U-Net+ FRN+ TLU 

Architecture 

78.96% 2021 

 
 
5. Conclusion 

 
This research work addressed the issue of liver tumor 

detection on a different scale for IOMT based health 
monitoring systems. Our proposed technique focuses on tumor 
segmentation directly from CT scans instead of detection of 
tumors from liver ROIs which is extremely challenging in 
terms of medical imaging. As a solution, we have proposed a 
model that exploits improved U-Net architecture in which 
side-by-side convolutions are operated on input images along 
with FRN layers and TLU units to perform segmentation. The 
proposed work showed encouraging results and also enhanced 
the performance of liver tumor segmentation. Furthermore, to 
evaluate our model, we have also performed a comparative 
analysis among our proposed techniques with the existing 
state-of-the-art techniques, and the proposed model achieves 
good results but there is still some further research are required 
in terms of performance. In the future, we will investigate the 
performance of a model on more strenuous tumors available 
in other challenge datasets as well as validating the model with 
advanced data augmentation methods such as Generative 
Adversarial Networks. Moreover, a feedback unit is also 
integrated with the framework of IOMT in which diagnosis 
results from real-time patients are monitored and recorded 
along with feedback of these results which is further used to 
optimize the model. 
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