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Abstract 
 

The spread of PM2.5 pollutants that endanger health is 
difficult to predict because it involves many atmospheric 
variables. These micro particles could spread rapidly from 
their source to residential areas, increasing the risk of 
respiratory disease if exposed for long periods. However, the 
existing prediction systems do not take into account the 
geographical correlation among neighboring nodes spatially 
and temporally resulting in loss of important information, 
lack of PM2.5 propagation resolution, and lower forecasting 
accuracy. In this paper, a novel scheme is proposed to 
generate propagation heat maps of PM2.5 prediction by using 
spatiotemporal datasets. In this scheme, the deep learning 
model is implemented to extract spatiotemporal features on 
these datasets. This research was conducted by using the 
dataset of air quality monitoring systems in Taiwan. 
Moreover, the robust model based on the convolutional 
recursive neural network is presented to generate the 
propagation maps of PM2.5 concentration. This study 
develops an intelligence-based predictor by using 
Convolutional Recursive Neural Network (CRNN) model for 
predicting the PM2.5 propagation with uncertain spread and 
density. It is also one of key technologies of software and 
hardware co-design for massive Internet of Things (IoT) 
applications. Finally, the proposed model the proposed model 
provides accurate predictive results over time by taking into 
account the spatiotemporal relationship among sensory nodes 
in order to give a prediction solution for the massive IoT 
deployment based on green communication.  
 
Keywords: PM2.5 propagation, Spatiotemporal, 

Convolutional recursive neural network, AI 
 
1 Introduction 

 
Particulate matter (PM) below 2.5 um, which is called 

PM2.5, is one of the biggest urban problems and has become 
the most dangerous source of air pollutants. PM2.5 is very 
dangerous for health especially for vulnerable groups, e.g., 
infants, children, pregnant women, and the elderly. A high 
concentration of PM2.5 is one of the factors that cause 
dangerous disease e.g., heart disease, respiratory infections, 

cancer, and chronic lung disease [1]. PM2.5 is a micro 
particle that could aggravate the respiratory disease more 
quickly because it can settle to the respiratory tract of the 
bronchi and alveoli [2]. PM2.5 is more dangerous than 
particulate matters below 10 (PM10) because it is attached to 
the alveoli instead of filtered in the upper respiratory system. 
These particles reduce the ability of the lungs to absorb 
oxygen from the air. Due to its ultra-light odorless physical 
characteristics, the long-term impacts will be unrecognized 
by the residents [3]. PM2.5 concentration is difficult to detect 
accurately, has a high number of outliers, and is highly 
dependent on other atmospheric parameters [4]. Moreover, it 
is hard to predict the ever-changing PM2.5 concentrations 
because the features are highly influenced by other variables 
e.g., geographical location, wind direction, temperature, 
humidity, and other sources of pollutants [5].  

WSN-based environmental sensing has been widely used 
to measure the PM2.5 concentrations accurately using a large 
number of sensory nodes. However, measuring air pollution 
on a scattered massive scale sensory node becomes a major 
challenge. A large number of end sensory nodes increases the 
occurrence of sparse data. Compressive sensing algorithms 
[6-7] could be used to improve the performance of the 
prediction system while reducing sparse data generation. 
Although the spatial propagation of air pollutants could be 
monitored in a higher resolution, there is a possibility that 
some measurement errors are obtained from millions of data, 
resulting in inconsistent predictions. On the other hand, the 
data has a sequential feature that changes over time. These 
features could be extracted and predicted by an Artificial 
Intelligence (AI) model. The prediction model could use the 
spatiotemporal data pattern tied together in terms of space and 
time domain [8-9] in order to improve theoretically the 
accuracy. By using deep learning model, this research 
proposes a novel approach to explore spatiotemporal patterns 
inside the dataset.  

In Taiwan, the government has implemented PM2.5 
measuring sensors in every weather station distributed in each 
district. Cooperation between the government and WSN 
manufacturers has also generated many sensor nodes installed 
with a large but uneven distribution. This collaboration 
generates a pollutant measurement system i.e., 'Airbox' 
devices [10] that have been implemented and its record with a 
certain period can be accessed in real-time via Internet. The 
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data is mined from the 'Airbox' to provide earlier and accurate 
predictions. 

The spatiotemporal pattern could be used to predict the 
distribution of pollutants in the future [11]. The direction of 
pollutant distribution could be predicted accurately using the 
spatiotemporal dataset. In general, the proposed framework 
uses a Recursive Neural Network (RNN) to extract short and 
long-term patterns from the PM2.5 dataset. Moreover, the 
spatial patterns on the dataset are learned by using 
Convolutional Neural Network (CNN). The combination of 
CNN and RNN has been shown to be used to record many and 
complex pre-trained patterns [12]. Therefore, this study 
presents a novel Convolutional Recursive Neural Network 
(CRNN) model to predict the propagation of PM2.5 from 
time to time.  

The contributions of this paper are summarized below. 
1) The novel predictor model capable of servicing 

large-scale sensor networks with thousands of sensor 
nodes is developed to generate high-resolution PM2.5 
propagation maps. 

2) This framework utilizes CNN to extract spatial features of 
a WSN and RNN to learn the temporal features from data 
sequences so that the correlation relationship between 
measurement results could be maintained. Moreover, the 
spatiotemporal correlation relationship is extracted as a 
feature in order to provide better forecasting results than 
the previous approach. 

3) This framework supports reconfigurable network 
deployment, e.g., reduction, addition, or topology 
modification to increase measurement precision without 
the need for repetitive training processes.  

4) The quantitative analyses in terms of prediction accuracy 
and error rate are performed by using the real-time 
'Airbox' dataset obtained from 268 sensor nodes located in 
Central Taiwan. Moreover, a qualitative analysis of the 
results is also presented. 

5) The geospatial heat maps that describe predictions of the 
air pollutants propagation are provided for the next day, 
where the prediction model only uses PM2.5 data 
variables without involving other atmospheric variables. 
The remainder of this paper is described as follows. 

Section II reviews the previous works in terms of PM2.5 
prediction. Section III provides basic methods to build the 
prediction model. Section IV describes in detail the proposed 
model. Section V shows the experiments and the results. 
Furthermore, a discussion is provided in Section VI. Finally, a 
conclusion is summarized in Section VII. 

 
2 Related Works 

 
PM2.5 is a micro particle that floats easily in Earth's 

atmosphere. The propagation of PM2.5 is closely related to 
changes in atmospheric variables, e.g., wind speed and wind 
direction. Wind speed and direction data have a high degree 
of randomness and always change over different periods [13]. 
It affects the direction, area, and speed of this pollutant 
propagation [14]. Until now, there are only a few models that 
describe the propagation of micro particles in a predictor 
model that includes time and space domains [15-17]. 
Furthermore, the existing models have not been implemented 
to massive scale sensor networks. The probability of the error 
rate increases, with the increasing number of sensor nodes 
installed on a system [18]. This type of pollutant data always 

changes depending on human activities, atmospheric 
variables, and geographical position. To predict PM2.5 
concentration, a previous study uses clustered data to simplify 
the process because it involves massive data from thousands 
of sensor nodes. By using clustering methods, the data is 
processed efficiently. It is very useful for large-scale predictor 
modeling, at the expense of the resolution of the prediction 
results. On the other hand, a linear regression analysis can be 
used to design a forecasting model. However, this method 
cannot capture too many and complex features [19].  

To model a complex signal with a high degree of 
randomness, a previous study [20-21] utilized Neural 
Networks (NN). However, the experiment only used a small 
one-dimensional dataset without spatiotemporal feature 
extraction. Moreover, other researchers used Extreme 
Machine Learning (ELM) to predict air pollution [22]. 
However, this approach could only be used for a small dataset 
with features which are not too complex. The more complex 
the learned features, there are higher the chances that the NN 
cannot achieve convergent learning. These complex features 
usually are found evenly in most areas of the signal. The 
discovery of the RNN model raises new possibilities related 
to forecasting sequential data even those with high 
complexity features. Furthermore, entering the era of deep 
learning, many predictive models are starting to emerge and it 
produces better accuracy than conventional NN. 

Multiple variants of RNN e.g., Gated Recurrent Unit 
(GRU) network and Long Short-Term Memory (LSTM) 
network are proven to be used to build sequential data 
prediction systems [23-24]. The temporal pattern shows very 
strong data relations between the present data and the 
previous data. This correlation is learned by GRU and LSTM 
networks and becomes knowledge i.e., manifested in the 
convergent weights on each layer. In addition, the data 
recorded from a WSN has special features spatially and 
temporally. The temporal features could be extracted using 
RNN, while the spatial features could be recorded using CNN. 
Previous research discussed the potential of CNN-LSTM to 
predict PM2.5 [25]. However, this prediction is only based on 
one-dimensional data so that the spatial relationship of the 
sensor networks cannot be extracted extensively. The 
proposed model is capable of recording a 2-dimensional 
dataset with a feature extraction that can record 
spatiotemporal patterns. Furthermore, in order to extract high 
complexity features, a large number of neuron networks are 
required which are arranged in stratified layers. The proposed 
model utilizes a deep learning scheme that combines CNN 
and RNN in several cascade layers to extract spatiotemporal 
dataset. The spatiotemporal model provides accurate 
predictions as evidenced in [26]. 
 
3 Methods 

 
In this section, the general knowledge regarding to both 

convolutional and recursive NN is presented. At the 
beginning of this chapter, several types of recursive networks 
were introduced (i.e., RNN, GRU, and LSTM) followed by a 
convolutional network (i.e., CNN). In the end, a convolution 
CRNN model is presented to extract both spatial and temporal 
features simultaneously. 

 
3.1 Recursive/Recurrent Neural Network 
(RNN) 
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RNN is a form of ANN architecture that is specifically 
designed to learn sequential data. It is usually used to process 
tasks related to time series data. RNN is quite widely used to 
solve sequential problems [27], e.g., Natural Language 
Processing (NLP), speech recognition, machine translation, 
video classification, stock prediction, and weather forecasting. 
The main idea of the RNN architecture is to exploit sequential 
data structures by feeding back the ANN’s output as recursive 
inputs. It means that the same operation is performed for each 
sequence element, with the output depending on the current 
input and the previous operation. In essence, RNN focuses on 
the nature of the data where the previous ( )t 1,t 2 ,...,t Tx − − − and 

present time tx affects the next time variable t 1x + . RNN does 
not discard information from the past. RNN extracts 
information from the past by looping through its architecture, 
which automatically stores information from the past into its 
recursive weights. 

 
3.2 Gated Recurrent Unit (GRU) 
 

The idea of designing a GRU network is that each 
iterative unit captures dependencies in different time scales 
adaptively [28]. It can be analogized to a rainfall prediction 
system in an area with two seasons, i.e., dry season and rainy 
season. Information from the past about rainfall in the dry 
season will not contribute significantly to decision-making 
when the current conditions are in the rainy season. Inside 
GRU, the information flow control component is called a gate 
and the GRU has 2 gates, namely a reset gate and an update 
gate. The reset gate determines how to combine the new input 
with past information. Meanwhile, the update gates determine 
how much past information should be stored while 
reading/generating a sequence. 

 
3.3 Long Short-Term Memory (LSTM) 
 

LSTM is a type of RNN with the addition of a memory 
cell that could store information for a long time. LSTM is 
proposed as a solution to overcome the vanishing gradient in 
RNN when processing long sequential data. LSTMs are able 
to learn long-term dependencies that were previously a 
weakness in RNN. LSTMs also have repeating connections or 
chain-like structures. The difference between LSTM and 
RNN lies in the layers contained in each LSTM cell. In each 
LSTM cell, there are 3 Sigmoid functions and 1 Hyperbolic 
Tan function. For long-term dependency problems, LSTM 
could handle noise, distributed representation, and continuous 
values [29-30]. 

 
3.4 Convolutional Neural Network (CNN) 
 

CNN is a type of NN with its inputs in the form of 
two-dimensional data so that the linear operations and weight 
parameters on CNN are different from NN. Inside CNN, 
linear operations use convolutional operations, while weight 
is no longer one-dimensional, but in four dimensions which is 
a collection of convolutional kernels. CNN is inspired by the 
Visual Cortex, which is the part of the brain that processes 

information in visual form. By using a multi-layer (deep) 
architecture, CNNs can be trained to extract complex features 
in a dataset [31]. CNN can capture spatial and temporal 
dependencies in an image when operated with relevant filters 
so that it can be used to predict a short sequence of 
2-dimensional data [32]. To provide a better understanding of 
a complex pattern, CNN is usually designed with many 
interconnected layers, so it is commonly called a deep 
learning architecture. 

 
3.5 Convolutional Recursive Neural Network 
(CRNN) 

 
The traditional convolutional layer extracts feature from 

the data by applying non-linearity to the activation function of 
the input. CRNN upgrades this feature extraction process 
especially for the case of sequential data, by inputting the data 
into the CNN then using the output as inputs of RNN layers 
[33]. This architecture exploits the fact that a window 
containing multiple frames of sequential data is a temporal 
feature that might encapsulate valuable information. 
Meanwhile, spatial features are recorded in the convolution 
layer which is directly connected to the input layer. In 
addition, CRNN model can be used to predict the dataset with 
long sequence format, e.g., internet sentiment analysis [34] 
and public opinion analysis [35]. 
 
4 Design of Prediction Model Based on 
CRNN 

 
The basic concepts of designing a predictor model on a 

massive scale sensor network are described in this section. 
The initial section describes the process of data collection and 
preprocessing. Then, the characteristics of an RNN model are 
explored. Finally, the proposed CRNN model is described to 
extract spatiotemporal features in the dataset. 

 
4.1 Tools and Dataset 
 

The dataset is obtained from sensor nodes as part of the 
'Airbox' sensor network that provides real-time PM2.5 
monitoring services. The system has been implemented 
throughout Taiwan and includes thousands of 
community-installed sensor nodes and hundreds of 
government-owned nodes. This air quality monitoring system 
is hereinafter referred to as the 'Airbox'. The proposed scheme 
is shown in Figure 1. This system does not completely change 
the already implemented 'Airbox' system. This schema 
updates the server node by implementing AI technology for a 
more precise forecasting model. The hardware specifications 
are shown in Table 1. As a limitation, only data from several 
of 'Airbox' sensory nodes (i.e., 268 sensor nodes scattered 
across Central Taiwan) are collected. Central Taiwan is 
suitable as a research case because as referred to [1], this area 
reflects the condition of Taiwan as a whole. It is also home to 
the third-largest coal-fired power plant in the world, which 
produces large emissions of carbon and micro particles.  
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Figure 1. The proposed schema utilizes WSN that served by PM2.5 sensor nodes named 'Airbox' combined with AI cloud 

computing 
 

Table 1. The specification of sensor nodes and server node used in this research 
PM2.5 Sensor Node  Server Node 

Size  : 148.4mm x 111.5mm x 45mm  Processor : Dual 20-Core Intel Xeon E5-2698 2.2 GHz 
Connection : WiFi IEEE 802.11b/g/n  RAM : 256 GB  
Temperature sensing range : 0~60°C, Accuracy: ± 1 °C  GPU : NVIDIA Tesla P100 (3584 CUDA Cores) 
Humidity sensing range : 0~100%RH, Accuracy: ± 5%  GPU memory : 32GB HBM2 
Measurement range : minimum 0.3μm  OS : Ubuntu 64-bit 
Measurement efficiency : 50% @ 0.3um,  

  98% @ >= 0.5 um 
 Environment : Python with Keras  

  Tensorflow backend 
Power supply : Micro USB port x 1 DC 5V  Library : numpy, pandas, pyplot, and folium 

 

 
Figure 2. A single dataset from a sensor node measured in one month with a 5-minutes sampling time. 90% of it is used 

as training data and the remaining 10% rest as testing data 
 

PM2.5 dataset was collected for one month i.e., recorded 
in September 2020 with a sampling rate of every 5 minutes. 
Experiments were performed on a dataset (8.7MB) of 268 
sensor nodes. Each sensor generates approximately 32KB of 
data per month of measurement. However, only PM2.5 data 
was used to evaluate the proposed framework. The dataset 
from a sensor node is visualized in Figure 2. Visually, it can 
be seen that the data has a rather random pattern but still has a 
repetition pattern every day. Therefore, to simplify the 

experiments, the dataset is compressed into 2 hours sampling 
rate by averaging the data each 2 hour. For the experiment, 
90% of the dataset is used as training data and 10% rest as 
testing data. The evaluation process is carried out using 
training losses, accuracy, and RMSE. 

 
4.2 Design of A Simple Predictor Using RNN 
layers 
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The design of the RNN model is carried out using the 

python programming language with the support of the 
TensorFlow library. In this section, each type of recursive 
layer is evaluated to decide the best layer and the optimal 
configurations that will achieve the best performance. A 
dataset from a single sensor was used as experimental 
material. The lowest losses and the best accuracy generated 
by the three types of recursive layers (i.e., RNN, GRU, and 
LSTM) were presented. These approaches do not involve the 
extraction of spatiotemporal features. These approaches were 
compared to explore their characteristic (i.e., losses, accuracy, 
and efficiency). 

At first, the target of this forecasting system is determined, 
which is to forecast PM2.5 concentration with a sampling 
time of 2 hours for the next 24 hours with the past 1-day 
dataset. Each day will generate 12 data in a sequence. As 
shown in Figure 3, model compilation and model 
specification were defined. In accordance with the target, the 
number of input neurons is determined to be 12 x 2 days = 24 
neurons. A compilation process is carried out to arrange these 
layers into a deep learning model. Furthermore, the process of 
arranging the layers into a model is carried out sequentially 
with each type of recursive layer having a different number of 
layers varying from 1 to 5. Between each layer, a dropout 
layer is inserted to prevent overfitting and also accelerate the 
learning process.  

 

 
Figure 3. Design of a simple predictor using several 

recursive layers i.e., RNN, GRU, and LSTM 
 

Table 2. The different layer depth variations on a simple 
RNN affect the execution time without significantly 
increasing accuracy 

 

Table 3. The difference between a simple RNN, GRU, and 
LSTM by using different number of input channels 

 

 

 

 

Figure 4. The results performed by using a recursive model 
i.e., (a) GRU and (b) LSTM  

From Table 2, it can be concluded that the 4-layer 
configuration provides optimal performance without 
sacrificing a lot of neurons. The use of more than 4 layers does 
not provide significant performance, thus decreasing 
computational efficiency. Then, this 4-layer configuration is 
used to design the proposed model. To see the best 
performance on the forecasting system, another experiment 
takes into account the measurement results of the closest 
nodes around the test node. In theory, the more data that is 
included in the calculation, it affects the accuracy of the 
system. Therefore, each input has a channel variation from 1, 
2, 3, and 4 which represents the number of closest nodes that 
are used as modeling references. The output is 1 neuron which 
represents the next 2-hours prediction. Furthermore, because 
the network used is a recursive type, the input will be shifted 
and the output will represent the predicted results of the next 
hour. After compilation, the number of parameters in the 
LSTM and GRU network is 4 and 3 times more than that of on 
the simple RNN as shown in Table 3. The greater the number 
of parameters, the longer the training process will take. 
Likewise, the greater the number of layers, the greater the 
number of parameters. With the increasing number of 
parameters, the more local and global features that could be 
stored on it. It can be seen that the best accuracy is performed 
by LSTM. Even if nodes around the location is computed into 
the learning model, the performance does not improve 
significantly. Increasing the number of input channels 
actually increases the number of neurons without a significant 
contribution to accuracy. The prediction results look good 
visually and are able to replicate the real-world value shown 
in Figure 4. However, these results are obtained for 
forecasting one step ahead. To predict the next few steps by 
involving the results as inputs, this one-dimensional recursive 
model has not provided good performance. 
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4.3 Design of a Novel Predictor Framework 
Using CRNN Layers 

 
The proposed design consists of 2 main parts i.e., 

preprocessing and CRNN modules which are composed of 
CNN encoder, RNN, and CNN decoder, shown in Figure 5. 

  
4.3.1 Preprocessing 

 
Preprocessing converts raw data with an unequal 

distribution into structured data, which has strong tied in 
spatially and temporally. This preprocessing involves the 
geographical position of each node and its measurement time. 
That is, each data is collected and arranged based on both the 
time in sequence as well as the spatial information in 
geographic location according to Voronoi diagram shown in 
Figure 6, where Voronoi diagram [36] is a mathematical 
method to partition a plane into regions closing to each of a 
given set of objects. The data is collected by the node named 
'Airbox' in this research, which the PM2.5 data is detected and 
generated by using five minutes sampling rate. The data is 
resampled every 2 hours for the last 2 days (24 sequences) as 
a training set, while 12 hours of subsequent data were used as 
ground truth. The dataset is processed by the model, then the 
results are the next 24 hours prediction values.  

The dataset is not evenly distributed spatially. It can be 
difficult to feed unevenly distributed data directly to a deep 
learning model. Therefore, the data is divided spatially into 
several sectors H. Taiwan has a main island that stretches 
from North to South. For the experiment, Taiwan region is 
divided into small sectors with a resolution of 40 rows m and 
40 columns n starting from coordinates (23.90, 120.37) to 
coordinates (24.45, 121.020). This configuration is chosen so 
that one sector only covers 1 to 10 nodes. If the resolution is 
higher, the number of neurons used will be bigger which will 
affect the computer's ability to complete the training process.  

Each sector provides similar features for several sensor 
nodes. In one sector, it consists of several cells that represent 
the coverage area of each node as shown in Figure 5. Each 
sector is connected to 1 input neuron. Therefore, Equation (1) 
is needed to convert the values of several sensor node 
measurements into an aggregation value that represents the 
value of the sector. Moreover, the Voronoi diagram is used to 
calculate the contribution of a node in a sector. A Voronoi 
diagram is a division of the area of a plane into sections based 
on the distance from points on a specific subset of the area of 
the plane. The diagram divides a sector based on the position 
of the nodes in the plane into several Voronoi cells with a 
certain area. Each sector has a certain value and it forms a 
heat map value which represents the PM2.5 pollution level. 
Given sensor nodes in geographical position ( )i, j  inside 
certain sector m,nζ . Equation (1) is used to compute the heat 
maps as inputs of the deep learning model. 

i, j
i, j i , j m,n

m,nm,n

i , j m,n

v
x ; x

V=
0 ; x

ζ
θ

ζ


∈


 ∉

∑ , (1) 

where , x, v, Vθ are heat map value, PM2.5 value, volume of 
Voronoi cell, and volume of sector respectively. In addition, 
heat map is a useful tool to see the activity of the research 
object with color indicators. This color represents how active, 

much, and intensely PM2.5 propagation behaves in 
environments with geographic position labelling. 

 
4.3.2 Going Deeper into CRNN Model 

 
A bottom-up problem implementation strategy is used to 

design the prediction model. The research that has been 
conducted uses a recursive learning base to deal with 
forecasting atmospheric variables. To complete sequence 
learning, the LSTM module is utilized, with considerations of 
better performance than other recursive layers as shown in 
Section 4.2. Meanwhile, the CNN module is used to capture 
the spatial pattern that represents the propagation of PM2.5 in 
a timestamp. The proposed model overcomes the problem of 
lack of heat map depiction by capturing short and long-short 
spatiotemporal cues at local and global levels via 3D 
convolution and LSTM modules. As spatiotemporal dataset 
holds multifaceted characteristics e.g., geographical position, 
temporal direction, temporal speed, change in direction and 
distance travelled information of moving atmospheric objects 
such as PM2.5. By analyzing these spatiotemporal 
characteristics, the PM2.5 behavioral patterns can be inferred 
more precisely than by using conventional approach. 

The proposed model is an improved version of the simple 
recursive network in Figure 3. The basic model is shown in 
Figure 5. This model is inspired by autoencoder, but it uses a 
Conv-LSTM2D layer instead of the standard convolutional 
layer. Then, the model is upgraded using the CNN-LSTM 
approach. Each spatial data from sensor nodes will be 
processed at one time using the CNN module. The CNN is 
applied recursively to all inputs ( t , t 1, t 2, ..., t n )m,nθ − − − , i.e., 
the heat map of PM2.5 concentration. Then, each spatial 
feature is processed using the ConvLSTM2D module to 
extract temporal features from the dataset. Finally, based on 
empirical evidence, the extensive experiments on 24 forecast 
sequences are conducted and compared with the ground truth 
dataset. 

Figure 7 shows the CRNN network which illustrates in 
detail the proposed model. The k kernel size, step rate s , and 
output dimensions are expressed in the following order and 
include brackets ( ) [ ]k , s  b, t , M , N , D on each layer. 
Where, b, t , M , N , and D represent the batch size, the 
number of samples taken by the Conv-LSTM module to 
capture temporal information, the height and width of the 
frame, and the number of output feature maps. The network 
has 9 layers with 78,261 trainable parameters that integrate 
four main components, i.e., CNN encoder, recursive layer, 
CNN decoder, and recursive predictor. It maintains a constant 
number of filters (16) in each layer (except the penultimate 
layer, which yields 20 feature maps) and the kernel size k 3= . 
Therefore, the spatial dimensions of the feature map are 
maintained similar from input to output. Thus, the encoder 
final layer generates a feature map that has a spatial 
dimension of 40 × 40. Because the network input layer 
accepts a frame with 40 x 40 spatial dimensions, so the 
preprocessing data should be done before. To achieve a 
precisely decoded feature map, there are four sequentially 
connected mini-decoder blocks. Where, each block group 
Conv2D and ConvLSTM2D, sequences. Therefore, the last 
layer of the decoder generates a feature map with the same 
spatial dimensions as the network input. The final classifier 
module consists of Batch Normalization (BN) and 3D 
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Convolutional layer with Sigmoid function as the classifier. 
Furthermore, this feature map is merged with the raw 
geographical map using the concatenate operator. Thus, the 

output of this model is a probability map of the next frame 
which is estimated based on the observed frames. 

 
 

 
Figure 5. Design of Predictor Framework based on CNN-RNN, consist of input, preprocessing, CNN encoder, RNN-based 

learning, and CNN decoder 
 

 
Figure 6. The preprocessing procedure involves the conversion process which transfers the geospatial position of sensor nodes 

into Voronoi map. Then, the heat map is generated by using mean value operation for all nodes in each Voronoi section 
 

 
Figure 7. A layer-wise schematic of the proposed deep learning model. It exploits autoencoder-like with CRNN strategy 
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4.3.3 Training Strategy 

 
Experiments were carried out on the sequence of the 

dataset 24 hours back to determine the forecast results for the 
next 24 hours. This means, the number of forecasts compared 
with the reference dataset is 1:1. This ratio is kept not too 
small so that the number of neurons required in the modeling 
is not too large. While the ratio is also not too close to zero so 
that the model has sufficient references to produce good 
forecasting accuracy. This approach is more precise than the 
random selection of frames to solve the data sequence 
prediction case. Meanwhile, the model is trained on NVidia 
Tesla 32 GB working in desktop DGX-1. On average, the 
training takes about 20 to 30 minutes depending on the 
properties of the dataset. The model is trained individually on 
each data set with the Adadelta optimizer described in 
Equation (2). Learning rate is set to 0.0002 with a scheduler 
reducing learning speed by factor of 0.8.  

[ ]
N

n n n n
n 1

1 ?E p log p (1 p )log(1 p ) ,
n =

−
= + − −∑  (2) 

where it takes two inputs, i.e., first one is the output from the 
final layer of the network with dimension 
of b T M N D ,× × × × which maps the pixel 
probabilities ( ) [ ]n nx 0,1p̂ γ ∈= using Sigmoid classifier γ . 

And another one is target [ ]np 0,1∈ with the same dimension 
as the first one. np is the normalized ground truth map. 
 
5 Experiments and Results 

 
This experiment is carried out by involving the training 

and validation procedures. To produce optimal measurements, 
it is necessary to tune the model’s parameters. Then, the 
results will be presented, followed by a comparative analysis 
of several approaches and their effectiveness in generating a 
PM2.5 prediction map. Finally, the results are visualized on a 
sequence map. 

 
5.1 Fine Tuning the Proposed Model 

 
Several parameters of the CRNN model are tuned, 

consisting of the number of neurons per layer, epoch, and 
batch size. The tuning procedure needs to be carried out to 
generate the most efficient number of parameters so that, the 
training process could be finished in the shortest possible time. 
In the tuning process, the optimal value of the 
hyperparameters is determined. The more the number of 
neurons, the slower the training is completed. Therefore, this 
larger number of neurons does not effectively contribute too 
much to the training accuracy. Too many epochs and batches 
result in more time to complete the training process even 
though, the accuracy slightly improves. In the experiments, 
the batch size = 20 and the epoch = 500. A comparative result 
is provided to compare the performance of NN [20], LSTM 
[30], CNN [32], Convolutional + LSTM (ConvLSTM) [33], 
and the proposed CRNN model with a total parameter of 
8,459, 16,633, 43,861, 46,281, and 78,261 respectively. The 
simulation notes that the execution time per epoch at the 
training stage for the NN, LSTM, CNN, ConvLSTM, and 
CRNN model is 2 s, 4 s, 13 s, and 15 s. Although the learning 

process becomes more complex, however, at the 
implementation stage, the computation time will almost be 
the same for each NN-based model because only the inference 
engine is used. In addition, only the inference engine will be 
used more dominantly to make predictions. 

 
5.2 Evaluation 

 
For evaluation stage, standard performance based on Root 

Mean Square Error (RMSE) is calculated. The RMSE 
evaluates the similarity between the heat map 
predictions t 1θ̂ + and the ground truth t 1θ + . This standard is a 
measure of the average relative error for each pixel. The 
lowest the ratio, the better the performance of the prediction 
system. Let 1,1 1,2 1,3 m,n  , , , , θ θ θ θ θ= …  be the ground 

truth data and 1,1 1,2 1,3 m,n
? ? ?  , , , , θ θ θ θ θ= …  be the predicted 

heat map. Then, the RMSE can be defined as:  

( )2M N
m,n m,nm n 1

1 1 ˆNRMSE
MN

θ θ
θ =

= −∑ ∑ , (3) 

whereθ , M and N are mean, max height, and max weight of 
the original heat map, respectively. 

The robustness of the models is also tested and compared 
for each model. When implemented with real conditions, 
there are possibilities of errors in the data measurement 
process. In this condition, with the increasing number of 
nodes connected in the WSN, the chances of sensor damage, 
data transmission errors, and sparse data could occur. The 
robustness is evaluated by adding noise with the standard 
deviation σ. The greater the σ, the greater the damage to the 
dataset. An approach that utilizes spatiotemporal feature 
extraction could be an alternative to reduce the dataset fault 
because of noise. 

 
5.3 Results 

 
The test results are divided into two, namely qualitative 

and quantitative assessments. Quantitative assessments are 
obtained using the NRMSE graph as shown in Figure 8 and 
Figure 9. Meanwhile, quantitative assessments are carried out 
by visually examining the prediction results with ground truth 
as the target described in Figure 10.  

As provided in Figure 8, all models perform good 
prediction proven by an accuracy value above 0.75 for the 
period t 1+ . In this period, the ConvLSTM generates the 
highest accuracy results with an NRMSE value of 0.912 
followed by the proposed model with a value of 0.908. The 
other models generate NRMSE values of 0.87, 0.85, and 0.78 
for CNN, LSTM, and NN, respectively. One-dimensional 
forecasting methods such as LSTM and NN cannot match the 
performance of 2-dimensional forecasting models, i.e., CNN, 
ConvLSTM, and CRNN. Furthermore, the next prediction 
t 2+  shows a significant performance difference between the 
five models tested. The one-dimensional forecasting model 
cannot compensate for the other three models with a 
significant decrease in the NRMSE value. This could occur 
because the weight distribution in the one-dimensional 
network model is very small and there are no long-term 
memory modules. The spatiotemporal dataset is very suitable 
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to be extracted by using a 2-dimensional forecasting model 
i.e., ConvLSTM. In order to more deeply observe the 
relationship between spatial and temporal data, Gaussian 
noise is added to the dataset. How strong the relationship 
between variables in the space and time domain can be 
captured and then modeled so as to improve forecasting 
performance. 

 
Figure 8. The RMSE of 5 predictive models involving the use 

of results t 1θ̂ + as input tθ  

 
Figure 9. RMSE of the top-3 models i.e., CRNN, ConvLSTM, 

and RNN with various of noise additionσ  

 
Figure 10. Propagation map of PM2.5 in Central Taiwan 

generated by several deep learning models 

From Figure 9, it can be seen that the proposed model is 
able to produce the best performance compared with other 
2-dimensional models when dealing with noise that occurs in 
the measurement system. Even when given noise σ = 0.2, the 
proposed model is still able to compensate for the 
performance of the ConvLSTM model without noise addition. 
The addition of noise actually worsened the performance of 
the other models. Finally, it is evident that the proposed 
model has an advantage over the conventional approaches, 
visually shown in Figure 10. 

 
6 Discussion 

 
After analyzing in our model, the LSTM model generally 

performs better than the GRU and RNN models in 
overcoming the high randomness level of PM2.5 dataset. 
Furthermore, it coud be used to predict the direction and rate 
of PM2.5 propagation. The more nodes involved, the better 
the forecasting performance. On a simple LSTM model, the 
use of more than two nodes actually makes performance 
decrease. Based on the tests, using only one input variable on 
the LSTM module, optimal performance can be achieved 
without sacrificing an unnecessary increase in the number of 
neurons. The complexity of forecasting is higher with the 
increasing number of variables involved. A simple recursive 
network has not capable to extract these patterns. The 
conventional approaches only capture temporal patterns. In 
fact, forecasting that involves massive datasets should have 
spatial patterns that are sometimes not recorded when using 
only conventional recursive models. 

The proposed model provides an advantage in areas where 
sensor distribution is sparse. The model generates a higher 
resolution with a more balanced distribution by taking into 
account the training data from neighboring nodes. 
Forecasting resolution can be determined dynamically by 
setting the number of sectors in preprocessing. The 
spatiotemporal features could be recorded better using the 
proposed approach. The accuracy over period of forecasting 
could also be extended if the dataset is larger. In addition, 
with the increasing number of training datasets, it needs to be 
compensated by an increase in the number of neurons and the 
depth of the layer. Increasing the number of neurons will 
increase the training time. However, the use of CRNN has 
been proven to be used in PM2.5 forecasting system 
applications without considering other atmospheric variables. 
The influence of other atmospheric variables can be 
suppressed by learning the propagation of PM2.5 pollutants 
using a deep learning model so that it improves the efficiency 
of data processing in a massive-scale WSN. 

 
7 Conclusions 

 
This paper presents the model according to the idea of 

spatiotemporal correlation among sensory nodes, which deals 
with the dataset that is mined from large-scale sensor 
networks. By using a deep learning CRNN model, the heat 
maps that forecast propagation of PM2.5 concentrations over 
time can be generated. The proposed model adopts a 
combination of convolutional networks and recursive 
networks. The CRNN model increases the trained pattern 
complexity by adopting spatiotemporal dataset. Moreover, 
the model is powerful for learning both local and global 
features better than previous approaches. The network 
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parameters are trained directly from the ground truth heat 
maps to generate a heat map of PM2.5 prediction. These 
inputs and outputs heat maps have the same format. Therefore, 
the proposed model does not require the retraining procedure 
when reconfiguring its sensory nodes e.g., adding, subtracting, 
or replacing sensory nodes. The qualitative and quantitative 
results show that the proposed model could be used to make 
predictions without involving many atmospheric variables. In 
the other words, the model could minimize the use of other 
unnecessary variables, which are involved in pollutant 
propagation. Finally, the experiment results show that 
developing spatiotemporal feature extraction approach 
proposed model in this paper is a powerful solution with 
efficient performance. It could provide the prediction solution 
for the massive IoT deployment based on green 
communication. 
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