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Abstract 
 
Proxy signature frees the original signer from the heavy 

signature work.  Many certificateless proxy signature (CLPS) 
schemes have been proposed in the last ten years. The security 
proofs of most known schemes are given in the random oracle 
model (ROM). There are only two CLPS schemes with 
provably security in the standard  model (SM). However, in 
which the size of the system parameter increase linearly with 
the size of the user's identity information. That increase the 
storage burden of the key generation center. In this paper, a 
new CLPS scheme is constructed and the security proofs are 
showed in SM. The size of system parameters and the master 
key are constant in the scheme. Requiring only three pairing 
operations, the new scheme is more efficient and suitable for 
mobile computing. 

 
Keywords: Certificateless cryptography, Mobile computing, 

Proxy signature, Pairing, Standard model 
 
1. Introduction 
 

With the development of mobile communication 
technology, mobile services have penetrated into every aspect 
of people's lives. In 2017, more than 5 billion people were 
associated with mobile services, and by 2025 independent 
mobile users will reach 5.9 billion, equivalent to 71% of the 
global population. The number of mobile Internet users will 
increase by 1.75 billion new users by then, reaching a 
milestone of 5 billion users in 2025. Global mobile data traffic 
grew strongly, with a compound annual growth rate of 73.46% 
in 2010-2017, with smartphone mobile data traffic growing at 
a compound annual growth rate of 121.69% from 2010 to 2017.  

People are enjoying the convenience of mobile 
communications while also facing the risk of personal privacy 
leaks. Due to size constraints, the computing power of 
personal mobile communication devices is limited. Some 
previous cryptographic schemes require more computing costs, 
so they are not suitable for personal mobile communication 
devices. Therefore, it is meaningful to design  secure and 
efficient cryptographic schemes for mobile computing. 

In 1996, Mambo et al. [1] put forward the notion of proxy 
signatures, which means that when the authorizer (original 
signer) cannot exercise the signature right for some reason, he 
can authorize the designated agent to exercise the signature 
right instead of himself. The original signer designated the 

agent to sign instead of himself, and does not need to provide 
his private key to the agent. 

Al-Riyami et al. [2] presented the certificateless public key 
cryptography (CLPKC). The user’s private key is made up of 
two parts: a partial private key yield by key generation center 
(KGC) and a secret value chosen by the user himself. It avoids 
key escrow and certificate management. 

 
1.1 Related Work 

 
Li et al. [3] put forward the first certificateless proxy 

signature (CLPS) scheme. Unfortunately, they did not show 
the security proofs. Choi et al. [4] and Lu et al. [5] indicated 
that the scheme [3] is insecure against proxy signature forgery 
attacks, and proposed an improved scheme, respectively. 
However, the security proofs of the improved schemes were 
not shown too. Chen et al. [6] put forward a new security 
model and constructed a new CLPS scheme with provably 
security. Xiong et al. [7] presented a CLPS scheme that needs 
to perform eight pairing operations. Seo et al. [8] and Zhang 
et al. [9] presented a CLPS scheme and showed the security 
proofs, respectively. Deng et al. [10] proposed a CLPS scheme 
that needs to perform two pairing operations. He et al. [11] 
presented a CLPS scheme from elliptic curve group. Deng et 
al. [12] proposed a CLPS scheme and showed the  security 
proofs based on RSA problem. These two schemes [11-12] do 
not use pairing operations. Jin and Wen [13] put forward a 
certificateless multi-proxy signature (CLMPS) scheme. 
However, Xu et al. [14] indicated that the scheme has three 
disadvantages and proposed an improved scheme. Qu et al. [15] 
presented a CLMPS scheme that does not need to perform 
pairing operation. The security proofs of the above schemes 
were shown in ROM. Eslami and Pakniat [16] put forward the 
first CLPS scheme with provably security in SM. However, 
they did not provide a concrete security proof. Lu and Li [17] 
showed that the scheme [16] has some security drawbacks and 
presented a new scheme that is provably secure in SM. Ming 
and Wang [18] constructed a CLPS scheme, and gave the 
security proofs in SM. Yang et al. [19] came up with a new 
CLPS scheme and claimed that their scheme is provable 
secure in SM. However, Lin et al. [20] indicated that a Type 
II adversary can forge a valid signature in the scheme [19]. 

 
1.2 Motivations and Contributions 



280 Journal of Internet Technology Vol. 23 No. 2, March 2022 
 

 

  In the last ten years, several concrete CLPS schemes 
were proposed. There are only two schemes [17-18] with 
provably security in SM. In the two schemes, the size of the 
system parameter increases linearly with the size of the user's 
identity information, and the number of addition operations on 
the elliptic curve group increases linearly with the size of the 
user's identity information. Therefore, these two schemes are 
not suitable for mobile computing scenarios. So it is attractive 
to design a CLPS scheme for mobile computing that is 
provable secure in SM and requires a constant number of 
pairing operations. 

In this paper, we constructed a new CLPS scheme with the 
following features: 
• It is secure against Type I/II adversary in SM 
• It was constant that the size of system parameters and the 

size of master secret key. 
• It was constant that the number of three  kinds of 

operations (addition, scalar multiplication, and pairing). 
 
1.3 Roadmap 

 
The rest of the content are arranged as follows: First, we 

introduced the bilinear pairing and computation attack 
algorithm problem in Sec.2. Second, we proposed the system 
model and a concrete CLPS scheme in Sec.3 and Sec.4, 
respectively. Third, we presented the security model and the 
security proofs of new scheme in Sec.5 and Sec.6, respectively. 
Next, we made the performance comparisons on several 
schemes in Sec.7. Lastly, we gave some conclusions in Sec.8. 

 
2 Preliminaries 

 
For ease of understanding, we listed the symbols used in 

the paper in Table 1. 
 
Bilinear pairing 

Let 1 1 2ˆ :e G G G →  be a map with the following 
properties, where 1G and 2G  are an additive group and a 
multiplicative group, respectively, and their order is q  

• Bilinearity: ( ) ( )1 2 1 2ˆ ˆ, , abe aP bP e P P=  for all  

• 1 2 1,P P G  and , qa b Z .  
• Non-degeneracy: There exist 1 2 1,P P G   such that

( )
21 2ˆ , 1Ge P P  . 

• Computability: There is an efficient algorithm to compute 
( )1 2ˆ ,e P P for all 1 ,P 2P  1G . 

 

Definition 1 CAA  (Computation attack algorithm) 
problem[21]. Given a generator P  of the group 1G  and a 

tuple ( ),P xP , output a pair
1,c P

x c
 
 + 

, where *
qc Z . 

 
3 System Model 

 
A CLPS scheme consists of four entities: Key generation 

center (KGC), original signer, proxy signer and verifier. 

KGC: It generates system parameters and publishes them 
to the outside world, generates a partial private key (PPK) 
according to the user's identity, and sends it to the user through 
an authenticated channel. 

Original signer: He/she generates a delegation and sends it 
to the proxy signer. 

Proxy signer: He/she generates a signature on a message 
on behalf of the original signer according to the delegation and 
sends it to the verifier. 

Verifier: He/she checks its validity after receiving the 
signature. 

A CLPS scheme contains the following eight algorithms: 
• Setup: Inputs a security parameter  , KGC generates the 

system parameters ( params  )  and master secret key 
( msk ). 

• PPK-Extract: Inputs an identity  0,1iID 
  , PKG 

generates a partial private key. 

• SV-Set: Inputs an identity  0,1iID 
  , the user sets his 

own secret value.  

• UPK-Generate: Inputs an identity  0,1iID 
 , the users 

generates a user public key. 
• Delegate: Inputs a tuple ( ), ,w o om t D  , the original signer 

generates a delegation. 
• Delegation-Verify: Inputs a tuple ( ,wm δ), the proxy signer 

checks whether the delegation is valid. 
• Proxy-Sign: Inputs a tuple ( , ,wm m δ , ,p pt D ), the proxy 

signer generates a signature. 
• PS-Verify: Inputs a tuple ( , ,wm m δ, σ), the receiver checks 

whether the signature is valid. 
 
Table 1. Notations 

Symbol Meaning 
pF  A prime finite field 

q  A prime number 
*
qZ  A set making up of positive integers 

less than q  

1G  An additive group with prime order 
q  

2G  An multiplicative group with prime 
order q  

ê  A bilinear pairing, where
1 1 2ˆ :e G G G →  

x  The master secret key of system 
P  A generator of the group 1G  

pubP  The public key of system, where 
pubP xP=  

1 2 3, ,H H H  Three secure hash functions 

oID  The identity of the original signer 

pID  The identity of the proxy signer 

iID  The identity of the thi  user 
( , )i i iD R d=  The partial private key of the thi  

user, where i iR r P=  
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it  The secret value of the thi   user, 
where i iT t P=  

( , )i i iPK R T=  The public key of the thi  user 

wm  { , , , }o o p p wID PK ID PK m  
δ A delegation 
σ A proxy signature 

 
4 Our Scheme 

 
We proposed a new CLPS scheme as follows. 
• Setup: Inputs a security parameter v , KGC performs 

following steps. 
1. Selects a bilinear pairing 1 1 2ˆ :e G G G → , as that 

defined in sec.2 .  
2. Picks a generator P of 1G , computes ( )ˆ ,E e P P= .  
3. Selects three secure hash functions 

 1 2 3, , : 0,1 qH H H Z → .  
4. Chooses qx Z  , computes pubP xP= , sets 

 msk x=  
5. Publishes the system parameters 

 1 2 1 2 3ˆ, , , , , , , , , }pubparams G G q e P P E H H H= . 
 
•PPK-Extract: For an identity  0,1iID 

 , KGC 
randomly picks i qr Z  , computes i iR r P=  , 

(1 , )i i ik H ID R= and  i i id r k x= + mod q  , then forwards 

( ),i i iD R d=  to the user via an authenticated channel.  
The user computes (1 , )i i ik H ID R= , and checks whether 

i i i pubd P R k P= + . Accepts the partial private key if and only if 
the equation holds. 

 
• SV-Set: The user iID  randomly chooses i qt Z  . 
 
•UPK-Generate: The user iID computes i iT t P= , and  

sets ( ),i i iPK T R=  
 
•Delegate: The original signer /o oID PK performs the 

following steps to generate a delegation. 
1. Computes ( )2 , ,w o oh H m ID PK= . 

2. Computes 1=
o o

Y P
d ht+

.   

3. Outputs  δ Y= as the delegation.  
Where wm  includes /o oID PK , /p pID PK , and the 

delegation duration and so on.  
 
•Delegation-Verify: To verify a delegation ( , )wm Y = , 

the verifier does as follows. 
1.Computes  

( )1 , ,o o ok H ID R=
 (2 ,wh H m= ),o oID PK . 

2. Checks  whether 
( )ˆ , o o pub oe Y R k P hT+ +  E= .  

Accepts the delegation if and only if the equation holds. 

 
• Proxy-Sign: The proxy signer /p pID PK  performs the 

following steps to generate a signature. 
1.Computes (3 , , , , , , )w o o p pl H m m Y ID PK ID PK=  

2. Computes 1=
p p

Z P
d lt+

.  

3. Outputs σ ( , )Y Z= as the signature. 
 
• PS-Verify: To verify a signature ( , ,wm m σ ( , )Y Z= ) , the 

verifier does as follow:  
1.Computes  

( )1 , ,o o ok H ID R= ( )1 , ,p p pk H ID R=
 

(2 ,wh H m= ),o oID PK , 

(3 , ,wl H m m= ), , , ,o o p pY ID PK ID PK . 
2. Checks whether  
( )ˆ , o o pub oe Y R k P hT+ +  = E ,  

( )ˆ , p p pub pe Z R k P lT E+ + = .  
Accepts the signature if and only if both of equalities hold.  
 

5 Security Model 
 
The security requirements of a CLPS scheme are presented 

as follows. 
 
Definition 3. In the following two games, if the 

adversary’s advantage is negligible, then the CLPS scheme is 
unforgeable (UNF-CLPS) 

 
Game I. Challenger ℭ plays this game with  a 
 Type I adversary 𝒜1. 
 
Initialization.  ℭ gets the msk and params by running the 

Setup algorithm, then forwards params to 𝒜1 and keeps msk 
as secret. 

 
Query. 𝒜1 issues various queries as follows. 
• UPK-Query: 𝒜1 inputs an identity iID , ℭ returns a 

public key iPK . 
•UPK-Replacement: 𝒜1 submits a tuple ( /

iPK  , iID ),  
ℭ replaces iPK  with /

iPK . 
• PPK-Query: 𝒜1 submits an identity iID , ℭ returns a 

partial private key iD . 𝒜1 cannot do it if the value iR has 
been replaced 

• SV-Query: 𝒜1 submits an identity iID , ℭ returns a secret 
value it . 𝒜1 can not do it if the value iT has been replaced 

•Delegation-Query: 𝒜1 submits a warrant wm , ℭ returns  
a  delegation δ. 

•PS-Query: 𝒜1 submits a tuple ( , ,wm m δ), ℭ returns a 
proxy signature σ. 

 
Forge. 𝒜1 outputs a tuple  ( * ,wm δ*) or (

 
* *, ,wm m σ*). The 

adversary wins if one of following cases holds. 
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•Case 1: The final output is ( * ,wm δ*) and it satisfies the 
following requirements. 

1. Verify( * ,wm δ*) =1.  
2. δ* is not obtained by Delegation-Query. 
3. 𝒜1 did not make PPK-Query for the original signer oID .  
•Case 2: The final output is (

 
* *, ,wm m σ*) and it satisfies 

the following requirements. 
1. Verify (

 
* *, ,wm m σ*) =1.  

2. σ* is not obtained by PS-Query.. 
3. 𝒜1 did not make Delegation-Query for the warrant *

wm . 
4. 𝒜1 did not make PPK-Query for the original signer oID . 
•Case 3: The final output is  (

 
* *, ,wm m σ*) and it satisfies 

the following requirements. 
1. Verify (

 
* *, ,wm m σ*) =1.  

2. σ*  is not obtained by PS-Query. 
3. 𝒜1 did not make PPK-Query for the proxy signer pID . 
 
The advantage of 𝒜1 is defined as: 

1

UNF CLS
AAdv − = Pr [𝒜1 

wins] 
 
Game II. Challenger ℭ plays this game with  a Type II 

adversary 𝒜2 
 
Initialization. ℭ gets the msk and params by running the 

Setup algorithm, then forwards them to 𝒜2 . 
 
Query. 𝒜2 issues various queries  as those in Game I. 
 
Forge. 𝒜2 outputs a tuple  ( * ,wm δ*)  or  (

 
* *, ,wm m σ*). 

The adversary wins if one of following cases holds. 
•Case 1: The final output is ( * ,wm δ*) and it satisfies the 

following requirements. 
1. Verify( * ,wm δ*) =1.  
2. δ* is not obtained by Delegate-Query. 
3. 𝒜2 did not make SV-Query for the original signer oID .  
4. 𝒜2 did not make UPK-Replacement for the original 

signer oID .  
•Case 2: The final output is  (

 
* *, ,wm m σ*) and it satisfies 

the following requirements. 
1. Verify (

 
* *, ,wm m σ*) =1.  

2. σ* is not obtained by PS-Query.. 
3. 𝒜2 did not make Delegation-Query for the warrant *

wm . 
4. 𝒜2 did not make SV-Query for the original signer oID . 
5. 𝒜2 did not make UPK-Replacement for the original 

signer oID . 
•Case 3: The final output is (

 
* *, ,wm m σ*) and it satisfies 

the following requirements. 
1. Verify (

 
* *, ,wm m σ*) =1.  

2. The value σ* is not obtained through PS-Query. 
3. 𝒜2 did not make SV-Query for the proxy signer pID . 
4. 𝒜2 did not make UPK-Replacement for the proxy signer

pID . 

 
The advantage of 𝒜2 is defined as: 

2

UNF CLS
AAdv − = Pr [𝒜2 

wins]  
 
Remark: To forge a delegation ( * ,wm δ*)，𝒜1 can make 

SV-Query for the original signer *
oID  or even replace the 

value *
oT . However, he can not get the value *

od . On the 
other hand, 𝒜2 can make PPK-Query for the original signer 

*
oID . However, he can not get the value *

ot . 
To forge a proxy signature  (

 
* *, ,wm m σ*)，𝒜1 can make 

SV-Query for the proxy signer *
pID  or even replace the value

*
pT . However, he can not get the value *

pd . On the other hand, 

𝒜2 can make PPK-Query for the proxy signer *
pID . However, 

he can not get the value *
pt .  

 
6 Security of Scheme 

 
We gave the security proofs in SM. In the following proofs, 

the adversary can directly calculate the hash function instead 
of querying the challenger 

 
6.1 Correctness of Delegation 
 

( )ˆ , o o pub oe Y R k P hT+ +

 

1ˆ , o o o
o o

e P r P k xP ht P
d ht

 
= + + + 

         

( )1ˆ , o o o
o o o

e P r k x ht P
r k x ht

 
= + + + + 

( )ˆ ,e P P=  

E=

 

 

6.2 Correctness of Proxy Signature 
 

( )ˆ , p p pub pe Z R k P lT+ +

 

1ˆ , p p p
p p

e P r P k xP lt P
d lt

 
= + + 

 + 

 

( )1ˆ , p p p
p p p

e P r k x lt P
r k x lt

 
= + + 

 + + 

 

( )ˆ ,e P P=  
E=  

 
Theorem 1. If the CAA  problem is hard, the scheme is 

unforgeable against an adversary 𝒜1 in SM. 
 
Proof. Suppose that the challenger ℭ want to solve an 

instance of the CAA  problem ( ),P aP , he does as follows. 
 
Initialization.  ℭ runs the Setup algorithm with a  

parameter v ,  then gives 𝒜1 the  
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 1 2 1 2 3ˆ, , , , , , , , ,pubparams G G q e P P xP E H H H= =  
Queries. 𝒜1 will first perform UPK-query for each 

identity.  
• UPK-Query: ℭ maintains a list UL  of tuple 

( ), ,i i iID t r .When 𝒜1 inputs an identity iID ,  ℭ does as 
follows: 

1. For i j= , picks at random j qt Z  , sets jID ID= , 

returns ( ),j jPK PK t P aP= = , then stores the tuple 

( ), ,j jID t  in the list UL  

2. For i j , randomly picks ,i i qt r Z   and returns 

( ),i i iPK t P r P= , then stores the tuple ( ), ,i i iID t r  in the list 

UL . 
• UPK-Replacement: ℭ maintains   a  list RL  of  

tuple ( ,i iID PK , )/
iPK . When 𝒜1 submits a tuple ( iID  , 

/
iPK ), ℭ replaces iPK  with /

iPK  and adds 

( )/, ,i i iID PK PK  to the list RL . 

• PPK-Query: ℭ maintains a list DL of tuple ( ),i iID D . 

When 𝒜1 submits an identity iID . If iID ID=  , ℭ fails. 
Otherwise, ℭ finds ( ), ,i i iID t r  in the list UL , gives the iD

by running PPK-Extract algorithm and adds ( ),i iID D  to the 
list DL . 

• SV-Query: When 𝒜1 submits an identity iID , ℭ finds the 
tuple ( ), ,i i iID t r  in the list UL , and responds with it . 

• Delegation-Query: When 𝒜1 submits a warrant wm , ℭ 
generates a delegation as follows: 

1. oID ID  and o RID L , ℭ outputs a delegation δ  
by running Delegate algorithm. 

2. o RID L  , then ( ),o o oPK t P r P=  has been replaced 

by ( )/ / /,o o oPK t P r P=  . If /
o ot t  (or /

o or r  ), 𝒜1 must 

send the value /
ot  (or /

or ) to ℭ, ℭ obtains the value /
ot   (or 

/
od  ) by running SV-Set (or PPK-Extraction) algorithm, and 

finally outputs a delegation δ by running Delegate algorithm. 
3. =oID ID , then ℭ fails. 
• PS-Query: When 𝒜1 submits a tuple ( , ,wm m δ), ℭ 

gerenates a signature as follows: 
1. pID ID  and p RID L , ℭ outputs a proxy 

signature  σ  by running Proxy Sign algorithm. 
2. p RID L  , then ( ),p p pPK t P r P=  has been replaced 

by ( )/ / /,p p pPK t P r P=  . If /
p pt t  (or /

p pr r  ), 𝒜1 must 

send the value /
pt  (or /

pr ) to ℭ, ℭ then obtains the value /
pt  

(or /
pd ) by running SV-Set (or PPK-Extract) algorithm, and 

finally outputs a proxy signature σ by running Proxy Sign 
algorithm. 

3. =pID ID , then ℭ fails. 
 
Forge. 𝒜1 outputs a tuple ( * ,wm δ*) or ( * *, ,wm m σ* ). ℭ 

aborts if the output does not satisfy any of the cases in Game 

I. Otherwise, ℭ resolves the CAA  example as follows: 
• Case 1. The final output is ( * ,wm δ*) and fulfills the 

conditions of Case 1 in Game I.  
In fact, δ* is a signature on the warrant *

wm , then δ*

*
* * *

1

o o o

Y P
r k x h t

= =
+ +

. If * =oID ID  , then 

* *= , =o j o jID ID PK PK , namely, 

( ) ( )* *, ,o o jt P r P t P aP= . ℭ finds jt  in the list UL  , 

computes ( )* * *
2 , ,w o oh H m ID PK = ,

 
( )* *

1 ,o ok H ID aP= and 
* *
o oc k x h t= +  (where *

o jt t= ) ,   outputs a solution of the 
CAA  example in the end. 

 ( ,c δ*)  = * * *

1,
o o o

c P
r k x h t

 
 + + 

 

* *

1= ,
o o

c P
a k x h t

 
= + + 

1,c P
a c

 
 + 

. 

 
Probability. Let ,U Rq q  and Dq  be the number of UPK-

Query, UPK-Replacement and PPK-Query , respectively. 
Some notations are defined as follows.  

1 : 𝒜1 did not make PPK-Query on *
oID , nor  did make 

UPK-Replacement on it.  
2 : ℭ did not fail in Delegation-Query and PS-Query.  

3 : * =oID ID .  
It is a reasonable assumption that R DL L =  . Hence it 

is not difficult to obtain the following results: 

 1Pr U R D

U

q q q
q


− −

= , 2 1
1Pr 1
Uq

   = −  ,

3 1 2
1Pr

U R Dq q q
     =  − −

 

Pr[ℭ success] = Pr[ 321   ] 

= Pr[ 1 ]·Pr[ 12 | ]·Pr[ 213 |   ] 

= 1 11U R D

U U U R D

q q q
q q q q q

 − −
 −   − −   

1

Uq
   

Therefore, ℭ can resolve the CAA  example with the 

probability 
Uq
 if 𝒜 1  can succeed with the probability ε 

 
• Case 2. The final output is  ( * *, ,wm m σ* ) and fulfills the 

conditions of Case 2 in Game I.  
In fact, σ* * *( , )Y Z=  is a proxy signature on the tuple 

* *( , )wm m , then *
* * *

1

o o o

Y P
r k x h t

=
+ +

 
. If * =oID ID , then * *= , =o j o jID ID PK PK , namely,

( ) ( )* *, ,o o jt P r P t P aP= . ℭ finds jt  in the list UL  , computes 

( )* *
1 ,o ok H ID aP= , ( )* * *

2 , ,w o oh H m ID PK =  and 



284 Journal of Internet Technology Vol. 23 No. 2, March 2022 
 

 

* *
o oc k x h t= +  (where *

o jt t= ), outputs a solution of the 
CAA  example in the end. 

( ,c *Y ) * * *

1,
o o o

c P
r k x h t

 
=  + +   

* *

1,
o o

c P
a k x h t

 
=  + + 

1,c P
a c

 =  +   
 
Probability. Same as that in Case 1. 
• Case 3. The final output is  ( * *, ,wm m σ* ) and fulfills the 

conditions of Case 3 in Game I.  
In fact, σ* * *( , )Y Z=  is a proxy signature on the tuple

* *( , )wm m , then *
* * *

1

p p p

Z P
r k x l t

=
+ +

 

. If * =pID ID  , then * *
p j p jID =ID ,PK =PK , namely, 

( ) ( )* *, ,p p jt P r P t P aP= . ℭ finds jt  in the list UL  , computes 

( )* *
1 ,p pk H ID aP= , (* * *

3 , ,wl H m m=

)* * * * *, , , ,o o p pY ID PK ID PK  and  * *
p pc k x l t= +

 
(where 

*
p jt t= ), outputs a solution of the CAA  example in the end. 

( ),c Z  =
* * *

1,
p p p

c P
r k x l t

 
 
 + + 

 

* *

1 1, ,
p p

c P c P
a ca k x l t

   = =     ++ +   
  

Probability. Same as that in Case 1. 
 
Theorem 2. If the CAA  problem is tricky, the scheme is 

unforgeable against an adversary 𝒜2 in SM. 
 
Proof. Suppose that the challenger ℭ want to solve an 

instance of the CAA  problem ( ),P aP , he does as follows. 
 
Initialization. ℭ runs the Setup algorithm with a 

parameter v ,  then  gives 𝒜2  the  
 1 2 1 2 3ˆ, , , , , , , , ,pubparams G G q e P P xP E H H H= = and 

 msk x=  
 
Queries. 𝒜2  will first perform UPK-query for each 

identity.. 
• UPK-Query: ℭ maintains a list UL  of tuple 

( ), ,i i iID t r .When 𝒜2  inputs an identity iID , ℭ does as 
follows: 

1. For i j= , selects at random
 j qr Z  , sets jID ID=  , 

returns ( ),j jPK PK aP r P= =  , then stores the tuple 

( ), ,j jID r in the list UL  

2. For i j , selects at random ,i i qt r Z   and returns 

( ),i i iPK t P r P= , then stores the tuple ( ), ,i i iID t r  in the list 

UL . 
• UPK-Replacement: Same as that in the Theorem 1. 
• PPK-Query: When 𝒜2 submits an identity iID , ℭ finds 

( ), ,i i iID t r  in the list UL , gives the iD  by running the 
PPK-Extract algorithm. 

• SV-Query: ℭ maintains a list EL  of tuple ( ),i iID t . 

When 𝒜2 submits an identity iID , If iID ID= , ℭ fails.  
Otherwise, ℭ finds ( ), ,i i iID t r  in the list UL , responds with 

it , then adds ( ),i iID D  to the list EL .  
• Delegation-Query: Same as that in the Theorem 1. 
• PS -Query: Same as that in the Theorem 1. 
 
Forge. 𝒜2 outputs a tuple ( * ,wm δ*) or  ( * *, ,wm m σ* ). ℭ 

aborts if the output does not satisfy any of the cases in Game 
II. Otherwise, ℭ resolves the CAA  example as follows: 

• Case 1. The final output is ( * ,wm δ*) and fulfills the 
conditions of Case 1 in Game II.  

In fact, δ* is a signature on the warrant *
wm , then δ*

*
* * *

1=
o o o

Y P
r k x h t

=
+ +

. If * =oID ID  , then * =o jID ID ,

* =o jPK PK  namely, ( )* *,o ot P r P ( ), jaP r P= . ℭ finds jr  in 

the  list UL  , computes   ( )* * *
2 , , ,w o oh H m ID PK =

 
*
ok =

( )*
1 ,oH ID aP and * 1 * *( )o oc h r k x−= +  (where *

o jr r= ), 

outputs a solution of the CAA  example in the end. 

 ( *,c h δ*) =
*

* * *,
o o o

hc P
r k x h t

 
 + +   
*

* *,
o o

hc P
r k x h a

 
=  + +   

* 1 * *

1,
( )o

c P
h r k x a−

 
=  + + 

1,c P
c a

 =  +     
Probability. Let ,U Rq q  and Eq  be the number of UPK-

Query, UPK-Replacement and SV-Query, respectively. Some 
notations are defined as follows.  

1 : 𝒜2 did not make SV-Query on *
oID , nor  did make 

UPK-Replacement on it. 
2 : ℭ did not fail during Delegation-Query and PS-Query.  

3 : * =oID ID .  
It is a reasonable assumption that R EL L =  . Hence it 

is not difficult to obtain the following results: 

 1Pr U R E

U

q q q
q


− −

= , 2 1
1Pr 1
Uq

   = −   

3 1 2
1Pr

U R Eq q q
     =  − −

 

Pr[ℭ  success] = Pr[ 321   ] 

= Pr[ 1 ]·Pr[ 12 | ]·Pr[ 213 |   ] 

= 1 11U R E

U U U R E

q q q
q q q q q

 − −
 −   − −   

1

Uq
  

 
Therefore, ℭ can resolve the CAA  example with the 
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probability ε / Uq  if 𝒜2 can succeed with the probability ε . 
 
• Case 2. The final output is  ( * *, ,wm m σ* ) and fulfills the 

conditions of Case 2 in Game II. 
In fact, σ* * *( , )Y Z=  is a proxy signature on the tuple 

* *( , )wm m , then *
* * *

1

o o o

Y P
r k x h t

=
+ +

 
If * =oID ID ,then * *= , =o j o jID ID PK PK ,namely 

, ( ) ( )* *, ,o o jt P r P aP r P= . ℭ finds jr  in the list UL  , 

computes ( )* * *
2 , ,w o oh H m ID PK = ,

  
( )* *

1 ,o ok H ID aP=   

and   * 1 * *( )o oc h r k x−= +  (where )*
o jr r= , outputs a solution 

of the CAA  example in the end. 

.( c , * *h Y )=
*

* * *,
o o

hc P
r k x h a

 
 + +   

* 1 * *

1,
( )o o

c P
h r k x a−

 
=  + +   

1,c P
a c

 =  +   
 
Probability. Same as that in Case 1. 
 
• Case 3. The final output is  ( * *, ,wm m σ* ) and fulfills the 

conditions of Case 3 in Game II. 
In fact, σ* * *( , )Y Z=  is a proxy signature on the tuple 

* *( , )wm m , then *
* * *

1

p p p

Z P
r k x l t

=
+ +

.  If * =pID ID  , then 

* =p jID ID , * =p jPK PK , namely, ( ) ( )* *, ,p p jt P r P aP r P= . ℭ 

finds jr  in the list UL  , computes ( )* *
1 ,p pk H ID aP= ,  

( )* * * * * * * *
3 , , , , , ,w o o p pl H m m Y ID PK ID PK= and   

* 1 * *( )p pc l r k x−= +
 

(where *
p jr r= ), outputs a solution of the 

CAA  example in the end. 

( )*,c l Z  =
*

* *,
p p

lc P
r k x l a

 
 
 + + 

 

=
* 1 * *

1,
( )p p

c P
l r k x a−

 
 
 + + 

 
1,c P

a c
 =  + 

  

 
Probability. Same as that in Case 1. 
 

7 Efficiency and Comparison 
 
We compared the performance of the new scheme with the 

other two CLPS schemes. We listed the symbols in Table 2 
that need to be used in this section. 

 
Table 2. Notations 

PB  
1GS  

1GA  
2GM  

2GE  H  

5.427 2.165 0.013 0.001 0.339 0.007 
 
We used third-party data to analyze the performance of the 

three CLPS schemes.  The running times  on basic 
cryptographic operations are listed in Table 3. In order to 

accomplish 1024-bit RSA security level, the 
hardware/software parameters used in the experiments [22] 
are as follows: cryptographic library (MIRACL) and a 
computer (Dell with an I5-4460S 2.90GHz processor, 4G 
bytes memory and the Window 8 operating system),  a Tate 
pairing 1 1 2ˆ :e G G G → and 1G  with order q  is an additive 
group over a super singular curve 2 3/ : 1pE E y x= + , where 
p and q  are 512-bits prime number and 160-bits prime 

number, respectively. 
We used a simple, intuitive method to evaluate the 

computational efficiency of the three schemes, as shown in 
Figure 1. Without loss of generality, it is assumed that the size 
of the identity information of a user is 60 bits, and the size of 
the output of a hash function (SHA1) is 160 bits. Namely,

 60IDB n= = (bits) and 160m wB B u= = = (bits). Further, 
 

30
2ID
n

 = =  (bits) and    
2m w
u

 =  = =80  (bits).  

 
In Delegation, the scheme [17] requires 3 scale 

multiplication operations in 1G , 2 addition operations in 1G
and 1 hash function opretions.  In Delegation-Verify, it 
requires 4 pairing operations, 1 scale    multiplication 

operations in 1G , 
1

2
n +

 addition operations in 1G , 2 

multiplication operations in 2G and 2 hash function opretions. 
In Proxy-Sign, it requires 6 scale multiplication operations in 

1G , 6 addition operations in 1G and 2 hash function opretions.  
In PS-Verify, it requires 5 pairing operations, 2n+  addition 
operations in 1G , and 2 scale multiplication operations in 1G , 
5 multiplication operation in 2G and 2 hash function 
opretions. So the resulting computation  time  is  
5 427 9 2 165 12. . +  +  

30 013 11 0 001 7 0 007 6 0 013
2
n. . . = . 

 + +  +  
 

3 75 015
2
n . + . When 60n = ,  the computation  time  is  

3 60
2

0.013 75.015+


 76.185= ms.  

 
Table 3. Operation time (in milliseconds) 

Symbol Meaning 
IDB  A bit string of the identity information of a 

user, where IDB n=  
[ ]IDB i  The ith bit of the identity information of a user 

ID  A set of indices i  such that [ ] 1IDB i = , 
namely { : [ ] 1}ID IDi B i = =  

wB  The output bit string of a warrant hush 
function, where wB u=  

[ ]wB i  The ith bit of a warrant 
w  A set of indices i  such that [ ] 1wB i = , 

namely { : [ ] 1}w wi B i = =  

mB  The output bit string of a message hush 
function, where mB u=  
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[ ]mB i  The ith bit of a message 

m  A set of indices i  such that [ ] 1mB i = , 
namely { : [ ] 1}m mi B i = =  

PB  A pairing operation 

1GS  A scale multiplication operation in 1G  

1GA  A addition operation in 1G  

2GM  A multiplication operation in 2G  

2GE  An exponentiation operation in 2G  
H  A hash function operation 

1G  An element in 1G  

2G  An element in 2G  
*
qZ  An element in *

qZ  

 
In Delegation, the scheme [18] requires 4 scale 

multiplication operations in 1G  and 1
2
u
+  addition 

operations in 1G and 1 hash function opretions. In Delegation-

Verify, it requires 3 pairing operations, 
2

n u+
 addition 

operations in 1G , 3 multiplication operations in 2G and 1 
hash function opretions. In Proxy-Sign, it requires 10 scale 
multiplication operations in 1G , 8n u+ +  addition 

operations in 1G and 4 hash function opretions.  In PS-
Verify, it requires 5 pairing operations, n u+  addition 
operations in 1G ,  5 multiplication operation in 2G and 4 
hash function opretions. So the resulting computation time is 

55 427 8 2 165 14 0 013 3 9
2

. . . n u 
 +  +  + + 

 
 

50 001 8 0 007 10 0 013 3 9 73 804
2

. . = . n u . +  +   + + + 
 

 ms. When

60, 160n u= = ,  the computation time  is  
5 60( 3 1600.013 73.804 82.9) 11

2
1+ =


 +  + ms.  

In Delegation, new scheme requires 1 scale function 
opretions. In Delegation-Verify, it requires 1 pairing 
operations, 2 scale multiplication operations in 1G  , 2 
addition operations in 1G and 1 hash function opretions. In 
Proxy-Sign, it requires 1 scale multiplication operations in 

1G  and 1 hash function opretions.  In PS-Verify, it requires 
2 pairing operations, 4 scale multiplication operations in 1G , 
4 addition operations in 1G and 4 hash function opretions. So 
the resulting computation  time is 
5 427 3 2 165 8 0 013 6 0 007 8 33 735. . . . . +  +  +  = m. 

We listed the computation costs for the three CLPS 
schemes in Table 4. 

 
Table 4. Comparison of three CLPS schemes 

Scheme Lu [17] Ming [18] Our scheme 
Delegate 3

1GS +2
1GA + H  

4
1GS +

1
( 1)
2 G
u A+ + H  1GS + H  

Delegation- 

Verify 
4 PB +

1
( 1)
2 G
n A+

 
+

1GS +2
2GM + H  

3 PB +
1

( )
2 G

n u A+
 

+3
2GM + H  

PB +2
1GS

 
+2

1GA +2 H  

Time ( )60, 160n u= =  0.013
2
n

 +30.423
 

(30.813) 

0.013 ( )
2
n u + +24.971 

(27.441) 

11.969 

Proxy-Sign 6
1GS +6

1GA +2 H  10
1GS +

1
( 8) Gn u A+ + +4 H  

1GS + H  

PS-Verify 
5 PB +

1
( 2) Gn A+

 
+2

1GS +5
2GM +2 H  

5 PB +
1

( ) Gn u A+
 

+5
2GM +4 H  

2 PB +4
1GS +4

1GA
 

+4 H  

Time ( )60, 160n u= =  0.013 n +44.592
 

(45.372) 

0.013 (2 2 )n u + +48.95
 

(54.670) 
21.766 

Total Time 

( )60, 160n u= =  

0.013
3
2
n

 +75.015
 

(76.185) 

0.013
5( 3 )
2
n u + +73.921

 
(82.111) 

33.735 

Size of Params 

( )60, 160n u= =  

1( 8)n G+
 

(4352 bytes) 

1( 2 5)n u G+ +
 

(24640 bytes) 

2 1G + 2G
 

(192 bytes) 

Size of MSK 1G  (64 bytes) 1G  (64 bytes) *
qZ (20 bytes) 

Size of Signature 5 1G  (320 bytes) 5 1G  (320 bytes) 2 1G (128bytes) 
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Figure 1. Computation cost 

 
Follow on, we evaluated the size of system parameters, the 

size of master key and the size of signature, as shown in Figure 
2. In the scheme [17], the system parameters contain 8n+  
points over an elliptic curve 2 3/ : 1pE E y x= + , thus the size 
is [(60 8) 512] / 8 4352+  = bytes. The master secret key 
contains one point over an elliptic curve 2 3/ : 1pE E y x= + , 

thus the size is 512 / 8 64= bytes. The signature contains five 
points over an elliptic curve 2 3/ : 1pE E y x= + , thus the size 
is (5 512) / 8 320 = bytes. In the scheme [18], the system 
parameters contain 2 5n u+ +  points over an elliptic curve

2 3/ : 1pE E y x= + ,  thus the size is 
[(60 320 5) 512] / 8 24640+ +  = bytes. The master secret key 
contains one point over an elliptic curve 2 3/ : 1pE E y x= + , 

thus the size is 512 / 8 64= bytes. The signature contains five 
points over an elliptic curve 2 3/ : 1pE E y x= + , thus the size 
is (5 512) / 8 320 = bytes. In our scheme, the system 
parameters contain three points over an elliptic curve

2 3/ : 1pE E y x= + , thus the size is [3 512] / 8 192 = bytes. 
The master secret key contains one point over *

qZ , thus the size 

is160 / 8 20= bytes. The signature contains two points over an 
elliptic curve 2 3/ : 1pE E y x= + , thus the size is
(2 512) / 8 128 = bytes. 

 

 
Figure 2. Storage cost 

 
With the continuous advancement of network technology, 

electronic signatures are widely used in various scenarios, 
such as e-commerce, electronic voting, and remote access 

control. The original signer may be inconvenient to generate a 
signature in certain situations (for example sickness, 
imprisonment, etc.), and he/she can authorize a trustworthy 
person to exercise the right to sign. In the new sheme, the 
proxy signer generates a new signature with his own private 
key and delegation generated by the original signer, then sends 
it to the receiver. Verifying the signature, the receiver can 
determine whether the signature and delegation are valid. The 
new scheme requires only three pairing operations and enjoys 
lower computation cost. 

 
8 Conclusion 

 
It was in ROM that most known CLPS schemes is proved 

to be secure. There are only two CLPS schemes with provably 
secure in SM. In ROM, the hash function value obtained by 
the adversary is provided by the challenger, rather than by a 
real function computation. A cryptography scheme that has 
been proven to be secure in ROM is not necessarily secure in 
real-world applications. In this paper, we constructed a new 
CLPS scheme and showed the security proofs in SM. In the 
scheme, it was constant that the size of system parameters and  

the size of master secret key, it was constant that the 
number of three kinds of operations (addition, scalar 
multiplication and pairing). It was shown that the proposed 
scheme is more efficient and suitable for mobile computing. 
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