
Provably Secure Certificateless Proxy Signature Scheme in the Standard Model 279

*Corresponding Author: Lunzhi Deng; E-mail: denglunzhi@163.com
DOI: 10.53106/160792642022032302008

Provably Secure Certificateless Proxy Signature Scheme in the
Standard Model

Lunzhi Deng1*, Zhenyu Hu2, Yu Ruan1, Tao Wang1

1 School of Mathematical Sciences, Guizhou Normal University, China
2 School of Big Data and Computer Science, Guizhou Normal University, China

denglunzhi@163.com, 592631964 @qq.com, 2455392912@qq.com, 1321682980@qq.com

Abstract

Proxy signature frees the original signer from the heavy

signature work. Many certificateless proxy signature (CLPS)
schemes have been proposed in the last ten years. The security
proofs of most known schemes are given in the random oracle
model (ROM). There are only two CLPS schemes with
provably security in the standard model (SM). However, in
which the size of the system parameter increase linearly with
the size of the user's identity information. That increase the
storage burden of the key generation center. In this paper, a
new CLPS scheme is constructed and the security proofs are
showed in SM. The size of system parameters and the master
key are constant in the scheme. Requiring only three pairing
operations, the new scheme is more efficient and suitable for
mobile computing.

Keywords: Certificateless cryptography, Mobile computing,

Proxy signature, Pairing, Standard model

1. Introduction

With the development of mobile communication
technology, mobile services have penetrated into every aspect
of people's lives. In 2017, more than 5 billion people were
associated with mobile services, and by 2025 independent
mobile users will reach 5.9 billion, equivalent to 71% of the
global population. The number of mobile Internet users will
increase by 1.75 billion new users by then, reaching a
milestone of 5 billion users in 2025. Global mobile data traffic
grew strongly, with a compound annual growth rate of 73.46%
in 2010-2017, with smartphone mobile data traffic growing at
a compound annual growth rate of 121.69% from 2010 to 2017.

People are enjoying the convenience of mobile
communications while also facing the risk of personal privacy
leaks. Due to size constraints, the computing power of
personal mobile communication devices is limited. Some
previous cryptographic schemes require more computing costs,
so they are not suitable for personal mobile communication
devices. Therefore, it is meaningful to design secure and
efficient cryptographic schemes for mobile computing.

In 1996, Mambo et al. [1] put forward the notion of proxy
signatures, which means that when the authorizer (original
signer) cannot exercise the signature right for some reason, he
can authorize the designated agent to exercise the signature
right instead of himself. The original signer designated the

agent to sign instead of himself, and does not need to provide
his private key to the agent.

Al-Riyami et al. [2] presented the certificateless public key
cryptography (CLPKC). The user’s private key is made up of
two parts: a partial private key yield by key generation center
(KGC) and a secret value chosen by the user himself. It avoids
key escrow and certificate management.

1.1 Related Work

Li et al. [3] put forward the first certificateless proxy

signature (CLPS) scheme. Unfortunately, they did not show
the security proofs. Choi et al. [4] and Lu et al. [5] indicated
that the scheme [3] is insecure against proxy signature forgery
attacks, and proposed an improved scheme, respectively.
However, the security proofs of the improved schemes were
not shown too. Chen et al. [6] put forward a new security
model and constructed a new CLPS scheme with provably
security. Xiong et al. [7] presented a CLPS scheme that needs
to perform eight pairing operations. Seo et al. [8] and Zhang
et al. [9] presented a CLPS scheme and showed the security
proofs, respectively. Deng et al. [10] proposed a CLPS scheme
that needs to perform two pairing operations. He et al. [11]
presented a CLPS scheme from elliptic curve group. Deng et
al. [12] proposed a CLPS scheme and showed the security
proofs based on RSA problem. These two schemes [11-12] do
not use pairing operations. Jin and Wen [13] put forward a
certificateless multi-proxy signature (CLMPS) scheme.
However, Xu et al. [14] indicated that the scheme has three
disadvantages and proposed an improved scheme. Qu et al. [15]
presented a CLMPS scheme that does not need to perform
pairing operation. The security proofs of the above schemes
were shown in ROM. Eslami and Pakniat [16] put forward the
first CLPS scheme with provably security in SM. However,
they did not provide a concrete security proof. Lu and Li [17]
showed that the scheme [16] has some security drawbacks and
presented a new scheme that is provably secure in SM. Ming
and Wang [18] constructed a CLPS scheme, and gave the
security proofs in SM. Yang et al. [19] came up with a new
CLPS scheme and claimed that their scheme is provable
secure in SM. However, Lin et al. [20] indicated that a Type
II adversary can forge a valid signature in the scheme [19].

1.2 Motivations and Contributions

280 Journal of Internet Technology Vol. 23 No. 2, March 2022

 In the last ten years, several concrete CLPS schemes
were proposed. There are only two schemes [17-18] with
provably security in SM. In the two schemes, the size of the
system parameter increases linearly with the size of the user's
identity information, and the number of addition operations on
the elliptic curve group increases linearly with the size of the
user's identity information. Therefore, these two schemes are
not suitable for mobile computing scenarios. So it is attractive
to design a CLPS scheme for mobile computing that is
provable secure in SM and requires a constant number of
pairing operations.

In this paper, we constructed a new CLPS scheme with the
following features:
• It is secure against Type I/II adversary in SM
• It was constant that the size of system parameters and the

size of master secret key.
• It was constant that the number of three kinds of

operations (addition, scalar multiplication, and pairing).

1.3 Roadmap

The rest of the content are arranged as follows: First, we

introduced the bilinear pairing and computation attack
algorithm problem in Sec.2. Second, we proposed the system
model and a concrete CLPS scheme in Sec.3 and Sec.4,
respectively. Third, we presented the security model and the
security proofs of new scheme in Sec.5 and Sec.6, respectively.
Next, we made the performance comparisons on several
schemes in Sec.7. Lastly, we gave some conclusions in Sec.8.

2 Preliminaries

For ease of understanding, we listed the symbols used in

the paper in Table 1.

Bilinear pairing

Let 1 1 2ˆ :e G G G → be a map with the following
properties, where 1G and 2G are an additive group and a
multiplicative group, respectively, and their order is q

• Bilinearity: () ()1 2 1 2ˆ ˆ, , abe aP bP e P P= for all

• 1 2 1,P P G and , qa b Z .
• Non-degeneracy: There exist 1 2 1,P P G such that

()
21 2ˆ , 1Ge P P  .

• Computability: There is an efficient algorithm to compute
()1 2ˆ ,e P P for all 1 ,P 2P 1G .

Definition 1 CAA (Computation attack algorithm)
problem[21]. Given a generator P of the group 1G and a

tuple (),P xP , output a pair
1,c P

x c
 
 + 

, where *
qc Z .

3 System Model

A CLPS scheme consists of four entities: Key generation

center (KGC), original signer, proxy signer and verifier.

KGC: It generates system parameters and publishes them
to the outside world, generates a partial private key (PPK)
according to the user's identity, and sends it to the user through
an authenticated channel.

Original signer: He/she generates a delegation and sends it
to the proxy signer.

Proxy signer: He/she generates a signature on a message
on behalf of the original signer according to the delegation and
sends it to the verifier.

Verifier: He/she checks its validity after receiving the
signature.

A CLPS scheme contains the following eight algorithms:
• Setup: Inputs a security parameter  , KGC generates the

system parameters (params) and master secret key
(msk).

• PPK-Extract: Inputs an identity  0,1iID 
 , PKG

generates a partial private key.

• SV-Set: Inputs an identity  0,1iID 
 , the user sets his

own secret value.

• UPK-Generate: Inputs an identity  0,1iID 
 , the users

generates a user public key.
• Delegate: Inputs a tuple (), ,w o om t D , the original signer

generates a delegation.
• Delegation-Verify: Inputs a tuple (,wm δ), the proxy signer

checks whether the delegation is valid.
• Proxy-Sign: Inputs a tuple (, ,wm m δ , ,p pt D), the proxy

signer generates a signature.
• PS-Verify: Inputs a tuple (, ,wm m δ, σ), the receiver checks

whether the signature is valid.

Table 1. Notations

Symbol Meaning
pF A prime finite field

q A prime number
*
qZ A set making up of positive integers

less than q

1G An additive group with prime order
q

2G An multiplicative group with prime
order q

ê A bilinear pairing, where
1 1 2ˆ :e G G G →

x The master secret key of system
P A generator of the group 1G

pubP The public key of system, where
pubP xP=

1 2 3, ,H H H Three secure hash functions

oID The identity of the original signer

pID The identity of the proxy signer

iID The identity of the thi user
(,)i i iD R d= The partial private key of the thi

user, where i iR r P=

Provably Secure Certificateless Proxy Signature Scheme in the Standard Model 281

it The secret value of the thi user,
where i iT t P=

(,)i i iPK R T= The public key of the thi user

wm { , , , }o o p p wID PK ID PK m
δ A delegation
σ A proxy signature

4 Our Scheme

We proposed a new CLPS scheme as follows.
• Setup: Inputs a security parameter v , KGC performs

following steps.
1. Selects a bilinear pairing 1 1 2ˆ :e G G G → , as that

defined in sec.2 .
2. Picks a generator P of 1G , computes ()ˆ ,E e P P= .
3. Selects three secure hash functions

 1 2 3, , : 0,1 qH H H Z → .
4. Chooses qx Z  , computes pubP xP= , sets

 msk x=
5. Publishes the system parameters

 1 2 1 2 3ˆ, , , , , , , , , }pubparams G G q e P P E H H H= .

•PPK-Extract: For an identity  0,1iID 

 , KGC
randomly picks i qr Z  , computes i iR r P= ,

(1 ,)i i ik H ID R= and i i id r k x= + mod q , then forwards

(),i i iD R d= to the user via an authenticated channel.
The user computes (1 ,)i i ik H ID R= , and checks whether

i i i pubd P R k P= + . Accepts the partial private key if and only if
the equation holds.

• SV-Set: The user iID randomly chooses i qt Z  .

•UPK-Generate: The user iID computes i iT t P= , and

sets (),i i iPK T R=

•Delegate: The original signer /o oID PK performs the

following steps to generate a delegation.
1. Computes ()2 , ,w o oh H m ID PK= .

2. Computes 1=
o o

Y P
d ht+

.

3. Outputs δ Y= as the delegation.
Where wm includes /o oID PK , /p pID PK , and the

delegation duration and so on.

•Delegation-Verify: To verify a delegation (,)wm Y = ,

the verifier does as follows.
1.Computes

()1 , ,o o ok H ID R=
 (2 ,wh H m=),o oID PK .

2. Checks whether
()ˆ , o o pub oe Y R k P hT+ + E= .

Accepts the delegation if and only if the equation holds.

• Proxy-Sign: The proxy signer /p pID PK performs the

following steps to generate a signature.
1.Computes (3 , , , , , ,)w o o p pl H m m Y ID PK ID PK=

2. Computes 1=
p p

Z P
d lt+

.

3. Outputs σ (,)Y Z= as the signature.

• PS-Verify: To verify a signature (, ,wm m σ (,)Y Z=) , the

verifier does as follow:
1.Computes

()1 , ,o o ok H ID R= ()1 , ,p p pk H ID R=

(2 ,wh H m=),o oID PK ,

(3 , ,wl H m m=), , , ,o o p pY ID PK ID PK .
2. Checks whether
()ˆ , o o pub oe Y R k P hT+ + = E ,

()ˆ , p p pub pe Z R k P lT E+ + = .
Accepts the signature if and only if both of equalities hold.

5 Security Model

The security requirements of a CLPS scheme are presented

as follows.

Definition 3. In the following two games, if the

adversary’s advantage is negligible, then the CLPS scheme is
unforgeable (UNF-CLPS)

Game I. Challenger ℭ plays this game with a
 Type I adversary 𝒜1.

Initialization. ℭ gets the msk and params by running the

Setup algorithm, then forwards params to 𝒜1 and keeps msk
as secret.

Query. 𝒜1 issues various queries as follows.
• UPK-Query: 𝒜1 inputs an identity iID , ℭ returns a

public key iPK .
•UPK-Replacement: 𝒜1 submits a tuple (/

iPK , iID),
ℭ replaces iPK with /

iPK .
• PPK-Query: 𝒜1 submits an identity iID , ℭ returns a

partial private key iD . 𝒜1 cannot do it if the value iR has
been replaced

• SV-Query: 𝒜1 submits an identity iID , ℭ returns a secret
value it . 𝒜1 can not do it if the value iT has been replaced

•Delegation-Query: 𝒜1 submits a warrant wm , ℭ returns
a delegation δ.

•PS-Query: 𝒜1 submits a tuple (, ,wm m δ), ℭ returns a
proxy signature σ.

Forge. 𝒜1 outputs a tuple (* ,wm δ*) or (

* *, ,wm m σ*). The

adversary wins if one of following cases holds.

282 Journal of Internet Technology Vol. 23 No. 2, March 2022

•Case 1: The final output is (* ,wm δ*) and it satisfies the
following requirements.

1. Verify(* ,wm δ*) =1.
2. δ* is not obtained by Delegation-Query.
3. 𝒜1 did not make PPK-Query for the original signer oID .
•Case 2: The final output is (

* *, ,wm m σ*) and it satisfies

the following requirements.
1. Verify (

* *, ,wm m σ*) =1.

2. σ* is not obtained by PS-Query..
3. 𝒜1 did not make Delegation-Query for the warrant *

wm .
4. 𝒜1 did not make PPK-Query for the original signer oID .
•Case 3: The final output is (

* *, ,wm m σ*) and it satisfies

the following requirements.
1. Verify (

* *, ,wm m σ*) =1.

2. σ* is not obtained by PS-Query.
3. 𝒜1 did not make PPK-Query for the proxy signer pID .

The advantage of 𝒜1 is defined as:

1

UNF CLS
AAdv − = Pr [𝒜1

wins]

Game II. Challenger ℭ plays this game with a Type II

adversary 𝒜2

Initialization. ℭ gets the msk and params by running the

Setup algorithm, then forwards them to 𝒜2 .

Query. 𝒜2 issues various queries as those in Game I.

Forge. 𝒜2 outputs a tuple (* ,wm δ*) or (

* *, ,wm m σ*).

The adversary wins if one of following cases holds.
•Case 1: The final output is (* ,wm δ*) and it satisfies the

following requirements.
1. Verify(* ,wm δ*) =1.
2. δ* is not obtained by Delegate-Query.
3. 𝒜2 did not make SV-Query for the original signer oID .
4. 𝒜2 did not make UPK-Replacement for the original

signer oID .
•Case 2: The final output is (

* *, ,wm m σ*) and it satisfies

the following requirements.
1. Verify (

* *, ,wm m σ*) =1.

2. σ* is not obtained by PS-Query..
3. 𝒜2 did not make Delegation-Query for the warrant *

wm .
4. 𝒜2 did not make SV-Query for the original signer oID .
5. 𝒜2 did not make UPK-Replacement for the original

signer oID .
•Case 3: The final output is (

* *, ,wm m σ*) and it satisfies

the following requirements.
1. Verify (

* *, ,wm m σ*) =1.

2. The value σ* is not obtained through PS-Query.
3. 𝒜2 did not make SV-Query for the proxy signer pID .
4. 𝒜2 did not make UPK-Replacement for the proxy signer

pID .

The advantage of 𝒜2 is defined as:

2

UNF CLS
AAdv − = Pr [𝒜2

wins]

Remark: To forge a delegation (* ,wm δ*)，𝒜1 can make

SV-Query for the original signer *
oID or even replace the

value *
oT . However, he can not get the value *

od . On the
other hand, 𝒜2 can make PPK-Query for the original signer

*
oID . However, he can not get the value *

ot .
To forge a proxy signature (

* *, ,wm m σ*)，𝒜1 can make

SV-Query for the proxy signer *
pID or even replace the value

*
pT . However, he can not get the value *

pd . On the other hand,

𝒜2 can make PPK-Query for the proxy signer *
pID . However,

he can not get the value *
pt .

6 Security of Scheme

We gave the security proofs in SM. In the following proofs,

the adversary can directly calculate the hash function instead
of querying the challenger

6.1 Correctness of Delegation

()ˆ , o o pub oe Y R k P hT+ +

1ˆ , o o o
o o

e P r P k xP ht P
d ht

 
= + + + 

()1ˆ , o o o
o o o

e P r k x ht P
r k x ht

 
= + + + + 

()ˆ ,e P P=

E=

6.2 Correctness of Proxy Signature

()ˆ , p p pub pe Z R k P lT+ +

1ˆ , p p p
p p

e P r P k xP lt P
d lt

 
= + + 

 + 

()1ˆ , p p p
p p p

e P r k x lt P
r k x lt

 
= + + 

 + + 

()ˆ ,e P P=
E=

Theorem 1. If the CAA problem is hard, the scheme is

unforgeable against an adversary 𝒜1 in SM.

Proof. Suppose that the challenger ℭ want to solve an

instance of the CAA problem (),P aP , he does as follows.

Initialization. ℭ runs the Setup algorithm with a

parameter v , then gives 𝒜1 the

Provably Secure Certificateless Proxy Signature Scheme in the Standard Model 283

 1 2 1 2 3ˆ, , , , , , , , ,pubparams G G q e P P xP E H H H= =
Queries. 𝒜1 will first perform UPK-query for each

identity.
• UPK-Query: ℭ maintains a list UL of tuple

(), ,i i iID t r .When 𝒜1 inputs an identity iID , ℭ does as
follows:

1. For i j= , picks at random j qt Z  , sets jID ID= ,

returns (),j jPK PK t P aP= = , then stores the tuple

(), ,j jID t  in the list UL

2. For i j , randomly picks ,i i qt r Z  and returns

(),i i iPK t P r P= , then stores the tuple (), ,i i iID t r in the list

UL .
• UPK-Replacement: ℭ maintains a list RL of

tuple (,i iID PK ,)/
iPK . When 𝒜1 submits a tuple (iID ,

/
iPK), ℭ replaces iPK with /

iPK and adds

()/, ,i i iID PK PK to the list RL .

• PPK-Query: ℭ maintains a list DL of tuple (),i iID D .

When 𝒜1 submits an identity iID . If iID ID= , ℭ fails.
Otherwise, ℭ finds (), ,i i iID t r in the list UL , gives the iD

by running PPK-Extract algorithm and adds (),i iID D to the
list DL .

• SV-Query: When 𝒜1 submits an identity iID , ℭ finds the
tuple (), ,i i iID t r in the list UL , and responds with it .

• Delegation-Query: When 𝒜1 submits a warrant wm , ℭ
generates a delegation as follows:

1. oID ID and o RID L , ℭ outputs a delegation δ
by running Delegate algorithm.

2. o RID L , then (),o o oPK t P r P= has been replaced

by ()/ / /,o o oPK t P r P= . If /
o ot t (or /

o or r), 𝒜1 must

send the value /
ot (or /

or) to ℭ, ℭ obtains the value /
ot (or

/
od) by running SV-Set (or PPK-Extraction) algorithm, and

finally outputs a delegation δ by running Delegate algorithm.
3. =oID ID , then ℭ fails.
• PS-Query: When 𝒜1 submits a tuple (, ,wm m δ), ℭ

gerenates a signature as follows:
1. pID ID and p RID L , ℭ outputs a proxy

signature σ by running Proxy Sign algorithm.
2. p RID L , then (),p p pPK t P r P= has been replaced

by ()/ / /,p p pPK t P r P= . If /
p pt t (or /

p pr r), 𝒜1 must

send the value /
pt (or /

pr) to ℭ, ℭ then obtains the value /
pt

(or /
pd) by running SV-Set (or PPK-Extract) algorithm, and

finally outputs a proxy signature σ by running Proxy Sign
algorithm.

3. =pID ID , then ℭ fails.

Forge. 𝒜1 outputs a tuple (* ,wm δ*) or (* *, ,wm m σ*). ℭ

aborts if the output does not satisfy any of the cases in Game

I. Otherwise, ℭ resolves the CAA example as follows:
• Case 1. The final output is (* ,wm δ*) and fulfills the

conditions of Case 1 in Game I.
In fact, δ* is a signature on the warrant *

wm , then δ*

*
* * *

1

o o o

Y P
r k x h t

= =
+ +

. If * =oID ID , then

* *= , =o j o jID ID PK PK , namely,

() ()* *, ,o o jt P r P t P aP= . ℭ finds jt in the list UL ,

computes ()* * *
2 , ,w o oh H m ID PK = ,

()* *

1 ,o ok H ID aP= and
* *
o oc k x h t= + (where *

o jt t=) , outputs a solution of the
CAA example in the end.

 (,c δ*) = * * *

1,
o o o

c P
r k x h t

 
 + + 

* *

1= ,
o o

c P
a k x h t

 
= + + 

1,c P
a c

 
 + 

.

Probability. Let ,U Rq q and Dq be the number of UPK-

Query, UPK-Replacement and PPK-Query , respectively.
Some notations are defined as follows.

1 : 𝒜1 did not make PPK-Query on *
oID , nor did make

UPK-Replacement on it.
2 : ℭ did not fail in Delegation-Query and PS-Query.

3 : * =oID ID .
It is a reasonable assumption that R DL L =  . Hence it

is not difficult to obtain the following results:

 1Pr U R D

U

q q q
q


− −

= , 2 1
1Pr 1
Uq

   = −  ,

3 1 2
1Pr

U R Dq q q
     =  − −

Pr[ℭ success] = Pr[321  ]

= Pr[1]·Pr[12 |]·Pr[213 |  ]

= 1 11U R D

U U U R D

q q q
q q q q q

 − −
 −   − − 

1

Uq


Therefore, ℭ can resolve the CAA example with the

probability
Uq
 if 𝒜 1 can succeed with the probability ε

• Case 2. The final output is (* *, ,wm m σ*) and fulfills the

conditions of Case 2 in Game I.
In fact, σ* * *(,)Y Z= is a proxy signature on the tuple

* *(,)wm m , then *
* * *

1

o o o

Y P
r k x h t

=
+ +

. If * =oID ID , then * *= , =o j o jID ID PK PK , namely,

() ()* *, ,o o jt P r P t P aP= . ℭ finds jt in the list UL , computes

()* *
1 ,o ok H ID aP= , ()* * *

2 , ,w o oh H m ID PK = and

284 Journal of Internet Technology Vol. 23 No. 2, March 2022

* *
o oc k x h t= + (where *

o jt t=), outputs a solution of the
CAA example in the end.

(,c *Y) * * *

1,
o o o

c P
r k x h t

 
=  + + 

* *

1,
o o

c P
a k x h t

 
=  + + 

1,c P
a c

 =  + 

Probability. Same as that in Case 1.
• Case 3. The final output is (* *, ,wm m σ*) and fulfills the

conditions of Case 3 in Game I.
In fact, σ* * *(,)Y Z= is a proxy signature on the tuple

* *(,)wm m , then *
* * *

1

p p p

Z P
r k x l t

=
+ +

. If * =pID ID , then * *
p j p jID =ID ,PK =PK , namely,

() ()* *, ,p p jt P r P t P aP= . ℭ finds jt in the list UL , computes

()* *
1 ,p pk H ID aP= , (* * *

3 , ,wl H m m=

)* * * * *, , , ,o o p pY ID PK ID PK and * *
p pc k x l t= +

(where

*
p jt t=), outputs a solution of the CAA example in the end.

(),c Z  =
* * *

1,
p p p

c P
r k x l t

 
 
 + + 

* *

1 1, ,
p p

c P c P
a ca k x l t

   = =     ++ +   

Probability. Same as that in Case 1.

Theorem 2. If the CAA problem is tricky, the scheme is

unforgeable against an adversary 𝒜2 in SM.

Proof. Suppose that the challenger ℭ want to solve an

instance of the CAA problem (),P aP , he does as follows.

Initialization. ℭ runs the Setup algorithm with a

parameter v , then gives 𝒜2 the
 1 2 1 2 3ˆ, , , , , , , , ,pubparams G G q e P P xP E H H H= = and

 msk x=

Queries. 𝒜2 will first perform UPK-query for each

identity..
• UPK-Query: ℭ maintains a list UL of tuple

(), ,i i iID t r .When 𝒜2 inputs an identity iID , ℭ does as
follows:

1. For i j= , selects at random
 j qr Z  , sets jID ID= ,

returns (),j jPK PK aP r P= = , then stores the tuple

(), ,j jID r in the list UL

2. For i j , selects at random ,i i qt r Z  and returns

(),i i iPK t P r P= , then stores the tuple (), ,i i iID t r in the list

UL .
• UPK-Replacement: Same as that in the Theorem 1.
• PPK-Query: When 𝒜2 submits an identity iID , ℭ finds

(), ,i i iID t r in the list UL , gives the iD by running the
PPK-Extract algorithm.

• SV-Query: ℭ maintains a list EL of tuple (),i iID t .

When 𝒜2 submits an identity iID , If iID ID= , ℭ fails.
Otherwise, ℭ finds (), ,i i iID t r in the list UL , responds with

it , then adds (),i iID D to the list EL .
• Delegation-Query: Same as that in the Theorem 1.
• PS -Query: Same as that in the Theorem 1.

Forge. 𝒜2 outputs a tuple (* ,wm δ*) or (* *, ,wm m σ*). ℭ

aborts if the output does not satisfy any of the cases in Game
II. Otherwise, ℭ resolves the CAA example as follows:

• Case 1. The final output is (* ,wm δ*) and fulfills the
conditions of Case 1 in Game II.

In fact, δ* is a signature on the warrant *
wm , then δ*

*
* * *

1=
o o o

Y P
r k x h t

=
+ +

. If * =oID ID , then * =o jID ID ,

* =o jPK PK namely, ()* *,o ot P r P (), jaP r P= . ℭ finds jr in

the list UL , computes ()* * *
2 , , ,w o oh H m ID PK =

*
ok =

()*
1 ,oH ID aP and * 1 * *()o oc h r k x−= + (where *

o jr r=),

outputs a solution of the CAA example in the end.

 (*,c h δ*) =
*

* * *,
o o o

hc P
r k x h t

 
 + + 
*

* *,
o o

hc P
r k x h a

 
=  + + 

* 1 * *

1,
()o

c P
h r k x a−

 
=  + + 

1,c P
c a

 =  + 
Probability. Let ,U Rq q and Eq be the number of UPK-

Query, UPK-Replacement and SV-Query, respectively. Some
notations are defined as follows.

1 : 𝒜2 did not make SV-Query on *
oID , nor did make

UPK-Replacement on it.
2 : ℭ did not fail during Delegation-Query and PS-Query.

3 : * =oID ID .
It is a reasonable assumption that R EL L =  . Hence it

is not difficult to obtain the following results:

 1Pr U R E

U

q q q
q


− −

= , 2 1
1Pr 1
Uq

   = − 

3 1 2
1Pr

U R Eq q q
     =  − −

Pr[ℭ success] = Pr[321  ]

= Pr[1]·Pr[12 |]·Pr[213 |  ]

= 1 11U R E

U U U R E

q q q
q q q q q

 − −
 −   − − 

1

Uq


Therefore, ℭ can resolve the CAA example with the

Provably Secure Certificateless Proxy Signature Scheme in the Standard Model 285

probability ε / Uq if 𝒜2 can succeed with the probability ε .

• Case 2. The final output is (* *, ,wm m σ*) and fulfills the

conditions of Case 2 in Game II.
In fact, σ* * *(,)Y Z= is a proxy signature on the tuple

* *(,)wm m , then *
* * *

1

o o o

Y P
r k x h t

=
+ +

If * =oID ID ,then * *= , =o j o jID ID PK PK ,namely

, () ()* *, ,o o jt P r P aP r P= . ℭ finds jr in the list UL ,

computes ()* * *
2 , ,w o oh H m ID PK = ,

()* *

1 ,o ok H ID aP=

and * 1 * *()o oc h r k x−= + (where)*
o jr r= , outputs a solution

of the CAA example in the end.

.(c , * *h Y)=
*

* * *,
o o

hc P
r k x h a

 
 + + 

* 1 * *

1,
()o o

c P
h r k x a−

 
=  + + 

1,c P
a c

 =  + 

Probability. Same as that in Case 1.

• Case 3. The final output is (* *, ,wm m σ*) and fulfills the

conditions of Case 3 in Game II.
In fact, σ* * *(,)Y Z= is a proxy signature on the tuple

* *(,)wm m , then *
* * *

1

p p p

Z P
r k x l t

=
+ +

. If * =pID ID , then

* =p jID ID , * =p jPK PK , namely, () ()* *, ,p p jt P r P aP r P= . ℭ

finds jr in the list UL , computes ()* *
1 ,p pk H ID aP= ,

()* * * * * * * *
3 , , , , , ,w o o p pl H m m Y ID PK ID PK= and

* 1 * *()p pc l r k x−= +

(where *
p jr r=), outputs a solution of the

CAA example in the end.

()*,c l Z  =
*

* *,
p p

lc P
r k x l a

 
 
 + + 

=
* 1 * *

1,
()p p

c P
l r k x a−

 
 
 + + 

1,c P

a c
 =  + 

Probability. Same as that in Case 1.

7 Efficiency and Comparison

We compared the performance of the new scheme with the

other two CLPS schemes. We listed the symbols in Table 2
that need to be used in this section.

Table 2. Notations

PB
1GS

1GA
2GM

2GE H

5.427 2.165 0.013 0.001 0.339 0.007

We used third-party data to analyze the performance of the

three CLPS schemes. The running times on basic
cryptographic operations are listed in Table 3. In order to

accomplish 1024-bit RSA security level, the
hardware/software parameters used in the experiments [22]
are as follows: cryptographic library (MIRACL) and a
computer (Dell with an I5-4460S 2.90GHz processor, 4G
bytes memory and the Window 8 operating system), a Tate
pairing 1 1 2ˆ :e G G G → and 1G with order q is an additive
group over a super singular curve 2 3/ : 1pE E y x= + , where
p and q are 512-bits prime number and 160-bits prime

number, respectively.
We used a simple, intuitive method to evaluate the

computational efficiency of the three schemes, as shown in
Figure 1. Without loss of generality, it is assumed that the size
of the identity information of a user is 60 bits, and the size of
the output of a hash function (SHA1) is 160 bits. Namely,

 60IDB n= = (bits) and 160m wB B u= = = (bits). Further,

30
2ID
n

 = = (bits) and
2m w
u

 =  = =80 (bits).

In Delegation, the scheme [17] requires 3 scale

multiplication operations in 1G , 2 addition operations in 1G
and 1 hash function opretions. In Delegation-Verify, it
requires 4 pairing operations, 1 scale multiplication

operations in 1G ,
1

2
n +

 addition operations in 1G , 2

multiplication operations in 2G and 2 hash function opretions.
In Proxy-Sign, it requires 6 scale multiplication operations in

1G , 6 addition operations in 1G and 2 hash function opretions.
In PS-Verify, it requires 5 pairing operations, 2n+ addition
operations in 1G , and 2 scale multiplication operations in 1G ,
5 multiplication operation in 2G and 2 hash function
opretions. So the resulting computation time is
5 427 9 2 165 12. . +  +

30 013 11 0 001 7 0 007 6 0 013
2
n. . . = . 

 + +  +  
 

3 75 015
2
n . + . When 60n = , the computation time is

3 60
2

0.013 75.015+


 76.185= ms.

Table 3. Operation time (in milliseconds)

Symbol Meaning
IDB A bit string of the identity information of a

user, where IDB n=
[]IDB i The ith bit of the identity information of a user

ID A set of indices i such that [] 1IDB i = ,
namely { : [] 1}ID IDi B i = =

wB The output bit string of a warrant hush
function, where wB u=

[]wB i The ith bit of a warrant
w A set of indices i such that [] 1wB i = ,

namely { : [] 1}w wi B i = =

mB The output bit string of a message hush
function, where mB u=

286 Journal of Internet Technology Vol. 23 No. 2, March 2022

[]mB i The ith bit of a message

m A set of indices i such that [] 1mB i = ,
namely { : [] 1}m mi B i = =

PB A pairing operation

1GS A scale multiplication operation in 1G

1GA A addition operation in 1G

2GM A multiplication operation in 2G

2GE An exponentiation operation in 2G
H A hash function operation

1G An element in 1G

2G An element in 2G
*
qZ An element in *

qZ

In Delegation, the scheme [18] requires 4 scale

multiplication operations in 1G and 1
2
u
+ addition

operations in 1G and 1 hash function opretions. In Delegation-

Verify, it requires 3 pairing operations,
2

n u+
 addition

operations in 1G , 3 multiplication operations in 2G and 1
hash function opretions. In Proxy-Sign, it requires 10 scale
multiplication operations in 1G , 8n u+ + addition

operations in 1G and 4 hash function opretions. In PS-
Verify, it requires 5 pairing operations, n u+ addition
operations in 1G , 5 multiplication operation in 2G and 4
hash function opretions. So the resulting computation time is

55 427 8 2 165 14 0 013 3 9
2

. . . n u 
 +  +  + + 

 

50 001 8 0 007 10 0 013 3 9 73 804
2

. . = . n u . +  +   + + + 
 

 ms. When

60, 160n u= = , the computation time is
5 60(3 1600.013 73.804 82.9) 11

2
1+ =


 +  + ms.

In Delegation, new scheme requires 1 scale function
opretions. In Delegation-Verify, it requires 1 pairing
operations, 2 scale multiplication operations in 1G , 2
addition operations in 1G and 1 hash function opretions. In
Proxy-Sign, it requires 1 scale multiplication operations in

1G and 1 hash function opretions. In PS-Verify, it requires
2 pairing operations, 4 scale multiplication operations in 1G ,
4 addition operations in 1G and 4 hash function opretions. So
the resulting computation time is
5 427 3 2 165 8 0 013 6 0 007 8 33 735. +  +  +  = m.

We listed the computation costs for the three CLPS
schemes in Table 4.

Table 4. Comparison of three CLPS schemes

Scheme Lu [17] Ming [18] Our scheme
Delegate 3

1GS +2
1GA + H

4
1GS +

1
(1)
2 G
u A+ + H 1GS + H

Delegation-

Verify
4 PB +

1
(1)
2 G
n A+

+

1GS +2
2GM + H

3 PB +
1

()
2 G

n u A+

+3
2GM + H

PB +2
1GS

+2

1GA +2 H

Time ()60, 160n u= = 0.013
2
n

 +30.423

(30.813)

0.013 ()
2
n u + +24.971

(27.441)

11.969

Proxy-Sign 6
1GS +6

1GA +2 H 10
1GS +

1
(8) Gn u A+ + +4 H

1GS + H

PS-Verify
5 PB +

1
(2) Gn A+

+2

1GS +5
2GM +2 H

5 PB +
1

() Gn u A+

+5
2GM +4 H

2 PB +4
1GS +4

1GA

+4 H

Time ()60, 160n u= = 0.013 n +44.592

(45.372)

0.013 (2 2)n u + +48.95

(54.670)
21.766

Total Time

()60, 160n u= =

0.013
3
2
n

 +75.015

(76.185)

0.013
5(3)
2
n u + +73.921

(82.111)

33.735

Size of Params

()60, 160n u= =

1(8)n G+

(4352 bytes)

1(2 5)n u G+ +

(24640 bytes)

2 1G + 2G

(192 bytes)

Size of MSK 1G (64 bytes) 1G (64 bytes) *
qZ (20 bytes)

Size of Signature 5 1G (320 bytes) 5 1G (320 bytes) 2 1G (128bytes)

Provably Secure Certificateless Proxy Signature Scheme in the Standard Model 287

Figure 1. Computation cost

Follow on, we evaluated the size of system parameters, the

size of master key and the size of signature, as shown in Figure
2. In the scheme [17], the system parameters contain 8n+
points over an elliptic curve 2 3/ : 1pE E y x= + , thus the size
is [(60 8) 512] / 8 4352+  = bytes. The master secret key
contains one point over an elliptic curve 2 3/ : 1pE E y x= + ,

thus the size is 512 / 8 64= bytes. The signature contains five
points over an elliptic curve 2 3/ : 1pE E y x= + , thus the size
is (5 512) / 8 320 = bytes. In the scheme [18], the system
parameters contain 2 5n u+ + points over an elliptic curve

2 3/ : 1pE E y x= + , thus the size is
[(60 320 5) 512] / 8 24640+ +  = bytes. The master secret key
contains one point over an elliptic curve 2 3/ : 1pE E y x= + ,

thus the size is 512 / 8 64= bytes. The signature contains five
points over an elliptic curve 2 3/ : 1pE E y x= + , thus the size
is (5 512) / 8 320 = bytes. In our scheme, the system
parameters contain three points over an elliptic curve

2 3/ : 1pE E y x= + , thus the size is [3 512] / 8 192 = bytes.
The master secret key contains one point over *

qZ , thus the size

is160 / 8 20= bytes. The signature contains two points over an
elliptic curve 2 3/ : 1pE E y x= + , thus the size is
(2 512) / 8 128 = bytes.

Figure 2. Storage cost

With the continuous advancement of network technology,

electronic signatures are widely used in various scenarios,
such as e-commerce, electronic voting, and remote access

control. The original signer may be inconvenient to generate a
signature in certain situations (for example sickness,
imprisonment, etc.), and he/she can authorize a trustworthy
person to exercise the right to sign. In the new sheme, the
proxy signer generates a new signature with his own private
key and delegation generated by the original signer, then sends
it to the receiver. Verifying the signature, the receiver can
determine whether the signature and delegation are valid. The
new scheme requires only three pairing operations and enjoys
lower computation cost.

8 Conclusion

It was in ROM that most known CLPS schemes is proved

to be secure. There are only two CLPS schemes with provably
secure in SM. In ROM, the hash function value obtained by
the adversary is provided by the challenger, rather than by a
real function computation. A cryptography scheme that has
been proven to be secure in ROM is not necessarily secure in
real-world applications. In this paper, we constructed a new
CLPS scheme and showed the security proofs in SM. In the
scheme, it was constant that the size of system parameters and

the size of master secret key, it was constant that the
number of three kinds of operations (addition, scalar
multiplication and pairing). It was shown that the proposed
scheme is more efficient and suitable for mobile computing.

Acknowledgment

This research is supported by the National Natural Science

Foundation of China under Grant No. 61962011, Guizhou
Provincial Science and Technology Foundation Science under
Grant No. [2019] 1434. Guiyang City Science and Technology
Plan Project under Grant No. [2021] 43-8. Guizhou Normal
University Academic New Seedling Project under Grant No.
[2019].

References

[1] M. Mambo, K. Usuda, E. Okamoto, Proxy signature:

Delegation of the power to sign messages, IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol. E79-A,
No. 9, pp. 1338-1354, September, 1996.

[2] S. Al-Riyami, K. Paterson, Certificateless public key
cryptography, in: C. S. Laih (Eds.), Advances in
Cryptology- Asiacrypt, Lecture Notes in Computer
Sciences, vol. 2894, Springer, 2003, pp. 452-473.

[3] X. Li, K. Chen, L. Sun, Certificateless signature and
proxy signature schemes from bilinear pairings,
Lithuanian Mathematical Journal, Vol. 45, No. 1, pp.
76-83, January, 2005.

[4] R. Lu, D. He, C. Wang, Cryptanalysis and improvement
of a certificateless proxy signature scheme from bilinear
pairings, 8th ACIS International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing,
Qingdao, China, 2007, pp. 285-290.

[5] K. Choi, D. Lee, Certificateless proxy signature scheme,
3rd International Conference on Multimedia,
Information Technology and its Applications (MITA

288 Journal of Internet Technology Vol. 23 No. 2, March 2022

2007), Manila, Philippines, 2007, pp. 437-440.
[6] H. Chen, F. Zhang, R. Song, Certificateless proxy

signature scheme with provable security, Journal of
Software, Vol. 20, No. 3, pp. 692-701, March, 2009.

[7] H. Xiong, F. Li, Z. Qin, A provably secure proxy
signature scheme in certificateless cryptography,
Informatica, Vol. 21, No. 2, pp. 277-294, April, 2010.

[8] S. Seo, K. Choi, J. Hwang, S. Kim, Efficient
certificateless proxy signature scheme with provable
security, Information Sciences, Vol. 188, pp. 322-337,
April, 2012.

[9] L. Zhang, F. Zhang, Q. Wu, Delegation of signing rights
using certificateless proxy signatures, Information
Sciences, Vol. 184, No. 1, pp. 298-309, February, 2012.

[10] L. Deng, J. Zeng, H. Huang, Efficient certificateless
proxy signature scheme, International Journal of
Foundations of Computer Science, Vol. 27, No. 1, pp.
85-100, January, 2016.

[11] D. He, Y. Chen, J. Chen, An efficient certificateless
proxy signature scheme without pairing, Mathematical
and Computer Modelling, Vol. 57, No. 9-10, pp. 2510-
2518, May, 2013.

[12] L. Deng, J. Zeng, Y. Qu, Certificateless proxy signature
from RSA, Mathematical Problems in Engineering, Vol.
2014, Article No. 373690, pp. 1-10, June, 2014,

[13] Z. Jin, Q. Wen, Certificateless multi-proxy signature,
Computer Communications, Vol. 34, No. 3, pp. 344-352,
March, 2011.

[14] J. Xu, H, Sun, Q. Wen, H. Zhang, Improved
certificateless multi-proxy signature, Journal of China
Universities of Posts and Telecommunications, Vol. 19,
No. 4, pp. 94-105, August, 2012.

[15] Y. Qu, L. Deng, X. Bao, H. Huang, An efficient
certificateless multi-proxy signature scheme without
pairing, International Journal of Electronic Security and
Digital Forensics, Vol. 8, No. 2, pp. 148-163, March,
2016.

[16] Z. Eslami, N. Pakniat, A certificateless proxy signature
scheme secure in standard model, International
Conference on Latest Computational Technologies,
Bangkok, Thailand, 2012, pp. 81-84.

[17] Y. Lu, J. Li, Provably secure certificateless proxy
signature scheme in the standard model, Theoretical
Computer Science, Vol. 639, pp. 42-59, August, 2016.

[18] Y. Ming, Y. Wang, Certificateless proxy signature
scheme in the standard model, Fundamenta
Informaticae, Vol. 160, No. 4, pp. 409-445, July, 2018.

[19] W. Yang, J. Weng, X. Huang, A. Yang, A provably
secure certificateless proxy signature scheme against
malicious-but-passive KGC attacks, The Computer
Journal, Vol. 63, No. 1, pp. 1139-1147, January, 2020.

[20] X. Lin, Q. Wang, L. Sun, Z. Yan, P. Liu, Security
analysis of the first certificateless proxy signature
scheme against malicious-but-passive KGC attacks, The
Computer Journal, Vol. 64, No. 4, pp. 653-660, April,
2021.

[21] L. Deng, Y. Yang, R. Gao, Y. Chen, Certificateless short
signature scheme from pairing in the standard model,
International Journal of Communication Systems, Vol.
31, No. 17, Article No. e3796, November, 2018.

[22] D. He, N. Kumar, K. Choo, W. Wu, Efficient
hierarchical identity-based signature with batch
verification for automatic dependent surveillance-

broadcast system, IEEE Transactions on Information
Forensics and Security, Vol. 12, No. 2, pp. 454-464,
February, 2017.

Biographies

Lunzhi Deng received his B.S. from
Guizhou Normal University, Guiyang,
China, in 2002; M.S. from Guizhou Normal
University, Guiyang, China, in 2008; and
Ph.D. from Xiamen University, Xiamen,
China, in 2012. He is now a professor in the
School of Mathematical Sciences, Guizhou
Normal University, Guiyang, China. His
recent research interests include

cryptography and information security.

Zhenyu Hu received the B.S. degree from
Shanghai University of Electric Power,
Shanghai, China, in 2016. He is currently a
postgraduate student with Guizhou Normal
University, Guiyang, China. His research
interests include cryptography and
information security.

Yu Ruan received her B.S. from Qiushi
College of Guizhou Normal University,
Guiyang, China, in 2020. She is currently a
postgraduate student with Guizhou Normal
University, Guiyang, China. Her research
interests include cryptography and
information security.

Tao Wang received his B.S. from
Information College of Huaibei Normal
University, Huaibei, China, in 2020. He is
currently a postgraduate student with
Guizhou Normal University, Guiyang,
China. His research interests include
cryptography and information security.

https://www.webofscience.com/wos/alldb/full-record/WOS:000582318200002
https://www.webofscience.com/wos/alldb/full-record/WOS:000582318200002
https://www.webofscience.com/wos/alldb/full-record/WOS:000582318200002
https://www.webofscience.com/wos/alldb/full-record/WOS:000649389100010
https://www.webofscience.com/wos/alldb/full-record/WOS:000649389100010
https://www.webofscience.com/wos/alldb/full-record/WOS:000649389100010

	組合 1
	JIT2302-01
	JIT2302-02
	JIT2302-03
	JIT2302-04
	JIT2302-05
	空白頁面

	組合 2
	JIT2302-06
	JIT2302-07
	JIT2302-08
	JIT2302-09
	JIT2302-10
	空白頁面

	組合 3
	JIT2302-11.0 Guest Ediorial
	JIT2302-11.1
	JIT2302-12
	JIT2302-13
	JIT2302-14
	JIT2302-15

	組合 4
	JIT2302-16.0 Guest Ediorial
	JIT2302-16.1
	JIT2302-17
	JIT2302-18
	JIT2302-19
	JIT2302-20
	空白頁面

	空白頁面
	空白頁面

