
A Collaborative Dragonfly Algorithm with Novel Communication Strategy and Application for Multi-Thresholding Color Image Segmentation   45 

* Corresponding Author: Jeng-Shyang Pan; E-mail: jspan@ieee.org
DOI: 10.53106/160792642022012301005

A Collaborative Dragonfly Algorithm with Novel Communication Strategy 
and Application for Multi-Thresholding Color Image Segmentation 

Fei-Fei Liu1, Shu-Chuan Chu1,2, Xiaopeng Wang1, Jeng-Shyang Pan1* 
1College of Computer Science and Engineering, Shandong University of Science and Technology, China 

2College of Science and Engineering, Flinders University, Australia  
13210318436@163.com, scchu0803@gmail.com, 931087291@qq.com, jspan@ieee.org 

Abstract 

The Dragonfly Algorithm (DA) is a novel swarm 
intelligence algorithm with some positive applications in 
recent years. The algorithm simulates the basic survival 
ability of dragonflies to evade predators and capture prey in 
natural environment. The original DA algorithm converges 
too fast, and it is easy to fall into the local optimum, which 
causes the search to stagnate and the algorithm effect is not 
ideal. Based on above, a collaborative evolutionary dragonfly 
algorithm (CDA) with multi-group strategy is proposed in 
this paper. It uses multi-group strategy and Cauchy mutation 
to jointly improve the convergence speed and accuracy of the 
original algorithm. Image segmentation is an essential aspect 
of computer graphics and image processing. It has become 
increasingly important. This paper uses threshold technology 
based on the CDA algorithm to find the optimal index value 
under different threshold conditions. The experimental results 
have demonstrated that the CDA is highly competitive in 
terms of convergence speed and convergence accuracy DA 
algorithm, and CDA also performs excellent advantages in 
graphic segmentation experiments. 

Keywords: Dragonfly algorithm, Swarm Intelligence, 
collaborative multi-group strategy,  Image 
segmentation, Multi-Thresholding

1  Introduction 

Since the beginning of the 20th century, swarm 
intelligence has drawn some researchers attention by 
simulating the social behavior of various creatures in nature. 
Some well-known algorithms play an incredibly important 
role in a variety of industrial, economic and social 
applications. Intelligent computing is part of artificial 
intelligence in terms of its affiliation [1-2]. Realizing the 
described optimization problem and solving the optimization 
problem is the way and method of intelligent calculation. 
Intelligent computing comprises three main areas: Fuzzy, 
Neural Network and Evolutionary Computation. The main 
concepts of Evolutionary Computation is to simulate 
Darwin's theory of biological evolution in the calculation 
process to solve specific ways and methods, and then to solve 
complex problems. Evolutionary Computation mainly 
includes Genetic Algorithm(GA) [3-4], Particle Swarm 
Optimization (PSO) [5], Cat Swarm Optimization(CSO)[6], 
Differential Evolution(DE) [7-8], Ant Colony Optimization 
(ACO) [9], Artificial Bee Colony (ABC) [10-11], Grey Wolf 

Optimization (GWO) [12-14], Pigeon-Inspired 
optimization(PIO) [15-16], Cuckoo Search(CS) [17-19], 
QUasi-Affine TRansformation Evolution (QUATRE) [20-22], 
Multiverse Optimization Algorithm (MVO) [23-24]. 

The purpose of optimization is to solve the optimal value 
of the objective function that has been constructed. Intelligent 
calculation is generally simple and useful, it can solve linear 
and non-linear problems, it also perform better in low and 
medium dimension. DA is a new algorithm for swarm 
intelligence [25]. Philip.T.Daely et al. [26] proposed a 
distance-based dragonfly wireless node location algorithm. 
Diptanu Das and others [27] used DA to solve the problem of 
probabilistic economic load distribution. 

Image segmentation is a part of image processing [28-30]. 
It divides the image into several no overlap subareas. The 
features in the same subareas are similar, the features in 
different subareas are very different. A frequent method is the 
threshold-based segmentation method. In order to obtain 
better image quality after segmentation, the concept of 
threshold is introduced. The key is to determine the right 
threshold value to accurately segment the image. The optimal 
threshold value is determined and compared to the gray scale 
value of each pixel in the image. Generally, if the threshold is 
greater than the gray value of a certain pixel, it can be 
determined that the image element is the background; if the 
threshold is less than the gray value of a certain pixel, the 
image element can be determined as the object. 

In order to obtain the best threshold, in this paper, the 
minimum cross-entropy is chosen as the objective function. 
The contributions of the schemes proposed in this paper are as 
follows: 

(1) A collaborative multi-group structure is proposed to
enhance the abilities to execute exploration and exploitation 
of the original dragonfly algorithm. 

(2) The performance of the proposed algorithm was tested
by selecting some benchmark functions. A comparative 
analysis of various algorithms is also carried out in this paper. 

(3) By applying the improved algorithm and multiple
comparison algorithms to multi-threshold image 
segmentation, the test have demonstrated that CDA has a 
good competitive effect. 

The rest of the paper is designed as follows: 
Section 2 briefly introduces the original Dragonfly 

algorithm and the multi-threshold image segmentation 
problem. Section 3 proposes a collaborative multi-group 
dragonfly algorithm. Section 4 states the application of the 
CDA in image segmentation and the image comparison 
analysis diagram of each algorithm. Section 5 summarizes the 
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superiority of the proposed CDA and applies it to the field of 
image segmentation.  

 
2  Related Work 

 
The dragonfly algorithm is an intelligent optimization 

algorithm proposed by Seyedali Mirjalili in 2015. It simulates 
the basic survival abilities of dragonflies in nature to avoid 
natural enemies and hunt for prey. 

 
2.1 Dragonfly Algorithm 
 

The swarm behaviors of dragonflies includes static and 
dynamic behaviors. The main purpose of static behavior is to 
prey, dragonflies will fly in small groups in different areas 
and forage in small areas, achieving the effect of global 
exploration. The dynamic behavior is mainly for long-stance 
migration, dragonflies will form a large population and work 
together along a large direction. Once a small group of 
dragonflies find food, it will send a message to notify other 
small groups of dragonflies to come, realizing the effect of 
local exploitation. The dragonfly algorithm is based on the 
simulation of five social behaviors of dragonfly groups: 
separation, alignment, cohesion, attraction  to  food and 
distraction  from  enemy, as shown in Figure 1. The 
mathematical explanation of the algorithm is as follows: 

(1) Separation: In order to prevent collisions with other 
individuals, each individual in the population will define the 
following equation (1). 

 

( )
1

jN

i j
j

Sep Pos Pos
=

= − ∑ −         (1)

   
where Pos is the position vector of the current dragonfly 

individual; jPos  is the position vector of j-th adjacent 
individual; jN  is the number of individuals adjacent to the 
j-th dragonfly. 

(2) Alignment: The velocity of the individuals flying in 
groups with adjacent individuals is the same, the 
mathematical equation (2) is as follows: 
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where iAli  is the position vector of the alignment 

behavior of  i-th dragonfly individual; jVel is the velocity of 
j-th adjacent individual. 

(3) Cohesion: Individuals tend to converge towards the 
center of adjacent individuals, the mathematical equation (3) 
is as follows: 

j
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N

j
j
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j

Pos
Coh Pos

N
=
∑

= −                      (3) 

 
where iCoh is the position vector of the cohesion behavior  

of the i-th dragonfly individual. 
(4) Attraction to food: Individuals converge on the 

location of the food, the mathematical equation (4) is as 
follow: 

 iAtt Pos Pos+= −         (4) 
 
where Pos+  is the position of the food source that the best 

position of the iteration so far. Global optimum solution can 
refer to the PSO algorithm. 

(5) Distraction from enemy: Each individual in order to 
avoid hunting by natural enemies, this behavior of avoiding 
predators is expressed mathematically in the equation (5) : 

 
 iDis Pos Pos−= −         (5)  
 

  
 

 

 

 

 

 
(a) Sep (b) Ali (c) Coh 

  
(d) Att (e) Dis 

Figure 1.  Five basic behaviors of dragonfly populations 
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where iDis  is the position vector that dragonfly moves to 
avoid natural enemies, and Pos−  is the position vector of 
natural enemies. 

The dragonfly algorithm imitates the PSO algorithm in 
the process of simulating the movement of the individual, 
then the step vector Pos∆ and position vector Pos are 
introduced. The step length vector represents the step length 
and movement direction of the dragonfly, it is similar to the 
velocity vector in the PSO algorithm. In this algorithm, the 
position of the dragonfly individual is updated and simulated, 
the step vector update equation (6) is as follows:  

 

(
)

1Δ
Δ

t i i i

i i t

Pos a Sep b Ali c Coh
d Att e Dis Posω
+ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅
        (6) 

 
where a  represents the separation weight, b shows the 

alignment weight, c  is the cohesion weight, d  indicates the 
food elements, e  shows the enemy elements, ω  represents 
the inertia  weight, t  is the number of iterations. 

iSep , iAli , iCoh , iAtt and iDis are the five types of correction 
methods mentioned above. In the process of algorithm 
optimization, different exploration and exploitation behaviors 
can be achieved through five correction methods. The area of 
the dragonfly is also important, so a radius r  will be assumed 
around each dragonfly’s circumference. Dragonflies will 
form larger populations as their radius increases. 

DA is from the initial iteration of the algorithm to the 
pre-set number of iterations, the solutions will move to the 
areas of having more hopeful. When the search space 
diverges to the unhopeful area, the worst solution of the 
algorithm will be seen as a predator. 

 
 1 1Δt t tPos Pos Pos+ += +         (7) 
 
When the Euclidean distance between two dragonflies is 

less than the search radius r , the two dragonflies are 
considered adjacent. At this time, the dragonfly position 
vector update equation (7) is as above shown:  

When the Euclidean distance between two dragonflies is 
not less than the search radius r , the two dragonflies are 
considered not adjacent. To improve the random behavior of 
dragonfly flying, the dragonfly will randomly update its 
position vector through the Le vy′ flight method. The 
dragonfly position vector update equation (8) is as follows: 

 

1 ( )t t tPOS POS Le vy d POS′
+ = + ×                (8)  

 
where d represents the dimension of the position vector, t  is 
the current iteration, tPos  is the position vector of the 
dragonfly individual of the current iteration, 1tPos +  is the 
position vector of the next iteration of the dragonfly 
individual.  

The specific information of Le vy′  flight function is 
shown in the equation (9). 

 

1
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r

′

β

σ⋅
= × ∈ ∈        (9) 

where β  is a constant, the calculation equation (10) of σ  
is as follows: 
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     (10) 

 
where the equation (11) for Γ  function is as follows: 
 Γ( ) ( 1)!x x= −      (11) 

 
2.2 Multi-Threshold Segmentation 

 
Multi-threshold segmentation can segment multiple 

regions in an image by setting multiple thresholds. It is widely 
used due to its simple implementation and low computational 
effort [31-34]. Multi-threshold image segmentation by 
determining n  threshold values to form a threshold 
vector { }1 2, ,... nT t t t= . The defined M  threshold divides the 
image into 1n +  sub-regions. The scope of subregion 1 is 
{ }10,..., t , the scope of subregion 2 is { }21,...,t t , ..., the scope 
of subregion 1M +  is { },...,nt F . Selection of a global 

optimum threshold vector { }* * *
1 2,  ,... nT t t t=  by using the 

minimum cross-entropy segmentation method. Therefore, the 
optimal threshold vector *T  is given by the following 
equation (12): 

 

 { } ( ){ }1 2 1 2, , , ,n nt t t argmin f t t t∗ ∗ ∗… = …      (12) 

 
A few supplements to the above equation, Subject to 

1 2 0    ...   nt t t F< < < < < ,where f is the multi-threshold 
objective function for image segmentation. Find the targe 

 vector with the minimum fitness value T to be the 
optimal threshold vector obtained from the image. The 
optimal threshold for image segmentation can be determined 
using minimum cross-entropy. Cross entropy is used to 
measure the information theoretical distance between two 
distributions P and Q , let { }1 2, ,..., nP p p p= and 

{ }1 2, ,..., nQ q q q=  be two similar probability distributions. 
The cross entropy is calculated as follows equation (13): 

 

1
( , ) log

n
i

i
i i

pD P Q p
q=

= ∑ ⋅       (13) 

 
The image is segmented using the minimum 

cross-entropy method(MCET) and the original image is 
marked as I . Compare each pixel grey value in the original 
image with the optimal threshold separately, the two 
segmented image equation (14) are obtained as follows: 

 

 
(1, ), ( , )
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     (14) 
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where I  is the source image, t  is the threshold set by the 
image. ( )z i  is the image pixel histogram 

( )1,2,  ... , ,         i F F is the number of pixel gray levels= , 
where µ  is calculated as equation (15): 
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        (15) 

 
The cross-entropy required to segment the image by a 

threshold value can be calculated as follows equation (16): 
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     (16) 

It can also be expressed in another form as follows 
equation (17): 
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When n threshold values are required to achieve multiple 

image segmentation, the equation (18) takes the following 
form. 
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           (18) 

The optimal threshold can be determined by the minimum 
cross-entropy, which can be added 0  1t = , 1  1nt F+ = + . The 
minimum cross entropy objective function is defined as 
equation (19): 
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3 Collaborative Dragonfly Algorithm 
(CDA) 

 
The original DA algorithm converges too fast and is easy 

to fall into the local optimum, which leads to the stagnation of 
the search, the effect of the algorithm is not satisfied. In this 
section, a new communication strategy based on the original 
DA algorithm will be described. The collaborative 
multi-group framework has more hopeful convergence speed 
and higher accuracy than the original algorithm. In the 
collaborative multi-group strategy, the entire dragonfly 
population is divided into G  groups. In the iterative process, 
each subpopulation does not affect each other, and it remains 
relatively independent in the evolutionary calculation process. 
Different subpopulations will only carry out inter-species 
communication only when they meet the conditions for 
communication, which can strengthen the advantages of 
cooperation between groups. Each subpopulation will find an 
optimal food position, which plays an important role in the 
global optimal food position obtained by the entire population. 
The worst dragonfly in the subpopulation will be replaced by 
the best dragonfly in the different groups. In the end, the 
relatively worst solution of the entire population will be 
deleted. The fast search ability of the algorithm is guaranteed. 
Then a better solution can be obtained. The way of 
communication is shown in Figure 2. 

 

 
Figure 2.  collaborative multi-group structure communication strategy 

 
3.1 Communication strategy 

 
This article introduces a collaborative multi-group 

framework, and introduces its importance and feasibility. In 
the original DA algorithm, it can also be seen as a simple 
multi-group framework. In principle, DA can be regarded 
as pN particles divided into G groups. Communication takes 

place with every generation, The communication strategy is 
that 1N −  particles with poor particles are approaching and 
learning from the best particles. In addition, it can also be 
seen as pN  particles divided into one group, only 
communicate with in the group, the communication strategy 
is the same as above. The collaborative multi-group 
framework introduced in this paper combines the above two 
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DA multi-group methods and is essentially similar in 
principle. 

In this paper, CDA uses two communication strategies. 
No matter which strategy is used, in order to improve the 
randomness of the algorithm, this paper will generate a 
random number. Judgement is made using R as the 
breakpoint: if the random number is less than R  then the first 
strategy is used, otherwise the second strategy is used. The 

first is: pN dragonfly individuals are divided into  groups G  

and each subgroup g is composed of /pN G  dragonfly 

individuals. /pN G is always less than pN , and the number 
of subgroups is always not greater than G . During the 
iteration process, replace the position of the worst dragonfly 
individual in the g group with the position of the best 
dragonfly individual in the 1g +  group. Using the above 
mechanism in turn, the position of the worst dragonfly 
individual in group G  is replaced with the position of the best 
dragonfly individual in the first group. The exchange strategy 
between groups is shown in Figure 2. The second is a strategy 
proposed by Cauchy’s mutation, the algorithm flow of CDA 
is shown in pseudo 1. 

 

 
 
 

3.2 Cauchy mutation 
 
Cauchy mutation can be used to randomly change the 

position of individual dragonflies, improving the 
searchability of the algorithm. It is widely used in other 
algorithms, such as Fish Migration Optimization (FMO) 
[35-36]. In the algorithm, the Cauchy mutation operator is 
applied to the state of the artificial fish to enhance the global 
search ability of the fish swarm. In order to obtain the global 
optimal value, Cauchy mutation is applied on the obtained 
optimal particles. The specific description equation (20) of 
Cauchy mutation is as follows: 

 
 

 
SalpPositions =SalpPositions

(1 (0,1))
mute

Cauchy
×

+
              (20) 

 
The one-dimensional Cauchy density function is mainly 
concentrated near the origin, and the one-dimensional density 
function equation (21) is determined as: 

 

2 2
1( , , ) ,

( )
f x x

x
δδ µ ∞ ∞

π δ µ
= ⋅ − < <

+ −
            (21) 
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where 1δ = , 0µ = , the standard one-dimensional 
Cauchy density function equation (22) at the center of the 
origin is expressed as follows: 

 

2
1 1( ) ,

1
f x x

x
∞ ∞

π
= ⋅ − < <

+
      (22) 

 
In equation (23), ( )0,1Cauchy  is explained as follows: 

 
(0,1) tan[( 0.5) ], [0,1]Cauchy Uξ π ξ= − ⋅ ∈      (23)  

 
Through the description and summary of the above Cauchy 
mutation, the second strategy proposed in this paper uses the 
Cauchy mutation method. In CDA, the dragonfly populations 
are grouped equally in number, and then in any group, the 
position vector of the j-th dimension of the i-th dragonfly use 
the Cauchy mutation, and then the position vector of the 
dragonfly is randomly updated to increase the diversity of the 
population. Therefore, the second strategy equation (24) 
proposed in this paper is as follows: 
 

( ) ( , ) ( ) ( , )
( ) ( , ) tan(( 0.5) )

group g Pos d i group g Pos d i
group g Pos d i rand π

⋅ = ⋅
+ ⋅ ∗ − ∗

     (24) 

 
where d  represents the dimension of the space, i  is the 

i-th dragonfly individual in the g-th group and 
[0,1]rand ∈ . 

 
4  Experimental analysis 

 
In this part, the collaborative evolutionary  dragonfly 

algorithm is examined on the test function in this paper, and 
tested on the multi-threshold color image segmentation. It 
evaluates the performance of the multi-group CDA to prove 
the effectiveness of the improvement. 

 
4.1 Experimental results of a collaborative 

dragonfly algorithm 
 
In this section, this paper uses 23 test functions to test to 

confirm the performance of the proposed multi-group 
algorithm CDA. Where the basic parameters of these 
algorithms are shown in Table 4. 

Table 1 to Table 3 describes the relevant information of 
the 23 test functions [5]. F1 to F7 are unimodal functions. For 
this functions, there is only one global extremum, which can 
be used to test the local search ability of the algorithm.  From 
F8 to F13 are multimodal function, with a global extremum 
and multiple local optimal values. In this type of functions, it 
can be used to test the local search ability of the algorithm. 
From F14 to F23 are other dimensional functions, there are 
only a few local minimums and features with fewer 
dimensions.  Therefore, this paper proposes that the new 
communication strategy performs better in the case of low 
latitudes and many local optimal values. 

Comprehensively test the performance of the CDA 
algorithm, and record the optimal value, mean and standard 
deviation obtained by 23 test functions. By defining “win”, 
“draw”, and “lose” three characters to represent the best, draw, 

or lose selected by comparing CDA with other algorithms. 
The performance of the algorithm is mainly analyzed from 
the perspective of the mean. The smaller the mean, the better 
the accuracy and performance of the reflected algorithm. 

From the data in Table 6 and Table 7, the proposed CDA 
algorithm is better than other algorithms. From the point of 
view of the mean value, in Table 6, compared with the 
original DA algorithm, the proposed CDA algorithm obtained 
19 better performances in 23 test functions, 4 near 
performances, and 0 worse performances. The proposed CDA 
algorithm obtained 15 better performances, 2 near 
performances, and 6 worse performances in 23 test functions 
compared to the SCA algorithm. 

In Table 7, compared with MVO algorithm, the CDA 
algorithm obtained 18 better performances, 4 near 
performances, and 1 worse performance in 23 test functions. 
Compare CDA with SCA and MVO algorithms. Since DA 
and these two algorithms are both proposed by Seyedali 
Mirjalili, compared with these two algorithms, the 
experimental results are more convincing. The proposed 
CDA algorithm obtained 17 better performances in 23 test 
functions, 1 near performance, and 5 worse performances 
compared to the PSO algorithm. Compared with PPSO 
algorithm, the CDA algorithm obtained 18 better 
performances, 4 near performances, and 1 worse performance 
in 23 test functions. 

Figure 3 shows the convergence curves of the optimal 
values of these six algorithms. It can be seen that the 
performance of the proposed CDA in the test function f5, f6, 
f8, f11, f13, f14, f15, f20 is better than other algorithms. 

All in all, the CDA algorithm is more competitive than 
other algorithms. 

 
4.2 multi-threshold color image segmentation 

problem based CDA 
 
In this section, Figure 4 shows eight original color images 

to test the performance of the algorithm proposed in this paper. 
This paper chooses the minimum cross-entropy threshold as 
the objective function to obtain the multi-threshold of the 
color image. Each image includes three representative 
brands(RGB). To be fair, each algorithm runs 30 times for 
each color image, the maximum number of iterations is set to 
100, the initial solution number is set to 50. 

In this paper, in order to clearly show the graphics 
segmentation effect of the proposed CDA algorithm, the 
segmentation information of Img1 is shown in Figure 5. The 
threshold is selective to prove that CDA algorithm is 
excellent in this paper. In the process of selecting the 
threshold, because there are too many choices of the threshold. 
The single threshold 1 was removed, and the three thresholds 
of 4, 7 , 10 were selected in increments of 3. 

The information thresholds of the three channels (RGB) 
are set to 4, 7 and 10. Then the MCET function is optimized 
according to the pixel histogram information of each band, 
and the optimized multi-threshold value is obtained. 

In this paper, the information thresholds of the three 
channels(RGB) are set to 4, 7 and 10, apply to  the  CDA and 
DA, SCA, PSO, PPSO and MVO algorithms respectively. By 
segmenting each channel, and then connecting the segmented 
images to form the final segmented image. Figure 6 to Figure 
9 shows the image after segmentation (Img.2- 8), it is found 
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that the larger the number of thresholds, the segmentation quality of the image is better. 
 
 

Table 1.  Unimodal test function 
No Function expression Search space Dimension TM 
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Table 2.  Multimodal test function 
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Table 4.  Parameter Setting 
Algorithm Parameter 

CDA  4, 20,40,...,1000, 100, 1000G R Pop Iteration= = = =  

DA  100, 1000Pop Iteration= =  

SCA  1a = 2, = 2 to 100, 1000 0,Pop Iterationr = =  

PSO  min max =100,2.0, 0.9, 10, 100010, =c Pop IteratioV V nω= = = − =  

PPSO  min max2.0, 0.9, 4, 20,40,...,1000, 10, 10, =100c G R V V Popω= = = = = − =  

MVO  min max6, 0.2, 1, 100, 1000W W Pop Iterationω = = = = =  

 
 

Algorithm belongs to an overall trend, and there is 
randomness at the same time. Therefore, there are certain 
differences in the performance of each image, which will 
cause some changes in the results of the experiment. For 
example, the threshold is not very suitable for the 
experimental results generated by the optimization algorithm, 
which will directly lead to the use of the optimization 
algorithm to not get good experimental results. This paper 
uses PSNR [37], SSIM [38], FSIM [39], SS-SSIM to test the 
difference between the image obtained after the optimization 
algorithm and the original image. The detailed information 
and equation of the four indicators are shown in Table 5. 

For these four parameters, the larger the value obtained, 
the higher the image quality after segmentation. Table 8 to 

Table 11 shows all the experimental data. From the data of 
PSNR, SSIM, FSIM, MS-SSIM, CDA has 12, 14, 15, 15 
better performances than other algorithms. The CDA 
algorithm has achieved an advantage of more than half on 
four indicators of eight images with 3 thresholds. It can be 
seen that the CDA algorithm with a collaborative multi-group 
framework performs satisfied compared to other algorithms. 

For these three thresholds (4, 7, 10), compared with other 
algorithms, the CDA algorithm proposed in this paper can 
usually get better image segmentation quality. In summary, 
the CDA algorithm with a collaborative multi-group 
framework can solve the color image segmentation problem 
more effectively and feasible. 

 

  
(a) Function 5 

 
(b) Function 6 

  
 

(c) Function 8 (d) Function 11 
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(e) Function 13 

 
(f) Function 14 

  
(g) Function 15 (h) Function 20 

 
Figure 3.  Performance for CDA, DA, SCA, PSO, PPSO and MVO under test functions 

 
 

Table 5. Metrics used to measure evaluation parameters of segmented image results 
 Parameters Equation Remarks 
1

. 
PSNR 

10
25520logPSNR
MSE

=   
PSNR represents that the 
proportional relationship is 
between the maximum pixel 
value and MSE. 

2
. 

 SSIM 

( )( )
( )( )

1 1 1 11 2
2 2 2 2
1 1 1 1 1 2

( , )
2 2

SSIM I I
C C

C C
µ µ σ

µ µ σ σ

=

⋅+ ⋅+

+ + + +
  

SSIM is a similarity 
parameter of two different  
image structures. 

 
3. 

 FSIM 

 
max

1

max
1

( ) ( )

(1)

N

L
i

N

i

S D PC D
FSIM

PC
=

=

∑
=

∑
 

FSIM is a similarity 
parameter of two different  
image features. 

  
4. 

 
MS-SSIM 

[ ] [ ] [ ]
1

( , )

( , ) ( , ) ( , )M i i
M

M i i
i

MS SSIM Z K

l Z K s Z K z Z Kα β γ

=

− =

∏
  

MS-SSIM is the average 
structural similarity, which 
calculates the structural 
similarity SSIM of the 
corresponding blocks of the 
image, and uses the average 
value as the structural 
similarity measure of the two 
images. 
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Table 6.  Test comparative results of the DA, SCA and proposed CDA algorithm for selected 23 functions 

Func 
Name 

DA SCA  CDA  

Best Mean Std Best Mean Std Best Mean Std 
F1 0 2.38 × 

100 
5.82 × 

100 
3.67 × 

102 
8.48 × 

103 
6.45 × 

103 
3.14 × 
10−24 

2.59 × 
10−13 

1.13 × 
10−12 

F2 0 3.72 × 
100 

4.35 × 
100 

2.12 × 
10−4 

4.28 × 
100 

4.62 × 
100 

0 9.76 × 
10−11 

3.86 × 
10−10 

F3 0 3.78 × 
102 

1.27 × 
103 

8.03 × 
10−25 

3.78 × 
10−15 

1.75 × 
10−14 

1.17 × 
10−11 

1.63 × 
10−6 

6.47 × 
10−6 

F4 0 1.11 × 
100 

1.71 × 
100 

2.58 × 
10−16 

2.63 × 
10−12 

7.87 × 
10−12 

4.23 × 
10−8 

2.49 × 
10−3 

1.14 × 
10−2 

F5 8.52 × 
100 

7.08 × 
103 

2.28 × 
104 

5.78 × 
100 

6.64 × 
100 

3.42 × 
10−1 

3.15 × 
100 

7.79 × 
100 

8.70 × 
100 

F6 1.21 × 
10−15 

2.01 × 
100 

4.18 × 
100 

7.62 × 
10−2 

2.32 × 
10−1 

1.16 × 
10−1 

6.67 × 
10−11 

5.56 × 
10−8 

1.17 × 
10−7 

F7 1.45 × 
10−4 

6.11 × 
10−3 

5.44 × 
10−3 

2.85 × 
10−5 

3.88 × 
10−4 

3.40 × 
10−4 

2.78 × 
10−4 

3.07 × 
10−3 

2.57 × 
10−3 

F8 −3.89 × 
103 

−3.15 × 
103 

3.35 × 
102 

−2.73 × 
103 

−2.41 × 
103 

1.77 × 
102 

−3.83 × 
103 

−3.24 × 
103 

2.78 × 
102 

F9 0 1.22 × 
101 

1.17 × 
101 

0 2.10 × 
10−10 

1.15 × 
10−9 

0 4.13 × 
100 

3.67 × 
100 

F10 8.88 × 
10−16 

1.53 × 
100 

1.50 × 
100 

8.88 × 
10−16 

4.32 × 
10−15 

6.49 × 
10−16 

4.44 × 
10−15 

5.09 × 
10−8 

1.27 × 
10−7 

F11 0 3.35 × 
10−1 

3.47 × 
10−1 

0 1.28 × 
10−2 

5.48 × 
10−2 

0 5.81 × 
10−2 

3.62 × 
10−2 

F12 2.04 × 
10−6 

5.58 × 
10−1 

7.45 × 
10−1 

8.79 × 
10−3 

4.38 × 
10−2 

2.01 × 
10−2 

5.10 × 
10−10 

6.23 × 
10−4 

3.40 × 
10−3 

F13 1.66 × 
10−3 

8.02 × 
10−1 

1.51 × 
100 

8.33 × 
10−2 

1.84 × 
10−1 

5.96 × 
10−2 

8.71 × 
10−11 

7.75 × 
10−9 

1.12 × 
10−8 

F14 9.98 × 
10−1 

1.16 × 
100 

3.77 × 
10−1 

9.98 × 
10−1 

9.98 × 
10−1 

3.16 × 
10−6 

9.98 × 
10−1 

9.98 × 
10−1 

2.06 × 
10−16 

F15 4.88 × 
10−4 

1.40 × 
10−3 

5.19 × 
10−4 

3.12 × 
10−4 

6.17 × 
10−4 

3.43 × 
10−4 

3.07 × 
10−4 

4.91 × 
10−4 

3.50 × 
10−4 

F16 −1.03 × 
100 

−1.03 × 
100 

2.28 × 
10−12 

−1.03 × 
100 

−1.03 × 
100 

8.85 × 
10−6 

−1.03 × 
100 

−1.03 × 
100 

5.26 × 
10−16 

F17 3.98 × 
10−1 

3.98 × 
10−1 

0 3.98 × 
10−1 

3.98 × 
10−1 

5.09 × 
10−4 

3.98 × 
10−1 

3.98 × 
10−1 

0 

F18 3.00 × 
100 

3.00 × 
100 

1.04 × 
10−5 

3.00 × 
100 

3.00 × 
100 

1.09 × 
10−6 

3.00 × 
100 

3.00 × 
100 

5.86 × 
10−13 

F19 −3.86 × 
100 

−3.86 × 
100 

1.73 × 
10−3 

−3.86 × 
100 

−3.86 × 
100 

3.28 × 
10−3 

−3.86 × 
100 

−3.86 × 
100 

5.14 × 
10−15 

F20 −3.32 × 
100 

−3.23 × 
100 

8.65 × 
10−2 

−3.24 × 
100 

−2.98 × 
100 

2.25 × 
10−1 

−3.32 × 
100 

−3.31 × 
100 

3.62 × 
10−2 

F21 −1.02 × 
101 

−9.88 × 
100 

9.57 × 
10−1 

−8.53 × 
100 

−4.31 × 
100 

1.87 × 
100 

−1.02 × 
101 

−1.02 × 
101 

1.68 × 
10−10 

F22 −1.04 × 
101 

−1.02 × 
101 

9.71 × 
10−1 

−8.13 × 
100 

−5.62 × 
100 

1.08 × 
100 

−1.04 × 
101 

−1.04 × 
101 

2.39 × 
10−4 

F23 −1.05 × 
101 

−1.04 × 
101 

4.60 × 
10−1 

−8.18 × 
100 

−5.54 × 
100 

9.99 × 
10−1 

−1.05 × 
101 

−1.05 × 
101 

1.93 × 
10−5 

Win 5 19 22 17 15 15 − − − 
 Draw 11 4 1 3 2 0 − − − 
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Table 7.  Test comparative results of the MVO, PSO, PPSO and proposed CDA algorithm for selected 23 functions 

Func 
Name 

MVO PSO  PPSO  

Best Mean Std Best Mean Std Best Mean Std 
F1 3.78 × 

10-4 
1.17 × 

10-3 
4.01× 
10-4 

3.04 × 
10-4 

1.54 × 
10-3 

1.30 × 
10-3 

2.07× 
10-5 

1.93 
× 10-4 

1.58 
× 10-4 

F2 4.51 × 
10-3 

9.85 × 
10-3 

3.23 × 
10-3 

0 0 0 0 0 0 

F3 1.05 × 
10-3 

3.52 × 
10-3 

2.15 × 
10-3 

1.43 × 
100 

2.52 × 
10-2 

1.56 × 
10-2 

1.41 × 
10−4 

5.53 × 
10−3 

5.62 × 
10−3 

F4 1.34 × 
10-2 

2.26 × 
10-2 

5.59 × 
10-3 

2.14 × 
10-2 

4.71 × 
10-2 

2.43 × 
10-2 

4.69 × 
10−3 

2.11 × 
10−2 

1.06 × 
10−2 

F5 3.45 × 
100 

4.48 × 
101 

8.75 × 
101 

2.75 × 
100 

3.87 × 
101 

8.34 × 
101 

3.58 × 
100 

2.56 × 
101 

4.11 × 
101 

F6 3.44 × 
10-4 

1.18 × 
10-3 

4.77 × 
10-4 

2.76 × 
10-4 

1.36 × 
10-3 

9.58 × 
10-4 

5.99 × 
10-5 

2.38 × 
10-4 

1.58 × 
10-4 

F7 1.04 × 
10-4 

6.02 × 
10-4 

3.45 × 
10-4 

9.44 × 
10-4 

5.04 × 
10-3 

3.93 × 
10−3 

 8.08 × 
10−5 

1.71 × 
10-3 

1.12 × 
10−3 

F8 −3.85 
× 103 

−3.10 
× 103 

3.03 × 
102 

−3.26 
× 103 

−2.57 
× 103 

2.63 × 
102 

−3.32 × 
103 

−2.77 × 
103 

2.44 × 
102 

F9 5.97 × 
100 

1.22 × 
101 

5.06 × 
100 

1.01 × 
10−1 

7.51 × 
100 

6.53 × 
10−0 

3.35 × 
10-4 

2.87 × 
100 

6.60 × 
100 

F10 9.36 × 
10-3 

1.48 × 
10-2 

2.83 × 
10-3 

3.00 × 
10-2 

1.66 × 
10-1 

3.72 × 
10-1 

3.90 × 
10−3 

2.27 × 
10−2 

1.33 × 
10−2 

F11 1.05 × 
10-1 

3.15 × 
10-1 

1.71 × 
10-1 

3.52 × 
10-2 

1.23 × 
10-1 

7. 61× 
10−2 

2.23 × 
10−2 

1.45 × 
10−1 

8.61 × 
10−2 

F12 9.07 × 
10-6 

1.04 × 
10-2 

5.68 × 
10-2 

9.02 × 
10-5 

5.85 × 
10-4 

4.65 × 
10-4 

9.20 × 
10−6 

9.56 × 
10−5 

5.66 × 
10−5 

F13 4.24 × 
10-5 

1.23 × 
10-3 

3.40 × 
10-3 

9.15 × 
10-5 

3.33 × 
10-3 

5.11 × 
10−3 

1.24 × 
10−4 

1.45 × 
10−3 

3.01 × 
10−3 

F14 9.98 × 
10−1 

9.98 × 
10−1 

2.56 × 
10−12 

9.98 × 
10−1 

1.49 × 
100 

6.77 × 
10−1 

9.98 × 
10−1 

1.56 × 
100 

7.22 × 
10−1 

F15 3.08 × 
10−4 

3.83 × 
10−3 

7.52 × 
10−3 

7.88 × 
10−4 

4.95 × 
10−3 

7.33 × 
10−3 

5.95 × 
10−4 

1.68 × 
10−3 

3.54 × 
10−3 

F16 −1.03 
× 100 

−1.03 
× 100 

4.24 × 
10−8 

−1.03 
× 100 

−1.03 
× 100 

6.16 × 
10-7 

−1.03 × 
100 

−1.03 × 
100 

1.30 × 
10−7 

F17 3.98 × 
10−1 

3.98 × 
10−1 

6.97 × 
10−8 

3.98 × 
10−1 

3.98 × 
10−1 

5.54 × 
10−4 

3.98 × 
10−1 

3.98 × 
10−1 

6.01 × 
10−4 

F18 3.00 × 
100 

3.00 × 
100 

1.98 × 
10-7 

3.00 × 
100 

3.00 × 
100 

3.93 × 
10−6 

3.00 × 
100 

3.00 × 
100 

2.50 × 
10−6 

F19 −3.86 
× 100 

−3.86 
× 100 

5.47 × 
10-8 

−3.86 
× 100 

−3.86 
× 100 

2.72 × 
10-3 

−3.86 × 
100 

−3.86 × 
100 

1.11 × 
10-6 

F20 −3.32 
× 100 

−3.27 
× 100 

5.99 × 
10-2 

−3.32 
× 100 

−3.19 
× 100 

1.06 × 
10−1 

−3.32 × 
100 

−3.22 × 
100 

8.66 × 
10−2 

F21 −1.02 
× 101 

−8.38 
× 100 

2.59 × 
100 

−1.02 
× 101 

−1.02 
× 101 

5.12 × 
104 

−1.02 × 
101 

−1.02 × 
101 

1.61 × 
10−4 

F22 −1.04 
× 101 

−8.66 
× 100 

2.76 × 
100 

−1.04 
× 101 

−1.04 
× 101 

2.32 × 
10-4 

−1.04 × 
101 

−1.04 × 
101 

1.69 × 
10−4 

F23 −1.05 
× 101 

−9.82 
× 101 

1.86 × 
100 

−1.05 
× 101 

−1.05 
× 101 

1.78 × 
10-4 

−1.05 × 
101 

−1.05 × 
101 

3.29 × 
10−4 

Win 19 18 21 20 17 20 20 18 17 
 Draw 2 4 0 2 1 0 2 4 0 
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(a) Img1 (b) Img2 (c) Img3 (d) Img4 

    
(e) Img5 (f) Img6 (g) Img7 (h) Img8 

Figure 4.  Test color images (Img1- Img8) 
 
 

    
(a) 4 threshold (b) Histogram(R) (c) Histogram(G) (d) Histogram(B) 

    

    
(e) 7 threshold (f) Histogram(R) (g) Histogram(G) (h) Histogram(B) 

    
(i) 10 threshold (j) Histogram(R) (k) Histogram(R) (l) Histogram(R) 

Figure 5. The segmented results of Img1 (RGB) based on CDA for 4, 7, 10 threshold values 
 

      



58   Journal of Internet Technology Vol. 23 No. 1, January 2022 
 

 
 

      
CDA of 4 threshold 

values 
CDA of 7 threshold 

values 
CDA of 10 threshold 

values 
DA of 4 threshold 

values 
DA of 7 threshold 

values 
DA of 10 threshold 

values 

      
SCA of 4 threshold 

values 
SCA of 7 threshold 

values 
SCA of 10 threshold 

values 
PSO of 4 threshold 

values 
PSO of 7 threshold 

values 
PSO of 10 threshold 

values 

      
PPSO of 4 threshold 

values 
PPSO of 7 threshold 

values 
PPSO of 10 

threshold values 
MVO of 4 threshold 

values 
MVO of 7 threshold 

values 
MVO of 10 threshold 

values 
Figure 6. Segmented image for 4, 7, 10 threshold values (Img2)  
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CDA of 10 threshold 

values 
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PPSO of 7 threshold 

values 
PPSO of 10 
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MVO of 4 threshold 

values 
MVO of 7 threshold 
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MVO of 10 

threshold values 
Figure 7. Segmented image for 4, 7, 10 threshold values (Img3) 
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Figure 8. Segmented image for 4, 7, 10 threshold values (Img7) 
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Figure 9. Segmented image for 4, 7, 10 threshold values (Img8) 
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Table 8.  PSNR parameters calculated by six optimization algorithms on 8 images 
Image 
Name 

Threshold PSNR 
CDA DA SCA PPSO PSO MVO 

Image1 4 30.5865 23.4048 21.4763 30.6363 26.1008 29.488 
7 31.1000 26.8971 20.9546 30.9407 20.6864 22.9031 
10 31.0306 28.1766 21.8964 31.2875 25.9995 25.9562 

Image2 4 29.9186 26.1442 19.0672 29.2423 26.5175 29.1020 
7 31.3984 22.1548 18.1388 31.0207 24.4159 23.9879 
10 31.4821 20.4787 24.2059 31.2219 25.1399 19.1476 

Image3 4 29.8102 24.4413 21.5792 30.1681 22.2907 29.0402 
7 31.1891 26.4950 23.4188 31.2632 28.6448 27.6871 
10 31.5293 23.7732 20.4487 31.2746 24.9039 28.9759 

Image4 4 30.1565 20.8929 19.8006 30.8224 31.7074 29.4626 
7 31.9784 23.5436 25.8174 32.1218 25.9616 26.3943 
10 32.4730 22.1709 25.7433 32.2489 27.9548 30.2464 

Image5 4 33.5849 33.2467 27.1658 35.1218 32.6137 34.5553 
7 34.6069 31.7129 27.3821 34.7597 32.3667 32.2654 
10 36.2270 30.3762 26.4091 36.0267 29.7949 32.2696 

Image6 4 30.4792 18.7616 18.7616 29.3889 23.3636 28.8609 
7 31.5053 24.0224 22.8516 31.6592 26.8754 26.6322 
10 31.4836 17.7118 16.3324 30.6472 22.9569 25.9651 

Image7 4 32.1163 22.2008 20.1449 32.0903 30.5150 31.9067 
7 32.4726 28.7798 19.8580 33.3446 29.4493 33.1932 
10 31.0225 22.9511 19.4995 32.0617 23.5313 23.6609 

Image8 4 31.3416 24.4935 27.8479 30.1746 28.9595 29.4314 
7 32.5696 26.2809 27.3677 32.9877 24.8387 30.9894 
10 30.6790 28.6486 24.1023 29.6723 24.5005 30.2912 

 
Table 9.  SSIM parameters calculated by six optimization algorithms on 8 images 

Image 
Name 

Threshold SSIM 
CDA DA SCA PPSO PSO MVO 

Image1 4 0.9018 0.7465 0.6413 0.8991 0.8014 0.8890 
7 0.9094 0.8433 0.7002 0.9097 0.6069 0.8156 
10 0.9052 0.8128 0.7680 0.9116 0.6524 0.8570 

Image2 4 0.9437 0.9028 0.7562 0.9356 0.8999 0.9259 
7 0.9523 0.8685 0.7389 0.9498 0.8949 0.8639 
10 0.9533 0.7886 0.8687 0.9532 0.8966 0.7586 

Image3 4 0.8394 0.7191 0.5904 0.8259 0.6644 0.8105 
7 0.8903 0.6788 0.6724 0.8849 0.7807 0.7425 
10 0.9064 0.7533 0.6523 0.8951 0.6382 0.8059 

Image4 4 0.7987 0.7169 0.6489 0.8067 0.8033 0.8093 
7 0.8364 0.7205 0.6872 0.8363 0.7486 0.7872 
10 0.8394 0.6886 0.6679 0.8380 0.7370 0.8103 

Image5 4 0.9614 0.8600 0.8820 0.9599 0.9526 0.9584 
7 0.9568 0.9145 0.8998 0.9664 0.9521 0.9589 
10 0.9633 0.8811 0.8368 0.9638 0.9122 0.9345 

Image6 4 0.9072 0.5645 0.6085 0.8872 0.7893 0.8702 
7 0.9154 0.2998 0.8190 0.9276 0.7678 0.8129 
10 0.9196 0.5535 0.4263 0.8995 0.6314 0.7610 

Image7 4 0.9315 0.8074 0.4575 0.9319 0.9183 0.9296 
7 0.9328 0.8992 0.4895 0.9380 0.9048 0.9331 
10 0.9279 0.8365 0.4538 0.9334 0.8297 0.8289 

Image8 4 0.8493 0.5857 0.6579 0.8192 0.7223 0.8489 
7 0.8860 0.5796 0.5497 0.8847 0.5142 0.8337 
10 0.8278 0.8206 0.4669 0.8304 0.5239 0.8199 

 
Table 10.  FSIM parameters calculated by six optimization algorithms on 8 images 
Image 
Name 

Threshold FSIM 
CDA DA SCA PPSO PSO MVO 

Image1 4 0.9636 0.8918 0.8388 0.9645 0.9243 0.9510 
7 0.9677 0.9356 0.8491 0.9662 0.8347 0.8666 
10 0.9666 0.9392 0.8652 0.9690 0.9145 0.9195 

Image2 4 0.9176 0.8845 0.7994 0.9093 0.8724 0.8978 
7 0.9397 0.8394 0.7993 0.9329 0.8779 0.8821 
10 0.9417 0.8485 0.8454 0.9402 0.8811 0.8172 

Image3 4 0.9328 0.8893 0.8376 0.9367 0.8440 0.9178 
7 0.9507 0.8837 0.8608 0.9478 0.9233 0.8996 
10 0.9521 0.8910 0.8252 0.9496 0.8718 0.9167 

Image4 4 0.8340 0.7438 0.7692 0.8404 0.8559 0.8314 
7 0.8623 0.8020 0.7997 0.8694 0.8013 0.8146 
10 0.8751 0.7722 0.8058 0.8676 0.8418 0.8412 

Image5 4 0.9243 0.9121 0.9033 0.9252 0.9153 0.9324 
7 0.9326 0.9015 0.9012 0.9295 0.9154 0.9170 
10 0.9403 0.9017 0.9203 0.9339 0.8891 0.9194 

Image6 4 0.9514 0.8623 0.8355 0.9485 0.9064 0.9421 
7 0.9643 0.8720 0.9153 0.9635 0.9291 0.9261 
10 0.9636 0.8392 0.8207 0.9581 0.9104 0.9298 

Image7 4 0.8763 0.7812 0.7988 0.8748 0.8562 0.8633 
7 0.8770 0.8546 0.7726 0.8933 0.8442 0.8844 
10 0.8516 0.8148 0.7707 0.8736 0.8206 0.8033 

Image8 4 0.9313 0.8876 0.9000 0.9130 0.9165 0.9029 
7 0.9445 0.9086 0.9087 0.9466 0.9048 0.9255 
10 0.9169 0.8953 0.8766 0.9046 0.8979 0.9153 

 
Table 11.  MS-SSIM parameters calculated by six optimization algorithms on 8 images 
Image 
Name 

Threshold MS-SSIM 
CDA DA SCA PPSO PSO MVO 

Image1 4 0.9754 0.9021 0.8071 0.9748 0.9449 0.9640 
7 0.9775 0.9470 0.8218 0.9767 0.7749 0.8616 
10 0.9762 0.9556 0.8715 0.9787 0.9393 0.9337 

Image2 4 0.9416 0.9229 0.8128 0.9360 0.9119 0.9349 
7 0.9582 0.8643 0.8068 0.9528 0.9102 0.9109 
10 0.9601 0.8683 0.8682 0.9564 0.9105 0.8257 

Image3 4 0.9602 0.9223 0.8715 0.9641 0.8746 0.9442 
7 0.9718 0.9342 0.8998 0.9696 0.9465 0.9385 
10 0.9760 0.9074 0.8427 0.9712 0.9151 0.9440 

Image4 4 0.9445 0.7730 0.6950 0.9464 0.9578 0.9437 
7 0.9503 0.8697 0.8904 0.9515 0.8934 0.9046 
10 0.9518 0.8322 0.8805 0.9504 0.9385 0.9452 

Image5 4 0.9825 0.9828 0.9744 0.9834 0.9821 0.9850 
7 0.9855 0.9802 0.9431 0.9853 0.9819 0.9808 
10 0.9915 0.9783 0.9746 0.9881 0.9726 0.9816 

Image6 4 0.9609 0.8816 0.7926 0.9524 0.9145 0.9556 
7 0.9732 0.9056 0.8659 0.9755 0.9401 0.9478 
10 0.9729 0.8143 0.7643 0.9672 0.9026 0.9422 

Image7 4 0.9651 0.8709 0.8415 0.9649 0.9525 0.9634 
7 0.9630 0.9436 0.7847 0.9672 0.9462 0.9671 
10 0.9600 0.8874 0.7807 0.9640 0.9053 0.8919 

Image8 4 0.9626 0.9184 0.9315 0.9410 0.9548 0.9344 
7 0.9744 0.9440 0.9520 0.9783 0.9509 0.9612 
10 0.9445 0.9264 0.9131 0.9409 0.9403 0.9417 

 
5  Conclusion 

 
In this paper, a collaborative evolutionary dragonfly 

algorithm is proposed, which makes full use of the 
multi-group mechanism to strengthen the cooperation and 
communication between groups. CDA compared with other 
algorithms in 23 test functions, experimental results prove 
that the proposed CDA algorithm is better than other 
algorithms. After analyzing the mechanism of swarm 
intelligence algorithm and pattern search algorithm, the 
improved algorithm is applied to the field of multi-threshold 
segmentation. With the increase in the number of thresholds, 
traditional threshold processing methods can no longer meet 
the requirements of real-time applications. The data results 
show that it is more competitive than the original algorithm. 
Then from experimental results of the multi-threshold color 
image segmentation show that when different threshold 
standards are used, the performance of swarm intelligence 
algorithms is different. After applying the proposed strategy, 
the CDA algorithm not only has good global exploration and 
local exploitation, but also has superior performance in 
multi-threshold color image segmentation based on the 
minimum cross-entropy method. 
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