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Abstract 
 
As the application of Wireless Sensor Networks (WSNs) 

in today's society becomes more and more extensive, and the 
status is getting higher and higher, the node layout of sensors 
has also begun to attract social attention. In reality, the 
coverage of WSNs in 3D space is particularly important. 
Therefore, it is worth investigating an efficient way to find out 
the maximum coverage of WSNs. In this paper, a Modified 
Parallel Tunicate Swarm Algorithm (MPTSA) is proposed 
based on modified parallelism, which can improve the 
convergence of the algorithm and optimal global solution. 
Next, the proposed MPTSA is implemented and tested on 23 
benchmark functions to verify the algorithm performance. 
Finally, a WSNs network layout scheme based on MPTSA is 
proposed to improve the coverage of the whole network. 
Experimental results show that, compared with the traditional 
PSO (Particle Swarm Optimization), improved PSO (PPSO 
and APSO), GBMO (Gases Brownian Motion Optimization) 
and traditional TSA, MPTSA family algorithms show better 
performance in WSNs network layout. 
 

Keywords: Network layout, Modified parallel TSA, Tunicate 
swarm algorithm, Wireless sensor networks 

 

1  Introduction 
 
In recent decades, many scholars at home and abroad have 

proposed a variety of evolutionary algorithms [1-4]. For 
example, the classic Differential Evolution (DE) algorithm [5], 
Particle Swarm Optimization (PSO) [6], Gases Brownian 
Motion Optimization (GBMO) [7] and the QUasi-affine 
TRansformation Evolutionary (QUATRE) algorithm [8] have 
been proposed. In [9], the population is generated randomly 
through vector coding to carry out mutation and crossover 
operations between two individuals to search for optimization. 
These algorithms are inspired by biological evolution or 
biological habits in nature [10-11]. Therefore, each algorithm 
has its own rules and characteristics according to its 
inspiration source [12-15]. The evolutionary algorithm 
includes two parts: exploration and development [16]. 
Exploration is a process in which a group of organisms finds 
the best solution in situ, while development is an external 
search for the latest solution strategy [17-21]. In this paper, a 

new heuristic algorithm named TSA [22] inspired by the 
successful group behavior of membrane animals in the deep 
sea [23] is studied. But like most evolutionary algorithms, this 
algorithm has some problems, such as poor convergence, easy 
to fall into the global optimum, etc [24-27]. 

With the development of industrial engineering, 
communication theory and various fields in society, the birth 
of WSNs provides a lot of convenient conditions for people's 
life [28-30]. People can monitor the surrounding environment 
and the status of various devices through WSNs in real-time. 
At present, WSNs has been integrated into many aspects of 
society and is widely used in various fields, such as 
environmental monitoring, smart home, agricultural 
production, image processing, urban transportation, etc [31-
33]. Therefore, the research of WSNs network layout is 
particularly important [34-37]. The node deployment of 
WSNs directly affects the whole network coverage, and the 
network coverage further influences the monitoring quality of 
monitoring areas [38-39]. There are two traditional sensor 
node placement methods: deterministic coverage and random 
coverage. Deterministic coverage is that sensor nodes are 
placed in a static environment according to a predetermined 
location. In the random coverage, sensor nodes are randomly 
deployed on vehicles such as automobiles, airplanes, and ships 
[40-41]. At present, most of the researches is focused on the 
coverage of the 2D plane, which is obviously far from enough 
[42]. Considering the actual situation, we do more research on 
the coverage problem under the 3D environment [43-44]. 
Therefore, the coverage research in the 3D environment has 
been widely concerned by researchers. 

There are two scenarios in the three-dimensional 
deployment environment. On the one hand, Nodes are 
deployed in the entire three-dimensional space, such as 
underwater sensor deployment. In [45], Khalfallah et al. 
proposed a new 3D underwater WSNs deployment plan (3D-
UWSN-Deploy). For solid detection in rivers, it is necessary 
to ensure the monitoring quality and network connectivity and 
to minimize the number of underwater sensor nodes. The 
simulation results show that the scheme is effective in terms 
of deployment cost, monitoring quality, and network 
connectivity. A WSNs deployment optimization algorithm 
based on distributed parallel particle swarm optimization is 
proposed in [46], which takes coverage and life cycle as the 
optimization goals to maximize coverage and extend network 
life in a three-dimensional space with obstacles. On the other 
hand, Nodes are deployed on three-dimensional surface 
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coverage research, such as mountain surface coverage. 
Nazarzehi et al. [47] proposed an optimized deployment 
algorithm for the surface coverage of WSNs nodes. A 
decentralized random algorithm is used to drive nodes to move 
at the vertices of a truncated octahedral mesh to achieve full 
coverage of the 3D area. In order to maximize the coverage of 
WSNs, Anand et al. [48] proposed a deterministic deployment 
plan suitable for three-dimensional curved surfaces. By 
modifying the traditional Voronoi diagram algorithm and 
using it to classify terrain sectors, the experiment showed that 
the algorithm was significantly enhanced in terms of node 
uniformity, coverage and other performance. Literature [49] 
studied the deployment of WSNs on 3D terrain surfaces. In 
order to ensure the full coverage of 3D surfaces, while 
ensuring network connectivity, while minimizing energy 
consumption, Boufare et al. proposed a distribution based on 
an improved virtual force strategy. The deployment algorithm 
(3D-IDVFA-TC) can move nodes on 3D smooth, undulating 
and rough surfaces. The simulation results show that the 
algorithm can guarantee full coverage regardless of the 3D 
terrain, while effectively reducing node energy consumption. 

To solve the problem mentioned above, the modified 
parallel strategies are added to the traditional TSA to improve 
the algorithm. Finally, the proposed MPTSA is used to 
optimize the 3D coverage of WSNs. The working 
arrangements of other parts are as follows: 

Firstly, the traditional TSA is introduced, and the 
shortcomings of the traditional algorithm are analyzed. 
Secondly, aiming at the shortcomings of TSA, four modified 
parallel strategies are proposed to improve the performance of 
TSA. The performance of the proposed algorithm is verified 
by the test function. Next, a 3D coverage model of WSNs is 
introduced, and the proposed algorithm is used to optimize the 
model to verify the applicability of the algorithm in this field. 
Finally, the work of this paper is summarized. 
 
2  Tunicate Swarm Algorithm 

 
TSA is a new meta-heuristic algorithm based on 

bioinspired, which was proposed by Satnam Kaur and others 
in 2020 to optimize nonlinear constraint problems. Tunicate 
has the ability to find food sources in the ocean. Yet, in a given 
search space, we don't know where the food comes from. 
Membrane animals use their own two behaviors to find the 
best food source. Their behaviors include jet propulsion and 
swarm intelligence. In order to simulate the jet propulsion 
behavior more realistically, the membrane must satisfy the 
following three conditions: avoiding the conflicts between the 
search population, moving to the position of the best searching 
individual, and keeping the distance from the best searching 
individual [50]. Then, the population will update the position 
according to the individual's optimal solution. The inspiration 
of the algorithm is the swarm behavior of the successful 
survival membrane in the deep sea. Next, we will describe the 
heuristic and mathematical modeling of TSA in detail. 
 
2.1 Avoid Conflicts between Search Agents 

 
In order to avoid the conflicts between the current tunicate 

and other ones, the vector A  is used to calculate the new 
particle position. 

                 GA
M

=                    (1) 

 

1 2G c c F= + −               (2) 

 

               32F c=                     (3) 

 

Where G  represents gravity and F  represents 

advection in the deep sea, 1 2 3, ,c c c  are random numbers 

between [0, 1], M  represents the interaction force between 
individuals, which is calculated as follows: 

 

min 3 max minM P c P P= +  −            (4) 

 

Where minP  and maxP  represent the initial and 
subordinate speeds to make social interaction. In this study, 

minP  is equal to 1 and maxP  is equal to 4. 
 
2.2 Moving towards the Best Neighbor Particle 

 
After avoiding the collision between neighboring particles, 

each particle moves to the best one among the neighboring 
particles. 
 

( )and PPD FS r P x = − 
 

           (5) 

 

Where PD  is the distance between the location of the 
food and the current particle, x indicates the current iteration, 

FS is the location of the food (the current global optimal 

solution). Vector pP  indicates the position of tunicate and 

andr is a random number in range [0, 1]. 
 
2.3 Moving to Global Optimal Solution 

 
Each particle will continue to move towards the current 

global optimal solution (the location of the food source). 
 

( )
,     0.5

,    0.5
and

P
and

FS A PD if r
P x

FS A PD if r

 +  
 = 

−  

         (6) 

 

Where ( )PP x  represents the position of particle x  after 

moving towards food source FS . 
 
2.4 Swarm Behavior 

 
In order to simulate the population behavior of the whole 

population, the first two optimal solutions are saved and the 
positions of other particles are updated according to the 



Modified Parallel Tunicate Swarm Algorithm and Application in 3D WSNs Coverage Optimization 229 
 

 

position of the optimal particle. The group behavior of the 
membrane animals group was defined according to equation 
(7): 
 

( ) ( ) ( )
3

1
1

2
P P

P

P x P x
P x

c
+ +

+ =
+

        (7) 

 
Each particle is updated to a random position according 

to equation (7). 
 
3  Modified Parallel Tunicate Swarm 

Algorithm 
 

3.1 Traditional Parallel Strategy 

 

Most heuristic algorithms have a fatal shortcoming, which 
is easy to fall into local optimality. In view of this defect, many 
researchers put forward different improvement ideas to solve 
this key problem. Among them, the idea of parallelism has a 
very good effect in many improvement ideas. The following 
will explain the traditional idea of parallelism [51-53]. 

In order to construct a parallel architecture, groups are 
grouped to form groups of parallel structures. Information is 
then exchanged between each group at a set number of 
iterations. The particle with the worst fitness function value in 
each group is replaced by the particle with the best fitness 
function value in all groups. Figure 1 shows the structure of 
the traditional parallelism strategy. 

 

 
Figure 1. Traditional parallelism strategy 

 

 
In Figure 1, the 1 2 3, , ,..., nG G G G  means that the 

population is evenly divided into n  groups. bestG  
represents the position of the particle with the best fitness 
function value in all groups. 1 2 3, , ,...,w w w wnG G G G  
respectively indicate the position of the particle with the worst 
fitness function value in each group. The traditional idea of 
parallel is to divide the population into n  groups. In each 
information exchange, bestG  with the best fitness function 

value is selected from n groups, and bestG  is used to replace 

1 2 3, , ,...,w w w wnG G G G  with the worst fitness function value 
in each group. This operation will continue until the end of the 
algorithm. 

Inspired by the traditional idea of parallelism, this paper 
proposes four modified parallelism strategies, and combines it 
with TSA to propose four MPTSA using different 
communication strategies. 

 
3.2 Modified Parallel Tunicate Swarm 

Algorithm 

 
Like most heuristic algorithms, TSA also has some 

disadvantages, such as poor convergence and easy to fall into 
local optimum. Therefore, in this part of the work, we will 

modify TSA to improve the convergence and accuracy of the 
algorithm. In addition to the different communication 
strategies, the four MPTSA will use the same grouping 
method and preparation before communication. The specific 
operation is as follows. 

Assuming that there are pop  particles in the tunicate 
population, the whole population is divided into g  group, 
then there are particles in each group, and the particles in the 
g  group are optimized at the same time. When the number of 

iterations t  reaches an integer multiple of R , an 
information exchange is carried out, and the four proposed 
MPTSA will use four different communication strategies for 
information exchange. At the end of this operation, the 
population will return to the optimization state at the position 
after information exchange to continue the optimization work. 
The final result is output until the algorithm runs to the pre-set 
maximum number of iterations maxiter  or meets the required 
precision. Four different communication strategies are 
described in detail below. 

 
3.2.1 Communicate by Optimal Values 

 
After the grouping operation above, all the particles have 
entered the working state. When the number of iterations 
reaches R , the particles in each group are sorted according 
to the value of fitness function, and the population after the 
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arrangement is divided into two parts: Part A  and B  . 
Among them, the A  part represents the particles whose 
fitness function values rank in the first half. Then, the particle 
order after the A  part arrangement is: 

( )1 2
2

...Abest A A Aworst popA
x x x x x

 
    

 

. 

The B  part represents the particle in the bottom half of 
the fitness function. Then, the order of particles after the B  

part is: ( )1 2
2

...Bbest B B Bworst popB
x x x x x

 
    

 

. It is worth 

noting that the fitness function value of Aworstx  is better than 

that of 1Bx .The reason for this is that the algorithm itself has 
the disadvantage of poor convergence, and using the best 
particle to replace the worst particle can accelerate the 
convergence speed of the algorithm to a certain extent, so that 
the algorithm can find the global optimal solution faster. 

Next, the operation of information exchange will take 
place. The strategy used in this section is to use optimal values 
for communication. In each information exchange, the best 

value of A  and B  will be used to replace the worst value 
of their parts respectively. The population will be adjusted 
according to equation (8). 

 
( )
( )

1

1

,      

,      
iAworst iAbest iA

iBworst iBbest iB

x x x if x Part A

x x x if x Part B

= 


= 

    (8) 

 

Where ( )1Abest Ax x  and ( )1Bbest Bx x  represent the 
position of the particle with the best fitness function value in 
the two parts of A  and B  respectively. Aworstx  and 

Bworstx  represent the positions of the particles with the worst 

fitness function values in the two parts of A  and B  
respectively. i  stands for the i-thgroup. 
After the exchange of information, the replaced particle will 
be optimized again at the updated position. When the number 
of iterations t  reaches an integer multiple of R  again, 
information will be exchanged again, and the cycle will 
continue until the end of the algorithm. The schematic diagram 
is shown in Figure 2. 

 

 

 
Figure 2. Communicate by optimal values 

 
 
3.2.2 Communicate by Average Values  

 
Same as the first MPTSA, the algorithm performs 

grouping operation first, and then all particles enter the 
optimization state. When the number of iterations is 

max, 1,2,...,
2

itert kR k
R

= = , the particles are sorted 

according to the value of fitness function. However, different 
from the previous method, MPTSA using average value 
communication will divide the operation of information 
exchange into two different strategies for information 
exchange according to the current iteration number of t . 
Assume that the maximum number of iterations is set as 

maxiter . When the number of iterations max

2
itert  , the 

average value is used for information exchange. As shown in 
equation (9) and equation (10), the average values of the 

positions of the particles in A  and B  were first calculated, 
which were denoted as Aavex  and Bavex . 

 

( )
1 2 ...

2
A A Aworst

Aave
x x xx

pop g
+ + +

=


      (9) 

 

( )
1 2 ...

2
B B Bworst

Bave
x x xx

pop g
+ + +

=


     (10) 

 
After the average is obtained, the algorithm replaces the 

worst value in the A  part with the average value in the A  
part. The B  part is the same as the A  part.  
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When the number of iterations max

2
itert  , it will be the 

same as the first strategy, using the optimal value for 
information exchange. Therefore, the communication strategy 
proposed in this section is shown in equation (11) and equation 
(12). Figure 3 shows a schematic diagram of this 
communication strategy. 

 

max
,      

,
,      2

iAworst iAave

iBworst iBave

x x if x Part A itert
x x if x Part B

= 


= 
 (11) 

max
,      

,
,      2

iAworst iAbest

iBworst iBbest

x x if x Part A itert
x x if x Part B

= 


= 
 (12) 

 

 

Figure 3. Communicate by average values 

 
3.2.3 Communicate by Median  

 
Before information exchange, this strategy still needs to 

judge the numerical relationship between the current iteration 
number t  and the maximum iteration number maxiter . 

When max

2
itert  , the particles in each group are first 

divided into two parts: A  and B , and the median Amedx  

and Bmedx  are selected from these two parts respectively. 

Then, select the worst of the two particles, Aworstx  and 

Bworstx . Replace Aworstx  and Bworstx  with Amedx  and 

Bmedx . 

When max

2
itert  , the particles in each group are sorted 

by the fitness function values, which is consistent with the 
previous two strategies.  

Information is exchanged using the optimal values 
consistent with the first strategy. Therefore, the 
communication strategy proposed in this section is shown in 
equation (13) and equation (14). 

 

max
,      

,
,      2

iAworst iAmed

iBworst iBmed

x x if x Part A itert
x x if x Part B

= 


= 
 (13) 

 max
,      

,
,      2

iAworst iAbest

iBworst iBbest

x x if x Part A itert
x x if x Part B

= 


= 
 (14) 

 

Figure 4. shows the structure of this communication 
strategy. 

 

 

 
Figure 4. Communicate by median 
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3.2.4 Communicate by Random Number  

 
Like the second and third methods, MPTSA using random 

number communication does not need to sort the fitness 
function values, but only needs to divide the particles in each 
group into two parts: the A  part and the B  part. But in the 
second and third strategies, it is the numerical relationship 

between t  and max

2
iter

 that needs to be determined. In this 

strategy, max
2
3

iter  will be compared with the current 

iteration number t . When max
2
3

t iter , a particle Arandx  

and Brandx  are randomly selected from the two parts of A  

and B  respectively. These two particles were used as 
substitutes to replace the particles Aworstx  and Bworstx  with 
the worst fitness function values. 

When max
2
3

t iter , the first communication strategy is 

still used for communication. The purpose of doing this is to 
make the algorithm have more chances to jump out of the local 
optimal solution and find the global optimal solution in the 
initial stage of algorithm operation. In the late convergence 
stage of the algorithm, the optimal value is used to replace the 
worst value, which can accelerate the convergence speed and 
improve the convergence of the algorithm. To sum up, the 
strategy of using random values for information exchange is 
shown in equation (15) and equation (16). For ease of 
understanding, Figure 5 shows the communication strategy 
proposed in this section. 

 

max

,      2,
,      3

iAworst iArand

iBworst iBrand

x x if x Part A
t iter

x x if x Part B
= 


= 

    (15) 

 

max

,      2,
,      3

iAworst iAbest

iBworst iBbest

x x if x Part A
t iter

x x if x Part B
= 


= 

    (16) 

 
 

 

 
Figure 5. Communicate by random number 

 
 

This section introduces the traditional parallel strategy and 
proposes four different communication methods. Next, we 
apply the proposed four communication methods to the 
traditional parallel strategy and get four modified parallel 
strategies. At the same time, the traditional TSA is optimized 
by these four strategies, and the MPTSA series algorithms are 
obtained. According to different communication methods, 
they are named OMPTSA, AMPTSA, MMPTSA, RMPTSA 
respectively. 

 
4 Experimental Simulation and Analysis 

of the Proposed Algorithm 

 
In this part, in order to test the performance of the proposed 

algorithm, this paper will use 23 test functions to test, and this 
work is carried out in the Matlab2015b test environment. 

 

 

 

4.1 Setting of Experimental Parameters 

 
In order to verify the performance of the algorithm, we 
compared the proposed algorithm with the traditional PSO, 
GBMO, TSA and the improved versions of PSO (PPSO and 
APSO). In order to ensure the fairness of the experimental 
results, we will set uniform parameters for all algorithms 
except those unique to individual algorithms. The population 
number pop  is set to 40, and the maximum iteration 

number maxiter  is set to 1000. After all the algorithms with 
parallel strategy (PPSO, OMPTSA, MMPTSA, RMPTSA, 
AMPTSA) are initialized, the population will be divided into 
four groups, and the information will be exchanged every 20 
iterations. That means 4g =  and 20R = . The relevant 
parameter settings of all algorithms are shown in Table 1 
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Table 1. Parameter setting of all algorithm 
Algorithm Parameter 

PSO 
max2.0, 0.9, 40, 1000c w pop iter= = = =  

PPSO 
max4, 20, 2.0, 0.9, 40, 1000g R c w pop iter= = = = = =  

APSO 
max2.0, 0.9, 40, 1000c w pop iter= = = =  

GBMO 
max900, 1.5, 1.2, 40, 1000T a b pop iter= = = = =  

TSA 
min max max1, 4, 40, 1000P P pop iter= = = =  

OMPTSA 
min max max4, 20, 1, 4, 40, 1000g R P P pop iter= = = = = =  

MMPTSA 
min max max4, 20, 1, 4, 40, 1000g R P P pop iter= = = = = =  

RMPTSA 
min max max4, 20, 1, 4, 40, 1000g R P P pop iter= = = = = =  

AMPTSA 
min max max4, 20, 1, 4, 40, 1000g R P P pop iter= = = = = =  

 
 
4.2 Analysis of Experimental Results 

 
Table 2 shows the experimental results of the proposed 

MPTSA series algorithms tested by test functions. In the 
proposed MPTSA series, OMPTSA has the highest 
expectation. However, from the data in Table 2, it can be seen 
that its optimization ability is better than other algorithms only 
in F2, F3 and F20, and it is close to other algorithms in F7 and 
F16 to F19. However, MMPTSA showed the best results nine 
times. RMPTSA which uses random number to communicate 
wins 6 times, that is to say, the ability of this strategy is not 
ideal and does not achieve the expected effect. AMPTSA is 
more powerful than other MPTSA series algorithms, and it 
wins 13 times. 

In general, F1 to F7 are unimodal functions, which have 
no local optimal solution but only one global optimal solution. 
In unimodal functions, OMPTSA and RMPTSA both win 
twice, while MMPTSA and AMPTSA, which communicate 
using median and mean values, win only once. In other words, 
OMPTSA and RMPTSA are more powerful than other 
algorithms in solving the problem without considering 
whether the algorithm will fall into local optimality, but there 
is no significant difference. In the next six multimodal 
functions, AMPTSA gets the best results five times, 
MMPTSA wins once. Since there are many local optimal 
solutions for multimodal functions, we can think that 
AMPTSA has the strongest ability to jump out of the local 
optimal, which is superior to other algorithms. In the fixed-
dimension multimodal benchmark functions, the performance 
of MPTSA series algorithms is similar, and there is no obvious 
difference. It is worth noting that MMPTSA, which uses the 
median to communicate, performs better in this kind of 
problem than algorithms using other communication strategies. 
In this paper, we choose OMPTSA, which has the worst 
performance among the MPTSA series algorithms, to compare 
with the experimental results of other comparison algorithms. 
The specific data are shown in Table 3. 

According to the experimental data in Table 3, it is clear 
that OMPTSA performs very well in the 23 test functions. 
Despite the improved PPSO and APSO, the algorithm 
proposed in this paper also shows more powerful optimization 
ability. However, it is worth noting that in the experimental 
data in Table 3, only the comparison results of OMPTSA, 

which is the least capable among the MPTSA series 
algorithms, and other algorithms are shown. Therefore, 
GBMO performs better in multimodal functions than 
OMPTSA. But if the AMPTSA was used for comparison, the 
difference would not be particularly significant. A brief 
analysis of the types of test functions used and the results from 
the test functions follows. 

T-test is a way to compare the mean value of two groups 
of data. It can be used for normal distribution of unknown 
population standard deviation and small sample. To compare 
the experimental results more significantly, T-test was used to 
test the proposed method. Table 4 shows the T-test results of 
OMPTSA, MMPTSA, RMPTSA and AMPTSA compared 
with TSA. The "+" indicates that the algorithm is better than 
TSA, the "-" indicates that the algorithm is worse than TSA, 
and the "=" indicates that the algorithm and TSA test results 
are similar. 

 
4.2.1 Unimodal Benchmark Functions 

 
F1 to F7 are unimodal functions. This type of function has 

only one global optimal solution but no local optimal solution, 
so it is more suitable for testing the convergence of the 
algorithm. It can also be seen from the data in Table 3 that 
among the seven functions, the performance difference of 
most algorithms is not very obvious, especially the MPTSA 
series algorithms. Figure 6 shows the test results after testing 
by unimodal functions. In addition to F6, MPTSA series 
algorithms all show very strong optimization ability, and the 
experimental results are also better than other comparison 
algorithms. However, the results shown in Figure 6 show that 
AMTPSA is significantly faster in terms of convergence rate. 
In other words, the AMTPSA that uses averages to 
communicate has a strong convergence. While other 
algorithms in the MPTSA series are not as fast as AMPTSA, 
they are better than other algorithms in both accuracy and 
convergence. 
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Table 2. The results of simulation experiment 

AVG. VARP. AVG. VARP. AVG. VARP. AVG. VARP.

F1 4.36E-54 2.12E-106 2.88E-51 1.54E-101 4.00E-54 2.00E-106 2.31E-52 4.31E-103
F2 1.67E-32 7.51E-64 1.50E-30 1.31E-59 2.04E-32 1.76E-63 2.22E-31 6.28E-62
F3 4.42E-19 1.51E-36 3.12E-17 4.94E-33 1.18E-18 1.26E-35 1.86E-18 3.87E-35
F4 8.21E-07 6.51E-12 5.77E-05 5.60E-09 9.10E-08 8.20E-15 9.97E-06 1.65E-10
F5 2.81E+01 7.71E-01 2.75E+01 8.42E-01 2.79E+01 1.41E+00 2.77E+01 8.26E-01
F6 3.19E+00 3.41E-01 2.97E+00 2.82E-01 2.96E+00 5.62E-01 2.90E+00 1.41E-01
F7 1.81E-03 5.11E-07 2.23E-03 3.88E-07 1.32E-03 3.18E-07 1.78E-03 4.82E-07
F8 -6.82E+03 2.58E+05 -6.86E+03 1.62E+05 -6.82E+03 2.68E+05 -7.19E+03 1.43E+05
F9 1.22E+02 1.03E+03 1.22E+02 3.25E+02 1.31E+02 8.59E+02 1.42E+01 7.04E+01
F10 7.77E-01 1.67E+00 4.25E-01 1.18E+00 1.04E+00 1.36E+01 2.98E-01 7.81E-01
F11 4.31E-03 4.39E-05 5.90E-04 4.88E-06 4.01E-03 2.61E-05 3.05E-04 2.69E-06
F12 3.41E+00 6.96E+00 3.05E+00 4.56E+00 4.70E+00 1.24E+01 4.37E-01 1.00E-01
F13 2.49E+00 2.76E-01 2.38E+00 1.48E-01 2.49E+00 2.46E-01 2.29E+00 9.03E-02
F14 3.48E+00 1.27E+01 2.51E+00 3.82E+00 3.26E+00 1.07E+01 3.29E+00 9.21E+00
F15 1.10E-03 1.29E-05 3.54E-04 2.83E-08 4.08E-04 7.50E-08 3.59E-04 1.51E-08
F16 -1.03E+00 1.67E-15 -1.03E+00 1.34E-15 -1.03E+00 1.25E-15 -1.03E+00 1.45E-15
F17 3.98E-01 3.11E-11 3.98E-01 4.12E-12 4.03E-01 6.32E-04 3.98E-01 3.99E-12
F18 3.00E+00 5.82E-14 3.00E+00 1.48E-12 3.00E+00 1.30E-13 3.00E+00 1.42E-12
F19 -3.86E+00 4.04E-11 -3.86E+00 9.24E-11 -3.86E+00 7.90E-11 -3.86E+00 1.57E-10
F20 -3.30E+00 2.25E-03 -3.31E+00 1.27E-03 -3.32E+00 4.55E-04 -3.31E+00 8.83E-04
F21 -9.08E+00 4.07E+00 -9.86E+00 8.03E-01 -8.90E+00 4.54E+00 -9.65E+00 2.50E+00
F22 -9.81E+00 2.50E+00 -1.01E+01 8.73E-01 -9.80E+00 2.46E+00 -1.03E+01 3.92E-03
F23 -9.41E+00 5.26E+00 -1.03E+01 9.12E-01 -9.85E+00 3.68E+00 -1.05E+01 1.75E-03

Function
OMPTSA MMPTSA RMPTSA AMPTSA

 
 

  

(a) F1 (b) F2 

  

(c) F3 (d) F4 
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(e) F5 (f) F6 

 

(g) F7 
Figure 6. Convergence tendency for unimodal benchmark functions 

 

 
4.2.2 Multimodal Function Analysis 

 
Multimodal functions include F8 to F13. This type of 

function has many locally optimal solutions, so it is used 
to test the ability of the algorithm to jump out of the local 
optimum. From the data in Table 3 and the experimental 
results in Figure 7, it can be seen that the performance of 
GBMO and AMPTSA is better than other algorithms in the 

nine algorithms. Therefore, it can be judged that these two 
algorithms have a stronger ability to jump out of the local 
optimal in the running process. RMPTSA, which uses 
random numbers to communicate, has this ability in theory, 
but the effect is not ideal. The reason why this happens is 
that random numbers have a strong randomness, and in 
F11, RMPTSA shows the ability to compete with 
AMTPSA and outperform other algorithms.

 

  

(a) F8 (b) F9 
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(c) F10 (d) F11 

  

(e) F12 (f) F13 
Figure 7. Convergence tendency for multimodal benchmark functions 

 
 

4.2.3 Fixed-Dimension Multimodal Benchmark Functions 

Analysis 

 
Figure 8 shows the test results of the algorithms in the 

Fixed-dimension multimodal benchmark functions. Fixed-
dimension multimodal benchmark functions have only a few 
local minima and are not very high in dimension. In F14 and 
F15, MMPTSA produces good test results, although other 

MPTSA family algorithms do not perform particularly well. 
The test results of F16, F17 and F19 show little difference 
among all the algorithms. However, in F22 and F23, the 
performance of AMPTSA was slightly different from that of 
GBMO, but it outperformed other algorithms. In addition, 
MPTSA series algorithms are superior to other algorithms. 
Through the above experimental analysis, the optimization 
ability of the proposed MPTSA is confirmed. 

 

  

(a) F14 (b) F15 
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(c) F16 (d) F17 

  

(e) F18 (f) F19 

  

(g) F20 (h) F21 

  

(i) F22 (j) F23 
Figure 8. Convergence tendency for fixed-dimension multimodal benchmark functions 
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Table 3. The results of simulation experiment 

AVG. VARP. AVG. VARP. AVG. VARP. AVG. VARP. AVG. STSD. AVG. STSD.

F1 2.68E+00 6.62E-01 1.87E-02 8.84E-05 1.49E-03 3.37E-06 1.25E-03 5.16E-06 4.11E-50 1.28E-98 4.36E-54 2.12E-106
F2 1.11E+00 9.88E-02 1.05E+01 1.29E+03 7.79E-02 6.65E-04 4.78E-02 2.34E-03 6.41E-30 1.97E-58 1.67E-32 7.51E-64
F3 1.49E+02 1.99E+03 2.64E+00 2.47E+00 4.84E+00 8.31E+00 4.95E+00 1.07E+02 2.84E-13 1.25E-24 4.42E-19 1.51E-36
F4 3.21E+00 1.35E+00 1.41E+00 1.73E+00 6.44E-01 2.45E-01 1.79E-03 3.88E-06 1.40E-03 5.42E-06 8.21E-07 6.51E-12
F5 2.11E+02 3.38E+04 1.47E+02 1.50E+04 5.46E+01 1.24E+03 5.94E-02 1.14E-02 2.83E+01 5.33E-01 2.81E+01 7.71E-01
F6 2.50E+00 8.15E-01 3.22E-01 9.76E-01 3.45E-02 1.32E-02 5.49E-04 9.02E-07 3.60E+00 4.69E-01 3.19E+00 3.41E-01
F7 1.23E-02 2.17E-05 1.25E-01 1.03E-02 2.30E-01 1.15E-02 5.37E-03 2.07E-05 3.76E-03 3.51E-06 1.81E-03 5.11E-07
F8 -6.46E+03 5.14E+05 -1.18E+02 1.79E-05 -1.18E+02 1.76E-07 -1.17E+04 1.40E+04 -6.39E+03 3.84E+05 -6.82E+03 2.58E+05
F9 2.85E+01 1.04E+02 1.41E+02 3.07E+03 4.52E-01 1.70E-01 3.26E-03 3.25E-05 1.69E+02 1.68E+03 1.22E+02 1.03E+03
F10 2.20E+00 2.12E-01 1.18E+00 1.41E+00 2.64E-02 1.53E-04 1.66E+00 1.88E+00 1.86E+00 2.35E+00 7.77E-01 1.67E+00
F11 9.85E-01 3.30E-03 4.61E-02 5.15E-03 3.17E-02 2.91E-03 3.79E-03 6.45E-06 6.39E-03 1.51E-04 4.31E-03 4.39E-05
F12 2.40E+00 2.22E+00 5.50E+00 6.57E+00 1.96E-02 5.66E-03 4.44E-06 5.58E-11 8.39E+00 1.21E+01 3.41E+00 6.96E+00
F13 3.42E-01 2.29E-02 1.04E-01 3.99E-02 9.76E-04 8.09E-06 3.26E-05 1.98E-09 2.68E+00 3.93E-01 2.49E+00 2.76E-01
F14 2.74E+00 4.30E+00 1.27E+01 2.23E-26 1.27E+01 1.47E-24 9.98E-01 1.91E-20 7.60E+00 2.58E+01 3.48E+00 1.27E+01
F15 5.97E-04 2.38E-07 7.74E-04 1.40E-08 3.46E-04 2.05E-08 1.57E-03 4.46E-08 7.79E-03 1.58E-04 1.10E-03 1.29E-05
F16 -1.03E+00 2.37E-16 -1.03E+00 4.13E-09 -1.03E+00 2.45E-06 -1.02E+00 6.31E-04 -1.03E+00 6.22E-05 -1.03E+00 1.67E-15
F17 3.98E-01 3.66E-15 3.98E-01 1.20E-13 3.98E-01 3.75E-06 4.06E-01 6.07E-05 3.98E-01 3.38E-10 3.98E-01 3.11E-11
F18 3.00E+00 3.29E-14 1.09E+01 3.14E+02 2.44E+01 9.92E+02 3.35E+00 8.16E-02 1.11E+01 4.45E+02 3.00E+00 5.82E-14
F19 -3.86E+00 4.69E-15 -3.86E+00 1.48E-09 -3.86E+00 7.10E-30 -3.73E+00 1.42E-02 -3.86E+00 5.97E-10 -3.86E+00 4.04E-11
F20 -3.27E+00 3.47E-03 -3.25E+00 3.40E-03 -3.26E+00 3.53E-03 -2.45E+00 1.22E-01 -3.25E+00 1.07E-02 -3.30E+00 2.25E-03
F21 -6.73E+00 1.23E+01 -9.31E+00 3.55E+00 -5.80E+00 9.15E+00 -1.02E+01 1.06E-09 -7.10E+00 1.02E+01 -9.08E+00 4.07E+00
F22 -7.68E+00 1.30E+01 -9.97E+00 2.69E+00 -7.12E+00 1.15E+01 -1.04E+01 2.12E-09 -8.43E+00 1.04E+01 -9.81E+00 2.50E+00
F23 -7.82E+00 1.31E+01 -1.02E+01 1.79E+00 -4.36E+00 9.91E+00 -1.05E+01 4.89E-09 -8.76E+00 8.92E+00 -9.41E+00 5.26E+00
WIN 13 14 15 12 21
LOSE 4 3 2 0 2

SIMILAR 6 6 6 11 0

TSA OMPTSA
Function

PSO PPSO APSO GBMO

 
 

 
Table 4. The T-test results of the compared algorithms 
(OMPTSA, MMPTSA, RMPTSA and AMPTSA) on TSA 

Function OMPTSA MMPTSA RMPTSA AMPTSA
F1 + + + +

F2 + + + +

F3 = = = =

F4 + + + +

F5 = + = +

F6 + + + +

F7 + + + +

F8 + + + +

F9 + + + +

F10 + + = +

F11 = + = +

F12 + + = +

F13 = + + +

F14 + + + +

F15 + + + +

F16 = = = =

F17 = = = =

F18 + + + +

F19 = = = =

F20 + + + +

F21 + + + +

F22 + + + +

F23 + + + +  

5  The proposed MPTSA is Applied to 

the Simulation Experiment of WSNs 3D 

Node Deployment 
 

5.1 Coverage Optimization Model for WSNs 

 
The coverage problem of WSNs is usually closely related 

to the perception model of each node and the location 
deployment of all nodes [54-55]. In short, the sensor node 
perception model constructs the geometric relationship 
between the physical location and the spatial location of the 
sensor node, which can be used as a measure of the service 

quality of the sensor sensing function. In theoretical research, 
common sensor node perception models include: 0-1 model, 
exponential model, statistical model, obstacle model, etc. In 
this paper, 0-1 model is used to optimize the coverage of 
WSNs. Therefore, we will introduce the 0-1 model in detail. 

0-1 model: Generally speaking, the perception model of 
sensor nodes is usually simplified to 0-1 model, that is, a 
certain point in the region is covered (1) or not covered (0) by 
sensor nodes. In the related literature, the most commonly 
used 0-1 sensing model is the perception disk model. All 
points in the range of a certain sensor node as the center and a 
fixed length r  as the radius are considered to be able to be 
covered by the sensor node. Suppose that the coordinate of 

node i  in the detected area is ( ), ,i i ix y z , the sensing 

radius of the node is ir  , and the coordinate of the target node 

j  is ( ), ,j j jx y z , then the distance between node i  and 

target node j  is : 
 

( ) ( ) ( )2 2 2

,i j i j i j i jd x x y y z z= − + − + −  (17) 

 
The perception quality of node i  to node j  is 

expressed by ,i jo . When the position of the concerned node 

j  is in the circle of the sensing range ir  of node i , the 
perceived quality of node i  to node j  is 1, that is, the 
perceived degree of node i  to node j  is 1; otherwise, when 
node j  is outside the sensing range of node i , the perceived 
degree of node i  to node j  is 0, so the mathematical 
expression is : 

 

,
,

1,       
0,   

i j i
i j

d r
o

otherwise


= 


        (18) 
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In the early research of WSNs coverage, the node 

perception model is generally 0-1 model, which ignores the 
influence of some external factors, making the problem 
simpler and more convenient for people to study the problem 
easily. 

This paper aims to solve the problem of maximum 
coverage when the monitored area is fixed and the sensor 
nodes are limited. There are many ways to solve the problem 
of 2D plane coverage, and to achieved good performance. 
However, if the sensor nodes are placed on the 2D plane, the 
simulation experiment will be obviously different from the 
actual situation. In this paper, the sensor nodes are placed on 
the 3D terrain to simulate the actual coverage problem more 
realistically. 

One essential procedure to solve the coverage problem is 
to find the optimal deployment strategy. The different 
strategies have a significant influence on coverage rate 
especially in 3D terrain [56]. In recent years, many researchers 
utilized intelligent computing algorithm to settle similar 
problems. 

Sensor nodes are set on the ground, so only two coordinate 
values of a point are needed to calculate the coordinates of the 
point. Therefore, the algorithm can optimize the deployment 
strategy by optimizing any 2D sensor node location. Each 
individual of the algorithm represents a deployment strategy. 
Each individual updates their own location and calculates the 
fitness function value according to equation (19). 

 

( ) ,
1 1

1 M P

i j
j i

R t o
M = =

 
=  

 
        (19) 

 

Where ( )R t  is the coverage rate of the t-th iteration, 

P  represents the number of sensor nodes, $M$ is the number 
of pixels on the 3D terrain, ,i jo  indicates whether the pixel 

j  is covered by node i , which is obtained according to 
equation (18). 

 
5.2 Simulation Experiment of MPTSA 

Optimizing WSNs Coverage Model 

 

In this part, we apply the proposed MPTSA series 
algorithms to the WSNs node deployment problem in 3D 
space. 2D planar node deployment is already insufficient to 
meet the requirements of today's society.  Therefore, this 
simulation experiment simulated some mountains and low-
lying terrain in an area of 50 50m m . On the basis of 2D, 
this experiment also considered the height information of 
mountain and other obstacles. Next, according to the different 
number of sensor nodes and communication radius, the 
simulation experiments are carried out respectively. In order 
to ensure fairness, this experiment will make the 
communication radius of the nodes the same when the sensor 
nodes are set to be different. And in order to verify the 
superiority of the proposed method, this experiment will use 

the comparison algorithm in the previous paper to carry out 
comparative experiments. The population number of each 
algorithm pop  will be set to 40. The maximum number of 

iterations maxiter  will be set to 10. Among them, PPSO and 
MPTSA series algorithms using the idea of parallelism are 
used for grouping, and the population will be divided into 4 
groups, and information exchange will be conducted for 3 
times per iteration. Other parameters will remain the same as 
those in the previous section. The specific experimental 
parameters are shown in Table 5. 

 
Table 5. Experimental settings for parameters 

Parameter Parameter Values 

  Sensing region area  50m × 50m 
pop  40 

maxiter  10 

   Number of sensor nodes  30-55 

 Communication range  5m-10m 

  Number of groups  4 
 
5.2.1 Set Different Number of Nodes 

 

In this part of the experiment, we will set different number 
of sensor nodes to verify the effectiveness of the proposed 
method in this case. Set the number of sensor nodes to 
{30,35,...,50} . In order to ensure fairness, the 
communication radius of the sensor node will be set at 5 
meters in this experiment. Table 6 shows the experimental 
results obtained by using nine methods when the number of 
nodes is different. Figure 9 shows the experimental results in 
this case as a line graph. It can be seen that when the number 
of sensor nodes increases, the coverage of WSNs is also 
gradually increasing. For the convenience of observation, 
Figure 9 enlarges the result when the number of nodes is set to 
50. It can be seen from this that when there are 50 nodes in the 
network, MMPTSA, which uses the median to communicate, 
has a very good performance in optimizing network coverage. 
Of the nine methods compared, it ranked first. AMTPSA came 
in second, but only 0.31 percent off the best approach. This 
suggests that MMPTSA and AMPTSA are better at solving 
this problem than other approaches. While the other two 
methods in the MPTSA series of algorithms, although not the 
best, but compared with other methods also perform a little 
stronger. It is worth mentioning that the traditional PSO 
algorithm performed the worst in this experiment, with the 
coverage rate only reaching 63.52%. The method proposed in 
this paper reaches 68.15%. In the experiment to test the 
algorithm performance, GBMO, which has a relatively 
moderate performance, only ranks third from the bottom in the 
experimental results of this experiment. It can be seen that 
GBMO is limited in its ability to solve the problem of network 
coverage. 
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Table 6. Coverage of different number of nodes 
NodesNum PSO PPSO APSO GBMO TSA OMPTSA MMPTSA RMPTSA AMPTSA 

30 0.4605 0.4672 0.4693 0.4629 0.4637 0.4888 0.5060 0.4895 0.4952 

35 05073 0.5198 0.5233 0.5097 0.5177 0.5329 0.5586 0.5411 0.5432 

40 0.5533 0.5629 0.5638 0.5583 0.5617 0.5832 0.6046 0.5878 0.5939 

45 0.5951 0.6032 0.6097 0.6001 0.6012 0.6229 0.6475 0.6294 0.6354 

50 0.6352 0.6402 0.6483 0.6409 0.6392 0.6624 0.6815 0.6661 0.6784 

55 0.6649 0.6735 0.6749 0.6706 0.6714 0.6923 0.7758 0.7016 0.7612 
 

 

Figure 9. Experimental results of different number of nodes 

 

 

 
Figure 10. Experimental results of different communication radius 

 
5.2.2 Set Different Communication Radius of Nodes 

 

In this part, the communication radius of the node is set to 
different values for experiment. The communication radius 
will be set to 5 ,6 ,...,10m m m . Similarly, in order to ensure 
the fairness of the experiment, the number of sensor nodes 
used is 30 in all the methods. Table 7 shows the coverage 
comparison results obtained by the nine methods when the 
communication radius of the nodes are different. Figure 10 

shows the experimental results in the form of line graph, and 
in order to see the difference of each method more clearly, the 
data when the communication radius is 8m is amplified. It can 
be seen from the experimental results that the communication 
radius has a great influence on the coverage rate. The same 
PSO method was used in the experiment. When the 
communication radius was 5m, the coverage rate was only 
46.05%. When the communication radius is increased to 10m, 
the coverage rate can reach 94.15%. After comparing the 
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experimental results of the nine methods used, it is found that 
MMPTSA is still the most powerful, with the result of 99.13%. 
As in the previous experiment, AMPTSA came in second, but 
only 0.37% lower than MMPTSA. The other methods of the 
proposed MPTSA series of algorithms still show better 
performance than other contrast algorithms in this part of the 

experiment. For example, OMPTSA, which has the worst 
performance, gets only 97.03%, but it is still higher than any 
other method except MPTSA family of algorithms. Thus it can 
be seen that the MPTSA series algorithm proposed in this 
paper has a strong effectiveness and superiority in solving the 
problem of 3D node deployment of WSNs. 

 
  Table 7. Coverage of different communication radius 

NodeNum PSO PPSO APSO GBMO TSA OMPTSA MMPTSA RMPTSA AMPTSA 

5m 0.4605 0.4672 0.4693 0.4629 0.4637 0.4888 0.5060 0.4895 0.4952 

6m 0.6037 0.6294 0.6305 0.6203 0.6211 0.6415 0.6724 0.6502 0.6651 

7m 0.727 0.7582 0.7615 0.7294 0.7502 0.7792 0.8015 0.7886 0.7946 

8m 0.831 0.8497 0.8526 0.8334 0.845 0.8736 0.9012 0.8814 0.8915 

9m 0.8976 0.9188 0.9245 0.9 0.9126 0.9377 0.9675 0.942 0.9515 

10m 0.9415 0.9599 0.9601 0.9437 0.9591 0.9703 0.9913 0.975 0.9876 
 
 
6  Conclusion 

 
In the research of evolutionary algorithms, how to solve 

some problems of the traditional algorithm is the most 
concerned topic of researchers, such as poor convergence, 
easy to fall into local optimum, and so on. TSA mentioned in 
this paper is no exception. Therefore, this paper proposes a 
solution to the problem of TSA, and proposes four different 
communication strategies for this method. The experimental 
results of 23 different types of test functions show that the 
performance of the proposed MPTSA series algorithm is 
better than other comparison algorithms. In the research of 
WSNs, it is very important to make the sensor nodes layout 
efficiently and maximize the coverage under limited 
conditions. In order to solve this problem and improve the 
network coverage, this paper applies the proposed MPTSA 
series algorithm to the research of 3D coverage of WSNs, and 
further proves the applicability of the algorithm in this field. 
But in the process of doing experiments, we found that 
MPTSA series algorithm still has some problems such as slow 
running speed. In future research, we will further improve the 
shortcomings of the algorithm. 
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