
Fog Managed Data Model for IoT based Healthcare Systems 217

*Corresponding Author: Benila S.; E-mail: sbenila@gmail.com
DOI: 10.53106/160792642022032302003

Fog Managed Data Model for IoT based Healthcare Systems

Benila S.1*, Usha Bhanu N.2

1 Department of Computer Science and Engineering, SRM Valliammai Engineering College, India

2 Department of Electronics and Communication Engineering, SRM Valliammai Engineering College, India
sbenila@gmail.com, ushabhanu123@gmail.com

Abstract

In Internet of things enabled healthcare system, sensors

create vast volumes of data that are analyzed in the cloud.
Transferring data from the cloud to the application takes a long
time. An effective infrastructure can reduce latency and costs
by processing data in real-time and close to the user devices.
Fog computing can solve this issue by reducing latency by
storing, processing, and analyzing patient data at the network
edge. Placing the resources at fog layer and scheduling tasks
is quite challenging in Fog computing. This paper proposes a
Fog Managed Data Model (FMDM) with three layers namely
Sensor, Fog and cloud to solve the aforementioned issue.
Sensors generate patient data and that are managed and
processed by Fog and cloud layers. Tasks are scheduled using
a Weighted Fog Priority Job Scheduling algorithm (WFPJS)
and fog nodes are allocated based on Priority based Virtual
Machine Classification Algorithm (PVCA). The performance
of this model is validated with static scheduling techniques
with variable patient counts and network configurations. The
proposed FMDM with WFPJS reduces response time, total
execution cost, network usage, network latency,
computational latency and energy consumption.

Keywords: Cloud, Fog, Healthcare, Internet of things,

Scheduling

1 Introduction

A recent International Data Corporation study predicts that
the number of sensors and Internet-of-things (IoT) units would
expand to 300 million and 500 million, respectively [1-2]. The
IoT industry is expected to be worth $17 billion globally by
2022 [1, 3]. Approximately 30.7 percent of IoT devices will
be used in healthcare. Bulk data processing is currently being
used in healthcare via a large number of IoT devices. The
Internet of Things in health care is mostly based on cloud
computing [4]. To facilitate IoT, cloud computing may
provide on-demand services such as networking, storage,
processing, and high-performance computing. Cloud
computing minimizes the complexity of healthcare IoT
devices by reducing battery-draining processing tasks [5-6]. It
does, however, have flaws such network congestion,
insufficient bandwidth utilization and security issues. As the
transmission rate increases in tandem with the vast volume of
data, so does the latency in cloud computing. A massive
amount of data is transmitted between sensors and the cloud

in the healthcare IoT. An increase in the strength or quantity
of data generated can increase the delay to destination. As a
result, the probability of error is high in healthcare IoT with
cloud due to packet loss and transmission delay, which is
directly proportional to the volume of data transmitted. So,
the destination's quality of service (QoS) is low.

Latency imposed by sending tasks to the cloud and
subsequently returning the result is undesirable in certain
time-critical internet of things applications, such as
telemedicine and monitoring. Time-sensitive decisions will be
made much closer to IoT devices. Healthcare infrastructure
requires real-time data processing infrastructure all the time
for time-sensitive applications. The most fundamental goal of
healthcare IoT is to achieve the least feasible delay while also
minimizing network bandwidth consumption [6-7]. Routers
and gateways act as a point of contact between clouds and
terminals. As the distance between clouds and healthcare IoTs
increases, more routers are necessary to connect them,
resulting in increased high network usage and significant
bandwidth consumption.

To overcome the constraints of cloud computing, Cisco
developed fog computing [8]. Fog computing, sometimes
referred to as fog networking, is a decentralized computer
architecture that resides between the cloud and data-
generating devices [9]. It is comparable to cloud computing,
but employs local clouds to process and execute activities in
real-time, permitting IoT applications to run on network
elements rather than cloud data centers. Fog computing has
many benefits for IoT applications, including: increase the
efficiency, transmit sensitive information to customers in real-
time, solve data center disruptions, real-time interactive
services, real-time mobility support, and automatic
deployment. This adaptable framework lets users to optimize
performance by placing resources, such as applications and the
data they generate, in the user edge. The fog layer filters data,
performs preprocessing, and reduces network usage and
processing overhead in the cloud.

Fog computing and edge computing are variations of
network designs that can be used to address cloud computing
difficulties. Because of their low latency and modest
bandwidth requirements, these network topologies can protect
sensitive data. Edge Computing is a platform for extending
cloud services to edge devices [10]. In order to reduce network
latency and traffic, edge nodes and devices with computing
power can undertake a vast range of computer functions such
as data processing, storage of data, device management,
decision-making, and privacy protection. The IoT network
core oversees intelligent device connection and operation,

mailto:benila@
mailto:ushabhanu123@gmail.com

218 Journal of Internet Technology Vol. 23 No. 2, March 2022

while its edge computing provides sensing, interaction, and
control between objects. Edge computing and fog computing
have a common purpose, yet there are some fundamental
distinctions between them. As a result of restricted resources
in edge computing, resource conflict might arise, leading
processing latency to increase. In healthcare systems, global
analytics is required for prediction and decision making. Edge
computing devices will not connect with cloud servers and
integrated healthcare services are not provided. Fog
computing can overcome these restrictions by incorporating
cloud resources and edge devices.

Healthcare monitoring and applications that care for
elderly patients, such as residential care, cardiovascular
disease, chronic heart disease patients, hypertension, diabetic,
and other chronic illnesses, all require real-time data analysis,
real-time monitoring, and decision making. One of the most
essential difficulties in fog based healthcare environments is
how to sort out tasks and how to deal with sensitive data that
is vital to the health of the patient. Until scheduling algorithms
can be adjusted to work with healthcare applications, fog
computing will not be able to meet these criteria.

.The following are the paper's main contributions:
• A three-module design is proposed that includes

IoT, fog, and cloud modules to provide low latency and real
time healthcare services.

• At the fog layer a Fog Managed Data model is
integrated with Weighted Fog Priority Job Scheduling
algorithm for efficient job allocation to fog nodes.

• Priority based virtual machine classification
algorithm to allocate virtual machine at the cloud server for
efficient processing of patient data.

• The proposed work is compared with existing cloud
based algorithm and it reduces the total latency between
healthcare IoT and cloud servers.

The rest of the paper is structured as follows: The
associated literature reviews for healthcare IoT based on fog
computing is described in Section 2. Section 3 describes the
Fog Managed Data Model with Weighted Fog Priority Job
Scheduling Algorithm and Priority based Virtual machine
Classification Algorithm. Section 4 describes the
experimental setup and performance evaluation. The results
obtained through FMDM are summarized and discussed in
section5. This paper comes to a conclusion in section 6.

2 Literature Review

A combined correlated sensor, fog and cloud based model

is essential for offering efficient computed service to patients
with real-time data, for delivering health-care and other delay-
sensitive reports with shorter response time, tolerable energy
usage, and better accuracy. Various techniques have been
proposed to reduce energy, bandwidth consumption, latency
reduction and network usage. Major contributions provided
below are on the basis of load balancing, scheduling and
offloading. A work was inspired by combining the power of
accuracy of deep learning models with the reduced latency of
edge computing nodes. IoT-based healthcare system
connects preconfigured devices to process data from several
patients in a deadline-oriented approach to make better
decisions. Patients' healthcare data is collected using a variety
of technologies, including IoT sensors and satellites [11-12].
In this approach, the health-care data is divided into two types:

small data processed on a fog server and huge data handled on
a centralized cloud repository.

A three-layer architecture was proposed as a combination
of the terminal, edge, and core layers [13]. In the first level,
resources are scheduled between fog groups, whereas in the
second level, resources are scheduled between fog
nodes inside the same fog group. To manage IoT resources, a
random scheduling approach is implemented. The proposed
model had a shorter service delay and a more stable task
execution. However, scheduling across separate fog clusters,
as well as the costs of resource distribution are not explored in
this work. A priority based scheduling process with Optimize
Response Time and Reconfigure Dynamic algorithms are
implemented to minimize the cost of communication and
latency [14]. The experimental results show that both methods
cut expenses by considering priority in a cloud-only
simulation scenario, but they also increase overall response
time.

A hierarchical task allocation system based on the Smart
Sensor-Fog-Cloud was proposed, in order to avoid job
starvation and make the most of the available resources, it was
able to dynamically modify the job priority [15].
By implementing a multi-core and multi-thread technique,
the resource fragmentation and hunger issues are solved,
optimize resource deployment, and lower the execution and
reaction time of applications.

For energy consumption, resource utilization, and latency,
multi-tier structure fog-based network architecture for internet
of everything was proposed [16]. Load balancing, scheduling,
security and privacy were not taken into account. The volume
and velocity of IoT device-generated healthcare data is
enormous. Both forms of data must be used to anticipate the
present status of patients, which provides to the entire
development of smart cities [17-18]. After collecting and
aggregating data from smart devices in IoT networks, cloud
servers store and analyze data. High latency is noted as an
issue for time-critical IoT applications, and a solution termed
iFogStor [19] is proposed to alleviate it. The Fog Computing
concept was used to develop this technique. The data
placement problem was characterized as a Generalized
Assignment Problem (GAP) in iFogStor. For time-sensitive
IoT applications, an accurate integer programming and
heuristic technique is given, which needs a more exact model
and architecture.

 An algorithm for machine learning [20] is presented to
conserve energy and bandwidth use, as well as network
utilization, for mobile devices. In addition, cloudlet
computation offloading and computational jobs are examined
in the cloudlet environment. In smart cities, a mobile cloud
computing-based method is proposed for delivering
ubiquitous healthcare services that need acquiring and
analyzing patient data at any time and from any location.
Network slowness, high bandwidth utilization, and reliability
are all obstacles to the adoption of cutting-edge healthcare
applications. To solve these issues, the authors created
UbeHealth [21], a healthcare system. To satisfy the potential
and restrictions of a smart health monitoring system, an edge
computing solution is proposed. Multi-access Edge
Computing [22] is used in this method to detect, track, and
monitor a patient's health history in a cost-effective manner.
Furthermore, two separate features are proposed in order to
construct an efficient, highly trustworthy, and low-distortion
system. However, this method fell short of highlighting the

Fog Managed Data Model for IoT based Healthcare Systems 219

data management challenges in the smart health industry.
HealthFog, a smart healthcare system based on ensemble deep
learning for the automatic diagnosis of cardiovascular diseases
in an integrated IoT and fog computing environment is

proposed [23]. It can be configured to a variety of operation
modes to deliver the greatest Quality of Service or forecast
accuracy depending on the circumstance and the needs of the
user.

Figure 1. Fog managed data model

3 Proposed Methodology

To provide dependable healthcare services, fog, IoT, and

cloud are linked into modified three-layer architecture. This
architecture can be used to build an intelligent system for the
user-closer edge network. These nodes serve as a connection
point for numerous sensors or IoT devices. The critical
components of the architecture are as follows:

• Sensors or Internet of Things devices
• Fog server
• Cloud Layer

3.1 Architecture

There are three layers in the proposed architecture. Figure

1 depicts the elements of the system. Sensor layer receives the
data from the patients through the sensors. The fog server
receives the information from the body area sensors. The
cloud server's responsibilities include data analysis and report
generating.

3.1.1 Senor Layer

There are three sorts of sensors in this component: activity

sensors, medical sensors and environmental sensors.
Medical sensors include electrocardiogram (ECG) sensors,
electromyogram (EMG) sensors, electroencephalogram (EEG)
sensors, temperature sensors, respiration rate sensors, oxygen
level sensors and glucose level sensors. The sensor device
collected two sorts of data: intrinsic and intrinsic. Extrinsic
information includes things like temperature and location.
Intrinsic data includes things like blood pressure, glucose

levels, and heart rate. This component detects data from
patients and sends it to the gateway devices that are connected.
The data that has been submitted is then processed. The fog
server receives all of the collected data.

3.1.2 Fog Layer

The real-time data from IoT sensors is received and

analyzed by the real-time application which is shifted to the
fog server. There are different types of Gateway devices such
as mobile phones, laptop and tablets, which are acting as a fog
server to collect sensed data from different sensors and
forward this data to fog nodes for further processing. Through
the use of multiple IoT sensors, the fog server is able to
monitor a broad range of information. A Fog Managed Data
Model (FMDM) is implemented in Fog Layer to efficiently
manage and distribute data to fog clusters and cloud servers.
A receiver for receiving sensor data and a task manager make
up the FMDM. Work distribution and aggregation modules
make up the task manager. All of the collected data are loaded
into the fog server, which uses a job scheduling algorithm to
determine how much work to assign to each cluster and when
to offload the data to cloud server for processing. The major
components of the Fog layer includes: Receiver and Task
manager.

(1)Receiver
The receiver collects all the information from the body area
network. The receiver includes a data storage which can store
structured, unstructured and semi structured data received
from medical sensor, activity sensor and environmental sensor.
It will verify that the message is accurate and then send it to
task manager for scheduling.

(2)Task Manager

220 Journal of Internet Technology Vol. 23 No. 2, March 2022

A task manager is in charge of overseeing the workload. It is
also known as workload manager, which is in charge of the
workload generated by patient data. Dependent on the amount
of work that needs to be done, the patient information are
handled. There are two components in the task manager
namely the work aggregation and work distribution.

• Work Aggregation
The task manager collects all the data from fog servers and the
work is aggregated. The mapping is done in the work
aggregation process in such a way that the work is converted
in to a correct format for the data flow. Redundant data are
removed from the collected data streams.

• Work Distribution
The smart gateway is used to distribute work with the help of
a job scheduler. For this distribution process, the Weighted
Fog Priority Algorithm is applied (Algorithm1). Each task
from patient has a weight, current health condition and
Disease severity. Based on these values priority value is
calculated by the fog server and send to fog clusters for further
processing. The cloud server time is determined by each fog
server's processors and based on the priority.

3.2.1 Steps Involved in FMDM

The step-by-step approach to handle the sensor data for
processing by the fog-managed data models (FMDM) is given
below.
Step 1: Collect patient's medical information
Step 2: Let inP1, inP2, inP3, ... inPx are input derived from
sensor data.
Step 3: Sensors send current reading of the inPx to the fog
server.
Step 4: Aggregate data in Fog server. The works include

4.1.1: Receive inPx, via the receiver, Rx.
4.1.2: The task manager calculates weight and priority of
the received data.
4.1.3: Work distribution is done at the work distribution
station.
4.1.4, Weighted Fog Priority Job Scheduling algorithm is
applied to prioritize the queue.
4.1.5Work is dispatched to the queue.
4.1.5 Calculate Computing demand for the task
 If the computing demand< computing
resources
 in fog
 Assign task to fog cluster
 else if computing demand > Computing
 resources

 Transfer to cloud servers
Step 5: Analyze, Process data, save report in memory for
future.
Step 6: Send notifications to care providers.

The flow chart for FMDM is given in Figure 2.

3.2.2 Weighted Fog Priority Job Scheduling (WFPJS)

Algorithm

The weight is calculated and assigned for job. The

calculated weight used for prioritize the task in the queue. The
task, which has the highest weight, is the first job in queue.

The extracted medical record contains the details of the
patients. The details of patients like name, age, gender, blood
sugar level, blood pressure, pulse count, oxygen level,
potassium, sodium etc. The WFPJS algorithm steps are given
in Figure 3 and in Algorithm1.

Figure 2. Flow chart for FMDM

Figure 3. Flowchart for WFPJS algorithm

Fog Managed Data Model for IoT based Healthcare Systems 221

Algorithm 1. Weighted Fog Priority Job Scheduling (WFPJS)
Algorithm

1. input: information on the patient's medical
condition

2. output: Job send to fog/ cloud based on priority.
3. start
4. parameter initialization;
5. data transmission to the fog layer;
6. while
7. if ((Current Health Condition&&

High Disease Severity) then
8. calculate weight ;
9. if (weight= high) then
10. calculate priority;
11. end
12. end
13. Ei(t)= Emergency Factor;
14. apply priority function; ᵹm
15. if (High priority) then
16. send to Priority queue q1
17. else if(medium priority) then
18. send to Priority queue q2
19. else if(low priority)
20. send to Priority queue q3
21. end
22. end
23. end
24. send the data to fog/ cloud layer
25. end while
26. end

Priority queues q1, q2 and q3 are used to group the

scheduled jobs according to their importance. The next
responsibility for the fog server is to distribute the workload
among the fog clusters/cloud servers according to their
computational power and response time. For each task in the
priority queue, the fog server must figure out how much
computational power is required. The scheduled tasks are sent
to the fog clusters via the fog server. This massive amount of
data will be processed with the resources that have already
been set aside. The data is split up into numerous fog clusters
for processing in the background.

There are several different types of fog clusters, each with
a different processing capacity and turnaround time. While
distributing the tasks, the capacity and turnaround time of fog
cluster virtual machines are determined. Virtual machines
with high processing power and quick turnaround time are
assigned to work on the most important tasks first. The virtual
machines are classified using the Priority-based Virtual
machine Classification Algorithm (PVCA).

The PVCA algorithm includes following steps
Phase1: Categorize virtual Machines based on cost and
turnaround time (Fog clusters)
Phase2: Allocate Virtual Machines based on priority of tasks

In phase 1, the virtual machines are clustered based on the
capacity and turnaround time. Set of virtual machines with
high capability and low turnaround time are grouped to
cluster1, set of virtual machines with medium capability and
turnaround time are grouped to cluster 2 and cluster3 contains
set of virtual machines with low capability and high

turnaround time. These virtual machine sets are assigned with
different levels of priority such as high, medium and low.

Phase 1: Clustering of Virtual Machines

Let T={ T1, T2……Tn} are tasks and X={ X1,X2….Xn} are
virtual machines.
for all Ti ∈ L
 do
for all Xn ∈ N
 do
 Compute turnaround time Ttat (Ti , Xn)
 if(capacity= high && Ttat = low)
 assign VM to cluster 1
 else if (capacity=medium && Ttat = medium)
 assign VM to cluster 2

 else if(capacity= low && Ttat = low)

 assign VM to cluster 3

 In phase 2, the tasks scheduled in priority queue are assigned
to the virtual machine clusters based on the priority assigned
to the virtual machine grouping.

Phase 2: Allocation of Virtual Machines

Input: Priority assigned tasks in priority queue
Output: Allocate VM to priority queue
For each task Ti in Q
 if ᵹm = High
 invoke cluster 1 VM
 else if ᵹm = Medium then
 invoke cluster 2 VM
 else if ᵹm = Low then
 invoke cluster3 VM

Even with a large number of patients requesting services,
fog clusters cannot handle the high computational demands
and integrated data analytics required to handle them. These
tasks are delivered to the cloud and processed there. Data must
be offloaded from the fog server to cloud servers.

3.2.3 Cloud Layer

To extract insight from raw data, clustering and

classification techniques are used. All of these operations are
carried out based on the weighted priority. After all of the data
processing has been completed, the data will be aggregated
and a final choice will be made. Medical practitioners receive
reports, which they use to investigate and treat patients. The
networks are made and connected along with security setting.
The patient data are transmitted without any data loss and also
no data manipulation.

4 Experimental Setup and Evaluation of

Performance

All of the scheduling and categorization algorithms are

deployed in Java JDK 1.8 running on a Dell Inspiron 15 3000
Series Core i3 processor with 4GB RAM and 2.29 GHz clock.
A real-world Internet of Things (IoT) testbed is difficult and
expensive to build, and it doesn't provide a reproducible
setting for laboratory studies. Because of this, iFogSim, an

222 Journal of Internet Technology Vol. 23 No. 2, March 2022

open-source simulator is used. Modeling and simulating fog
computing systems with iFogSim allows for resource
management and scheduling strategies across edge and cloud
resources to be evaluated under various scenarios for latency,
energy usage, network congestion, and operational expenses.
For simulation, iFogSim functionalities have been integrated
with CloudSim [24-25]. iFogSim communicates with
CloudSim by sending a message signal in the middle of the
datacenter. As a result, CloudSim is in charge of managing the
various functions amongst the fog computing components.
ISP Gateway, Smartphone and WiFi gateway can act as fog
server. Fog server configuration details are listed in Table 1.
Virtual machines are used to model patient data. The RAM
capacity, CPU speed and processing power are listed in Table
2 for various fog device configurations. To make fog devices,
we developed a cloud simulation environment that extended
the datacenter class and VM is used to simulate patient data.
Cloudlets have been extended so that user requests could be
executed. The performance of this model is tested with
different number of patients and different number of network
configurations. The cost parameter per unit is listed in Table
3.

Table 1. Fog server configuration

Table 2. Virtual machine configuration

Virtual Machine Cluster1 Cluster 2 Cluster 3

RAM (GB) 5 4 2

Processing Power

(MIPS)

22000 15000 11000

Bandwidth (Mbps) 1024 1024 512

Table 3. Cost parameters
Cost Parameters Value

Communication cost of fog – cloud 0.5

Processing cost per time unit 0.2

Communication cost per data unit 0.3

Unit cost of memory used 0.1

Unit cost of storage used 0.2

Weight and priority of the patient data are calculated as a
function of current Health condition, High disease severity and
the emergency factor.

Weight is calculated as,

Wi(t)=CHCi(t)*HDSi(t) (1)

Where, Wi is the weight assigned, CHCi is the current
health condition of the patient and HDSi is the high disease
severity.

The priority function is given as,

ᵹm = Wi(t)/𝑒−Wi(t))∗ Ei(t) (2)

Where, Ei(t) is the emergency factor. Highest the value of
the ᵹm, first enters in to the queue and process in the server.
Level of priority varies as ᵹmH, ᵹmM, ᵹmL are high, medium,
low respectively. The ᵹm is order descending way. The
highest the CHC & HDS, the ᵹm is also high. The highest the
ᵹm enters the fog server. If the same ᵹm for different patients,
the priority is given according to the time of arrival of patient
data to the fog server. First come first server is applicable for
the same ᵹm patients within the priority level. The values of
CHc, HDS, E, ᵹm are given in Table 4.

Table 4. Values of CHc, HDS, E, ᵹm

CHC HDS E ᵹm

0.2 0.2 0.1 0.02

0.9 0.2 0.1 0.12

0.9 0.9 1 0.57

Turnaround time of VM is calculated as,

Ttat= Wt + Ttet (3)

Wt represents the waiting time and Ttet represents total
execution time.

Ttet is calculated as,

Ttet = Tete- Tste (4)

Where, Tete is the end time of task execution and Tste is
start time of task execution.

Network latency of FMDM can be calculated based on
the number of hops travelled per user request. If each hop
assumes the same latency, the total number of packets
transferred from an edge node (en) to a fog node (fn) and from
fn to another fl and fl to en.

𝐹𝑜𝑔

𝑁𝐿
=

𝐷𝑢𝐻𝑛(𝑒𝑛+𝑓𝑛+𝑓𝑙)

𝑃𝑐
 (5)

Where, Hn is the number of hops, Pc is the total number of

data packets sent, and Du is the unit hop delay.

Computation latency can be calculated as a function of
waiting time and service time. Assuming a queuing system, for
the fog device fi with the traffic arrival rate ari
and service rate sri , the computation latency is given in (6) that
involves queuing delay while waiting for service, service time,
and time taken for virtual machine installation.

𝑓𝑖𝐶𝐷 =
1

𝑠𝑟𝑖−𝑎𝑟𝑖
 (6)

The data passes through multistage fog computations

involving inter-fog communication delay (fld).Total
computation latency(fiTCD) is given by,

Type of device RAM(GB) CPU(GHz) Power (W)

ISP Gateway 6 4 117.445
Smartphone 2 2.6 88.64
WiFi Gateway 6 4 117.445

Fog Managed Data Model for IoT based Healthcare Systems 223

𝑓𝑖𝑇𝐶𝐷 =
1

𝑠𝑟𝑖−𝑎𝑟𝑖
+ 𝑓𝑙𝑑 (7)

Cost of Computation (Cfi) in Fog layer is calculated as,

Cfi = Ucfi + Rd(lTi) (8)

Where, Ucfi is the unit cost of the VM and the Rd is the

running duration of virtual machine for particular task. UC
includes processing cost per time unit, Communication cost
per unit cost, Unit cost of memory used, Unit cost of storage
used. Running time varies based on task length (lTi) for
FMDM.

Energy Consumption is calculated for FMDM and cloud
based models. As the tasks are processed at user premises with
fog nodes the energy consumption is low in FMDM compared
with cloud based models.

5 Results and Discussion

5.1 Execution Time

The Execution time is the overall time taken to process the

task at the fog server. As the tasks are preprocessed and
scheduled by fog server and assigned to fog virtual machines
directly, there is a reduction in execution time. As the
number of requests coming to the cloud is reduced, the overall
execution time of tasks is cloud also get reduced. The
execution time of FMDM with WFPJS algorithm is compared
with the existing cloud based FCFS scheduling. The
experimental results show overall reduction in execution time.
The values are listed in Table 5 and Figure 4.

Table 5. Execution time

No. of Cloudlets Sequential
Algorithm FCFS

FMDM with
WFPJS

10 48.807 22.1565
20 97.614 44.313
30 146.421 66.4695
40 195.228 88.626
50 244.035 110.7825
60 292.842 132.939
70 341.649 155.0955
80 390.456 177.252
90 439.263 199.4085
100 488.07 221.565

Figure 4. Comparision of execution time

5.2 Total Cost of FMDM

Most of the pre-processing are done in fog server itself and

cloud server which is located near to fog servers are selected
for data processing. So the UC cost is low in FMDM. The
communication cost is negligible when compared with cloud
based IoT data Processing. The total cost of computation is
low in FMDM even though there are large number of patients
and large number of cloudlets. The values are listed in Table
6 and Figure 5.

Table 6. Cost of computation

No. of
Cloudlets

Sequential
Algorithm FCFS

FMDM with
WFPJS

10 293.872 225.1
20 587.744 450.2
30 881.616 675.3
40 1175.488 900.4
50 1469.36 1125.5
60 1763.232 1350.6
70 2057.104 1575.7
80 2350.976 1800.8
90 2644.848 2025.9
100 2938.72 2251

Figure 5. Cost of computation

5.3 Network Performance Metrics

The network parameters such as energy consumption,
network latency, computational latency with respect to
different configuration and with different number of patients
has been measured for FMDM and cloud computing.

Figure 6 shows how FMDM and clouds change the amount
of energy consumed. Reduced energy consumption can be
seen with fog servers, whereas using more energy can be seen
with cloud servers. The energy consumption of FMDM and
clouds is depicted in Figure 3 as a function of the number of
patients. The fog server consumes less energy when
processing data, whereas the cloud server consumes more
energy when processing data. When compared to a cloud
server, even with a larger number of patients, the energy

0

200

400

600

0 20 40 60 80 100 120

Ex
ec

u
ti

o
n

 T
im

e
(m

ill
i s

e
c)

Number of Cloudlets

Comparision of Execution Time

Sequential Algorithm FCFS FMDM with WFPJS

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

C
o

st
 in

 D
o

lla
rs

Number of Cloudlets

Comparision of Cost

Sequential Assignment (FCFS) FMDM with WFPJS

224 Journal of Internet Technology Vol. 23 No. 2, March 2022

consumption is significantly lower. The FMDM can reduce
the energy consumption with patient count.
Figure 7 depicts the fog and cloud computation latency as a
function of the number of patients. During data analysis and
management, the fog server minimizes calculation latency, but
the cloud server requires some additional calculation latency
during data processing. The computing latency is reduced as
compared to a cloud server even when there are more patients.

Figure 6. Energy consumption

Figure 7. Computation latency

The network delay of FMDM and clouds is depicted in

Figure 8 as a function of the number of patients. The fog server
minimizes network latency during data processing, but the
cloud server adds greater network delay during data
processing. When compared to a cloud server, network latency
is reduced even when the number of patients is doubled.

Figure 8. Network latency of fog and cloud

6 Conclusion

Real-time data processing and analysis are required for
IoT-based health monitoring applications. Any time lost while
transmitting data to the cloud and back to the application is
intolerable. As a result, fog computing is introduced between
sensors and cloud computing to collect and process data more
efficiently. It reduces the amount of data transported between
the sensors and the cloud servers and improves overall system
efficiency. But this paradigm lags in task scheduling and task
allocation. Traditional scheduling results in overpricing and
processing delays. The proposed Fog Managed Data Model
with Weighted Fog Priority Job Scheduling and virtual
machine allocation scheme schedule task to fog virtual
machines based on priority. The simulation results show that
the proposed method improves response time while costing
less than the existing static scheduling algorithms. The
network parameter metrics for FMDM and cloud-based
systems are compared. The simulation results show that the
FMDM reduces network usage, computational latency, and
network latency when the patient count and network
configurations are varied. The system will be deployed with
various edge devices in the future research, and the system's
performance will be examined.

References

[1] S. S Gill, R. C. Arya, G. S. Wander, R. Buyya, Fog-

Based Smart Healthcare as a Big Data and Cloud
Service for Heart Patients Using IoT, International
Conference on Intelligent Data Communication
Technologies and Internet of Things (ICICI),
Coimbatore, India, 2018, pp. 1376-1383.

[2] M. M. Hassan, K. Lin, X. Yue, J. Wan, A multimedia
healthcare data sharing approach through cloud-based
body area network, Future Generation Computer
Systems, Vol. 66, pp. 48-58, January, 2017.

[3] C. S. Nandyala, H. K. Kim, From cloud to fog and IoT-
based real-time U-healthcare monitoring for smart
homes and hospitals, International Journal of Smart
Home, Vol. 10, No. 2, pp. 187-196, February, 2016.

0

20

40

60

80

100

120

140

160

5 10 15 20 25

En
er

gy
 c

o
n

su
m

p
ti

o
n

 in
 J

o
u

le
s

No of patients

Energy Consumption Vs Number of patients

Cloud FMDM

0

1

2

3

4

5

6

7

8

5 10 15 20 25

C
o

m
p

u
ta

ti
o

n
 la

te
n

cy
 in

m

ill
i s

ec

No of patients

Computation latency Vs Number of patients

Cloud FMDM

0

2

4

6

8

10

12

14

16

5 10 15 20 25

N
et

w
o

rk
 u

sa
ge

 in
 s

ec

No of patients

Network usage Vs Number of patients

Cloud FMDM

Fog Managed Data Model for IoT based Healthcare Systems 225

[4] P. K. Sahoo, S. K. Mohapatra, S. L. Wu, SLA based
healthcare big data analysis and computing in cloud
network, Journal of Parallel and Distributed
Computing, Vol. 119, pp. 121-135, September, 2018.

[5] X. Q. Pham, E. N. Huh, Towards task scheduling in a
cloud-fog computing system, 18th Asia-Pacific Network
Operations and Management Symposium (APNOMS),
Kanazawa, Japan, 2016, pp. 1-4.

[6] H. Khaloufi, K. Abouelmehdi, A. B. Hssane, Fog
Computing for Smart Healthcare data Analytics: An
Urgent Necessity, NISS2020: Proceedings of the 3rd
International Conference on Networking, Information
Systems & Security (NISS2020), Marrakech, Morocco,
2020, pp. 1-5, April, 2020.

[7] S. Cirani, G. Ferrari, N. Iotti, M. Picone, The IoT hub:
A fog node for seamless management of heterogeneous
connected smart objects, 12th Annual IEEE
International Conference on Sensing, Communication,
and Networking Workshops (SECON), Seattle, WA,
USA, 2015, pp. 1-6.

[8] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog
computing and its role in the internet of things,
Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, MCC’12, Helsinki, Finland,
2012, pp. 13-16.

[9] S. S. Gill, R. Buyya, Resource provisioning based
scheduling framework for execution of heterogeneous
and clustered workloads in clouds: from fundamental to
autonomic offering, Journal of Grid Computing, Vol. 17,
No. 3, pp 385-417, September, 2019.

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge Computing:
Vision and Challenges, IEEE internet of things Journal,
Vol. 3, No. 5, pp. 637-646, October, 2016.

[11] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, K.
Kwak, The Internet of Things for health care: A
Comprehensive Survey, IEEE Access, Vol. 3, pp. 678-
708, June, 2015.

[12] Y. Sun, F. Lin, H. Xu, Multi-objective optimization of
resource scheduling in fog computing using an
improved NSGA-II, Journal of Wireless Personal
Communications, Vol. 102, No. 2, pp. 1369-1385,
September, 2018.

[13] A. V. Dastjerdi, R. Buyya, Fog Computing: Helping the
Internet of Things Realize Its Potential, IEEE Computer,
Vol. 49, No. 8, pp. 112-116, August, 2016.

[14] T. Choudhari, M. Moh, T. S. Moh, Prioritized task
scheduling in fog computing, Proceedings of the
ACMSE Conference, Richmond, Kenturcky, 2018, pp.
1-8.

[15] Z. Sun, C. Li, L. Wei, Z. Li, Min Z. Min, G. Zhao,
Intelligent sensor-cloud in fog computer: a novel
hierarchical data job scheduling strategy, Sensors, Vol.
19, No. 23, Article No. 5083, December, 2019.

[16] P. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, R.
Buyya, FOCAN: A Fog-supported Smart City Network
Architecture for Management of Applications in the
Internet of Everything Environments, Journal of
Parallel and Distributed Computing, Vol. 132, pp. 274-
283, October, 2019.

[17] S. Tuli, R. Mahmud, S. Tuli, R. Buyya, FogBus: A
Blockchain-based Lightweight Framework for Edge and
Fog Computing, Journal of Systems and Software, Vol.
154, pp. 22-36. August, 2019.

[18] Cisco, Fog computing and the Internet of Things:
Extend the cloud to where the things are, white paper
2015.

[19] M. I. Naas, P. R. Parvedy, J. Boukhobza, L. Lemarchand,
iFogStor: An IoT data placement strategy for fog
infrastructure, IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), Madrid, Spain,
2017, pp. 97-104.

[20] H. Cao, J. Cai, Distributed multiuser computation
offloading for cloudlet-based mobile cloud computing:
A game-theoretic machine learning approach, IEEE
Transactions on Vehicular Technology, Vol. 67, No. 1,
pp. 752-764, January, 2018.

[21] T. Muhammed, R. Mehmood, A. Albeshri, I. Katib,
UbeHealth: A personalized ubiquitous cloud and edge-
enabled networked healthcare system for smart cities,
IEEE Access, Vol. 6, pp. 32258-32285, June, 2018.

[22] A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, M.
Tlili, A. Erbad, Edge computing for smart health:
context-aware approaches, opportunities, and
challenges, IEEE Networks, Vol. 33. No. 3, pp. 196-203,
May-June, 2019.

[23] S. Tuli, N. Basumatary, S. S. Gill, M. Kahanil, R. C.
Arya, G. S. Wander, R. Buyya, HealthFog: An Ensemble
Deep Learning based Smart Healthcare System for
Automatic Diagnosis of Heart Diseases in Integrated
IoT and Fog Computing Environments, Future
Generation Computer Systems, Vol. 104, pp. 187-200,
March, 2020.

[24] R. Buyya, S. N. Srirama, Modelling and Simulation of
Fog and Edge Computing Environments using iFogSim
Toolkit, in: Fog and Edge Computing: Principles and
Paradigms, Wiley STM, 2019, pp. 433-465.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. S. F. De
Rose, R. Buyya, CloudSim: a toolkit for modeling and
simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Journal
of Software Practice and Experience, Vol. 41, No. 1, pp.
23-50, January, 2011.

Biographies

Benila S. received her B.Tech in
Information Technology in 2006 and her
M.E. in Network Engineering in 2008
from Anna University. She is an assistant
Professor in the Department of Computer
Science and Engineering at SRM
Valliammai Engineering College,

Tamilnadu, India. She is currently pursuing her Ph.D. degree
at Anna University. Computer networks, the Internet of
Things, and big data analytics are some of her research
interests.

Usha Bhanu N. received her PH.D. in
2014, from the College of Engineering,
Anna University, Chennai, India. She had
completed her B.E. in Electronics and
Communication Engineering in 1996 from
Bharathiar University and M.E. in VLSI
Design 2006 from Anna University. She is

currently working as Professor in the Department of ECE in

226 Journal of Internet Technology Vol. 23 No. 2, March 2022

SRM Valliammai Engineering College, Tamil Nadu, India.
Her areas of research interest includes VLSI design, Signal
and Image processing and Internet of Things (IoT).

	組合 1
	JIT2302-01
	JIT2302-02
	JIT2302-03
	JIT2302-04
	JIT2302-05
	空白頁面

	組合 2
	JIT2302-06
	JIT2302-07
	JIT2302-08
	JIT2302-09
	JIT2302-10
	空白頁面

	組合 3
	JIT2302-11.0 Guest Ediorial
	JIT2302-11.1
	JIT2302-12
	JIT2302-13
	JIT2302-14
	JIT2302-15

	組合 4
	JIT2302-16.0 Guest Ediorial
	JIT2302-16.1
	JIT2302-17
	JIT2302-18
	JIT2302-19
	JIT2302-20
	空白頁面

	空白頁面
	空白頁面

