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Abstract 

Aquaculture is a vital economic and food source in 

numerous countries. However, because of environmental 

limitations and the impact of aquatic diseases, aquaculture 

requires considerable manpower, involves high material costs, 

and relies on the experience of aquaculturists to increase 

production capacity. Water quality is among the most crucial 

elements in aquaculture. Accordingly, in this paper, we 

propose an IoT-based smart aquaculture system (ISAS) for 

detecting the water quality of an aquafarm and providing 

automatic aeration to increase the survival rate of aquatics. In 

the ISAS, the parameters used for detecting water quality are 

temperature, pH value, dissolved oxygen, and water hardness, 

which are recorded using different sensors. Users can check 

the condition of an aquafarm from the sensed data. Moreover, 

the ISAS can automatically control the aerator and feeder of 

an aquarium on the basis of sensed data and predefined fuzzy 

rules. Our experiments revealed that under the same 

conditions, the shrimp survival rate in an ISAS-based 

aquarium increased by 33.3% compared with that in 

conventional aquariums. 

Keywords: Aquaculture, Internet of Things, Automatic 

aeration, Water quality Control, Fuzzy rule

1  Introduction 

With the increasing global population, the demand for 

food is also increasing. However, because of the 

intensification of the greenhouse effect and the reduction of 

global resources, the area available for agricultural and 

livestock farming has decreased continually. Aquatic 

products are easy to capture and rich in protein and can be 

farmed; therefore, humans are increasingly dependent on 

fishery resources [1]. According to the State of World 

Fisheries and Aquaculture (SOFIA) report [2] released by the 

Food and Agriculture Organization (FAO) of the United 

Nations, the global average fish consumption was 20.5 kg per 

person per year in 2018. Fish consumption is estimated to 

increase in the next 10 years. 

However, in recent years, overfishing along with factors 

such as coastal area development, water pollution, and climate 

warming has engendered a sharp decrease in the quantity of 

fish and shrimp. Because of increasing demand, aquaculture 

has been developed rapidly in recent years. Owing to 

advancements in biotechnology and engineering technology 

[3], such as Internet of Things (IoT) [4], artificial intelligence 

(AI) [5], and big data, the aquaculture production capacity has 

increased considerably and can meet more than half of the 

world’s demand for aquatic products. However, to improve 

the survival rate of aquatics, some businesses use chemicals 

to maintain the water quality in aquafarms and apply 

medications to protect fish and shrimp against diseases. This 

impacts the environment and harms the health of consumers. 

In recent years, the demand for organic aquatic products has 

gradually increased, and consumers are paying more attention 

to food safety, quality, and green earth. Therefore, managing 

water quality and increasing production capacity without 

using chemicals are the essentials of smart aquaculture. 

Water quality is a major factor affecting the production of 

aquatic products in aquafarms. Poor water quality may pose a 

health risk for people and ecosystems. Traditional methods of 

evaluating water quality involve manually sampling water 

from an aquafarm and testing it using test papers or devices in 

a laboratory. However, such methods are time-consuming and 

require excessive manpower. This paper presents an IoT-

based smart aquaculture system (ISAS) for monitoring 

various water quality parameters in an aquafarm. In the ISAS, 

four sensors—temperature sensor, pH sensor, dissolved 

oxygen sensor, and water hardness sensor—are connected to 

an Arduino development platform and Raspberry Pi computer, 

and the sensed data are transmitted to a cloud database so that 

users can monitor the data and receive warning messages 

when the quality of water in an aquafarm is poor. In addition, 

the ISAS can automatically activate air pumps or suspend 

feeders based on fuzzy processing results. The ISAS can 

detect the water quality of an aquafarm and thus improve the 

survival rate of fish and shrimp and reduce labor costs. The 

contributions of this paper are listed as follows.  

1. The ISAS utilizes a fuzzy inference process for rapid and

automatic operation of aerators and feeders in aquafarms.

2. Users can easily monitor water quality of an aquafarm by

using mobile devices and remote computers.

3. The ISAS utilizes four sensors to monitor water quality in

order to create a suitable aquaculture environment.

4. The ISAS can increase the survival rate of shrimp by

33.3% compared with that of the traditional approach.

The rest of this paper is organized as follows. The water

quality parameters and relevant studies are described in 

Section 2. The ISAS is presented in Section 3. The 

experiments and results are demon-strated and discussed, 

respectively, in Section 4. Finally, the conclusions and future 

studies are presented in Section 5. 
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2  Preliminary and Related Studies 
 

2.1 Water Quality Parameters 

 

Several parameters can be adopted to examine the water 

quality of an aquafarm, such as pH, dissolved oxygen, redox 

potential, conductivity, temperature, water hardness, and 

nitrite and nitrate concentrations. An overview of these 

parameters is provided as follows. 

⚫ pH: pH is a scale (0–14) of the activity of hydrogen ions 

and is a measure of the acidity or alkalinity of a solution. 

Maintaining the pH value of aquatic farms at a similar 

level to that in the native environment is beneficial for the 

growth and reproduction of aquatics. Effective control of 

pH is a crucial issue for aquaculturists. In general, the pH 

value in marine aquaculture is approxi-mately 7.9–9.0. 

⚫ Dissolved oxygen: Dissolved oxygen is a major indicator 

of water quality. Most aquatics require >5 mg/L of 

dissolved oxygen. Sufficient oxygen ensures the growth 

of aquatics and survival of aerobic bacteria. However, 

numerous factors, such as biological size, water 

temperature, and pressure, may affect the amount of 

dissolved oxygen. Therefore, continually monitoring and 

controlling the dissolved oxygen in an aquafarm would be 

vital.  

⚫ Redox potential: The redox potential (or oxidation–

reduction potential, ORP) indicates the overall oxidation 

status of an environment and is an indicator of microbial 

activity. In addition, the ORP represents the activity of the 

nitrogen cycle. A high ORP value indicates the abundance 

of nitrifying bacteria in organic waste, signifying high 

water quality. By contrast, a low ORP value indicates 

incomplete nitrification and accumulation of toxic 

substances in the water. In general, an ORP value 

maintained at >200 mv indicates that the microorganisms 

in the water can effectively decompose organic matter. An 

ORP of <50 mv indicates accumulation of organic matter, 

insuffi-cient oxidation–reduction, and poor water quality. 

Therefore, the measurement of the ORP of the bottom 

water layer can help predict changes in the water quality 

environment. 

⚫ Conductivity: This represents the conductivity of ions in 

a certain volume of solution. The more the number of 

movable ions, the smaller the resistance and the stronger 

the conductivity. A high conductivity level means that the 

concentration of inorganic salts in the water is relatively 

high, and it is also an indicator of water quality. 

Conductivity is affected by temperature; thus, it must be 

compensated by using the temperature correction formula 

during measurement. The standard conductivity of 

aquatic water is approximately 3,000 μS/cm for 

freshwater aquatic products. 

⚫ Temperatur: Temperature is the most crucial 

environmental parameters for all aquatics. It affects the 

amount of dissolved oxygen and the reproduction and 

growth of all aquatics. Different aquatics have different 

temperature requirements. If the temperature of an 

aquafarm is higher than the upper-bound temperature or 

lower than the lower-bound temperature, it can inhibit the 

growth of aquatics. Moreover, sudden temperature 

fluctuations may reduce the disease resistance and 

increase susceptibility to infection. 

⚫ Water hardness: In general, water hardness refers to the 

total concentration of calcium and magnesium ions in 

water; it can be divided into carbonate hardness and 

noncarbonate hardness. Calcium is a vital element in 

water systems because it is the chief ingredient of fish 

bones and crustacean and mollusk shells. Some fish 

species do not hatch in calcium-free seawater. 

Furthermore, magnesium affects their development. 

⚫ Nitrite and Nitrate: Nitrite is an unstable anion. In the 

nitrogen cycle, it is an intermediate product of the 

oxidation–reduction process of nitrogen-containing 

substances. It is one of the nutrients for aquatic plants. 

Generally, the concentration of nitrite in unpolluted water 

is very low (approximately 0.01 mg/L). However, a very 

high nitrite concentration means that the water is polluted 

by organic matter and often indicates a deteriorating 

ecological environment. A high nitrite concentration in an 

aquafarm indicates incomplete nitrification and reduces 

the food availability for fish and shrimp, hindering their 

growth and even causing death from poisoning. 

 

 
Figure 2. Architecture of the ISAS 

 

Nitrate is the most stable nitrogen-containing compound 

in various forms; it is also the final oxidation product of 

nitrogen-containing organic matter after ammonization 

and nitrification. Its toxicity to organisms is low. However, 

when the water environment is poor, nitrate is transformed 

into toxic ammonia and nitrite, which not only directly 

harm aquatic creatures but also make algae flourish. 

 

2.2 Related Studies 
 

According to the 2020 FAO’s SOFIA report (Figure 1) [2], 

the global fish production was 178 million tons in 2018. 

Approximately 88% of world fishery production is directly 

 
   Figure 1. Statistic and prediction of aquaculture 

production and consumption [6] 
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used for human consumption. Global fish production is 

expected to continue growing, reaching a projected 

production level of 196 million tons by 2025, with 

aquaculture accounting for the major growth. Increased fish 

production from aquaculture has boosted fish consumption. 

Technological progress is the major reason for this growth in 

production capacity. 

In the past decade, IoT has been widely used in various 

applications, such as smart homes [7], Internet of vehicles (or 

vehicle-to-everything, V2X) [8], and smart factories [9]. IoT 

can also be applied to human, animal, and plant populations; 

for example, it can be used in heart rate monitors to prevent 

heart disease, can be incorporated into collars to check the 

location and health of pets, or used in sensors in agricultural 

equipment to solve agricultural problems. 

Ma and Ding [10] designed a 24-h online monitoring 

system to monitor the dissolved oxygen in an aquaculture 

pond. This monitoring system utilizes an optical dissolved 

oxygen sensor and a polarographic dissolved oxygen sensor, 

in addition to the narrowband-IoT communication technology 

and a programmable logic controller. Their system can 

quickly respond and adjust the level of dissolved oxygen for 

precise control of dissolved oxygen and decreased energy 

consumption. Aziz et al. [11] developed a catchment 

monitoring system for continuously monitoring water quality 

by using five sensors: a temperature sensor, a light intensity 

sensor, a pH sensor, a GPS tracker, and an inertial movement 

unit. This system is not specifically designed for aquaculture 

but is mainly used to prevent water pollution.  

Balakrishnan et al. [3] designed an aquaculture system for 

controlling water parameters, including temperature, 

conductivity, turbidity, and the nearness of oil layer over the 

water. Users can access the system through a cloud 

environment and resolve uncontrollable situations in 

aquaculture ponds. Acar et al. [12] presented an IoT cloud 

concept using integrated tools (e.g., RabbitMQ, Kafka, Orion, 

and ActiveMQ) and various communication technologies 

(e.g., Message Queuing Telemetry Transport (MQTT), 

Advanced Message Queuing Protocol, and Hypertext 

Transfer Protocol (HTTP)) to provide users with an easy IoT 

construction method. Lin and Tseng [13] developed a 

FishTalk system that utilizes several aquarium sensors to 

drive the aquarium actuators in real time. They investigated 

the relationship between the aquarium sensors and actuators 

and developed an analytic model to evaluate the effects of IoT 

message delay and loss on water quality control. Khan et al. 

[14] utilized AI to improve the interoperability of sensed data 

and accordingly developed new applications. Khan reported 

that integrating AI technologies into aquaculture through IoT-

based solutions can improve the decision-making, production 

control, and management of aquaculture systems. Dupont et 

al. [15] presented several key considerations for the use of 

sensors in an aquafarm, including sensors’ reliability, 

accuracy, cost, and maintenance. Moreover, they 

recommended that in addition to water quality monitoring, 

data analysis and prediction should be considered in aquafarm 

management.  

 

3 Proposed ISAS 
 

In this section, we introduce the architecture of the 

proposed ISAS and then describe the fuzzy-based control 

policy. 

3.1 Architecture of ISAS 
 

The architecture of the ISAS, as shown in Figure 2, 

comprises four sensors (i.e., a temperature sensor, pH sensor, 

dissolved oxygen sensor, and water hardness sensor), two data 

processing platforms (i.e., Arduino and Raspberry Pi), a 

feeder, an aerator, and a cloud database. 

The temperature sensor (Figure 3(a)) is the DS18B20 

digital thermometer [16], which measures temperatures from 

−55°C to +125°C and provides a programmable resolution of 

9–12 bits. The proposed system applies the DFROBOT 

SEN0169 analog pH meter (Figure 3(b)) [17] to measure pH. 

The SEN0169 (Figure 3(c)), which has the features of fast 

response and good thermal stability, is highly suitable for 

long-term monitoring. A DFROBOT SEN0237 sensor 

(detection range: 0–20 mg/L; Figure 3(d)) [18] serves as the 

dissolved oxygen meter. A DFROBOT SEN0244 [19] 

(measurement range: 0–1000 mg/L) analog total dissolved 

solid sensor is employed to measure the hardness of aqueous 

solutions. 

Figure 3(e) and Figure 3(f) depict the Arduino 

microcontroller and Raspberry Pi single-board computer, 

respectively, employed in the proposed system. The 

Raspberry Pi computer comprises an ARM Cortex A72 

processor and 8 GB of RAM and provides multiple 

communication interfaces (e.g., WiFi, Bluetooth, USB, and 

Mini HDMI). The Arduino microcontroller integrates the data 

sensed by the sensors and then transmits the data to Raspberry 

Pi for processing. The last 7 days’ sensed data are stored in 

the internal memory of Raspberry Pi. All sensed data are 

transmitted to the cloud database from Raspberry Pi via WiFi 

and the MQTT protocol. Through the graphical API, users can 

check the water quality of an aquafarm through the web and 

smartphones. When the water quality is poor, Raspberry Pi 

activates the aerator and suspends the feeder to maintain a 

certain level of oxygen.                                                                                                        
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Figure 3. Sensors and data collection platforms of the ISAS 

 

The ISAS detects the four most crucial parameters for a 

shrimp pond. The other three parameters can also be detected, 

but these may not affect the shrimp survival rate considerably. 

Different types of aquatics require different types of living 

environments; therefore, for other aquatics such as perch and 
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scallops, the ISAS can utilize different sets of sensors to 

monitor different water quality parameters. Thus, the ISAS 

can flexibly adapt to special environments for some aquatics. 

 

3.2 Fuzzy-based Automatic Control Polity 
 

To automatically activate an aquafarm’s aerator and 

suspend its feeder when the water quality of the aquafarm is 

poor, the fuzzy inference process is invoked. Figure 4 

illustrates the automatic control flow of the ISAS, wherein the 

fuzzy inference process is the key component of the activation 

decision process. When the concentration of dissolved oxygen 

is lower than a predefined threshold, the ISAS triggers its 

fuzzy inference process, which assesses the water temperature, 

pH, and hardness. The output of the fuzzy inference process 

enables the Raspberry Pi computer to control the aerator and 

feeder. 

The fuzzy inference process comprises four parts, namely 

fuzzification, fuzzy rule base, fuzzy inference engine, and 

defuzzification. The four aforementioned input parameters 

serve as the input vector. Therefore, the fuzzy system is an 

extension of multivalued logic. The process produces two 

output parameters. Fuzzification is the process of 

transforming crisp values into grades of a membership 

function, and each of the grades can in turn be associated with 

a linguistic term. A fuzzy inference engine interprets the 

values of the input vector and, based on a set of rules, assigns 

fuzzy values to its outputs. In the ISAS, Mamdani’s fuzzy 

inference method is applied. Defuzzification is the process of 

mapping an output fuzzy value to a crisp set. Here, four 

membership functions are used, namely Z-shaped, S-shaped, 

Gaussian, and triangular; Eqs. (1)–(4) present their 

mathematical expressions. 
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In these equations, 𝜇�̃�(𝑥) is the output of a membership 

function. In Eqs. (1) and (2), 𝛽, defined as (𝛾 + 𝛼) / 2, is the 

crossover point of the S-function; it is a typical value of the 

fuzzy set. Moreover, 𝛼 and 𝛾 are the lower and upper bounds 

of an input value, respectively. In Eq. (3), the modal value 𝑚 

represents the typical element of 𝜇�̃�(𝑥)  and 𝜎  represents a 

spread of 𝜇�̃�(𝑥) . Higher values of 𝜎  correspond to larger 

spreads of the fuzzy sets. In Eq. (4), 𝑏 denotes a typical value 

of the fuzzy set, and 𝑎  and 𝑐  denote the lower and upper 

bounds of the input value, respectively.  
The four membership functions are individually given the 

four aforementioned input parameters and two output 

decisions. The fuzzy sets are defined as follows.  

(1) Temperature:{𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ} 
(2) pH: {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ} 
(3) Dissolved oxygen: {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ} 
(4) Water hardness: {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ} 
(5) Aerator activation: {𝑆𝑢𝑠𝑝𝑒𝑛𝑑, 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒} 
(6) Feeder activation: {𝑆𝑢𝑠𝑝𝑒𝑛𝑑, 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒} 

Each set has three fuzzy terms (low, medium, and high), except 

for the aerator activation set and feeder activation set, the value 

of which can only be suspended or activated. 

The parameter settings of the four inputs are listed in 

Table 1; the Z-shaped membership function is given a low 

fuzzy term, the Gaussian membership function is given a 

medium fuzzy term, and the S-shaped membership function 

is given a high fuzzy term. The triangular membership 

function is applied to aerator activation and feeder activation. 

The values assigned to the input parameters of a membership 

function in the following simulation are listed in the fourth 

column of Table 1; the values set in this table were based on 

a shrimp aquafarm. 

The input parameters of a membership function in the 

ISAS are illustrated in Figure 5 to Figure 10. For temperature, 

pH, dissolved oxygen, and water hardness, three member 

functions are used to represent the parameters in each figure. 

For example, in Figure 5, low, medium, and high terms listed 

in Table 1 are represented by the Z-shaped, Gaussian, and S-

shaped membership functions, respectively. The same applies 

to the other three figures. However, in Figure 9 and Figure 10, 

only the triangular membership function is adopted. 
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Figure 4. The automatic control flow of the ISAS 
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The employed fuzzy ruleset comprises all possible 

relationships among the four input parameters and two output 

parameters in the IF–THEN format. Each input parameter has 

three fuzzy terms; therefore, a total of 81 (= 34) rules are 

generated for the four input parameters. In the fuzzy inference 

engine, the Mamdani model converts the aggregated fuzzified 

data, expressed as 

 
𝜇�̃�𝐴𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑚𝑎𝑥𝑘

[𝑚𝑖𝑛[𝜇�̃�(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒), 𝜇�̃�(𝑝𝐻),

𝜇�̃�(𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑂𝑥𝑦𝑔𝑒𝑛), 𝜇�̃�(𝑊𝑎𝑡𝑒𝑟 𝐻𝑎𝑟𝑑𝑛𝑒𝑠)]], for 𝑘 = 81

  (5) 

 

into normalized scores. In the proposed system, the centroid 

method [20], also known as the center-of-gravity method, is 

adapted as the defuzzification function, which can be 

expressed as follows: 

 

𝑨𝒆𝒓𝒂𝒕𝒐𝒓∗ =
∫𝒙𝝁�̃�𝑨𝒆𝒓𝒂𝒐𝒕𝒓

(𝒙)𝒅𝒙

∫𝝁�̃�𝑨𝒆𝒓𝒂𝒕𝒐𝒓
(𝒙)𝒅𝒙

       (6) 

 

where Aerator∗ is the scores of the aerator activate decision. 

A similar fuzzy inference engine is designed for the feeder as 

well. 

 

 
 

Figure 5. Input parameter temperature of three  

membership functions (Low: Z-shaped; Medium:  

Gaussian; High: S-shaped) 

 

 

 

 
 

Figure 6. Input parameter pH of three membership functions 

Z-shaped; Medium: Gaussian; High: S-shaped  

 
 

Figure 7. Input parameter dissolved oxygen of three 

membership functions (Low: Z-shaped; Medium: Gaussian; 

High: S-shaped) 

 
 

Figure 8. Input parameter water hardness of three 

membership functions (Low: Z-shaped; Medium: Gaussian; 

High: S-shaped) 

Table 1. Parameter settings of fuzzy inputs 

Input 

Parameter 

Fuzzy 

term 

Membership 

Function 
Value of input parameter 

Temperature 

Low Z-shaped 𝜶 = 𝟏𝟖, 𝜷 = 𝟐𝟏. 𝟓, 𝜸 = 𝟐𝟓 

Medium Gaussian 𝒎 = 𝟐𝟓, 𝝈 = 𝟏 

High S-shaped 𝜶 = 𝟐𝟓, 𝜷 = 𝟐𝟕. 𝟓, 𝜸 = 𝟑𝟎 

pH 

Low Z-shaped 𝜶 = 𝟔. 𝟓, 𝜷 = 𝟕. 𝟐𝟓, 𝜸 = 𝟖 

Medium Gaussian 𝒎 = 𝟖, 𝝈 = 𝟏 

High S-shaped 𝜶 = 𝟖, 𝜷 = 𝟖. 𝟕𝟓, 𝜸 = 𝟗. 𝟓 

Dissolved 

Oxygen 

Low Z-shaped 𝜶 = 𝟐, 𝜷 = 𝟑, 𝜸 = 𝟒 

Medium Gaussian 𝒎 = 𝟒, 𝝈 = 𝟏 

High S-shaped 𝜶 = 𝟒, 𝜷 = 𝟓, 𝜸 = 𝟔 

Water  

Hardness 

Low Z-shaped 𝜶 = 𝟓𝟎, 𝜷 = 𝟏𝟐𝟓, 𝜸 = 𝟐𝟎𝟎 

Medium Gaussian 𝒎 = 𝟐𝟎𝟎, 𝝈 = 𝟏 

High S-shaped 𝜶 = 𝟐𝟎𝟎, 𝜷 = 𝟐𝟓𝟎, 𝜸 = 𝟑𝟎𝟎 

Feeder 
Activate Triangular 𝒂 = −𝟏, 𝒃 = 𝟎, 𝒄 = 𝟏 

Suspend Triangular 𝒂 = 𝟎, 𝒃 = 𝟏, 𝒄 = 𝟐 

Aerator 
Suspend Triangular 𝒂 = −𝟏, 𝒃 = 𝟎, 𝒄 = 𝟏 

Activate Triangular 𝒂 = 𝟎, 𝒃 = 𝟏, 𝒄 = 𝟐 
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Although machine learning (ML)-based IoT systems can 

yield similar or superior results to those generated by the 

ISAS, fuzzy-based control is adopted in the proposed system 

owing to its fast response and ease of application. Compared 

with fuzzy-based systems, ML-based systems require long 

training time and must be redesigned for different aquatics. 

Moreover, the data processing platforms Raspberry Pi and 

Arduino are not suitable for ML due to the limitation of their 

computing power. Thus, the ISAS is based on the fuzzy 

inference process. 

 

4  Experimental Results 
 

Figure 11 illustrates our experimental environment. In 

these experiments, the sensors sensed data once every 3 min, 

and the sensed data could be stored in the Raspberry Pi 

computer and a cloud database  implemented using a PC with 

an Intel i7 processor, 16-GB RAM, and 1-TB SSD. A user 

could check the past sensed data through web pages. Figure 

12 and Figure 13 show two examples of temperature and 

dissolved oxygen data collected within 6 h, respectively. Data 

collected within 1 h, 1 day, 1 week, 1 month, and 3 months 

could also be visualized, either on the webpage or on users’ 

mobile devices. Figure 14 shows the sensed data dashboard 

on a user’s mobile device. 

 

 

Figure 11. Experimental environment of the ISAS 

 

 

To verify the feasibility of the ISAS, two aquariums were 

built: one for the experimental group and the other for the 

control group (Figure 15). The ISAS was implemented in the 

experimental group to monitor water quality of the aquarium. 

Initially, 60 shrimp and some aquatic plants were added to 

each of the aquariums. The shrimp in the control group were 

fed once daily, whereas those in the experimental group were 

fed depending on the fuzzy result. 

 

 

Figure 15. Experimental group and control group of the ISAS 

 

Figure 16 illustrates the survival rates of the shrimp during 

a period of 1.5 months. In the first week, many shrimp in both 

groups died because of unsuitability. The survival rates 

dropped rapidly. However, in the experimental group, baby 

shrimp were born on April 7 and 13, and in the control group, 

baby shrimp were born on April 19. Therefore, the total 

number of shrimp increased, and the survival rate increased 

Temperature 

Sensor

pH sensor

Dissolved

Oxygen

Sensor Water 

Hardness

Sensor

Aerator

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0

0.9 1.0

Activate Suspend

 
Figure 9. Output parameter Feeder of Triangular 

membership function 
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Figure 10. Output parameter Aerator of Triangular 

membership function 

 

 
Figure 12. The temperature sensed data example 

 

 
Figure 13. The dissolved oxygen sensed data example 

 

 
Figure 14. Sensed data dashboard from user’s mobile 

device 
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accordingly. On May 5, the number of remaining shrimp in 

the experimental (control) group was 36 (16). The survival 

rate of the experimental (control) group was 60% (26.7%). 

Accordingly, when the ISAS was applied, the survival rate of 

the shrimp increased by 33.3% (= 60% − 26.7%). 

 

 
Figure 16. Survival rates of shrimps during the 1.5 months 

of our experiment 

 

Because implementing a real aquafarm is difficult, in our 

experiment, two aquariums were developed to verify the 

feasibility of the proposed system. However, in general, more 

sensors are required to monitor different areas of an aquafarm. 

The water quality of an aquafarm can be monitored in two 

manners: (1) creating several independent ISAS systems in a 

large aquafarm and using each ISAS system to detect the 

water quality of a specific area; (2) integrating the sensed data 

in a medium-scale aquafarm and then inputting the data to a 

single ISAS system for decision-making. 

 

5  Conclusion and Future Studies 
 

In this paper, an IoT-based aquaculture system is 

proposed for detecting the water quality of an aquafarm in 

order to increase aquatic production capacity. Four sensors are 

utilized in the proposed system, and the sensed data are 

gathered and transmitted to a cloud database through an 

Arduino Uno microcontroller and a Raspberry Pi computer. 

Users can easily check the aquafarm’s water quality through 

a smartphone or a remote computer. Moreover, when the 

water quality is not suitable for aquaculture, the ISAS 

automatically activates the aerator according to the fuzzy 

ruleset installed in Raspberry Pi. In our experiments, the 

survival rate of shrimp is increased by 33.3% when the ISAS 

was used compared with that obtained for the control group. 

Although the ISAS can monitor four major parameters of 

water quality and automatically activate the actuator of an 

aquafarm, other water quality parameters such as water 

hardness, nitrite, and nitrate must be sensed to satisfy different 

requirements of different aquaculture systems. In addition, in 

the ISAS, only the actuator and feeder are controlled. In future 

studies, we will add devices such as automatic water 

replenishment and temperature regulators so that the water 

quality can be controlled effectively and the productivity of 

aquatic products can be highly increased. 
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