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Abstract 
 
In Internet of things enabled healthcare system, sensors 

create vast volumes of data that are analyzed in the cloud. 
Transferring data from the cloud to the application takes a long 
time. An effective infrastructure can reduce latency and costs 
by processing data in real-time and close to the user devices. 
Fog computing can solve this issue by reducing latency by 
storing, processing, and analyzing patient data at the network 
edge.  Placing the resources at fog layer and scheduling tasks 
is quite challenging in Fog computing. This paper proposes a 
Fog Managed Data Model (FMDM) with three layers namely 
Sensor, Fog and cloud to solve the aforementioned issue. 
Sensors generate patient data and that are managed and 
processed by Fog and cloud layers. Tasks are scheduled using 
a Weighted Fog Priority Job Scheduling algorithm (WFPJS) 
and fog nodes are allocated based on Priority based Virtual 
Machine Classification Algorithm (PVCA). The performance 
of this model is validated with static scheduling techniques 
with variable patient counts and network configurations. The 
proposed FMDM with WFPJS reduces response time, total 
execution cost, network usage, network latency, 
computational latency and energy consumption. 

 
Keywords: Cloud, Fog, Healthcare, Internet of things, 

Scheduling 
 

1  Introduction 
 

A recent International Data Corporation study predicts that 
the number of sensors and Internet-of-things (IoT) units would 
expand to 300 million and 500 million, respectively [1-2]. The 
IoT industry is expected to be worth $17 billion globally by 
2022 [1, 3]. Approximately 30.7 percent of IoT devices will 
be used in healthcare. Bulk data processing is currently being 
used in healthcare via a large number of IoT devices. The 
Internet of Things in health care is mostly based on cloud 
computing [4]. To facilitate IoT, cloud computing may 
provide on-demand services such as networking, storage, 
processing, and high-performance computing. Cloud 
computing minimizes the complexity of healthcare IoT 
devices by reducing battery-draining processing tasks [5-6]. It 
does, however, have flaws such network congestion, 
insufficient bandwidth utilization and security issues. As the 
transmission rate increases in tandem with the vast volume of 
data, so does the latency in cloud computing. A massive 
amount of data is transmitted between sensors and the cloud 

in the healthcare IoT.  An increase in the strength or quantity 
of data generated can increase the delay to destination. As a 
result, the probability of error is high in healthcare IoT with 
cloud due to packet loss and transmission delay, which is 
directly proportional to the volume of data transmitted.  So, 
the destination's quality of service (QoS) is low. 

Latency imposed by sending tasks to the cloud and 
subsequently returning the result is undesirable in certain 
time-critical internet of things applications, such as 
telemedicine and monitoring. Time-sensitive decisions will be 
made much closer to IoT devices. Healthcare infrastructure 
requires real-time data processing infrastructure all the time 
for time-sensitive applications. The most fundamental goal of 
healthcare IoT is to achieve the least feasible delay while also 
minimizing network bandwidth consumption [6-7]. Routers 
and gateways act as a point of contact between clouds and 
terminals. As the distance between clouds and healthcare IoTs 
increases, more routers are necessary to connect them, 
resulting in increased high network usage and significant 
bandwidth consumption. 

To overcome the constraints of cloud computing, Cisco 
developed fog computing [8]. Fog computing, sometimes 
referred to as fog networking, is a decentralized computer 
architecture that resides between the cloud and data-
generating devices [9]. It is comparable to cloud computing, 
but employs local clouds to process and execute activities in 
real-time, permitting IoT applications to run on network 
elements rather than cloud data centers. Fog computing has 
many benefits for IoT applications, including: increase the 
efficiency, transmit sensitive information to customers in real-
time, solve data center disruptions, real-time interactive 
services, real-time mobility support, and automatic 
deployment. This adaptable framework lets users to optimize 
performance by placing resources, such as applications and the 
data they generate, in the user edge. The fog layer filters data, 
performs preprocessing, and reduces network usage and 
processing overhead in the cloud. 

Fog computing and edge computing are variations of 
network designs that can be used to address cloud computing 
difficulties. Because of their low latency and modest 
bandwidth requirements, these network topologies can protect 
sensitive data. Edge Computing is a platform for extending 
cloud services to edge devices [10]. In order to reduce network 
latency and traffic, edge nodes and devices with computing 
power can undertake a vast range of computer functions such 
as data processing, storage of data, device management, 
decision-making, and privacy protection. The IoT network 
core oversees intelligent device connection and operation, 
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while its edge computing provides sensing, interaction, and 
control between objects. Edge computing and fog computing 
have a common purpose, yet there are some fundamental 
distinctions between them. As a result of restricted resources 
in edge computing, resource conflict might arise, leading 
processing latency to increase. In healthcare systems, global 
analytics is required for prediction and decision making. Edge 
computing devices will not connect with cloud servers and 
integrated healthcare services are not provided.  Fog 
computing can overcome these restrictions by incorporating 
cloud resources and edge devices. 

Healthcare monitoring and applications that care for 
elderly patients, such as residential care, cardiovascular 
disease, chronic heart disease patients, hypertension, diabetic, 
and other chronic illnesses, all require real-time data analysis, 
real-time monitoring, and decision making. One of the most 
essential difficulties in fog based healthcare environments is 
how to sort out tasks and how to deal with sensitive data that 
is vital to the health of the patient. Until scheduling algorithms 
can be adjusted to work with healthcare applications, fog 
computing will not be able to meet these criteria. 

.The following are the paper's main contributions: 
• A three-module design is proposed that includes 

IoT, fog, and cloud modules to provide low latency and real 
time healthcare services. 

• At the fog layer a Fog Managed Data model is 
integrated with Weighted Fog Priority Job Scheduling 
algorithm for efficient job allocation to fog nodes. 

• Priority based virtual machine classification 
algorithm to allocate virtual machine at the cloud server for 
efficient processing of patient data. 

• The proposed work is compared with existing cloud 
based algorithm and it reduces the total latency between 
healthcare IoT and cloud servers. 

The rest of the paper is structured as follows: The 
associated literature reviews for healthcare IoT based on fog 
computing is described in Section 2. Section 3 describes the 
Fog Managed Data Model with Weighted Fog Priority Job 
Scheduling Algorithm and Priority based Virtual machine 
Classification Algorithm. Section 4 describes the 
experimental setup and performance evaluation. The results 
obtained through FMDM are summarized and discussed in 
section5. This paper comes to a conclusion in section 6. 
 
2  Literature Review 

 
A combined correlated sensor, fog and cloud based model 

is essential for offering efficient computed service to patients 
with real-time data, for delivering health-care and other delay-
sensitive reports with shorter response time, tolerable energy 
usage, and better accuracy. Various techniques have been 
proposed to reduce energy, bandwidth consumption, latency 
reduction and network usage. Major contributions provided 
below are on the basis of load balancing, scheduling and 
offloading.  A work was inspired by combining the power of 
accuracy of deep learning models with the reduced latency of 
edge computing nodes.  IoT-based healthcare system 
connects preconfigured devices to process data from several 
patients in a deadline-oriented approach to make better 
decisions. Patients' healthcare data is collected using a variety 
of technologies, including IoT sensors and satellites [11-12]. 
In this approach, the health-care data is divided into two types: 

small data processed on a fog server and huge data handled on 
a centralized cloud repository. 

A three-layer architecture was proposed as a combination 
of the terminal, edge, and core layers [13]. In the first level, 
resources are scheduled between fog groups, whereas in the 
second level, resources are scheduled between fog 
nodes inside the same fog group. To manage IoT resources, a 
random scheduling approach is implemented. The proposed 
model had a shorter service delay and a more stable task 
execution. However, scheduling across separate fog clusters, 
as well as the costs of resource distribution are not explored in 
this work. A priority based scheduling process with Optimize 
Response Time and Reconfigure Dynamic algorithms are 
implemented to minimize the cost of communication and 
latency [14]. The experimental results show that both methods 
cut expenses by considering priority in a cloud-only 
simulation scenario, but they also increase overall response 
time. 

A hierarchical task allocation system based on the Smart 
Sensor-Fog-Cloud was proposed, in order to avoid job 
starvation and make the most of the available resources, it was 
able to dynamically modify the job priority [15]. 
By   implementing a multi-core and multi-thread technique, 
the resource fragmentation and hunger issues are solved, 
optimize resource deployment, and lower the execution and 
reaction time of applications. 

For energy consumption, resource utilization, and latency, 
multi-tier structure fog-based network architecture for internet 
of everything was proposed [16]. Load balancing, scheduling, 
security and privacy were not taken into account. The volume 
and velocity of IoT device-generated healthcare data is 
enormous.  Both forms of data must be used to anticipate the 
present status of patients, which provides to the entire 
development of smart cities [17-18]. After collecting and 
aggregating data from smart devices in IoT networks, cloud 
servers store and analyze data. High latency is noted as an 
issue for time-critical IoT applications, and a solution termed 
iFogStor [19] is proposed to alleviate it. The Fog Computing 
concept was used to develop this technique. The data 
placement problem was characterized as a Generalized 
Assignment Problem (GAP) in iFogStor. For time-sensitive 
IoT applications, an accurate integer programming and 
heuristic technique is given, which needs a more exact model 
and architecture. 

 An algorithm for machine learning [20] is presented to 
conserve energy and bandwidth use, as well as network 
utilization, for mobile devices. In addition, cloudlet 
computation offloading and computational jobs are examined 
in the cloudlet environment. In smart cities, a mobile cloud 
computing-based method is proposed for delivering 
ubiquitous healthcare services that need acquiring and 
analyzing patient data at any time and from any location. 
Network slowness, high bandwidth utilization, and reliability 
are all obstacles to the adoption of cutting-edge healthcare 
applications. To solve these issues, the authors created 
UbeHealth [21], a healthcare system. To satisfy the potential 
and restrictions of a smart health monitoring system, an edge 
computing solution is proposed. Multi-access Edge 
Computing [22] is used in this method to detect, track, and 
monitor a patient's health history in a cost-effective manner. 
Furthermore, two separate features are proposed in order to 
construct an efficient, highly trustworthy, and low-distortion 
system. However, this method fell short of highlighting the 
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data management challenges in the smart health industry. 
HealthFog, a smart healthcare system based on ensemble deep 
learning for the automatic diagnosis of cardiovascular diseases 
in an integrated IoT and fog computing environment is 

proposed [23]. It can be configured to a variety of operation 
modes to deliver the greatest Quality of Service or forecast 
accuracy depending on the circumstance and the needs of the 
user. 

 

 
Figure 1. Fog managed data model 

 
 

3 Proposed Methodology 
 
To provide dependable healthcare services, fog, IoT, and 

cloud are linked into modified three-layer architecture. This 
architecture can be used to build an intelligent system for the 
user-closer edge network. These nodes serve as a connection 
point for numerous sensors or IoT devices. The critical 
components of the architecture are as follows:  

• Sensors or Internet of Things devices 
• Fog server 
• Cloud Layer 

 

3.1 Architecture 

     
There are three layers in the proposed architecture. Figure 

1 depicts the elements of the system. Sensor layer receives the 
data from the patients through the sensors. The fog server 
receives the information from the body area sensors. The 
cloud server's responsibilities include data analysis and report 
generating. 
 
3.1.1 Senor Layer 

 
There are three sorts of sensors in this component: activity 

sensors, medical sensors and environmental sensors.  
Medical sensors include electrocardiogram (ECG) sensors, 
electromyogram (EMG) sensors, electroencephalogram (EEG) 
sensors, temperature sensors, respiration rate sensors, oxygen 
level sensors and glucose level sensors. The sensor device 
collected two sorts of data: intrinsic and intrinsic. Extrinsic 
information includes things like temperature and location. 
Intrinsic data includes things like blood pressure, glucose 

levels, and heart rate. This component detects data from 
patients and sends it to the gateway devices that are connected. 
The data that has been submitted is then processed. The fog 
server receives all of the collected data. 

 
3.1.2 Fog Layer 

 
The real-time data from IoT sensors is received and 

analyzed by the real-time application which is shifted to the 
fog server. There are different types of Gateway devices such 
as mobile phones, laptop and tablets, which are acting as a fog 
server to collect sensed data from different sensors and 
forward this data to fog nodes for further processing. Through 
the use of multiple IoT sensors, the fog server is able to 
monitor a broad range of information. A Fog Managed Data 
Model (FMDM) is implemented in Fog Layer to efficiently 
manage and distribute data to fog clusters and cloud servers.  
A receiver for receiving sensor data and a task manager make 
up the FMDM.  Work distribution and aggregation modules 
make up the task manager. All of the collected data are loaded 
into the fog server, which uses a job scheduling algorithm to 
determine how much work to assign to each cluster and when 
to offload the data to cloud server for processing. The major 
components of the Fog layer includes: Receiver and Task 
manager. 

 
(1)Receiver 
The receiver collects all the information from the body area 
network. The receiver includes a data storage which can store 
structured, unstructured and semi structured data received 
from medical sensor, activity sensor and environmental sensor. 
It will verify that the message is accurate and then send it to 
task manager for scheduling. 

 
(2)Task Manager 
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A task manager is in charge of overseeing the workload. It is 
also known as workload manager, which is in charge of the 
workload generated by patient data. Dependent on the amount 
of work that needs to be done, the patient information are 
handled. There are two components in the task manager 
namely the work aggregation and work distribution.  

 
• Work Aggregation 
The task manager collects all the data from fog servers and the 
work is aggregated. The mapping is done in the work 
aggregation process in such a way that the work is converted 
in to a correct format for the data flow. Redundant data are 
removed from the collected data streams. 
 
• Work Distribution 
The smart gateway is used to distribute work with the help of 
a job scheduler. For this distribution process, the Weighted 
Fog Priority Algorithm is applied (Algorithm1). Each task 
from patient has a weight, current health condition and 
Disease severity. Based on these values priority value is 
calculated by the fog server and send to fog clusters for further 
processing.  The cloud server time is determined by each fog 
server's processors and based on the priority. 
 
3.2.1 Steps Involved in FMDM  

 
The step-by-step approach to handle the sensor data for 
processing by the fog-managed data models (FMDM) is given 
below. 
Step 1: Collect patient's medical information  
Step 2: Let inP1, inP2, inP3, ... inPx are input derived from 
sensor data.  
Step 3: Sensors send current reading of the inPx to the fog 
server. 
Step 4:  Aggregate data in Fog server. The works include 

4.1.1: Receive inPx, via the receiver, Rx. 
4.1.2: The task manager calculates weight and priority of 
the received data. 
4.1.3: Work distribution is done at the work distribution 
station. 
4.1.4, Weighted Fog Priority Job Scheduling algorithm is 
applied to prioritize the queue. 
4.1.5Work is dispatched to the queue. 
4.1.5 Calculate Computing demand for the task 
        If the computing demand< computing 
resources   
        in fog 
          Assign task to fog cluster 
            else if computing demand > Computing   
            resources 

          Transfer to cloud servers 
Step 5: Analyze, Process data, save report in memory for 
future. 
Step 6: Send notifications to care providers. 
 
The flow chart for FMDM is given in Figure 2. 
 
3.2.2 Weighted Fog Priority Job Scheduling (WFPJS) 

Algorithm 

 
The weight is calculated and assigned for job. The 

calculated weight used for prioritize the task in the queue. The 
task, which has the highest weight, is the first job in queue. 

The extracted medical record contains the details of the 
patients. The details of patients like name, age, gender, blood 
sugar level, blood pressure, pulse count, oxygen level, 
potassium, sodium etc. The WFPJS algorithm steps are given 
in Figure 3 and in Algorithm1. 

 

 
Figure 2. Flow chart for FMDM 

 

 
Figure 3. Flowchart for WFPJS algorithm 
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Algorithm 1. Weighted Fog Priority Job Scheduling (WFPJS) 
Algorithm 

 

1. input: information on the patient's medical   
condition 

2. output: Job send to fog/ cloud based on priority.  
3. start 
4. parameter initialization; 
5. data transmission to the fog layer; 
6. while 
7.       if ((Current Health Condition&& 

High Disease Severity) then 
8.       calculate weight  ; 
9.             if (weight= high) then 
10.             calculate priority; 
11.            end 
12.      end 
13. Ei(t)= Emergency Factor; 
14. apply priority function; ᵹm 
15. if (High priority) then 
16.   send to Priority queue q1 
17.      else if(medium priority) then 
18.           send to Priority queue q2 
19.               else if( low priority) 
20.               send to Priority queue q3 
21.                        end 
22.        end 
23.          end 
24. send the data to fog/ cloud layer 
25. end while 
26. end 

 
Priority queues q1, q2 and q3 are used to group the 

scheduled jobs according to their importance. The next 
responsibility for the fog server is to distribute the workload 
among the fog clusters/cloud servers according to their 
computational power and response time. For each task in the 
priority queue, the fog server must figure out how much 
computational power is required. The scheduled tasks are sent 
to the fog clusters via the fog server. This massive amount of 
data will be processed with the resources that have already 
been set aside. The data is split up into numerous fog clusters 
for processing in the background. 

There are several different types of fog clusters, each with 
a different processing capacity and turnaround time. While 
distributing the tasks, the capacity and turnaround time of fog 
cluster virtual machines are determined.   Virtual machines 
with high processing power and quick turnaround time are 
assigned to work on the most important tasks first. The virtual 
machines are classified using the Priority-based Virtual 
machine Classification Algorithm (PVCA). 

The PVCA algorithm includes following steps 
Phase1: Categorize virtual Machines based on cost and 
turnaround time (Fog clusters)  
Phase2: Allocate Virtual Machines based on priority of tasks 

In phase 1, the virtual machines are clustered based on the 
capacity and turnaround time. Set of virtual machines with 
high capability and low turnaround time are grouped to 
cluster1, set of virtual machines with medium capability and 
turnaround time are grouped to cluster 2 and cluster3 contains 
set of virtual machines with low capability and high 

turnaround time. These virtual machine sets are assigned with 
different levels of priority such as high, medium and low.  

 
Phase 1: Clustering of Virtual Machines  

Let T={ T1, T2……Tn} are tasks and X={ X1,X2….Xn} are 
virtual machines. 
for all Ti ∈ L 
 do  
for all Xn ∈ N  
    do  
       Compute  turnaround time Ttat (Ti , Xn)  
       if( capacity= high && Ttat = low) 
            assign VM to cluster 1 
            else if (capacity=medium  && Ttat = medium) 
                 assign VM  to cluster 2 

                 else if(capacity= low  && Ttat = low) 

                      assign VM to cluster 3 
     
 In phase 2, the tasks scheduled in priority queue are assigned 
to the virtual machine clusters based on the priority assigned 
to the virtual machine grouping.  
 
Phase 2: Allocation of Virtual Machines 

Input: Priority assigned tasks in priority queue 
Output: Allocate VM to priority queue 
For each task Ti  in Q 
  if ᵹm = High 
     invoke cluster 1 VM 
    else if  ᵹm = Medium then 
      invoke cluster 2 VM 
      else if  ᵹm = Low then  
               invoke cluster3 VM 
 

Even with a large number of patients requesting services, 
fog clusters cannot handle the high computational demands 
and integrated data analytics required to handle them. These 
tasks are delivered to the cloud and processed there. Data must 
be offloaded from the fog server to cloud servers. 

 
3.2.3 Cloud Layer 

 
To extract insight from raw data, clustering and 

classification techniques are used. All of these operations are 
carried out based on the weighted priority. After all of the data 
processing has been completed, the data will be aggregated 
and a final choice will be made. Medical practitioners receive 
reports, which they use to investigate and treat patients. The 
networks are made and connected along with security setting. 
The patient data are transmitted without any data loss and also 
no data manipulation. 

 
4 Experimental Setup and Evaluation of 

Performance  

  
All of the scheduling and categorization algorithms are 

deployed in Java JDK 1.8 running on a Dell Inspiron 15 3000 
Series Core i3 processor with 4GB RAM and 2.29 GHz clock. 
A real-world Internet of Things (IoT) testbed is difficult and 
expensive to build, and it doesn't provide a reproducible 
setting for laboratory studies. Because of this, iFogSim, an 
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open-source simulator is used. Modeling and simulating fog 
computing systems with iFogSim allows for resource 
management and scheduling strategies across edge and cloud 
resources to be evaluated under various scenarios for latency, 
energy usage, network congestion, and operational expenses. 
For simulation, iFogSim functionalities have been integrated 
with CloudSim [24-25]. iFogSim communicates with 
CloudSim by sending a message signal in the middle of the 
datacenter. As a result, CloudSim is in charge of managing the 
various functions amongst the fog computing components. 
ISP Gateway, Smartphone and WiFi gateway can act as fog 
server. Fog server configuration details are listed in Table 1. 
Virtual machines are used to model patient data. The RAM 
capacity, CPU speed and processing power are listed in Table 
2 for various fog device configurations.  To make fog devices, 
we developed a cloud simulation environment that extended 
the datacenter class and VM is used to simulate patient data. 
Cloudlets have been extended so that user requests could be 
executed. The performance of this model is tested with 
different number of patients and different number of network 
configurations.  The cost parameter per unit is listed in Table 
3. 

 
Table 1. Fog server configuration 

 
Table 2. Virtual machine configuration 

Virtual Machine   Cluster1    Cluster 2    Cluster 3 

RAM (GB)  5 4 2 

Processing Power 

(MIPS)  

22000 15000 11000 

Bandwidth (Mbps) 1024 1024 512 
 

Table 3. Cost parameters 
Cost Parameters Value  

Communication cost of fog – cloud 0.5 

Processing cost per time unit  0.2 

Communication cost per data unit 0.3 

Unit cost of memory used  0.1 

Unit cost of storage used  0.2 
 

Weight and priority of the patient data are calculated as a 
function of current Health condition, High disease severity and 
the emergency factor. 
 

Weight is calculated as, 
 

Wi(t)=CHCi(t)*HDSi(t)              (1) 
 

Where, Wi is the weight assigned, CHCi is the current 
health condition of the patient and HDSi is the high disease 
severity.  

The priority function is given as, 
 

ᵹm = Wi(t)/𝑒−Wi(t))∗ Ei(t)             (2) 
 

Where, Ei(t) is the emergency factor. Highest the value of 
the ᵹm, first enters in to the queue and process in the server. 
Level of priority varies as ᵹmH, ᵹmM, ᵹmL are high, medium, 
low respectively. The ᵹm is order descending way. The 
highest the CHC & HDS, the ᵹm is also high. The highest the 
ᵹm enters the fog server. If the same ᵹm for different patients, 
the priority is given according to the time of arrival of patient 
data to the fog server. First come first server is applicable for 
the same ᵹm patients within the priority level. The values of 
CHc, HDS, E, ᵹm are given in Table 4. 
 
Table 4. Values of CHc, HDS, E, ᵹm 

CHC HDS E ᵹm 

0.2 0.2 0.1 0.02 

0.9 0.2 0.1 0.12 

0.9 0.9 1 0.57 
 

Turnaround time of VM is calculated as, 
 

Ttat= Wt + Ttet                   (3) 
 

Wt represents the waiting time and Ttet represents total 
execution time. 

Ttet is calculated as, 
 

Ttet = Tete- Tste                  (4) 
 

Where, Tete is the end time of task execution and Tste is 
start time of task execution. 
 

Network latency of FMDM can be calculated based on 
the number of hops travelled per user request.  If each hop 
assumes the same latency, the total number of packets 
transferred from an edge node (en) to a fog node (fn) and from 
fn to another fl and fl to en. 

 
𝐹𝑜𝑔

𝑁𝐿
=

𝐷𝑢𝐻𝑛(𝑒𝑛+𝑓𝑛+𝑓𝑙)

𝑃𝑐
              (5) 

 
Where, Hn is the number of hops, Pc is the total number of 

data packets sent, and Du is the unit hop delay. 
 

Computation latency can be calculated as a function of 
waiting time and service time. Assuming a queuing system, for 
the fog device fi with the traffic arrival rate ari 
and service rate sri , the computation latency is given in (6) that 
involves queuing delay while waiting for service, service time, 
and time taken for virtual machine installation. 
 

𝑓𝑖𝐶𝐷 =
1

𝑠𝑟𝑖−𝑎𝑟𝑖
                    (6) 

 
The data passes through multistage fog computations 

involving inter-fog communication delay (fld).Total 
computation latency(fiTCD) is given by, 

 

Type of device RAM(GB) CPU(GHz) Power (W) 

ISP Gateway 6 4 117.445 
Smartphone 2 2.6 88.64 
WiFi Gateway 6 4 117.445 
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𝑓𝑖𝑇𝐶𝐷 =
1

𝑠𝑟𝑖−𝑎𝑟𝑖
+ 𝑓𝑙𝑑               (7) 

 
Cost of Computation (Cfi) in Fog layer is calculated as,  

 
Cfi = Ucfi + Rd(lTi)               (8) 

 
Where, Ucfi is the unit cost of the VM and the Rd is the 

running duration of virtual machine for particular task. UC 
includes processing cost per time unit, Communication cost 
per unit cost, Unit cost of memory used, Unit cost of storage 
used.  Running time varies based on task length (lTi) for 
FMDM.  

Energy Consumption is calculated for FMDM and cloud 
based models. As the tasks are processed at user premises with 
fog nodes the energy consumption is low in FMDM compared 
with cloud based models. 
 
5 Results and Discussion 
 
5.1 Execution Time 

 
The Execution time is the overall time taken to process the 

task at the fog server. As the tasks are preprocessed and 
scheduled by fog server and assigned to fog virtual machines 
directly, there is a reduction in execution time.  As the 
number of requests coming to the cloud is reduced, the overall 
execution time of tasks is cloud also get reduced. The 
execution time of FMDM with WFPJS algorithm is compared 
with the existing cloud based FCFS scheduling. The 
experimental results show overall reduction in execution time. 
The values are listed in Table 5 and Figure 4. 
 
Table 5. Execution time 

No. of Cloudlets Sequential 
Algorithm FCFS 

FMDM with 
WFPJS 

10 48.807 22.1565 
20 97.614 44.313 
30 146.421 66.4695 
40 195.228 88.626 
50 244.035 110.7825 
60 292.842 132.939 
70 341.649 155.0955 
80 390.456 177.252 
90 439.263 199.4085 
100 488.07 221.565 
 

 
Figure 4. Comparision of execution time 

5.2 Total Cost of FMDM 

 
Most of the pre-processing are done in fog server itself and 

cloud server which is located near to fog servers are selected 
for data processing. So the UC cost is low in FMDM. The 
communication cost is negligible when compared with cloud 
based IoT data Processing. The total cost of computation is 
low in FMDM even though there are large number of patients 
and large number of cloudlets. The values are listed in Table 
6 and Figure 5. 

 
Table 6. Cost of computation 

No. of 
Cloudlets 

Sequential 
Algorithm FCFS 

FMDM with 
WFPJS 

10 293.872 225.1 
20 587.744 450.2 
30 881.616 675.3 
40 1175.488 900.4 
50 1469.36 1125.5 
60 1763.232 1350.6 
70 2057.104 1575.7 
80 2350.976 1800.8 
90 2644.848 2025.9 
100 2938.72 2251 

 

 
Figure 5. Cost of computation 

 
5.3 Network Performance Metrics 

 

The network parameters such as energy consumption, 
network latency, computational latency with respect to 
different configuration and with different number of patients 
has been measured for FMDM and cloud computing. 

Figure 6 shows how FMDM and clouds change the amount 
of energy consumed. Reduced energy consumption can be 
seen with fog servers, whereas using more energy can be seen 
with cloud servers. The energy consumption of FMDM and 
clouds is depicted in Figure 3 as a function of the number of 
patients. The fog server consumes less energy when 
processing data, whereas the cloud server consumes more 
energy when processing data. When compared to a cloud 
server, even with a larger number of patients, the energy 
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consumption is significantly lower. The FMDM can reduce 
the energy consumption with patient count. 
Figure 7 depicts the fog and cloud computation latency as a 
function of the number of patients. During data analysis and 
management, the fog server minimizes calculation latency, but 
the cloud server requires some additional calculation latency 
during data processing. The computing latency is reduced as 
compared to a cloud server even when there are more patients. 
 

 
Figure 6. Energy consumption 

 

 
Figure 7. Computation latency 

 
The network delay of FMDM and clouds is depicted in 

Figure 8 as a function of the number of patients. The fog server 
minimizes network latency during data processing, but the 
cloud server adds greater network delay during data 
processing. When compared to a cloud server, network latency 
is reduced even when the number of patients is doubled. 

 
Figure 8. Network latency of fog and cloud 

 

6 Conclusion 
 

Real-time data processing and analysis are required for 
IoT-based health monitoring applications. Any time lost while 
transmitting data to the cloud and back to the application is 
intolerable. As a result, fog computing is introduced between 
sensors and cloud computing to collect and process data more 
efficiently. It reduces the amount of data transported between 
the sensors and the cloud servers and improves overall system 
efficiency. But this paradigm lags in task scheduling and task 
allocation. Traditional scheduling results in overpricing and 
processing delays.   The proposed Fog Managed Data Model 
with Weighted Fog Priority Job Scheduling and virtual 
machine allocation scheme schedule task to fog virtual 
machines based on priority. The simulation results show that 
the proposed method improves response time while costing 
less than the existing static scheduling algorithms. The 
network parameter metrics for FMDM and cloud-based 
systems are compared. The simulation results show that the 
FMDM reduces network usage, computational latency, and 
network latency when the patient count and network 
configurations are varied. The system will be deployed with 
various edge devices in the future research, and the system's 
performance will be examined. 
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