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Abstract 

 
When vehicles are connected to the Internet through 

vehicle-to-everything (V2X) systems, they are exposed to 
diverse attacks and threats through the network connections. 
Vehicle-hacking attacks in the road can significantly affect 
driver safety. However, it is difficult to detect hacking attacks 
because vehicles not only have high mobility and unreliable 
link conditions, but they also use broadcast-based wireless 
communication. To this end, V2X systems need a simple but 
a powerful authentication procedure on the road. Therefore, 
this paper proposes an edge based lightweight authentication 
architecture using a deep learning algorithm for road safety 
applications in vehicle networks. The proposed lightweight 
authentication architecture enables vehicles that are 
physically separated to form a vehicular cloud in which 
vehicle-to-vehicle communications can be secured. In 
addition, an edge-based cloud data center performs deep 
learning algorithms to detect car hacking attempts, and then 
delivers the detection results to a vehicular cloud. Extensive 
simulations demonstrate that the proposed authentication 
architecture significantly enhanced the security level. The 
proposed authentication architecture has 94.51 to 99.8% F1-
score results depending on the number of vehicles in the 
intrusion detection system using control area network traffic. 
 
Keywords: Lightweight authentication, Controller area 

network, Intrusion detection system, Vehicular 
network, Deep learning 

 
1  Introduction 

 
Connected vehicles can access the Internet and various 

other sensors. They can also exchange signals and 
information and interact with other vehicles or objects while 
sensing the surrounding physical environment [1]. In addition, 
autonomous cars, which can drive without human control, are 
under active development because they are expected to reduce 
transportation costs and improve convenience and safety. 
Because 5G wireless technology enables data streaming from 
cloud storage in real time, various infotainment services can 
be provided to connected and autonomous cars [2].  

Vehicle industry has been affected by advancements in 
information and wireless communication. Recently, vehicles 
are no longer only driving machines, but they are also 
expected to enhance driver convenience by interfacing with 
telecommunication systems. According to a Gartner survey, 
one out of five vehicles will be connected cars equipped with 
wireless communication by 2020 [3–4]. As shown in Figure 

1, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 
(V2I) communications are performed via direct 
communication. Meanwhile, between the vehicle and the base 
station and the roadside unit (RSU) and the base station, the 
traffic information can be transmitted in real time using 
mobile communication, as well as traffic information several 
kilometers ahead in real time. 

 

 
 

Figure 1. Cellular vehicle-to-everything 
 

Several IT companies worldwide are developing 
platforms to provide infotainment services to connected cars. 
It is a common phenomenon for vehicles to be densely 
distributed in urban environments, especially when traffic 
congestion occurs. Therefore, vehicular cloud (VC) system, 
which utilizes communication resources from multiple 
vehicles based on cooperative V2V communication, has been 
actively studied [5–7]. Accordingly, vehicles with limited 
resources can gain access to services by using resources from 
other vehicles in the same VC system, where the latter 
vehicles can provide resources that are not currently in use, to 
the former vehicles. However, V2V wireless communication 
or infotainment services based on the Internet are exposed to 
various attacks and threats, such as denial-of-service (DoS) 
attacks to vehicular security [8]. A security attack on vehicles 
can lead to service failure and negatively affect driver safety. 
However, it is difficult for vehicles to detect attacks in real 
time because not only do they have high mobility and 
unreliable link conditions, but they also use broadcast-based 
wireless communication. Furthermore, vehicles in existing 
vehicular ad hoc networks (VANETs) can communicate only 
with neighboring vehicles within a fixed distance when 
wireless communication is available. Therefore, a secure 
vehicular authentication architecture is required to form 
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cloud-based vehicular networks between vehicles that are 
physically separated and ensure safe communication among 
member vehicles. To satisfy these requirements, we propose 
an edge-based lightweight authentication (ELA) architecture 
for vehicular networks. The key contributions of this paper are 
as follows: 

 1) In the proposed ELA architecture, an edge data center 
for vehicle (EDC_V) publishes and distributes certificate 
authorities (CAs) for member vehicles of a vehicular cloud, 
as well as encryption keys for the safe exchange of messages 
among vehicles.  

2) In addition, EDC_V performs deep learning to predict 
abnormal behaviors in vehicles. The prediction results are 
transferred to RSUs that manage the vehicular cloud and then 
quickly provided to vehicles. If a vehicle with the intent of 
hacking other vehicles is detected, the EDC_V stops updating 
certificate information for that vehicle to prevent it from being 
activated in the vehicular cloud. 

The remainder of this paper is organized as follows: 
Section 2 describes the related work for vehicle authentication 
and security attacks in vehicular network environments, and 
Section 3 presents proposed edge lightweight authentication 
architecture. Section 4 defines the proposed Deep learning for 
abnormal patterns, and Section 5 provides extensive 
simulation parameters and simulation results. Conclusion and 
future work are presented in Section 6. 
 
2  Related work 

 
Several studies on vehicle authentication and message 

encryption have been conducted to ensure the safety of V2V 
communications in vehicular networks [9]. The IEEE 1609 
group is working on standardizing wireless access in 
vehicular environments (WAVE) technologies for V2V 
communication [10–11]. Generally, public-key-based 
configurations are used for vehicle authentication and 
message encryption in vehicular networks. Such a public-key-
based configuration assumes the presence of a reliable CA, 
which issues and manages certificates for each vehicle. 

Many studies have focused on the creation and 
distribution of encryption keys for encrypting and decoding 
messages [12–14]. Algorithms for digital signature and 
message encryption can be implemented through either 
software or hardware, but processing delays can occur based 
on the performance of the hardware. A public-key-based 
configuration broadcasts the certificate of a vehicle along with 
a message whenever a vehicle wishes to send a message. If 
the certificate of a vehicle is sent with a message, additional 
overhead can be incurred for message sending, and extra time 
is required to verify the certificate. Furthermore, broadcasting 
a vehicle certificate with a message may allow vehicles other 
than the intended recipient to receive the certificate, which 
can create security issues.  

One of the studies suggested the introduction of a 
certificate revocation list (CRL) to identify abnormal or 
malicious vehicles with the intent of performing security 
attacks in a vehicular network environment [15–16]. The 
proposed CRL system creates a list of certificates for vehicles 
exhibiting abnormal behaviors or executing malicious 
security attacks, and then distributes the list to other vehicles. 
When receiving a message and the CRL list, each vehicle 
checks if the certificate information of the sender vehicle is 
on the CRL list. If the certificate information is found in the 

CRL list, the message from the sender vehicle is not processed. 
Numerous studies have examined issues related to 
management authority and methods for configuring and 
distributing CRLs in vehicular network environments [17]. 
However, vehicles must always maintain their current CRLs. 
If the size of the CRL increases, the delay time is incurred by 
the search operations. Further, a vehicle with limited storage 
space cannot maintain a large CRL. Because vehicles have 
high mobility within vehicular network environments and 
typically utilize broadcast-based wireless communication 
technology, it is difficult to detect security attacks in real time.  

In this paper, we propose a secure vehicular authentication 
architecture using decentralized edge computing systems. To 
demonstrate, the offset ratio and time-interval-based intrusion 
detection system (OTIDS) dataset is used in the controller 
area network (CAN). Because CAN traffic is broadcast from 
a transmitter to the other nodes on a CAN bus, it does not 
contain information about the source and destination 
addresses for validation. Therefore, an attacker can easily 
inject any message that leads to system malfunctions. 
 
3  Edge lightweight authentication 
 
3.1 Lightweight authentication architecture 

 
Recent developments in unknown intrusion detection, and 

detailed analysis methods have facilitated the detection of 
abnormal behaviors in edge computing environments. 
Specific vehicular interface standards for acquiring relevant 
data from a cloud server located in an external infrastructure 
are currently under development. Cloud-based security 
systems are the most prevalent approach for enhancing 
vehicular security. However, this approach raises concerns 
regarding privacy invasion because the locations and driving 
information of vehicles can be exposed when vehicle-to-
network (V2N) communications are tracked, and big data are 
analyzed. Unfortunately, the accident causes of many 
autonomous vehicles cannot be identified because there are a 
variety of attack paths, numerous unknown attack techniques, 
and huge amounts of vehicle data. Therefore, edge 
computing-based analyses and responses are becoming 
increasingly necessary.  

Vehicular cloud technology enables the resources of 
multiple vehicles to be combined in a cloud, allowing vehicles 
to access services demanding cooperative work or significant 
resources. In other words, vehicles with limited resources can 
gain access to services by using resources from other vehicles 
in the same vehicular cloud. Conversely, these vehicles can 
provide resources that are currently not in use to demanding 
vehicles. However, various studies on vehicular clouds [18] 
have focused on the clouds of vehicles in close physical 
proximity. In such systems, in the absence of neighboring 
vehicles or insufficient resources of neighboring vehicles, a 
vehicular cloud cannot be formed. Mershad and Artail [19] 
could only form vehicular clouds for vehicles located within 
a certain distance from an RSU. However, once a vehicular 
cloud is formed, no security requirements (e.g., vehicle 
authentication or publication and distribution of encryption 
keys) are necessary for communication between the member 
vehicles of a vehicular cloud. For these requirements, this 
study proposes applying the concept of edge-computing-
based authentication architecture to existing vehicular 
networks. Because a distributed EDC_V manages all vehicles, 
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a secure vehicular architecture for remotely located vehicles 
can be formed. 

Figure 2 shows the architecture of the proposed ELA 
system. Both CA and EDC_V are located in a cloud. The CA 
is a trusted organization that issues certificates for vehicles. 
Certificates are a type of official verification for each vehicle. 
If the same certificate is used repeatedly while a vehicle is 
running, the travel path of the vehicle can be tracked. 
Accordingly, the proposed architecture differentiates vehicle 
certificates into pseudonym certificates and registration 
certificates. The EDC_V registers vehicles, generates and 
manages vehicular clouds, publishes, and distributes 
authentication keys and encryption keys, and performs deep 
learning to detect attacks. To form an optimal vehicular cloud, 
EDC_V tracks the mobility and resource data of the vehicles. 
Multiple EDC_Vs can exist according to the network size. 
Additionally, because EDC_V performs deep learning 
continuously, vehicles can detect diverse security attacks. The 
RSUs and vehicles are grouped into clouds. Each RSU has a 
wired connection to the EDC_V and facilitates 
communication between vehicles and the EDC_V. Wireless 
V2V communication is feasible within the radius of 
communication. V2I communication is also possible through 
an RSU network. In addition, vehicles can receive various 
services through the Internet, such as 5G wireless networks. 

In the proposed ELA architecture, every vehicle should 
receive a certificate from the CA and register the certificate 
with EDC_V prior to forming a vehicular cloud. As 
aforementioned, certificates are distinguished as registration 
or long-term certificates, which are initially issued by the CA, 
and pseudonyms or short-term certificates for updating. 
Privacy protection measures for the location information of 
vehicles should be implemented in a V2V communication 
environment. The locations and travel paths of specific 
vehicles should not be tracked. To satisfy these requirements, 
pseudonyms can be used for V2V certification. 

 

 
 

Figure 2. ELA architecture 
 
Depending on the validity period of certificates, V2V 

communication utilizes two types of certificates (long-term 
certificates and short-term (or pseudonym) certificates). 
Long-term certification uses the unique ID of each vehicle, 
whereas short-term certification uses temporary pseudonyms 
allocated to each vehicle. Multiple pseudonyms can be 
assigned to each vehicle. The application of short-term 
certification using pseudonyms for V2V communication is a 

measure for protecting the privacy of vehicle location 
information. The messages sent and received between 
vehicles include digital signatures based on pseudonyms, 
which are provided by the proposed V2V communication 
authentication service infrastructure. This makes it possible to 
prevent messages and vehicle IDs from being falsified. 
Furthermore, because pseudonyms with short validity periods 
are employed, vehicle IDs does not require tracking, which 
prevents privacy intrusion regarding vehicle locations. 

Figure 3 shows the overall process by which vehicles 
receive a certificate issued by the CA and register it with 
EDC_V. Details of this process are described below. 

(1) A vehicle sends a certificate request message to the CA 
through an RSU network. If the vehicle is sending a certificate 
request to the CA for the first time, registration certification 
should be obtained for initial authentication. The local CA 
sends a request for a registration certificate to the root CA. If 
a pseudonym certificate is registered for updating 
certifications, the local CA performs registration to update the 
certification. The corresponding certificate request message 
includes unique identification information of the vehicle. 

(2) The root CA creates a registration certificate by 
referring to the unique identification information of the 
vehicle. This certificate includes the certificate ID, public and 
private keys of the vehicle, digital signature of the CA, 
expiration date, time stamp, and validation results. 

 

 
 

Figure 3. Registration in the EDC_V 
 
(3) After receiving a registration certificate from the root 

CA, the local CA sends a response message containing the 
registration certificate to the vehicle through the 
corresponding RSU network. 

(4) The vehicle then registers the certificate with EDC_V 
to participate in a vehicular cloud. To register the certificate 
with EDC_V, the private key of the vehicle is used to create a 
digital signature in the certificate. For this, one of the most 
important solutions is the public key infrastructure (PKI), 
which is standardized by IEEE 1609.2, as the security solution 
for all V2X safety applications. In addition, the timed efficient 
stream loss-tolerant authentication (TESLA) protocol can be 
considered with a delayed symmetric key disclosure [20]. 
TESLA uses symmetric key cryptography, which is faster 
than using a digital signature. Another security protocol, 
VANET authentication using signatures and TESLA++ 
(VAST), is published in [21]. VAST targets different V2X 
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applications and provides multi-hop authentication. VAST is 
based on a mix of TESLA++ and elliptic curve digital 
signature algorithm (ECDSA) signatures. The digital 
signature method is beyond the scope of this study. Therefore, 
TESLA or VAST can be used as a digital signature method. 
To participate in a vehicular cloud, a vehicle broadcasts an 
encoded message containing both the digital signature for the 
message and certificate to the EDC_V.  

(5) After receiving a registration request message, a public 
key for the CA is delivered to the EDC_V from the root CA 
to verify the validity of the certificate. The validity of the 
certificate is verified based on the public key of the CA. 
Moreover, EDC_V verifies the digital signature of the 
registration request message based on the public key of the 
vehicle. 

(6) EDC_V sends a registration response message through 
the RSU network.  

(7) The vehicle creates a CAN-based flow information 
(CFI) message and a digital signature using its private key. 
Furthermore, the vehicle registers the CFI by periodically 
sending update messages and digital signatures through an 
RSU network. Accordingly, EDC_V periodically acquires the 
latest CFI from the vehicles. 

(8) EDC_V generates a set of training data by collecting 
periodically received CFI messages. Based on the set of 
training data, a data model for the normal flow of vehicles is 
constructed as the basis for a model for detecting abnormal 
flows. Vehicles with abnormal behaviors can be detected by 
inputting the CFI messages of vehicles, which are periodically 
updated, into a deep learning algorithm.  

(9) If the CFI messages of vehicles that have been updated 
are determined to represent abnormal patterns, the 
information is broadcast and reported to the local CA.  

(10) A local CA with information regarding vehicles with 
abnormal patterns requests the revocation of certificates by 
sending a certificate revocation list (CRL) for vehicular 
communication to the root CA. 

 
3.2 CRL update for abnormal patterns 

 
Vehicle communications typically distribute CRLs to 

every local CA to reflect the movements of vehicles when a 
vehicle certificate is revoked. In such cases, the CA has a 
hierarchical structure consisting of a root CA and multiple 
local CAs. Because this structure is complicated and covers a 
wide area, a significant overhead may be incurred when a 
CRL is sent. If several certificates of vehicles are revoked, the 
number of CRLs that must be distributed increases 
exponentially, which raises scalability issues. Additionally, 
because every local CA distributes CRLs, this process is very 
inefficient. Because a vehicle does not stay near the same 
local CA, CRLs must be distributed to every local CA from a 
networking perspective.  

When a vehicle has an abnormal pattern, in this study, a 
local CA creates a CRL that records the revocation of the 
certificate for that vehicle, and then sends a request to 
distribute the CRL to the root CA. When the CRL is 
distributed, each local CA broadcasts the CRL to all vehicles 
within its jurisdiction through devices (e.g., RSUs) near roads. 
Because all vehicles are mobile, they can easily leave the area 
of the initial local CA. If another local CA does not have the 
CRL information for an abnormal vehicle, another certificate 
may be issued. To overcome this issue, the root CA sends a 
request message to all local CAs except for the local CA (i.e., 

referred to as local CA#1) with the CRL containing the 
abnormal vehicle. This message requests all remaining local 
CAs to check if their location information includes an 
abnormal vehicle. A geocoding algorithm can be used to 
determine the location of a vehicle using devices installed 
around roads [22]. In the process shown in Figure 4, the root 
CA determines the location of the abnormal vehicle and sends 
the CRL. The details of this process are discussed below. 

 

 
 

Figure 4. CRL update process 
 
In step (10) in Figure 3, local CA#1 sends a CRL for 

vehicle communication to the root CA to request revocation 
of the certificate for a vehicle with an abnormal pattern.  

(11) Because the vehicle may fall under the jurisdiction of 
local CA#1, the CRL containing the abnormal vehicle is sent 
via broadcasting.  

(12) After the root CA receives the CRL following step 
(10) in Figure 3, it must send the CRL to the remaining local 
CAs because the abnormal vehicle will move. The unique 
identification information of the vehicle is sent to each local 
CA with a request message to identify the local CA 
corresponding to the abnormal vehicle.  

(13) If the vehicle moves to another local CA (i.e., referred 
to as local CA#2), local CA#2 sends a response message to 
the root CA.  

(14) After receiving a response message from the local 
CA#2, the root CA sends the CRL containing the abnormal 
vehicle to revoke its certificate.  

Finally, after its certificate has been revoked, the 
abnormal vehicle can no longer operate in the vehicular cloud. 
If the certificate for a vehicle expires, it must be renewed by 
the CA. If the CA knows that the vehicle has an abnormal 
pattern, a response message is sent with the validity field set 
to zero. 

 
4  Deep learning for abnormal patterns 

 
When vehicles communicate with each other through a 

vehicular network or use infotainment services through the 
Internet, they may be exposed to various security attacks. 
Moreover, a normal vehicle can suddenly become malicious 
by performing a security attack. Because vehicles largely 
utilize broadcast-based wireless communication, it is difficult 
to detect security attacks in real time. In this paper, flow 
information based on deep learning results is introduced to 
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detect and classify security attacks hidden in the information 
flows between vehicles. 

The entire process for detecting security attacks in 
vehicular cloud architecture can be divided into the following 
two main processes: collecting flow information from 
vehicles and implementing a deep learning algorithm in 
EDC_V. In the former, the member vehicles of a vehicular 
cloud collect the data flowing into each vehicle, process the 
data into packets, and periodically deliver them to the EDC_V.  

In this paper, the OTIDS dataset [23] is used for abnormal 
pattern detection, which is an intrusion detection method, 
based on the analysis of the offset ratio, and time interval 
between request and response messages in CAN. The OTIDS 
dataset, which is the network attack data used for simulation 
results, is generated by logging CAN traffic through the OBD-
II port in real vehicle. The generation of the dataset occurs by 
performing a message injection attack on the actual vehicle. 
To do this, the real vehicle used is the SOUL model of KIA 
brand in Korea, and three types of attack and normal data are 
included. The OTIDS dataset includes DoS attacks, fuzzy 
attacks, impersonation attacks, and attack-free states. Datasets 
are constructed by logging CAN traffic via the OBD-II port 
from a real vehicle, while message injection attacks are 
performed. The data attributes of CAN traffic are listed in 
Figure 5 [24]. 

1.    Timestamp: recorded time (second) 
2.    CAN ID: identifier of CAN message in HEX 
3.    DLC: number of data bytes, from 0 to 8 
4.    DATA [0–7]: data value (byte) 
 

 
 

Figure 5. CAN message attributes 
 

Table 1 Summary of dataset 
Message type # of messages 
DoS attack 656,579 
Fuzzy attack 591,990 
Impersonation attack 995,472 
Attack-free state (normal message) 2,369,868 

 
Using the OTIDS dataset, we analyzed the detection 

results for abnormal patterns in the vehicle clouds. Three 
types of attacks and one attack-free state are included as 
output features. For the lightweight authentication 
architecture, the mobility vector, current EDC_V ID, ID_Vi, 
and OTIDS input features (e.g., timestamp, CAN ID, DLC, 
and Data) are added to define the CFI. We assume that a 
vehicle can estimate its mobility vectors using any of the 
methods explained in [25] with a safe circular communication 
region available [26]. 

Figure 6 shows a schematic of the operation process, 
including the input and output features for the deep learning 
algorithm. Table 1 summarizes the dataset used. In general, 
the data imbalance problem should be checked before 
applying the dataset to a deep learning algorithm. In the case 
of a network dataset, for example, attack data are too much or 

too little compared to normal data. However, the tested 
OTIDS dataset is collected after randomly generating three 
attacks and one normal traffic for 1hour and 20min; therefore, 
the data imbalance problem is not shown. 

 

 
 

Figure 6. Deep learning architecture 
 

5  Simulation results 
 

This section describes the simulation results that detect 
security attacks, a type of abnormal pattern, using deep 
learning algorithms in an edge-based lightweight 
authentication architecture for vehicle networks. The 
simulation is performed based on the OTIDS dataset. The 
categories included in the OTIDS data set are defined as 
follows [23]: 

1. DoS Attack: Injecting messages of ‘0x000’ CAN ID 
in a short cycle 

2. Fuzzy Attack: Injecting messages of spoofed 
random CAN ID and DATA values 

3. Impersonation Attack: Injecting messages of 
Impersonating node, arbitration ID = 0x164 

4. Attack Free State: Normal CAN messages 
We create a virtual road topology using MATLAB2019b 

software. Table 2 lists the simulation parameters and deep-
learning parameters used in the vehicle network environment. 
Figure 7 shows an example in which a virtual road topology 
is generated based on EDC_Vs; vehicles that are included and 
not included in the cloud. The vehicles are randomly placed 
in the topology. The simulation is performed while randomly 
changing the positions of the vehicles, and this is repeated 
1000 times in each step. 

In the simulation environment, we assume that EDC_V 
has a learning dataset (i.e., OTIDS dataset). That is, vehicles 
periodically send their CFI to EDC_V. EDC_V formed a 
vehicle cloud according to the proposed ELA architecture and 
received CFI, which is a training dataset from vehicle 
members. EDC_V then performed a deep learning algorithm 
to detect abnormal patterns.  

Deep learning processes are implemented using Python on 
Ubuntu 14.0.4 LTS. Deep learning models are implemented 
using GPU-enabled TensorFlow4 as backend with a Keras5 
higher-level framework. The GPU is NVidia GK110BGL 
Tesla K40, and the CPU has a configuration (32 GB RAM, 2 
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TB hard disk, Intel(R) Xeon(R) CPU E3-1220 v3 @ 3.10 GHz) 
running over a 1 Gbps Ethernet network. 

 
Table 2 Simulation parameters 

Parameter Value 
Virtual road topology size 1600m x 1600m 
Number of EDC_V 16 
Number of vehicles 20–60 
Communication range of EDC_V  300m x 300m 
Topology model Random 
Number of simulation iteration 1000 
Deep learning parameter Value 
Number of layers Hidden (1–8) 
Output level 4 
Weight initialization Xavier initializer 
Activation function ReLU 
Cost function Cross-entropy 
Optimizer ADAM 

 

 
Figure 7. Virtual road topology 

 
As the deep learning algorithm is parameterized, the 

performance depends on the optimal parameters. To identify 
the ideal parameters for the deep learning algorithm, a 
medium-sized architecture is used for experiments with 
specific hidden units, learning rate, and activation function. A 
medium-sized deep-learning algorithm contains three layers. 
One is the input layer, the second is the hidden layer or fully 
connected layer, and the third is the output layer. The 
connections between the units between the input and hidden 
layers and the hidden layer to the output layer are fully 
connected. Initially, the training and test datasets are 
normalized using L2 normalization. The experiment is 
performed for each parameter with appropriate units and for 
300 epochs.  

To find an optimal learning rate, three trials of 
experiments for 300 epochs with learning rates varying in the 
range [0.0001–1.0] are performed. The learning rate has a 
strong impact on the training speed. The peak value for the 
detection rate is obtained when the learning rate is 0.1. In the 

experimental trials, we also conducted experiments with the 
sigmoid and tanh activation functions for multi-class 
classification. When the set of experiments is carried out for 
300 epochs with activation functions, the performance of the 
ReLU activation function is better than that of the sigmoid and 
tanh activation functions. In addition, all the models are 
trained using the ADAM optimizer with a batch size of 64 for 
300 epochs to monitor the validation accuracy. 

A deep learning algorithm is implemented for simulations 
in a vehicular ELA architecture. In general, the performance 
of deep learning is analyzed in terms of precision, recall, and 
accuracy. To derive these metrics, true positive (TP), false 
positive (FP), false negative (FN), and true negative (TN) 
rates are calculated. A TP is the correct detection of a positive 
outcome. An FP is a misdetection of a positive outcome that 
is actually negative. An FN is a misdetection of a negative 
outcome that is actually positive. A TN is the correct detection 
of a negative outcome. 

 

Table 3 F1-score of proposed ELA architecture 

 1 hidden 
layer 

2 hidden 
layers 

4 hidden 
layers 

8 hidden 
layers 

Prediction 
Accuracy 
(F1-score) 

94.51 96.52 97.29 99.81 

 

For the vehicle mobility model, we acquired data from 
nodes that moved randomly at speeds between 1 and 30 m/s. 
As a mobility model, we have prepared a scenario moving at 
a speed of 10–30 m/s (high-speed scenario) and a scenario 
moving at a speed of 1–10 m/s (low speed scenario). As 
shown in Table 3, the maximum prediction accuracy of the 
proposed method is 99.8% with the deep learning model. This 
means that even in the environment of a moving vehicle, 
abnormal patterns that are randomly generated can be 
predicted. In addition, it can be seen that the larger the hidden 
layer of the deep learning model, the greater the improvement 
in prediction accuracy (i.e., F1-score). 

Figure 8 shows the F1-score result, which is the predicted 
accuracy of abnormal patterns according to the increase in the 
number of vehicles. Here, the F1-score is an accuracy 
calculated through precision and recall. Precision represents 
the ratio of the number of flows that are actually security 
attacks among the flows determined as security attacks. By 
contrast, the recall rate represents the rate at which the model 
perceives an actual security attack as a security attack. To 
evaluate the performance of the proposed ELA architecture, 
we compared the precision values of several deep learning 
models. Because the dataset used in this study is complex and 
does not have a large feature set, the results of machine 
learning algorithms are also compared through experiments. 
It analyzes whether security attacks can be predicted using 
support vector machine (SVM), decision tree (DT), and 
random forest (RF) algorithms, which are representative 
algorithms of machine learning algorithms. In this case, L 
represents a low-speed scenario, and H represents a high-
speed scenario. In the case of the deep learning algorithm, this 
is the result of applying eight hidden layers. 
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Figure 8. F1-score results based on number of vehicles 
 

 
 

Figure 9. F1-score results based on dataset ratio 
 

Figure 9 shows the detection results obtained by changing 
the attack rate of the dataset. We defined a weight factor to 
adjust the attack rate. In other words, the weight factor is 
applied to each feature of the output with a value of 0–1. For 
example, we can reduce the ratio by putting the ratio of attacks 
less than 1 (e.g., DoS attack feature: weight factor of 0.7, 
fuzzy attack feature: weight factor of 0.5, impersonation 
attack feature: weight factor of 0.5), and weight of only the 
attack-free state to 1. If the weight factor is applied, the 
number of attack datasets is reduced. In this case, because 
there are many combinations of each ratio, only a few cases 
showing a large difference in performance are typically 
selected, and the results are shown in Figure 9. To clarify the 
legend, the output feature is specified as A:B:C:D, where A 
represents a DoS attack, B represents a fuzzy attack, C 
represents an impersonation attack, and D represents an 
attack-free state. 

In the case of 0.5:0.5:0.5:0.5, where the ratio of the dataset 
is reduced by half as a whole, the F1-score, which is the 
prediction accuracy, is about 72%. Therefore, it can be seen 
that the prediction accuracy increases only when the ratio of 
the dataset is sufficient. In addition, it can be seen that in the 
case of the dataset with only the ratio of the attack-free state 
lowered to 0.5, the F1-score is still around 98% and is high. It 
can be seen that even in the case of the original dataset, 
because the number of attack-free states is large, it did not 

significantly affect the prediction accuracy. By contrast, in the 
case of 0.5:0.5:0.5:1, where the ratio of attack data is lowered 
overall, it can be seen that the F1-score is degraded due to data 
imbalance. Even in the original dataset, the percentage of 
attack data is low, which seems to be because the percentage 
is further reduced by half. In the case of 1:0.5:0.5:1, the ratio 
of DoS attack and attack-free state is set to 1, and the 
remaining two attacks are reduced by a ratio of 0.5, and an 
accuracy of approximately 88% is achieved. Therefore, this 
indicates the importance of the ratio and the number of 
datasets. 

 
6  Conclusion 

 
This paper proposed an edge-based lightweight 

authentication architecture for vehicular networks using a 
cloud-based vehicular security system. In this paper, the 
proposed communication security architecture utilized the 
edge-based EDC_V to create and distribute authentication 
keys for verifying the member vehicles in a vehicular cloud, 
and private keys for the safe exchange of messages between 
member vehicles. Moreover, an edge-based cloud data center 
performed deep learning models to detect car hacking 
attempts, and then delivered the detection results to a 
vehicular cloud. Extensive simulations demonstrated that the 
proposed authentication architecture significantly enhanced 
the security level. The proposed authentication architecture 
has high detection results, depending on the number of 
vehicles in the intrusion detection system using CAN traffic. 
In future work, we are considering a scenario for various 
attacks that can be applied to the vehicle in the actual road 
environment.  
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