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Abstract 

As a vector transmission network structure, the capsule 
neural network has been one of the research hotspots in deep 
learning since it was proposed in 2017. In this paper, the latest 
research progress of capsule networks is analyzed and 
summarized. Firstly, we summarize the shortcomings of 
convolutional neural networks and introduce the basic 
concept of capsule network. Secondly, we analyze and 
summarize the improvements in the dynamic routing 
mechanism and network structure of the capsule network in 
recent years and the combination of the capsule network with 
other network structures. Finally, we compile the applications 
of capsule network in many fields, including computer vision, 
natural language, and speech processing. Our purpose in 
writing this article is to provide methods and means that can 
be used for reference in the research and practical applications 
of capsule networks. 
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1  Introduction 

In recent years, the development of deep learning has 
received extensive attention. The essence of deep learning is 
to simulate the human brain to analyze data and obtain the 
optimal decision-making mechanism through a large amount 
of data training to complete specific tasks. One of the most 
representative network models in deep learning is the 
Convolutional Neural Network (CNN), which makes full use 
of the local features contained in the data itself by combining 
the three characteristics of sensing local area, sharing weights, 
and pooling [1]. The pool structure greatly improves the 
efficiency of network operation, but when down-sampling the 
feature map, a lot of effective information will be lost. 

In 2017, Sabour et al. first proposed the concept of 
Capsule Network (CapsuleNetwork, CapsNet) [2]. The 
original intention of CapsNet is to overcome the 
shortcomings of CNN's low data transmission efficiency due 
to scalar transmission and to overcome the catastrophic 
consequences of CNN pooling operations. Pooling operation 
abandons a large amount of spatial location information, 
which makes the network unable to accurately identify the 
subtle changes in the spatial position of entities, and cannot 
accurately learn the position association between entities 
[3-5]. Capsnet encapsulates multiple neurons representing the 

same entity to form a matrix and makes full use of the size and 
direction of multi-dimensional vectors to transmit 
information so that the number of parameters of CapsNet is 
significantly reduced compared with CNN. At the same time, 
CapsNet can fully learn the internal spatial relationship and 
overall structural relationship of the data and capture the 
hidden features in the data so that CapsNet can maintain a 
high accuracy rate even with less training data [6-9]. Finally, 
CapsNet uses a transformation matrix to realize viewpoint 
invariance, which expands the network's ability to understand 
data from two-dimensional space to high-dimensional space 
[10]. 

Based on the unique advantages of CapsNet, researchers 
have conducted in-depth research on the improvement of 
dynamic routing mechanism, the improvement of network 
structure, and the combination of capsule network with other 
network structures. They hope that CapsNet can also be 
applied to more applications on the basis of improving 
CapsNet performance. In this paper, we focus on the theory, 
improvement, and application of CapsNet. Through these 
introductions, we hope to help readers understand related 
work methods and ideas and inspire new research ideas. 

2 Analysis of the Advantages and 
Disadvantages of Traditional CNN 

As one of the classic network models of deep learning, 
convolutional neural networks (CNN) are widely used in 
various fields of deep learning [11]. However, the traditional 
CNNs also exposed many problems. For example, the 
traditional CNN using pooling operation will discard the 
information about the precise position of the entity in the 
region, and its scalar output will lead to low expression ability 
of the observed data [12-18]. In addition, CNN needs many 
data to train the network model, and the traditional CNN 
architecture ignores the spatial hierarchy between objects 
[19-27]. 

The pooling operation in CNN aims to obtain spatial 
invariant features by reducing the resolution of the feature 
surface, reducing the number of neurons by reducing the 
number of connections between convolutional layers, and 
reducing the amount of calculation of the network model [8, 
24]. However, the pooling operation discards a large amount 
of useful information when performing down-sampling 
transmission feature information. Take max-pooling, which is 
commonly used in pooling operations, as an example. 
Suppose that a filter with a size of 2×2 is used, and the input 
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data is down-sampled with a step size of 2, and a maximum 
value is taken from the 2×2 numbers to be transferred to the 
next layer of the network, while the remaining feature 
information is discarded. The abandoned data information 
contains the exact position information of the entity in the 
region, as well as the spatial relationship information such as 
the perspective, size, and direction between features [4, 7]. 
Therefore, the pooling operation has serious defects.  

Figure 1 is a schematic diagram of CNN neurons. The 
neuron receives the input scalar from other neurons, 
multiplies the scalar weight by the input scalar, then sums the 
results, and then transfers the sum to a non-linear activation 
function (such as sigmoid, tanh, ReLU) to generate an output 
scalar, which is used as the input variable of the next layer. 
The structure of a scalar neuron is simple, but the amount of 
information carried by a single neuron is small, and the ability 
to express and describe data features is low, so more neurons 
are needed to describe the features of the same entity. 
Therefore, CNN needs more parameters to describe data 
features [3, 18, 21]. 
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Figure 1. Scalar neuron 

In addition to the disadvantages brought by feature 
operation, traditional CNN also has its structural 
disadvantages. The traditional CNN architecture ignores the 
hierarchical structure between layers (similar to what exists in 
the human brain), which limits their modeling ability. CNN 
tries to cover up such limitations by using a large number of 
training data, which makes the traditional CNN need more 
prior data for training. Moreover, traditional CNN also has 
the following disadvantages. First, it cannot separate 
overlapping adjacent objects. Secondly, each layer of the 
architecture contains some disordered neurons, which makes 
it difficult for some internal structures to execute. Finally, 
CNN cannot infer the geometric information of the data, so it 
is not robust to new perspectives. 

Of course, CNN reduces the number of weights to be 
trained and reduces the computational complexity of the 
network through weight sharing [2]. This is the advantage of 
CNN structure, which can be used by other network structures 
based on CNN. 

In summary, the feature operation of the CNN structure 
and its advantages and disadvantages are shown in Table 1. 

In order to solve the defects of network model caused by 
traditional CNN pooling operation and scalar transmission, 
and make full use of the advantages of CNN architecture, 
scholars introduced the concept of capsule network. 

Table 1. CNN feature operation and its advantages 
and disadvantages 

Feature 
operations 

Advantages Disadvantages 

Pooling 
operation 

Reducing the dimension 
of the hidden layer in the 
middle and the amount 
of computation in 
subsequent layers. 

Discarding information 
such as the precise 
position of the entity and 
the spatial relationship of 
the features. 

Scalar 
transmission 

Simple structure and 
easy to understand. 

Carrying less 
information for single 
neuron. 
Unable to communicate 
the relationship between 
neurons. 
Low data feature 
expression ability. 

Specific 
network 
structure 

Simple structure. Difficult to organize the 
internal structure of 
network layer; 
Ignoring the structural 
relationship between 
layers; 
Needing more prior data; 
Unable to separate 
overlapping adjacent 
objects; 
Not robust to new 
perspectives. 

Weight 
sharing 

Reducing the 
computational 
complexity of the 
network and the number 
of weights to be trained. 

3. Basic Concepts of Capsule Network

The original CapsNet is developed on the basis of CNN,
so it makes full use of the advantages of CNN and overcomes 
many structural defects of CNN at the same time. Firstly, 
CapsNet only takes convolution operation as the first layer of 
the network, making full use of the advantages of CNN in 
feature extraction and generating a series of feature channels. 
Secondly, CapsNet constructs multi-dimensional vectors by 
grouping multiple characteristic channels of the convolution 
filter. Thirdly, CapsNet uses an affine transformation to 
connect the primary capsule and secondary capsules. These 
transformations can learn the relationship between the part 
and the whole in the data instead of detecting the independent 
features by filtering in different regions of the image. Finally, 
CapsNet transform weights are not optimized by regular 
back-propagation but by dynamic routing algorithm [28]. 
This section analyzes and summarizes the reasons for the 
unique advantages of CapsNet through the introduction of 
CapsNet's capsule model, dynamic routing, and network 
structure. 

3.1 The Capsule 

A capsule is a group of neurons nested in a layer, whose 
output represents different attributes of the same entity, such 
as direction, size, and posture. The purpose of introducing the 
capsule is to encapsulate a large amount of posture 
information (such as position, direction, zoom, and tilt) and 
other instantiation parameters (such as color and texture) of 
different parts or fragments of the object [20]. Each layer of 
CapsNet is composed of multiple capsules, which are a 
collection of vector neurons to represent a certain type of 
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feature of the entity. The output information includes the 
probability of the type of the object and the status information 
of the object (such as position, direction, size, deformation, 
speed, color, etc.). The parameters output from the low-level 
capsule will be converted into the prediction of the entity state 
by the high-level capsule. If the prediction is consistent, the 
parameter will be received [29]. 

It can be seen from Figure 1 that, in scalar neurons, the 
artificial neuron first weights the input scalars, and then sums 
the weighted input scalars. This makes it impossible for us to 
know the spatial hierarchical relationship of each neuron. 
Different from scalar neurons, vector neurons encapsulate the 
information that needs to be carried, and uses weight matrix 
to store the spatial hierarchical relationships and other 
relationships of neurons. The vector neuron model is shown 
in Figure 2. Firstly, the size and direction of input vector are 
encapsulated into a prediction vector, which is u{1, 2, 3} in 
Figure 2. We define the probability of the existence of the 
objects detected by the child nodes as the length of these 
vectors, and define some internal states of the detected objects 
as the direction of the vectors. At the same time, the spatial 
hierarchical relationship and other relationships between the 
low-level features detected by the low-level capsule and the 
high-level feature of the high-level capsule are encoded. The 
weight matrix W{1j, 2j, 3j} obtained by coding is used to 
process the prediction vector into a new input vector û{j|1, j|2,

j|3 ...}. Secondly, the input vector û{j|1, j|2, j|3 ...} is multiplied by 
coupling coefficient. Vector dimensionalities depend on the 
input data size. The calculation method of coupling 
coefficient is shown in the following section. Thirdly, the 
vector s is obtained by summing the input vectors after setting 
the coupling coefficient. Finally, the vector compression 
function is used to convert the vector s into a vector vj as the 
output of the capsule of this layer. 
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Figure 2. Vector neuron model 

The capsule model adopts a parse tree structure, and each 
active capsule corresponds to each node on the parse tree 
one-to-one. The low-level capsules (child nodes) are used to 
detect the low-level feature information, and high-level 
capsules (parent nodes) are used to receive output information 
from child nodes. 

3.2 Dynamic Routing 

The basic CapsNet is trained by the dynamic routing 
algorithm proposed in [2]. Dynamic routing is performed 
between two consecutive capsule layers to update coupling 
coefficients. These coupling coefficients determine how the 
low-level capsules (assuming L1 layer) send their inputs to 
higher-level capsules (assumed L2 layer) that agree with the 
input [30]. 

The sum of the coupling coefficients between the capsules 
i and all the capsules in the Ɩ layer is 1, which is determined by 
"routing softmax", ƅij is defined as the logarithm of the prior 
probability of coupling capsule i and capsule j, and its initial 
value is set to 0. Then the coupling coefficient cij determined 
by the iterative dynamic routing process is determined by 
equation (1). 

 (1) 

For all capsules except the first layer capsule, the total input 
sj of the capsule is calculated by weighted sum of all 
"prediction vector" ûj|i in Ɩ layer capsule. The coupling 
coefficient cij is the weight. The "prediction vector" ûj|i is 
obtained by multiplying the original input ui of the capsule in 
the Ɩ +1 layer by the weight matrix Wij . 

 (2) 

Capsnet uses the length of the output vector of the capsule 
to represent the probability of the existence of the entity 
represented by the capsule. Therefore, the non-linear 
"squashing" function (3) is used to ensure that the short vector 
is reduced to the vector length close to 0, and the long vector is 
reduced to the vector length slightly less than 1. Where vj is the 
vector output of capsule j.  

 (3) 

The logarithm ƅij of the prior probability can be 
distinguished and learned as all other weights at the same time. 
They depend on the location and type of the two capsules and 
not on the current input image. Then, the logarithm B2 of the 
initial prior probability is iteratively optimized by measuring 
the consistency between the output vj of each capsule j in l+1 
layer and the prediction ûj|i made by capsule i.  

  (4) 

Equation (4) updates ƅij with the dot product of ûj|i and vj, 
which is the essence of dynamic routing. Among them, ûj|i is 
the "personal" prediction of the l layer output ui for the capsule 
in the l+1 layer, while vj is the "consensus" prediction of all 
output u of the l layer for the capsule of l+1 layer. 

Unlike CNN, CapsNet uses dynamic routing instead of 
pooling, so it makes full use of the information related to the 
current task. The capsule model can be considered as a parse 
tree, because each active capsule selects the next layer of the 
capsule as the parent capsule in the parse tree [2]. Therefore, 
compared with the max/average pooling method used in CNN, 
CapsNet can better handle different visual stimuli and provide 
better viewpoint invariance [29]. 

3.3  Basic Architecture of Capsnet 

Taking the capsule network [2] first proposed by Hinton 
team as an example, the basic architecture of CapsNet is 
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shown in Figure 3. This model is very shallow, with only two 
convolution layers and one fully connected layer. The Conv1 
layer converts the pixel intensity of input data into the 
activities of local feature detector by convolution, and uses 
ReLU as the activation function. The PrimaryCapsules layer 
is the basic layer of multi-dimensional entities. It splices the 
instantiated parameters together to form the analytic tree of 
the overall relationship. The DigitCaps layer uses dynamic 
routing to receive the output of each capsule in the 
PrimaryCapsules layer, and designs a capsule for each entity. 

Figure 3. Simple CapsNet with 3-layer structure 

With its unique neuron organization, routing and network 
architecture, CapsNet has its unique advantages. Because 
CapsNet uses a capsule formed by a collection of vector 
neurons as the basic unit of the network, a single capsule 
carries more and richer feature information, so the number of 
parameters of the network is less than that of CNN. These 
neurons that make up the capsule can organize some internal 
structures, which makes CapsNet more suitable for 
high-dimensional feature extraction. Moreover, the 
transformation matrix in the capsule model can learn to 
represent the relationship between the part and the whole in 
the data, and provide viewpoint invariance for the network. 
The use of dynamic routing mechanism makes full use of all 
the feature information carried by low-level capsules, so that 
CapsNet can maintain a high accuracy rate even with less 
training data, and enables CapsNet to capture the hidden 
features in the data, and the captured feature information is 
more abundant [8, 23-24, 29]. Moreover, the dynamic routing 
mechanism uses the relationship between "part" and "whole" 
to update the coupling coefficient, so that CapsNet can fully 
learn the internal spatial relationship and overall structure 
relationship of the data. This behavior enable CapsNet to 
learn how to infer attitude parameters from images [7, 28]. 
Finally, the special network architecture of CapsNet makes 
CapsNet more suitable for migration and new tasks than 
traditional CNN [31-32]. 

In summary, the characteristic operation and advantages 
of CapsNet are shown in Table 2. 

Table 2. Characteristic operations and advantages of CapsNet 
Characteristic 
operations 

Advantages 

Capsule model Improving the transmission efficiency of 
neurons; 
Suitable for extracting high-dimensional features; 
Reducing the number of network parameters; 
Making the network view-invariant. 

Dynamic 
routing 
mechanism 

Less training data, high accuracy; 
Ability to capture hidden features, learn internal 
spatial relations and overall structural relations 
and infer attitude parameters. 

CapsNet 
network 
architecture 

Better suitable for migration and new tasks. 

4. Improvement of CapsNet

CapsNet is increasingly showing its unique advantages in
the field of deep learning. For example, CapsNet can maintain 
a high accuracy rate even with less training data, can capture 
hidden features in the data, and capture more feature 
information. However, the basic CapsNet has some 
shortcomings [10, 33]. For example, the training time of 
CapsNet using dynamic routing algorithm is longer; CapsNet 
is relatively weak in extracting local features. Therefore, 
scholars have improved CapsNet from the aspects of dynamic 
routing mechanism and network model. 

4.1 Improvements of Dynamic Routing 
Mechanism 

CapsNet is different from the single scalar output in 
traditional CNN. Traditional CNN uses a pooling operation to 
perform down-sampling, so that neurons remain unchanged 
for viewpoint changes, while capsules hope to retain 
information to achieve viewpoint translation equivalence, 
similar to the perception systems. Therefore, replace the 
pooling operation with a dynamic routing operation, and send 
the output of lower-level capsules (such as capsules 
representing entities such as nose, mouth, ears, etc.) as input 
to the parent capsule (such as the capsule representing the 
face) representing the part-whole relationship to achieve 
translation equivalence [12]. Dynamic routing has been 
proved to be an effective method with high generalization 
ability and less parameters. However, CapsNet relies on 
intensive clustering calculations in the inference process, so 
the training time of the network is relatively long [34,35]. In 
order to make up for the shortcomings of the dynamic routing 
mechanism, scholars mainly put forward their own 
suggestions on improving the training speed of dynamic 
routing mechanism, improving the routing accuracy of 
dynamic routing mechanism and reducing the number of 
parameters of dynamic routing mechanism. 

4.1.1 Improvements in improving the training speed 
of the dynamic routing mechanism 

In 2018, Aryan Mobiny et al. [10] proposed a consistent 
dynamic routing mechanism to accelerate CapsNet. 
Specifically, all capsules corresponding to the same pixel in 
the PrimaryCaps layer are forced to have the same routing 
coefficient. This strategy will greatly reduce the number of 
routing coefficients. For example, the original CapsNet has 
32 capsules in each pixel position of the PrimaryCaps layer. 
The author only places one capsule at each pixel position, 
reducing the number of routing coefficients to 1/32 of the 
original. In order to compensate for the reduction in the 
number of capsules, the author increased the size of each 
capsule to 256 dimensions instead of 8 dimensions of the 
original capsule. Experimental results show that the proposed 
structure has similar classification accuracy and is 3 times 
faster than the CapsNet algorithm. 

In 2019, Suofei Zhang et al. [35] extended existing 
routing methods within the framework of weighted kernel 
density estimation, and proposed a fast routing method with 
different optimization strategies: a fast routing algorithm 
based on Mean-shift. Mean-shift is a typical clustering 
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method based on weighted kernel density estimation 
framework for feature analysis and related visual tasks. The 
author uses a mean-shift-based routing algorithm to update 
the weights in a gradient descent manner, and discards the 
combination of "individual prediction" and "overall 
prediction" by Sabour et al., in order to improve the training 
speed at the expense of the network's ability to predict attitude 
parameters. The method proposed by the author increases the 
time efficiency of routing by nearly 40%. 

4.1.2 Improvements to improve the routing accuracy 
of the dynamic routing mechanism 

In 2018, Hinton et al. [29] introduced a new iterative 
routing process between capsule layers based on the 
Expectation Maximization (EM) algorithm. The author uses 
EM algorithm to update the weight of each image iteratively, 
so that the output of each capsule is routed to the next layer of 
capsules. The author uses EM algorithm to iterate between 
each pair of adjacent capsule layers to perform back 
propagation, so that the transformation matrix can be trained 
discriminatively, and the characteristic information routed 
between the capsule layers is more realistic. In order to 
improve the routing accuracy, the author improves the basic 
CapsNet proposed by Sabour et al. in two aspects. Firstly, the 
non-linearity achieved in the entire capsule layer is performed 
by the EM algorithm; secondly, backpropagation is 
performed between adjacent layers so that the transformation 
matrix can be trained discriminatively by backpropagating 
through the unrolled iterations of EM between each pair of 
adjacent capsule layers. Compared with the performance of 
CNN on the smallNORB dataset (5.2% test error rate 
achieved with 4.2M parameters), the trainable parameters of 
the method proposed by the author are only 68K, but the test 
error rate is 2.2%. 

In 2018, Wei Zhao et al. [34] proposed a text 
classification strategy that stabilizes the dynamic routing 
process, eliminates noise interference, and improves routing 
accuracy. The author tries to iteratively correct the coupling 
coefficient by using the probability of the previous layer of 
capsules in the next layer of capsules. Compared with the 
update method of the coupling coefficient proposed by 
Sabour et al., the author introduces the probability of the 
existence of the prediction vector and the logarithm of the 
prior probability to jointly determine the update of the 
coupling coefficient. The author shows that the network 
model has achieved better results than CNN when tested on 
the 4 data sets of MR, Subj, CR and AG’s. 

4.1.3 Improvements in reducing the number of 
parameters of the dynamic routing mechanism 

In 2018, Rodney Lalonde et al. rewritten the dynamic 
routing algorithm in two ways, thus solving the problem of 
the large number of parameters in CapsNet [18]. First of all, 
the author chose to let the network route only the sub-capsules 
in the user-defined kernel to the parent node instead of routing 
every sub-capsule to the parent node. Secondly, the 
transformation matrices are shared for each member of the 
grid within a capsule type but are not shared across capsule 
types. Because the same transformation matrix is shared at all 
spatial positions of a given capsule type, the total number of 
parameters to be learned can be significantly reduced. 

In 2018, Hao Ren et al. [36] proposed a routing algorithm 
based on K-means clustering theory. The author regards the 
K-means routing between the L1 layer capsule and the L2
layer capsule as a K-means clustering process. The L2 layer
capsule is the cluster center of the L1 layer capsule. Given
multiple capsules, K-means clustering is to find centers of
clusters related to them, and minimize the loss function. The
main difference between K-means routing and Sabour et al.'s
dynamic routing is that the logarithm of the prior probability
is replaced by the new logarithm, instead of being replaced by
the new logarithm of the prior probability plus the old
logarithm. After each iteration, the new parameter
information completely replaces the log of prior probability
and other historical information. After the iterative update of
the dynamic routing of Sabour et al., some historical
parameters will be reserved for the next iteration update [2].
Therefore, it can be considered that the improvement reduces
the number of network parameters at the expense of partial
accuracy.

4.1.4 Other improvements to the dynamic routing 
mechanism 

In 2018, Zhenhua Chen et al. [37] proposed to embed the 
parameters in the dynamic routing mechanism with all other 
parameters in the neural network into the optimization 
process, making the coupling coefficients in the routing 
process trainable completely. Whether in CapsNet proposed 
by Sabour et al. [2] or another CapsNet proposed by Hinton et 
al. [29], the number of routing iterations must be set manually 
by testing. Therefore, the author proposes to incorporate the 
routing process of capsule into the whole optimization 
process, thereby eliminating the setting of routing times and 
ensuring convergence. 

In 2019, Mohammed Amer et al. [38] proposed a new 
capsule network model PathCapsNet, which uses fan-in 
protocol routing for information transfer. For PathCapsNet, 
the author uses another form of dynamic routing protocol. 
The protocol calculates the weight of the contribution of all 
capsules from PrimaryCapsules to a specific DigitCaps 
capsule, so that the sum of the weights is a normalized 
probability of 1.0. In the dynamic routing of the traditional 
capsule network, the sum of the weights of a specific 
PrimaryCapsule capsule to each DigitCapsule is a normalized 
probability of 1.0. The author's test results on the MNIST 
dataset show that CapsNet can increase the test error from 
0.48% to 0.42% by using the routing protocol proposed by the 
author. Moreover, through the reasonable coordination of 
network depth, Max pooling, DropCircuit regularization and 
new protocol routing technology, the network can obtain 
better results than the traditional CapsNet [2], and further 
significantly reduce the number of parameters. 

4.2. Improvements of Network Structure 

Compared with deep CNNs, CapsNet has achieved good 
results in terms of shallow structure and considerable 
parameter savings. However, the lack of depth may limit the 
expressiveness of the network. Moreover, the number of 
parameters of the first convolutional layer in CapsNet is large, 
which will increase the number of overall parameters of the 
CapsNet network significantly [2, 38]. In addition, the 
original CapsNet model architecture was built specifically for 
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MNIST (a relatively low-dimensional data set). Its feature 
learning ability for complex high-dimensional data sets needs 
to be improved [21]. By improving the network depth of the 
original CapsNet and expanding the multi-path network, the 
performance of the network is improved and the number of 
parameters is reduced. 

In 2018, Sameera Ramasinghe et al. [11] proposed several 
improvements to the CapsNet structure. The author proposes 
a related module to learn dataset-wise priority scheme, 
instead of capturing the priority of each data point separately. 
The module can prioritize the prediction according to the 
initial capsule and effectively predict the decision capsule. 
The author feeds back the main capsule prediction to a 
trainable end-to-end conditional random field module to learn 
the interdependence between attributes. The difference from 
the original CapsNet network structure is that the network 
structure proposed by the author adds a conditional random 
field module between the PrimaryCapsule layer and the 
DigitCapsule layer to provide the prediction of the capsule 
routing position, and then adds related modules to sort the 
priority of the capsules. The author shows that compared with 
the original structure, the improved model structure has 
increased the accuracy of multi-label classification by more 
than 33%. 

In 2018, Congying Xia et al. [39] applied the capsule 
network to text modeling, extracted and aggregated semantics 
from the utterance in a layered manner, and proposed two 
capsule-based network structures INTENTCAPSNET and 
INTENTCAPSNET-ZSL. The former extracts semantic 
features from semantics and aggregates them to distinguish 
semantic intentions. The latter discerns new intentions from 
existing intentions through knowledge transfer. The 
INTENTCAPSNET structure can be understood as the 
structure from the input data to the DigitCapsule layer in the 
original CapsNet. The difference from the original CapsNet 
network structure is that the network structure proposed by 
the author adds a Zero-shot DetectionCaps layer to 
distinguish emerging intentions after the DetectionCaps layer 
of aggregated semantic features, which can be understood as 
adding a new capsule layer after the DigitCapsule layer of the 
original CapsNet network structure. In the inference process, 
the Zero-shot DetectionCaps capsule layer adjusts the 
existing intent and emerging intent in the DetectionCaps layer 
to obtain the activation vector for the emerging intent for 
zero-sample intent detection. 

In 2018, Canqun Xiang et al. [12] proposed a two-stage 
multi-scale structure that replaced the Conv1 layer in the 
original CapsNet network structure. The multi-scale structure 
proposed by the author is shown in Figure 4. The unit consists 
of two stages. In the first stage, the high-level features, 
middle-level features and original features of the data are 
extracted through three-level branches. In the second stage, 
the hierarchical structure of features is encoded by the 
multi-dimensional primary capsule. Encode the high, medium, 
and low-level features obtained in the first stage respectively 
to obtain 12-dimensional, 8-dimensional, and 4-dimensional 
capsules. Through the use of three branches, a 
multi-dimensional PrimaryCapsule is obtained. Compared 
with the original CapsNet network structure, the network 
structure proposed by the author is more detailed in extracting 
the initial features of the data, and can extract richer original 
feature information. The author's experimental results show 
that the accuracy of the proposed network structure is 

improved in FashionMNIST and CIFAR10 dataset 
classification tasks, and the number of parameters is only 
about 40% of the original CapsNet network structure. 

Figure 4. Multi-scale structural model 

In 2019, Rosario et al. [25] proposed a multi-channel 
capsule network (MLCN). It is a separable and 
resource-efficient organization of the capsule network, 
allowing parallel processing while achieving high accuracy at 
a lower cost. In MLCN, the original CapsNet is split, and the 
primary capsules are divided into independent sets, called 
lanes. Each channel is responsible for learning different 
dimensions and different characteristics of the vectors, and 
uses CapsNet's protocol routing organization for training. 
Compared with the original CapsNet structure, MLCN 
requires a smaller or similar number of parameters to achieve 
the same accuracy, and can train MLCN faster than CapsNet 
[25]. 

In 2019, Mohammed Amer et al. [38] proposed 
PathCapsNet (PathCapsNet), which is a deeply parallel 
multi-path version of CapsNet. PathCapsNet shares the upper 
part of CapsNet, starting from the original capsule layer, 
passing through the DigitCaps layer, and ending with the 
reconstruction layer. However, PathCapsNet is 
fundamentally different from the original CapsNet in the way 
the capsule is constructed. In PathCapsNet, each primary 
capsule is composed of a deep CNN called a path. Therefore, 
the input features are input to different paths, and the output 
of each path includes a primary capsule. The author's results 
show that through the reasonable coordination of network 
depth, maximum pool, DropCircuit regularization, and new 
fan-in protocol routing technology, better results can be 
obtained than CapsNet, while further reducing the number of 
parameters [38]. The network structure of the proposed 
PathCapsNet is shown in Figure 5. 
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Figure 5. Network structure of PathCapsNet 

4.3  Combination of Capsule and Other Models 

In 2018, Adrien Deliege et al. [8] constructed a neural 
network called HitNet, which has a layer composed of 
capsules, called the hit or miss layer (HoM, which can be 
understood as the DigitCaps layer in the original CapsNet 
network structure) ). All the features obtained by the HoM 
capsule can span the range, and can reach any value within 
this interval, regardless of other features. In terms of 
classification performance, one of the main advantages of the 
HoM layer is that it can be incorporated into any other 
network. This means that the HitNet sub-part used to 
calculate the feature map fully connected to the HoM can be 
replaced by any finer network to improve the performance of 
performing more complex tasks. The author's experiment 
proved that HitNet can achieve the latest performance of 
MNIST digital classification task with a shallower 
architecture, and HitNet is better than CapsNet's results on 
multiple data sets, and the speed is at least 10 times faster [8]. 
In 2018, the capsule projection layer proposed by Liheng 
Zhang et al. [40] is similar. Any network can be used to 
replace the network structure before the capsule projection 
layer. The performance of the network model with the capsule 
projection layer is also improved to varying degrees. 

In 2018, Ayush Jaiswal et al. [42] proposed a Generative 
Adversarial Capsule Network (Cap-suleGAN), which uses 
CapsNets instead of standard Convolutional Neural Networks 
(CNNs) in the setting of Generative Adversarial Networks 
(GAN) as the framework of the discriminator, it also models 
the image data. Compared with the images generated by 
convolutional GAN, the images generated by CapsuleGAN 

are closer to real images and more diverse, so as to obtain 
better semi-supervised classification performance on the test 
data set [41]. 

In 2019, Assaf Hoogi et al. [33] combined the 
self-attention mechanism model with CapsNet and proposed 
the self-attention capsule network (SACN). The self-attention 
mechanism is responsible for accurately extracting the 
internal features of certain key positions, and CapsNet is 
responsible for analyzing the rotational spatial relationship 
between the features in the region. The initial features 
extracted from the two are combined to form 
PrimaryCapsules. The author's experimental results show that 
the proposed SACN improves the classification performance 
within and between different data sets significantly, and is 
better than the original CapsNet in terms of classification 
accuracy and robustness. Future research would lead to adopt 
other types of network training [65]. 

5 Application of Capsule Network 

CapsNet developed from the basis of CNN, while 
inheriting the advantages of CNN, it also overcomes the 
shortcomings of CNN due to scalar transmission and pooling 
operations. CapsNet uses a collection of vector neurons 
creatively as the basic unit of the network, and the types of 
transferable features are more diverse. As an emerging 
network model, CapsNet has fewer parameters, smaller 
training set, richer feature types, and stronger ability to 
understand high-dimensional images compared with CNN. 
Therefore, CapsNet has been widely and successfully applied 
in various fields. 

5.1 Applications in Visual Images 

CapsNet was first used by Sabour, Hinton, etc. to 
recognize MNIST data sets of handwritten numeral images. 
The multi-layer capsule system after discriminative training 
has achieved the most advanced performance on MNIST, and 
is much better than convolutional networks in recognizing 
highly overlapping digits [2]. Later, Hinton et al. applied 
CapsNet to adversarial attack detection, which can detect 
adversarial images of three different data sets effectively [41]. 
The three data sets include the handwritten digital image 
MNIST data set, the fashionMNIST data set of clothes image, 
pants image, shoes image and bags image, and the street view 
number image SVHN data set. At the same time, CapsNets 
performs better than CNN in classification and detection tasks 
of the MNIST data set [37, 42-44] and the CIFAR-10 data set 
[7, 45] containing 10 categories with less training data. 
CapsNet can summarize complex objects well and perform 
well when the image is tilted or when the object is viewed 
from an unfamiliar angle. The paper [46] found that CapsNet 
is better at understanding clothes than ConvNets when 
viewing clothes at different rotation angles. In face 
recognition detection, although the internal representation of 
the detected entity is very complex, CapsNets can also learn 
good feature information from a small number of instances 
and converge faster [13]. The paper [47] extended the 
application range of CapsNet to Very Low Resolution (VLR) 
face image recognition. In the UCCS face database, 16×16 
resolution images are used to match the corresponding 80×80 
resolution image, the recognition rate of CapsNets reaches 
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more than 95%. CapsNet can overcome the spatial difference 
of detected objects, and achieves the latest accuracy of 97.6% 
on the German Traffic Sign Recognition Benchmark Data Set 
(GTSRB) [26]. The papers [48-49] use an improved dynamic 
routing algorithm to infer the position coordinates of the 
entity in the image. Compared with the convolution model, 
CapsNet can learn and derive the coordinates of the entities 
better. At the same time, it is found in paper [49] that CapsNet 
can also migrate the predicted movement information of the 
entity's position to data sets of different target types. 

5.2 Applications in Remote Sensing Images 

The paper [22] compares the recognition accuracy of 
CapsNet and other network models in public benchmark 
remote sensing image data sets under different training rates. 
Especially in the remote sensing image scene classification 
data set NWPU-RESISC45 created by Northwestern 
Polytechnic University (NWPU), CapsNet achieved 89.03% 
accuracy with 10% training rate, which was far higher than 
76.19% accuracy rate of GoogLeNet and 76.47% accuracy 
rate of VGG-16. Kazi Aminul Islam team [50-51] used 
CapsNet to process multi-spectral satellite images, and 
through transfer learning, the seagrass features learned by 
CapsNet in a certain place can be applied to different 
observation points, and the seagrass in that place can still be 
classified and quantitatively analyzed. On the premise of 
insufficient training samples, CapsNet also has good 
performance in classification accuracy of hyperspectral 
images. Xue Wang et al. [6, 52] found that the accuracy of 
CapsNet in the classification of hyperspectral images of 
Indian pine trees reached 88.24%, which was the highest 
accuracy rate among all tested network models, while the 
accuracy rate of CNN under the same conditions was only 
82.35%. The unique network structure of CapsNet not only 
has high classification accuracy for hyperspectral images with 
few training samples [53], but it is robust to the 
transformation of fineness of hyperspectral images and image 
rotation [16]. C.P. Schwegmann et al. [54] applied CapsNet to 
SAR image detection, using information such as the spatial 
position of the capsule to improve ship detection accuracy. 
The experimental results of the paper [54] show that CapsNet 
improves the accuracy of ships detection in SAR images to 
91.03%, which is much higher than other network models. 

5.3  Applications in Medical Images 

The advanced capsule features in CapsNet include the 
semantic category, direction, position, and other features of 
image stimulation. The paper [23] uses these features 
extracted in CapsNet to reconstruct human fMRI (functional 
Magnetic Resonance Imaging) images and achieved good 
results. Aryan Mobiny et al. [10] found that the accuracy of 
two-dimensional lung cancer image screening is higher than 
the AlexNet network and ResNet-50 network when the 
number of training samples is less. When screening 3D lung 
cancer images, CapsNet is far ahead with an accuracy rate of 
91.84%. The paper [33] found that CapsNet can successfully 
classify plaques in CT tumor lesion images with complex 
backgrounds. When processing medical image data sets such 
as brain magnetic resonance imaging (MRI) images, 
CapsNet's robustness to image rotation and affine 

transformation plays a very good role, effectively overcoming 
the problems of CNNs in processing brain tumor 
classification [19]. The paper [18] applied CapsNet to the 
segmentation of CT scan images of pathological lungs. The 
network model of the capsule structure was used to ensure 
segmentation accuracy and reduce the number of parameters 
of the U-Net structure by 95.4%. When Jiménez-Sánchez et al. 
[28] studied retinal image classification, they found that
CapsNet can be trained with less data and is more robust in
dealing with unbalanced class distributions, which makes
CapsNet have a broad application prospect in the field of
medical image.

5.4  Applications in Other Fields 

Yequan Wang et al. [55] combined the recurrent neural 
network with CapsNet for human emotion analysis. The 
network model with the addition of the capsule structure can 
output words with emotional tendency reflecting the 
attributes of the capsule without using any language 
knowledge, and the emotional description of the data has high 
accuracy. Mohammad Taha Bahadori applies CapsNet to the 
diagnosis of medical clinical data. Compared with 
EM-Capsules and deep GRU networks, the S-Capsules 
network proposed by him has a faster learning speed and 
stronger generalization ability [56]. Because CapsNet can still 
classify each entity even when multiple detection entities 
overlap each other. According to this feature of CapsNet, the 
paper [57] applies CapsNet to the mixed speech data to 
extract a single voice event and achieves better results than 
other methods. The paper [58-60] applied CapsNet to sound 
detection successfully, and greatly reduced the over-fitting 
phenomenon. When Wei Zhao et al. [34] explored the 
application of CapsNet in text classification, they found that 
CapsNet's classification accuracy is more competitive than 
other models when converting single-label text classification 
to multi-label text classification. The paper [61] applies 
CapsNet to video object segmentation. The proposed method 
can segment multiple frames simultaneously on the basis of 
one reference frame and one segmentation mask, which 
greatly increases the segmentation speed of video objects. In 
addition, CapsNet is also widely used in road network traffic 
flow prediction [30], protein structure prediction [62], and 
camera-based UAV synchronous positioning [27]. CapsNet 
were used in [63] for detecting fake news. Their solution 
consists in two parallel networks and non-static word 
embedding, and is better than competitive approaches. In [64] 
CapsNet are used to remaining life estimation. It transpired 
that advantages of CapsNets from computer vision tasks are 
also valid in fault prognostics yielding better accuracy than 
CNNs. 

6 Conclusion 

In recent years, CNN, as a classic network model in the 
field of deep learning, has received more and more attention. 
However, CNN has its insurmountable flaws. For example, 
the use of the pooling sub-sampling method discards a lot of 
useful information, the network ignores the hierarchical 
structure between layers and needs a large number of training 
samples. As the next generation of the deep learning network 
model, CapsNet developed from the basis of CNN, inherited 
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the system advantages of CNN, and overcomes the 
shortcomings of CNN due to pooling operation and scalar 
transmission, and gradually becomes a new research hotspot 
in the field of deep learning. 

This paper first analyzes the advantages and 
disadvantages of CNN, and on the basis of summarizing the 
advantages and disadvantages of CNN, leads to the second 
part of the paper, which is the basic concept of CapsNet. This 
paper introduces the uniqueness of CapsNet from three 
aspects: capsule model, dynamic routing mechanism, and 
CapsNet's network model. These operations of CapsNet 
enable CapsNet to maintain high accuracy even with less 
training data and can capture hidden features in the data. 
However, the basic CapsNet has some shortcomings. The 
third part of the paper summarizes the three aspects of 
improving dynamic routing mechanism, improvement of the 
network model, and the combination of capsules with other 
models. The similarities and differences between these 
improvements and the original CapsNet are compared, and 
the improvement direction and the benefits and disadvantages 
are analyzed. The fourth part of the paper lists the application 
examples of CapsNet in the field of visual image, remote 
sensing image, medical image, and other fields and 
summarizes the reasons why CapsNet has been successfully 
applied in these fields. 

Although CapsNet has been widely used in various fields, 
its advantages do not mean that it can solve and improve all 
the problems in the past. For example, CapsNet often cannot 
reconstruct complex images accurately. This paper 
summarizes the structural characteristics of CapsNet and the 
improvement direction of CapsNet by researchers, hoping to 
sort out the development trend and context of CapsNet for 
readers and provide a reference for the development direction 
of CapsNet network. 
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