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Abstract 
 
The commercial operation of 5G networks is almost ready 

to be launched, but problems related to wireless environment, 
load balancing for example, remain. Many load balancing 
methods have been proposed, but they were implemented in 
simulation environments that greatly differ from 5G networks. 
Current load balancing algorithms, on the other hand, focus on 
the selection of appropriate Wi-Fi or macro & small cells for 
Device to Device (D2D) communications, but Wi-Fi facilities 
and small cells are not available all the time. For this reason, 
we propose to use the macro cells that provide large coverage 
to achieve load balancing. By combing Generative 
Adversarial Network (GAN) with the ns-3 network simulator, 
this paper uses neural networks in TensorFlow to optimize 
load balancing of mobile networks, increase the data 
throughput and reduce the packet loss rate. In addition, to 
discuss the load balancing problem, we take the data produced 
by the ns-3 network simulator as the real data for GAN. 
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1  Introduction 
 

When commercial 5G networks are going to be widely 
deployed, there are still have problems with associated with 
wireless environment, example like load balancing, need to be 
solved [1]. Previous load balancing techniques were 
implemented in simulation environments which were different 
from 5G networks [5, 24]. On the other hand, present load 
balancing methods are focus on the selection of appropriate 
Wi-Fi or macro & small cells for D2D communications.  

Normally, small cells are deployed at the edge of macro 
cells to improve signal quality and mitigate interference, but it 
could cost a lot of money [2]. Before the small cell 
deployments, we must consider if the existing macro cells are 
enough to achieve load balancing. Unfortunately, it is hard to 
tell whether the macro cell’s load influences the selection of 
macro cells. 

In recent years, the load balancing techniques for wired 
networks have been widely applied with the flourishing 
Software-Defined Networking (SDN). Those methods have 
been relatively mature, but they are not suitable for wireless 
networks. 

Nodes in wired networks are all connected through wired 
connections. To achieve load balancing in SDN, for example, 
a centralized controller is responsible for collecting data and 
directing data flows to the selected target. As for wireless 
networks, high path loss and various kinds of interference 
among base station (BS) and devices make wireless 
communications more difficult. Consequently, those load 
balancing methods are designed for wired networks are not 
feasible for wireless networks. Therefore, we propose to use 
the learning ability of neural networks to deal with load 
balancing problems in wireless networks. 

Network load balancing is an important challenge in 
wireless networks. Too many users together with high data 
throughput at the same time could lead to severe performance 
degradation of BSs. Neither former load balancing algorithms 
implemented in simulation environments nor those designed 
for wired networks are suitable for current network status. For 
this reason, novel load balancing algorithms for wireless 
networks must be proposed. BSs in 5G mobile network 
environment include at least E-UTRAN Node B (eNBs), Wi-
Fi BSs and millimeter-wave (mmWave) BSs, among which 
eNBs provide the greater coverage. There are many Wi-Fi BSs 
and mmWave BSs, but not all of them are available when it 
comes to load balancing. Therefore, this study proposes to 
solve the load balancing problem of BSs in order to improve 
the throughput and minimize the packet loss. Simulation are 
usually conducted to test load balancing results and the 
returned results will be values, like transmission capacity 
measured as kbps, or packet loss rate given as a percentage. 
All values are meaningful to researchers because values 
obtained from different simulations will be analyzed for 
further parameter adjustment. Based on the results, we can 
gradually improve the simulation and prove the correctness 
and advantages of our proposed method. As long as the 
simulation design is appropriate, we believe that neural 
networks can be used to learn and reward and we are able to 
find suitable neural networks for simulation environment. 
Without making modifications in the simulation environment, 
we normally input parameters, analyze simulation results and 
again input or change parameters. We hope that neural 
networks can learn to input parameters as well as interpret the 
simulation results. In order to achieve the goal, Generative 
Adversarial Network (GAN) is a good choice because GAN 
comprises two parts: the generator network to produce 
parameters and the discriminator network to distinguish 
between real and fake samples. The aim of this study is to 
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integrate GAN with the load-balancing simulation system to 
achieve load balancing. 

The rest of this paper is organized as follows: Section II 
reviews researches on load-balancing methods and 
background. Section III details how about system architecture 
and proposed method. In Section IV, we perform the 
experiment and simulate the parameters with our proposed 
models. Finally, we summarize our findings and results. 

 
2  Background and Related Works 

 
Load balancing approaches, Generative Adversarial 

Network (GAN) and SeqGAN are reviewed in Section II. 
 

2.1 Load Balancing Approaches 
 
To achieve load balancing in wired networks, the 

centralized controller monitors the loads of the inter-
connected computers and routers and commands to coordinate 
traffic flow. In wire-line networks, a centralized controller is 
responsible for monitoring computers and routers in the 
network, and managing the data flow to achieve load 
balancing. 

 
2.1.1 Least Load First 

 
The “least load first” idea is the key point of load balancing 

and also the basis for weighted and standard deviation-based 
algorithms mentioned below. To achieve load balancing, the 
least load first algorithm finds the node with least load 
(normally a router or a base station) and routes traffic or users 
to this node. 

 
2.1.2 Least Load First Standard-Deviation-Based 

 
In the load balancing algorithm based on standard 

deviation, the centralized controller is responsible for 
gathering all routers’ data and calculating each router’s 
standard deviation. Based on the standard deviation that 
measures the spread of the data about the mean value, the 
algorithm can find the router with a lighter load, balance link 
loads in the network and reroute flows to avoid links with large 
loads as well as resolve congested paths [3, 18]. 

 
2.1.3 Weight-Based 

 
The weight-based load balancing algorithm assigns a 

weight to each router and adjusts the weight based on the 
loading status of the present BS and other criteria [4, 15-16]. 

In addition, there are other ways to achieve load balancing, 
such as considers the operator utility and the user utility [17] 
or using the association to achieve adaptive load-balancing [4]. 

 
2.1.4 Mobile Networks and Wireless Networks 

 
As discussed above, the load balancing methods designed 

for wired networks are not suitable for wireless networks, but 
still some have been presented to perform load balancing, 
including using a load-aware small-cell management 
mechanism to manage mobile devices in all small cells and 
transfer redundant mobile devices to other cells to alleviate 
congestion [5]; employing Device-to-Device (D2D) 

communications so that the data traffic can be effectively 
offloaded from a congested small cell to other underutilized 
small cells [6]; and utilizing a fog computing based 
architecture [7]. However, D2D is only applicable under 
certain conditions [6, 25]. To achieve load balancing, other 
methods proposed to select the access point based on Wi-Fi [4, 
8, 14, 19], but Wi-Fi and mobile networks are very different 
in terms of signal strength, interference and other factors. Load 
balancing mechanisms for LTE systems have been presented 
much earlier [9, 23, 26], but current LTE simulation structures 
cannot fit the upcoming 5G networks. 

 
2.2 Generative Adversarial Network (GAN) 

 
The idea of GANs was introduced in 2014 [10] and a GAN 

consists of two neural networks: a generator network and a 
discriminator network, as shown in Figure 1. The generator 
network generates plausible data and the discriminator 
network distinguishes real and generated data. By competing 
against each other, both the two neural networks get better and 
better. For example, the generator network generates samples 
that have a high probability of being real samples while the 
discriminator network can more accurately distinguishes the 
generator's fake data from real samples. Nevertheless, the 
discriminator training can fail if the generator training is too 
quick; the generator training can fail if the discriminator is too 
good. GANs are hard to train because it is difficult to reach a 
convergence in the game [20]. For this reason, we must adjust 
parameters and use only part of real data. GAN later also has 
various variants like SeqGAN, DCGANs [13] and WGAN 
[12]. 

 

 
Figure 1. Generative Adversarial Network 

 

2.3 SeqGAN 
 
Sequence GAN (SeqGAN) was presented in 2016 [11] to 

help GAN handle discrete outputs and the illustration of 
SeqGAN is displayed in Figure 2. GANs can be used to deal 
with sequential data but not discrete data like languages or 
words. In order to cope with the problem, SeqGAN adds the 
Monte Carlo Tree Search (MCTS) to the discriminator 
network so that the reward from the discriminator on a 
complete sequence can be returned to the generator network 
as shown in Figure 2. 

Note that SeqGAN is usually used for poetry generation 
and discrimination. Real data is generated by a trained neural 
network. Since this study integrates with the simulation 
network system, we will use the simulation data as reference. 
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Figure 2. Diagram of SeqGAN 
 

3  System Architecture and Proposed 

Method 
 
Section 3 introduces how we combine our proposed load 

balancing system with GAN, which includes a generator 
network and a discriminator network. Figure 3 shows the 
system architecture. The reason we use GAN is that GAN 
generates results by competing the identification network with 
the generative network, so this means that there is almost no 
data before the load balancing, so GAN can be trained with a 
small amount of data to achieve our desired goal [21-22]. 

 

 
Figure 3. System architecture 

 
3.1 Load Balancing Simulation Environment 

 
In the load balancing simulation environment, the first step 

is to set and adjust the parameters, including number of users, 
number of BSs, simulation time and weighting parameters 
generated by GAN. The load balancing simulation 
environment can be created using self-motivated software or 
other specific network environment simulators. The common 
way to test network load balancing is to make the nodes fully 
loaded and then observe the performance of the load balancing 
method. In this study, we use the same way. Moreover, to 
prevent performance degradation on the system when the load 
balancing mode is on while not needed, our proposed method 
tests network traffic in the normal load mode to ensure the 
normal operation of the system. The results of the study, 
including throughput and packet loss rate, will be output after 
the simulation. 

 
3.2 Integrating Load-Balancing Simulation Test 

into GAN 
 
To integrate the load balancing simulation test into GAN, 

we correlate the results generated by the generator network to 
the parameters set in the load balancing simulation 
environment. Then, for output discrimination, the result of the 

load balancing simulation test will be sent back to the neural 
network. 

 
3.2.1 Corresponding Parameters 

 
To combine the load balancing simulation test with GAN, 

we need to correlate the results generated by the generator 
network to the parameters set in the load balancing simulation 
environment. Next, we will return the result of the load 
balancing simulation test to the neural network as feedback. 
Our method, based on SeqGAN, generates a one-dimensional 
array that contains twenty elements and uses them as the 
weighting parameters for selecting 20 BSs in the load 
balancing simulation environment. Once the simulation is 
completed, the result will be sent to the neural network. 
Instead of estimating packet loss rate, this study estimates 
throughput. Packet loss is calculated as a percentage and we 
may encounter the situation that the packet loss rate is similar 
but the throughput greatly differs. So, higher throughput 
signifies better performance of the load balancing simulation 
test. We then send the result back to the neural network. 

 
3.2.2 Adjusting the SeqGAN 

 
SeqGAN’s generator network is exactly what our method 

needs: a one-dimensional array that contains twenty normally 
distributed random elements. The discriminator network is 
responsible for distinguishing true data from generated data. If 
the discriminator network tells that the generated data and true 
data are the same, it means that the data generated by the 
generator network have been very close to true data. True data 
for SeqGAN are poetry data from a trained RNN; however, 
the content does not meet our needs. For this reason, we will 
use the generated data that bring better result in the load 
balancing simulation as true data. 

 
( )1max { ,......, }original nBN N N=      (1) 

 

( )RSRQ 1 1= max { ,......, }weight n nBN N W N W+ + +    (2) 

 
3.3 How Weighting Parameters Affect BS 

Selection 
 
To know how weighting parameters affect selection of 

BSs, we originally chose the BS with higher weights but soon 
found the method inefficient. The user may connect to a 
remote BS that has relatively low signal strength. Therefore, 
to select the best BS, we use the signal strength and the weight 
values generated by the generator network. The flowchart is 
displayed in Figure 4. First, the user verifies the present 
Reference Signal Received Quality (RSRQ), shown in (3), and 
evaluates whether to handover when the High Threshold (HT) 
is higher than the RSRQ. The N is the resource blocks. 

 
RSRQ = N  RSRP/ RSSI   (3) 
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Figure 4. BN selection based on weights 

 
On the original handover algorithm in (1) will evaluate all 

neighborhood to find the best RSRQ as Best Neighborhood 
(BN) for the handover BS. Based on the weights and the 
RSRQ also will evaluate the RSRQ but will include the weight 
that train with GAN to find the BN, the equation shown in (3). 
In case that a cell phone switches frequently between two BSs 
with similar signal strength, the handover will be triggered 
when the Serving Neighborhood RSRQ (SNR) minus the Best 
Neighborhood RSRQ (BNR) is larger than the Low Threshold 
(LT). 

 
4  Results and Analysis 

 
Section 4 describes how Tensorflow combines with ns-3, 

analyzes the training process of GAN, and runs the load 
balancing test in both normal and high load for performance 
evaluation. For SeqGAN simulation, we use GTX 1080Ti as 
the GPU to attain neural network acceleration. 

 
4.1 Combining Tensorflow with ns-3 

 

 
Figure 5. Combing TensorFlow with ns-3 

 
This study includes two parts: the neural network 

TensorFlow and the ns-3 network simulator. To combine 
TensorFlow with ns-3, we have to considerate their structures. 
As an open-source Python library for machine learning, 
TensorFlow supports Python. The simulator ns-3, written in 
the C++ language, makes use of the waf build system with 
optional Python bindings. It would be easier to combine 
TensorFlow with ns-3 if both of them adopt Python. However, 
most mobile network scenarios in the ns-3 network simulator 
are written in C++ and so is the structure of ns-3. If the system 
structure must be modified, the programming language will be 
mainly C++. Therefore, we combine the neural network in 
Python with the network simulation system in C++. Since the 
network simulation system must be inserted into the neural 
network, the neural network in Python will connect to the ns-
3. The system first uses Python to modify the target parameters 

in ns-3 and, second, uses Python to run the ns-3 script. Finally, 
the simulation result will be saved. Figure 5 shows the 
flowchart to combine TensorFlow with ns-3. 

 
4.2 Results of GAN Training 

 
It is difficult for a GAN to converge because of the 

interplay between the generator and the discriminator that may 
lead to unexpected convergence. Although the SeqGAN used 
in this study is a trained neural network that ensures 
convergence, we still evaluate its convergence due to the 
modification of the target parameters. To know if a neural 
network converges, we usually check the test loss, which is 
also an index to examine SeqGAN convergence. Table 1 and 
Table 2 show the SeqGAN generator and the discriminator 
parameter which use in the training. 

 
Table 1. Generator parameter 

Embedding Dimension 16 

Hidden Layer 32 

Sequence Length 20 

Batch Size 64 
 

Table 2. Discriminator parameter 
Embedding Dimension 20 
Dropout Probability 20% 
Batch Size 64 

 
Table 3. Basic parameters for load-balancing simulation test 

Load Mode Normal Load High Load 

UE amount 20 40 

BS amount 20 20 

BS dBm 46 dBm 46 dBm 

Simulation Time (sec.) 10s 10s 
 

 
Figure 6. Test loss 

 

If the test loss keeps steadily decreasing during the training 
process, the neural network is still learning. If the test loss 
remains flat, there might be overfitting or bottleneck problems 
and the neural network must be adjusted again. If the test loss 
keeps increasing, there must be something wrong with neural 
network design or parameter settings. In Figure 6, the test loss 
curve that refers to the convergence in the training of neural 
network may go up and down but decreases steadily, denoting 
that the neural network is learning successfully and 
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converging. Based on the SeqGAN design, the number of 
Epoch is set to 200. 

 
4.3 Load Balancing System 

  
The ns-3 simulator is used to conduct the simulation. We 

know that it will be easier to use self-motivated software for 
GAN, but the design of simulation environment may be wrong. 
For this reason, the ns-3 simulator that has been extensively 
recognized is adopted to prove the feasibility to combine GAN 
and simulation environment. The load balancing simulation 
test can be conducted in two ways: in normal load or high load. 
Table 3 shows the basic parameters for the load balancing 
simulation test. According to different load modes, the number 
of user equipment (UE amount) is adjusted: 20 in normal load 
and 40 in high load, in case the simulation is too long. The 
time to run the simulation is set to 10 seconds only. There are 
20 BSs in both modes because we want to present a large load 
balancing environment so that UE can be distributed in a large 
area in normal load. A large simulation environment also 
provides more choices to UEs to reflect performance 
variability of different modes. Packet size BS dBm is decided 
based on the ns-3 simulator default setting. 

Figure 7 shows the simulation scenario, in which BSs are 
deployed based on triangles in a region of 2750m x 1800m. In 
normal load mode, users are distributed randomly in the 
environment. In high load mode, 40 users are gathered near 
one single BS and weights are adjusted to achieve load 
balancing. 

 

 
Figure 7. BS deployments in the simulation environment 
 

Next, we briefly explain why the simulation includes 40 
UEs. The upper load threshold of BS may be influenced by 
many factors. Figure 8 shows the signal strength-based BS 
throughput test conducted on 10 to 40 users. When 20 UEs 
connect to the same BS at the same time, the BS is unable to 
process more messages. Even more UEs join, the throughput 
cannot increase, causing the packet loss increase incessantly, 
as displayed in Figure 9.  Therefore, to run the load-
balancing simulation, there must be at least 20 UEs. The 
number of UE amount is set to 40 in case the simulation takes 
too much time. Moreover, our simulation data is generated by 
the ns-3 simulator when all UEs are keeping sending packets. 
Not all users must be connected to the BS to reach the upper 
load threshold for the simulation. 

 

 
Figure 8. BS throughput test 

 

 
Figure 9. BS packet loss test 

 

4.4 Load Balancing Simulation 

 
To evaluate the performance of the load balancing 

simulation test, we examine whether load balancing works 
efficiently. If load balancing works, the network bottleneck 
due to high load will be postponed, the throughput will 
increase and the packet loss will be reduced. 

 

 
Figure 10. Normal load throughput 

 

During the simulation test, we compare four methods, 
including RSRQ, RSRQ+Weight, Weight and Low Load, in 
both normal load and high load. Weight and RSRQ Weight are 
based on the GAN generator. As shown in Table 1, in the 
normal load mode, 20 users are randomly distributed in the 
map. Figure 10 displays that in terms of data throughput, 
RSRQ is similar to RSRQ+Weight. After neural network 
training, the Weight method is able to achieve basic 
throughput performance; however, due to the strong impact of 
randomness, it fails to find a better solution. The Low Load 
method is the worst-performing because it easily connects to 
the BS that provides worse signal strength than the current one. 

Figure 11 shows that in terms of packet loss rate, the 
RSRQ and RSRQ+Weight methods are also similar, 
approximately 34 to 35%, and the Weight method is unable to 



302 Journal of Internet Technology Vol. 23 No. 2, March 2022 
 

 

yield better result as well. The Low Load method easily 
connects to the farther BSs, making the packet loss rate even 
worse. 

 

 
Figure 11. Normal load packet loss rate 

 
In the normal load mode, the packet loss rate is 

comparatively higher. In our simulation, the ns-3 simulator 
uses the UDP protocol to deliver 100 packets/per second to 
each user, but the outcome must be determined by the quality 
of the connection between users and BSs. Those packets that 
cannot be delivered in time will be categorized as packet loss. 
The result reveals that in the ns-3 system, BSs all have their 
upper limit thresholds in delivering packets. In addition, when 
the UE is located between two BSs and the RSRQ is bad, high 
QAM levels cannot be achieved for packet delivery. The better 
the RSRQ is, the higher the QAM level is and the higher the 
data throughput will be. So, if 256-QAM cannot be currently 
maintained, the system will change to 640-QAM, making it 
difficult to reach higher throughput. Such a situation often 
occurs at the fringe of the BS coverage area with higher 
interference level and therefore higher packet loss rate. This is 
the reason why the maximum throughput in the test is different 
from the fore-mentioned BS throughput. 

 

 
Figure 12. High load throughput 

 

In the high load mode, according to Figure 12, the 
RSRQ+Weight method achieves the highest throughput.  
The RSRQ and Weight methods are getting close but still not 
stable. Although the Low Load method yields good 
performances in some scenarios, it is deeply affected by 
vacant BSs with poor signal strength and is unable to get better 
result.  

As for the packet loss rate in the high load mode, the 
RSRQ+Weight method performs best because of the lowest 
packet loss rate, and the RSRQ is the second. The RSRQ and 
Weight methods are getting close as well but both fail to find 
better results. The Low Load method remains the worst and its 
packet loss rate is even worse than that in the normal load 

mode because of too long distances and interferences as shown 
in Figure 13. 

 
 

 
Figure 13. High load packet loss rate 

 

To use the original SeqGAN for the training in our 
simulation takes approximately 4 hours. The simulation time 
for the ns-3 simulation, on the other hand, is decided according 
to the number of users and the preset simulation time. Since 
we do not use GPU to speed up computation, more simulation 
time and more users will certainly increase the time to finish 
the ns-3 simulation. 

 
4  Conclusion 

 
In this paper, we use GAN and the ns-3 simulator to 

present a load balancing optimization simulation method, in 
which the generator network is responsible for generating 
weighting parameters for the load balancing system and the 
discriminator network is responsible for discriminating the 
results. Moreover, the better load balancing data is adjusted 
and taken as real GAN data for load balancing optimization. 
We also bring up the possibility to integrate SeqGAN with the 
load balancing system and to use GAN “reward” to replace 
real data. Our proposed method performs well in normal load, 
and also increases throughout about 4000kbps and reduces 
about 6% packet loss in high load. 

Although we successfully combine GAN with load 
balancing simulation test, the simulation may take too much 
time. To speed up the simulation, we can build our own 
simulation software according to our needs and improve CPU 
usage for optimized performance. At present, the existing 
SeqGAN is the most suitable one for our research goal. To 
sum up, three major contributions of this paper include: (1) 
using GAN in the network simulation system, (2) integrating 
Tensorflow with ns-3, and (3) increasing 3141kbps throughput 
in the load balancing test. 
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