
Generative Adversarial Network for Simulation of Load Balancing Optimization in Mobile Networks 297

*Corresponding Author: Tin-Yu Wu; E-mail: tyw@mail.npust.edu.tw
DOI: 10.53106/160792642022032302010

Generative Adversarial Network for Simulation of Load Balancing

Optimization in Mobile Networks

Fu Jie Tey1, Tin-Yu Wu2*, Yueh Wu3, Jiann-Liang Chen1

1 Department of Electrical Engineering, National Taiwan University of Science and Technology, Taiwan
2 Department of Management Information Systems, National Pingtung University of Science and Technology, Taiwan

3 Department of Computer Science and Information Engineering, National Ilan University, Taiwan
D10907001@mail.ntust.edu.tw, tyw@mail.npust.edu.tw, willy821230ptr@hotmail.com.tw, Lchen@mail.ntust.edu.tw

Abstract

The commercial operation of 5G networks is almost ready

to be launched, but problems related to wireless environment,
load balancing for example, remain. Many load balancing
methods have been proposed, but they were implemented in
simulation environments that greatly differ from 5G networks.
Current load balancing algorithms, on the other hand, focus on
the selection of appropriate Wi-Fi or macro & small cells for
Device to Device (D2D) communications, but Wi-Fi facilities
and small cells are not available all the time. For this reason,
we propose to use the macro cells that provide large coverage
to achieve load balancing. By combing Generative
Adversarial Network (GAN) with the ns-3 network simulator,
this paper uses neural networks in TensorFlow to optimize
load balancing of mobile networks, increase the data
throughput and reduce the packet loss rate. In addition, to
discuss the load balancing problem, we take the data produced
by the ns-3 network simulator as the real data for GAN.

Keywords: 5G, Generative Adversarial Network (GAN),

Load balance, Neural network

1 Introduction

When commercial 5G networks are going to be widely
deployed, there are still have problems with associated with
wireless environment, example like load balancing, need to be
solved [1]. Previous load balancing techniques were
implemented in simulation environments which were different
from 5G networks [5, 24]. On the other hand, present load
balancing methods are focus on the selection of appropriate
Wi-Fi or macro & small cells for D2D communications.

Normally, small cells are deployed at the edge of macro
cells to improve signal quality and mitigate interference, but it
could cost a lot of money [2]. Before the small cell
deployments, we must consider if the existing macro cells are
enough to achieve load balancing. Unfortunately, it is hard to
tell whether the macro cell’s load influences the selection of
macro cells.

In recent years, the load balancing techniques for wired
networks have been widely applied with the flourishing
Software-Defined Networking (SDN). Those methods have
been relatively mature, but they are not suitable for wireless
networks.

Nodes in wired networks are all connected through wired
connections. To achieve load balancing in SDN, for example,
a centralized controller is responsible for collecting data and
directing data flows to the selected target. As for wireless
networks, high path loss and various kinds of interference
among base station (BS) and devices make wireless
communications more difficult. Consequently, those load
balancing methods are designed for wired networks are not
feasible for wireless networks. Therefore, we propose to use
the learning ability of neural networks to deal with load
balancing problems in wireless networks.

Network load balancing is an important challenge in
wireless networks. Too many users together with high data
throughput at the same time could lead to severe performance
degradation of BSs. Neither former load balancing algorithms
implemented in simulation environments nor those designed
for wired networks are suitable for current network status. For
this reason, novel load balancing algorithms for wireless
networks must be proposed. BSs in 5G mobile network
environment include at least E-UTRAN Node B (eNBs), Wi-
Fi BSs and millimeter-wave (mmWave) BSs, among which
eNBs provide the greater coverage. There are many Wi-Fi BSs
and mmWave BSs, but not all of them are available when it
comes to load balancing. Therefore, this study proposes to
solve the load balancing problem of BSs in order to improve
the throughput and minimize the packet loss. Simulation are
usually conducted to test load balancing results and the
returned results will be values, like transmission capacity
measured as kbps, or packet loss rate given as a percentage.
All values are meaningful to researchers because values
obtained from different simulations will be analyzed for
further parameter adjustment. Based on the results, we can
gradually improve the simulation and prove the correctness
and advantages of our proposed method. As long as the
simulation design is appropriate, we believe that neural
networks can be used to learn and reward and we are able to
find suitable neural networks for simulation environment.
Without making modifications in the simulation environment,
we normally input parameters, analyze simulation results and
again input or change parameters. We hope that neural
networks can learn to input parameters as well as interpret the
simulation results. In order to achieve the goal, Generative
Adversarial Network (GAN) is a good choice because GAN
comprises two parts: the generator network to produce
parameters and the discriminator network to distinguish
between real and fake samples. The aim of this study is to

298 Journal of Internet Technology Vol. 23 No. 2, March 2022

integrate GAN with the load-balancing simulation system to
achieve load balancing.

The rest of this paper is organized as follows: Section II
reviews researches on load-balancing methods and
background. Section III details how about system architecture
and proposed method. In Section IV, we perform the
experiment and simulate the parameters with our proposed
models. Finally, we summarize our findings and results.

2 Background and Related Works

Load balancing approaches, Generative Adversarial

Network (GAN) and SeqGAN are reviewed in Section II.

2.1 Load Balancing Approaches

To achieve load balancing in wired networks, the

centralized controller monitors the loads of the inter-
connected computers and routers and commands to coordinate
traffic flow. In wire-line networks, a centralized controller is
responsible for monitoring computers and routers in the
network, and managing the data flow to achieve load
balancing.

2.1.1 Least Load First

The “least load first” idea is the key point of load balancing

and also the basis for weighted and standard deviation-based
algorithms mentioned below. To achieve load balancing, the
least load first algorithm finds the node with least load
(normally a router or a base station) and routes traffic or users
to this node.

2.1.2 Least Load First Standard-Deviation-Based

In the load balancing algorithm based on standard

deviation, the centralized controller is responsible for
gathering all routers’ data and calculating each router’s
standard deviation. Based on the standard deviation that
measures the spread of the data about the mean value, the
algorithm can find the router with a lighter load, balance link
loads in the network and reroute flows to avoid links with large
loads as well as resolve congested paths [3, 18].

2.1.3 Weight-Based

The weight-based load balancing algorithm assigns a

weight to each router and adjusts the weight based on the
loading status of the present BS and other criteria [4, 15-16].

In addition, there are other ways to achieve load balancing,
such as considers the operator utility and the user utility [17]
or using the association to achieve adaptive load-balancing [4].

2.1.4 Mobile Networks and Wireless Networks

As discussed above, the load balancing methods designed

for wired networks are not suitable for wireless networks, but
still some have been presented to perform load balancing,
including using a load-aware small-cell management
mechanism to manage mobile devices in all small cells and
transfer redundant mobile devices to other cells to alleviate
congestion [5]; employing Device-to-Device (D2D)

communications so that the data traffic can be effectively
offloaded from a congested small cell to other underutilized
small cells [6]; and utilizing a fog computing based
architecture [7]. However, D2D is only applicable under
certain conditions [6, 25]. To achieve load balancing, other
methods proposed to select the access point based on Wi-Fi [4,
8, 14, 19], but Wi-Fi and mobile networks are very different
in terms of signal strength, interference and other factors. Load
balancing mechanisms for LTE systems have been presented
much earlier [9, 23, 26], but current LTE simulation structures
cannot fit the upcoming 5G networks.

2.2 Generative Adversarial Network (GAN)

The idea of GANs was introduced in 2014 [10] and a GAN

consists of two neural networks: a generator network and a
discriminator network, as shown in Figure 1. The generator
network generates plausible data and the discriminator
network distinguishes real and generated data. By competing
against each other, both the two neural networks get better and
better. For example, the generator network generates samples
that have a high probability of being real samples while the
discriminator network can more accurately distinguishes the
generator's fake data from real samples. Nevertheless, the
discriminator training can fail if the generator training is too
quick; the generator training can fail if the discriminator is too
good. GANs are hard to train because it is difficult to reach a
convergence in the game [20]. For this reason, we must adjust
parameters and use only part of real data. GAN later also has
various variants like SeqGAN, DCGANs [13] and WGAN
[12].

Figure 1. Generative Adversarial Network

2.3 SeqGAN

Sequence GAN (SeqGAN) was presented in 2016 [11] to

help GAN handle discrete outputs and the illustration of
SeqGAN is displayed in Figure 2. GANs can be used to deal
with sequential data but not discrete data like languages or
words. In order to cope with the problem, SeqGAN adds the
Monte Carlo Tree Search (MCTS) to the discriminator
network so that the reward from the discriminator on a
complete sequence can be returned to the generator network
as shown in Figure 2.

Note that SeqGAN is usually used for poetry generation
and discrimination. Real data is generated by a trained neural
network. Since this study integrates with the simulation
network system, we will use the simulation data as reference.

Generative Adversarial Network for Simulation of Load Balancing Optimization in Mobile Networks 299

Figure 2. Diagram of SeqGAN

3 System Architecture and Proposed

Method

Section 3 introduces how we combine our proposed load

balancing system with GAN, which includes a generator
network and a discriminator network. Figure 3 shows the
system architecture. The reason we use GAN is that GAN
generates results by competing the identification network with
the generative network, so this means that there is almost no
data before the load balancing, so GAN can be trained with a
small amount of data to achieve our desired goal [21-22].

Figure 3. System architecture

3.1 Load Balancing Simulation Environment

In the load balancing simulation environment, the first step

is to set and adjust the parameters, including number of users,
number of BSs, simulation time and weighting parameters
generated by GAN. The load balancing simulation
environment can be created using self-motivated software or
other specific network environment simulators. The common
way to test network load balancing is to make the nodes fully
loaded and then observe the performance of the load balancing
method. In this study, we use the same way. Moreover, to
prevent performance degradation on the system when the load
balancing mode is on while not needed, our proposed method
tests network traffic in the normal load mode to ensure the
normal operation of the system. The results of the study,
including throughput and packet loss rate, will be output after
the simulation.

3.2 Integrating Load-Balancing Simulation Test

into GAN

To integrate the load balancing simulation test into GAN,

we correlate the results generated by the generator network to
the parameters set in the load balancing simulation
environment. Then, for output discrimination, the result of the

load balancing simulation test will be sent back to the neural
network.

3.2.1 Corresponding Parameters

To combine the load balancing simulation test with GAN,

we need to correlate the results generated by the generator
network to the parameters set in the load balancing simulation
environment. Next, we will return the result of the load
balancing simulation test to the neural network as feedback.
Our method, based on SeqGAN, generates a one-dimensional
array that contains twenty elements and uses them as the
weighting parameters for selecting 20 BSs in the load
balancing simulation environment. Once the simulation is
completed, the result will be sent to the neural network.
Instead of estimating packet loss rate, this study estimates
throughput. Packet loss is calculated as a percentage and we
may encounter the situation that the packet loss rate is similar
but the throughput greatly differs. So, higher throughput
signifies better performance of the load balancing simulation
test. We then send the result back to the neural network.

3.2.2 Adjusting the SeqGAN

SeqGAN’s generator network is exactly what our method

needs: a one-dimensional array that contains twenty normally
distributed random elements. The discriminator network is
responsible for distinguishing true data from generated data. If
the discriminator network tells that the generated data and true
data are the same, it means that the data generated by the
generator network have been very close to true data. True data
for SeqGAN are poetry data from a trained RNN; however,
the content does not meet our needs. For this reason, we will
use the generated data that bring better result in the load
balancing simulation as true data.

()1max { ,......, }original nBN N N= (1)

()RSRQ 1 1= max { ,......, }weight n nBN N W N W+ + + (2)

3.3 How Weighting Parameters Affect BS

Selection

To know how weighting parameters affect selection of

BSs, we originally chose the BS with higher weights but soon
found the method inefficient. The user may connect to a
remote BS that has relatively low signal strength. Therefore,
to select the best BS, we use the signal strength and the weight
values generated by the generator network. The flowchart is
displayed in Figure 4. First, the user verifies the present
Reference Signal Received Quality (RSRQ), shown in (3), and
evaluates whether to handover when the High Threshold (HT)
is higher than the RSRQ. The N is the resource blocks.

RSRQ = N RSRP/ RSSI (3)

300 Journal of Internet Technology Vol. 23 No. 2, March 2022

Figure 4. BN selection based on weights

On the original handover algorithm in (1) will evaluate all

neighborhood to find the best RSRQ as Best Neighborhood
(BN) for the handover BS. Based on the weights and the
RSRQ also will evaluate the RSRQ but will include the weight
that train with GAN to find the BN, the equation shown in (3).
In case that a cell phone switches frequently between two BSs
with similar signal strength, the handover will be triggered
when the Serving Neighborhood RSRQ (SNR) minus the Best
Neighborhood RSRQ (BNR) is larger than the Low Threshold
(LT).

4 Results and Analysis

Section 4 describes how Tensorflow combines with ns-3,

analyzes the training process of GAN, and runs the load
balancing test in both normal and high load for performance
evaluation. For SeqGAN simulation, we use GTX 1080Ti as
the GPU to attain neural network acceleration.

4.1 Combining Tensorflow with ns-3

Figure 5. Combing TensorFlow with ns-3

This study includes two parts: the neural network

TensorFlow and the ns-3 network simulator. To combine
TensorFlow with ns-3, we have to considerate their structures.
As an open-source Python library for machine learning,
TensorFlow supports Python. The simulator ns-3, written in
the C++ language, makes use of the waf build system with
optional Python bindings. It would be easier to combine
TensorFlow with ns-3 if both of them adopt Python. However,
most mobile network scenarios in the ns-3 network simulator
are written in C++ and so is the structure of ns-3. If the system
structure must be modified, the programming language will be
mainly C++. Therefore, we combine the neural network in
Python with the network simulation system in C++. Since the
network simulation system must be inserted into the neural
network, the neural network in Python will connect to the ns-
3. The system first uses Python to modify the target parameters

in ns-3 and, second, uses Python to run the ns-3 script. Finally,
the simulation result will be saved. Figure 5 shows the
flowchart to combine TensorFlow with ns-3.

4.2 Results of GAN Training

It is difficult for a GAN to converge because of the

interplay between the generator and the discriminator that may
lead to unexpected convergence. Although the SeqGAN used
in this study is a trained neural network that ensures
convergence, we still evaluate its convergence due to the
modification of the target parameters. To know if a neural
network converges, we usually check the test loss, which is
also an index to examine SeqGAN convergence. Table 1 and
Table 2 show the SeqGAN generator and the discriminator
parameter which use in the training.

Table 1. Generator parameter

Embedding Dimension 16

Hidden Layer 32

Sequence Length 20

Batch Size 64

Table 2. Discriminator parameter
Embedding Dimension 20
Dropout Probability 20%
Batch Size 64

Table 3. Basic parameters for load-balancing simulation test

Load Mode Normal Load High Load

UE amount 20 40

BS amount 20 20

BS dBm 46 dBm 46 dBm

Simulation Time (sec.) 10s 10s

Figure 6. Test loss

If the test loss keeps steadily decreasing during the training
process, the neural network is still learning. If the test loss
remains flat, there might be overfitting or bottleneck problems
and the neural network must be adjusted again. If the test loss
keeps increasing, there must be something wrong with neural
network design or parameter settings. In Figure 6, the test loss
curve that refers to the convergence in the training of neural
network may go up and down but decreases steadily, denoting
that the neural network is learning successfully and

Generative Adversarial Network for Simulation of Load Balancing Optimization in Mobile Networks 301

converging. Based on the SeqGAN design, the number of
Epoch is set to 200.

4.3 Load Balancing System

The ns-3 simulator is used to conduct the simulation. We

know that it will be easier to use self-motivated software for
GAN, but the design of simulation environment may be wrong.
For this reason, the ns-3 simulator that has been extensively
recognized is adopted to prove the feasibility to combine GAN
and simulation environment. The load balancing simulation
test can be conducted in two ways: in normal load or high load.
Table 3 shows the basic parameters for the load balancing
simulation test. According to different load modes, the number
of user equipment (UE amount) is adjusted: 20 in normal load
and 40 in high load, in case the simulation is too long. The
time to run the simulation is set to 10 seconds only. There are
20 BSs in both modes because we want to present a large load
balancing environment so that UE can be distributed in a large
area in normal load. A large simulation environment also
provides more choices to UEs to reflect performance
variability of different modes. Packet size BS dBm is decided
based on the ns-3 simulator default setting.

Figure 7 shows the simulation scenario, in which BSs are
deployed based on triangles in a region of 2750m x 1800m. In
normal load mode, users are distributed randomly in the
environment. In high load mode, 40 users are gathered near
one single BS and weights are adjusted to achieve load
balancing.

Figure 7. BS deployments in the simulation environment

Next, we briefly explain why the simulation includes 40
UEs. The upper load threshold of BS may be influenced by
many factors. Figure 8 shows the signal strength-based BS
throughput test conducted on 10 to 40 users. When 20 UEs
connect to the same BS at the same time, the BS is unable to
process more messages. Even more UEs join, the throughput
cannot increase, causing the packet loss increase incessantly,
as displayed in Figure 9. Therefore, to run the load-
balancing simulation, there must be at least 20 UEs. The
number of UE amount is set to 40 in case the simulation takes
too much time. Moreover, our simulation data is generated by
the ns-3 simulator when all UEs are keeping sending packets.
Not all users must be connected to the BS to reach the upper
load threshold for the simulation.

Figure 8. BS throughput test

Figure 9. BS packet loss test

4.4 Load Balancing Simulation

To evaluate the performance of the load balancing

simulation test, we examine whether load balancing works
efficiently. If load balancing works, the network bottleneck
due to high load will be postponed, the throughput will
increase and the packet loss will be reduced.

Figure 10. Normal load throughput

During the simulation test, we compare four methods,
including RSRQ, RSRQ+Weight, Weight and Low Load, in
both normal load and high load. Weight and RSRQ Weight are
based on the GAN generator. As shown in Table 1, in the
normal load mode, 20 users are randomly distributed in the
map. Figure 10 displays that in terms of data throughput,
RSRQ is similar to RSRQ+Weight. After neural network
training, the Weight method is able to achieve basic
throughput performance; however, due to the strong impact of
randomness, it fails to find a better solution. The Low Load
method is the worst-performing because it easily connects to
the BS that provides worse signal strength than the current one.

Figure 11 shows that in terms of packet loss rate, the
RSRQ and RSRQ+Weight methods are also similar,
approximately 34 to 35%, and the Weight method is unable to

302 Journal of Internet Technology Vol. 23 No. 2, March 2022

yield better result as well. The Low Load method easily
connects to the farther BSs, making the packet loss rate even
worse.

Figure 11. Normal load packet loss rate

In the normal load mode, the packet loss rate is

comparatively higher. In our simulation, the ns-3 simulator
uses the UDP protocol to deliver 100 packets/per second to
each user, but the outcome must be determined by the quality
of the connection between users and BSs. Those packets that
cannot be delivered in time will be categorized as packet loss.
The result reveals that in the ns-3 system, BSs all have their
upper limit thresholds in delivering packets. In addition, when
the UE is located between two BSs and the RSRQ is bad, high
QAM levels cannot be achieved for packet delivery. The better
the RSRQ is, the higher the QAM level is and the higher the
data throughput will be. So, if 256-QAM cannot be currently
maintained, the system will change to 640-QAM, making it
difficult to reach higher throughput. Such a situation often
occurs at the fringe of the BS coverage area with higher
interference level and therefore higher packet loss rate. This is
the reason why the maximum throughput in the test is different
from the fore-mentioned BS throughput.

Figure 12. High load throughput

In the high load mode, according to Figure 12, the
RSRQ+Weight method achieves the highest throughput.
The RSRQ and Weight methods are getting close but still not
stable. Although the Low Load method yields good
performances in some scenarios, it is deeply affected by
vacant BSs with poor signal strength and is unable to get better
result.

As for the packet loss rate in the high load mode, the
RSRQ+Weight method performs best because of the lowest
packet loss rate, and the RSRQ is the second. The RSRQ and
Weight methods are getting close as well but both fail to find
better results. The Low Load method remains the worst and its
packet loss rate is even worse than that in the normal load

mode because of too long distances and interferences as shown
in Figure 13.

Figure 13. High load packet loss rate

To use the original SeqGAN for the training in our
simulation takes approximately 4 hours. The simulation time
for the ns-3 simulation, on the other hand, is decided according
to the number of users and the preset simulation time. Since
we do not use GPU to speed up computation, more simulation
time and more users will certainly increase the time to finish
the ns-3 simulation.

4 Conclusion

In this paper, we use GAN and the ns-3 simulator to

present a load balancing optimization simulation method, in
which the generator network is responsible for generating
weighting parameters for the load balancing system and the
discriminator network is responsible for discriminating the
results. Moreover, the better load balancing data is adjusted
and taken as real GAN data for load balancing optimization.
We also bring up the possibility to integrate SeqGAN with the
load balancing system and to use GAN “reward” to replace
real data. Our proposed method performs well in normal load,
and also increases throughout about 4000kbps and reduces
about 6% packet loss in high load.

Although we successfully combine GAN with load
balancing simulation test, the simulation may take too much
time. To speed up the simulation, we can build our own
simulation software according to our needs and improve CPU
usage for optimized performance. At present, the existing
SeqGAN is the most suitable one for our research goal. To
sum up, three major contributions of this paper include: (1)
using GAN in the network simulation system, (2) integrating
Tensorflow with ns-3, and (3) increasing 3141kbps throughput
in the load balancing test.

Acknowledgment

Thanks to the Ministry of Science and Technology for

providing industry-university cooperative research projects to
complete the paper: MOST 110-2221-E-020-023, MOST 107-
2221-E-197-007 -MY3 and MOST 108-2321-B-197-004.

References

[1] B. B. Sánchez, Á. Sánchez-Picot, D. S. De Rivera,

Using 5G technologies in the Internet of Things:

Generative Adversarial Network for Simulation of Load Balancing Optimization in Mobile Networks 303

Handovers, Problems and Challenges, 9th International
Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, Santa Catarina, Brazil, 2015,
pp. 364-369.

[2] I. P. Chochliouros, A. Kostopoulos, I. Giannoulakis, A.
S. Spiliopoulo, M. Belesioti, E. Sfakianakis, A. Kourtis,
E. Kafetzakis, Using Small Cells for Enhancing 5G
Network Facilities, IEEE NFV-SDN - Fourth Workshop
on Network Function Virtualization and Software
Defined Networks, Berlin, Germany, 2017, pp. 264-269.

[3] Y.-L. Lan, K. Wang, Y.-H. Hsu, Dynamic load-
balanced path optimization in SDN-based data center
networks, 10th International Symposium on
Communication Systems, Networks and Digital Signal
Processing, Prague, Czech Republic, 2016, pp. 1-6.

[4] C.-Y. Lin, W.-P. Tsai, M.-H. Tsai, Y.-Z. Cai, Adaptive
Load-balancing Scheme Through Wireless SDN-based
Association Control, IEEE 31st International
Conference on Advanced Information Networking and
Applications, Taipei, Taiwan, 2017, pp. 546-553.

[5] Y.-C. Wang, K.-C. Chien, A load-aware small-cell
management mechanism to support green
communications in 5G networks, The 27th Wireless and
Optical Communications Conference, Hualien, Taiwan,
2018, pp. 1-5.

[6] H. Zhang, L. Song, Y. J. Zhang, Load Balancing for 5G
Ultra-Dense Networks Using Device-to-Device
Communications, IEEE Transactions on Wireless
Communications, Vol. 17, No. 6, pp. 4039-4050, June,
2018.

[7] J. Jijin, B.-C. Seet, P. H. J. Chong, H. Jarrah, Service
Load Balancing in Fog-based 5G Radio Access
Networks, IEEE 28th Annual International Symposium
on Personal, Indoor, and Mobile Radio
Communications, Montreal, QC, Canada, 2017, pp. 1-5.

[8] N. Kiran, C. Yin, Z. Akram, AP Load Balance Based
Handover in Software Defined WiFi Systems, 5th
International Conference on Network Infrastructure
and Digital Content, Beijing, China, 2016, pp. 6-11.

[9] Y. Yang, P. Li, X. Chen, W. Wang, A High-efficient
Algorithm of Mobile Load Balancing in LTE System,
IEEE Vehicular Technology Conference, Quebec City,
QC, Canada, pp. 1-5.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, Y. Bengio,
Generative Adversarial Networks, arXiv:1406.2661v1,
June, 2014.

[11] L. Yu, W. Zhang, J. Wang, Y. Yu, SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient, The
Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 2017, pp. 2852-2858.

[12] H. Liu, X. Gu, D. Samaras, Wasserstein GAN With
Quadratic Transport Cost, 2019 IEEE/CVF
International Conference on Computer Vision (ICCV),
Seoul, Korea, 2019, pp. 4831-4840.

[13] A. Radford, L. Metz, S. Chintala, Unsupervised
Representation Learning with Deep Convolutional
Generative Adversarial Networks, arXiv:1511.06434,
January, 2016.

[14] W. K. Soo, T.-C. Ling, A. H. Maw, S. T. Win, Survey
on Load-Balancing Methods in 802.11 Infrastructure
Mode Wireless Networks for Improving Quality of

Service, ACM Computing Surveys, Vol. 51, No. 2, pp.
1-21, March, 2019.

[15] K. Addali, M. Kadoch, Enhanced Mobility Load
Balancing Algorithm for 5G Small Cell Networks, 2019
IEEE Canadian Conference of Electrical and Computer
Engineering (CCECE), Edmonton, AB, Canada, 2019,
pp. 1-5.

[16] C. Yi, X. Zhang, W. Cao, Dynamic Weight Based Load
Balancing for Microservice Cluster, The 2nd
International Conference on Computer Science and
Application Engineering – CSAE18, Hohhot, China,
2018, pp. 1-7.

[17] K. M. Addali, S. Y. B. Melhem, Y. Khamayseh, Z.
Zhang, M. Kadoch, Dynamic Mobility Load Balancing
for 5G Small-Cell Networks Based on Utility Functions,
IEEE Access, Vol. 7, pp. 126998-127011, September,
2019.

[18] N. Hassan, X. Fernando, An Optimum User Association
Algorithm in Heterogeneous 5G Networks Using
Standard Deviation of the Load, Electronics, Vol. 9, No.
9, Article No. 1495, pp. 1-20, September 2020.

[19] D. Qin, P. Ji, S. Yang, T. M. Berhane, An efficient data
collection and load balance algorithm in wireless sensor
networks, Wireless Networks, Vol. 25, No. 7, pp. 3703-
3714, October, 2019.

[20] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran,
B. Sengupta, A. A. Bharath, Generative Adversarial
Networks: An Overview, IEEE Signal Processing
Magazine, Vol. 35, No. 1, p. 53-65, January, 2018.

[21] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen,
T. Aila, Training Generative Adversarial Networks with
Limited Data, arXiv:2006.06676, October, 2020.

[22] S. Shao, P. Wang, R. Yan, Generative adversarial
networks for data augmentation in machine fault
diagnosis, Computers in Industry, Vol. 106, pp. 85-93,
April, 2019.

[23] T.-Y. Wu, W.-F. Weng, Reducing handoff delay of
wireless access in vehicular environments by artificial
neural network-based geographical fingerprint, IET
Communications, Vol. 5, No. 4, pp. 542-553, March,
2011.

[24] T.-Y. Wu, T. Chang, Interference Reduction by
Millimeter Wave Technology for 5G-based Green
Communications, IEEE Access, Vol. 4, pp. 10228-
10234, August, 2016.

[25] W. K. Lai, Y. U. Chen, T.-Y. Wu, Analysis and
Evaluation of Random-Based Message Propagation
Models on the Social Networks, Computer Networks,
Vol. 170, Article No. 107047, April, 2020.

[26] T.-Y. Wu, W. Chen, W.-T. Lee, F.-H. Liu, Y.-P. Huang,
SeMIPv6: Secure and Efficient Roaming Mechanism
Based on IEEE 802.11r and MIH, Journal of Internet
Technology, Vol. 11, No. 7, pp. 909-916, December,
2010.

304 Journal of Internet Technology Vol. 23 No. 2, March 2022

Biographies

Fu Jie Tey completed his master 's degree
at National Ilan University‘s Department of
Computer Science and Information
Engineering. He is a PhD student in the
Department of Electrical Engineering at
National Taiwan University of Science and
Technology. His research interests are in
machine learning applications, mobile

networks, Internet of Things, information security, and
programming. His favourite activity is coding in spare time.

Tin-Yu Wu currently works as a Full
Professor in the Department of
Management Information Systems,
National Pingtung University of Science
and Technology, Taiwan. He received his
M.S. and Ph.D. degrees in the Department
of Electrical Engineering, National Dong
Hwa University, Hualien, Taiwan in 2000

and 2007 respectively. His research interests focus on the big
data analytics, cloud computing and mobile computing.

Yueh Wu received his M.S. degrees in the
National Ilan University‘s Department of
Computer Science and Information
Engineering. Yilan. His research interests
focus on the mobile computing, 5G
communication and IoTs.

Jiann-Liang Chen was born in Taiwan
on December 15, 1963. He received the
Ph.D. degree in Electrical Engineering
from National Taiwan University, Taipei,
Taiwan in 1989. Since August 2008, he
has been with the Department of
Electrical Engineering of National
Taiwan University of Science and
Technology, where he is a distinguished

professor now. His current research interests are directed at
cellular management, IoT system design and cyber-security.

	組合 1
	JIT2302-01
	JIT2302-02
	JIT2302-03
	JIT2302-04
	JIT2302-05
	空白頁面

	組合 2
	JIT2302-06
	JIT2302-07
	JIT2302-08
	JIT2302-09
	JIT2302-10
	空白頁面

	組合 3
	JIT2302-11.0 Guest Ediorial
	JIT2302-11.1
	JIT2302-12
	JIT2302-13
	JIT2302-14
	JIT2302-15

	組合 4
	JIT2302-16.0 Guest Ediorial
	JIT2302-16.1
	JIT2302-17
	JIT2302-18
	JIT2302-19
	JIT2302-20
	空白頁面

	空白頁面
	空白頁面

