
Intelligently Routing Underwater Wireless Sensor Networks: A Survey 1635 

 

Intelligently Routing Underwater Wireless Sensor Networks:  

A Survey 

Chaoxing Ren1, Yun Li2, Xuejun Wang2, Ling Xia Liao3, Roy Xiaorong Lai4 

1 Guangxi Marine Environmental Monitoring Centre, China 
2 School of Information and Statistics, Guangxi University of Finance and Economics, China 

3 School of Electronic Information and Automation, Guilin University of Aerospace Technology, China 
4 Confederal Networks Inc., USA 

rencx1993@163.com, 44739235@qq.com, 47047792@qq.com, liaolx@guat.edu.cn, roy.lai@ieee.org* 

                                                           
*Corresponding Author: Roy Xiaorong Lai; E-mail: roy.lai@ieee.org 

DOI: 10.53106/160792642021122207016 

Abstract 

Current marine scientific research faces a big 

challenge in accurately and timely collecting marine data 

due to the highly dynamic underwater environment. 

Underwater Wireless Sensor Networking (UWSN) 

systems with intelligent routing approaches are a way to 

rise to this challenge as the rapid development of 

Artificial Intelligence (AI) technologies. Unlike 

traditional routing approaches driven by mathematical-

models, the ones underwater are intelligent and data 

driven, which better adapt to the dynamic underwater 

environment and are able to optimize various 

performance indicators. This paper reviews the state of 

arts of applying AI technologies in routing UWSN 

systems. It divides the routing approaches for UWSN 

systems into non-cross-layer and cross-layer based. 

Cross-layer based approaches can be further grouped into 

traditional cross-layer and intelligent cross-layer 

approaches, as AI technologies can help data sharing 

among layers in UWSN systems. This paper focuses on 

the intelligent cross-layer routing approaches and 

discusses them according to the type of machine learning 

algorithms applied. Challenges and some open issues in 

intelligently routing UWSN systems are also provided. 

To the best of our knowledge, this work is the first effort 

on summarizing the challenges, algorithms, and issues in 

routing UWSN systems intelligently. 

Keywords: Routing algorithms, Evolutionary algorithms, 

Supervised learning, Reinforcement learning, 

Underwater wireless sensor networks 

1 Introduction 

Oceans cover 71% of the Earth surface and store 

97% of the global water resources. Although oceans 

are one of the major components of the global climate 

system and human sustainable development, more than 

95% of marine resources remain underexplored and 

unexplored. Underwater wireless sensor networks 

(UWSNs) are networking systems including 

components such as vehicles and sensors that are 

deployed in a specific sea area to perform collaborative 

monitoring and data collection tasks. UWSNs have 

been the dominant technologies for better exploration 

and exploitation of marine resources [1-3]. 

UWSNs typically use sound waves for underwater 

communication. Figure 1 shows a schematic diagram 

of a two-dimensional underwater sensor network. 

Sensor nodes are anchored on the seabed. They 

connect to underwater convergent nodes via wireless 

acoustic links. The sink node acts as a relay and is 

responsible for collecting the data from underwater 

sensor nodes and communicating with stations on the 

water. To realize the entire data transmission process, 

the sink node is equipped with two acoustic transceiver 

devices: a vertical transceiver and a horizontal 

transceiver. While the horizontal transceiver is used by 

the sink node to send instructions and configuration 

signals to underwater sensor nodes, the vertical 

transceiver is used by underwater sensor nodes to 

forward data collected to the surface site. In addition to 

the hydroacoustic transceiver that can handle multiple 

parallel communications among the deployed sink 

nodes, the surface station is also equipped with 

transmitting equipment that communicates with shore 

receivers, satellite systems, and other surface receivers. 

In general, UWSNs deploy sensor nodes with low 

energy consumption, communication bandwidth, and 

computation capabilities to monitor a water area. 

UWSNs form an underwater monitoring networking 

system in a self-organizing manner, and the collected 

data are finally reach end users through the surface 

base stations or ships via acoustic communication. 

Wireless sensor networks have been developed on 

land for decades [4-5].  However,  the mature 

communication technologies of wireless sensor 

networks on land, such as power control technology, 

MAC protocols, and routing protocols, cannot be 

directly applied in underwater networks, because  
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Figure 1. Schematic diagram of a two-dimensional underwater wireless sensor network 

UWSNs highly rely on underwater acoustic 

communication technology and underwater acoustic 

data has very different features from land data. The 

inherent ocean current movement in the underwater 

acoustic environment and the time-space-frequency 

variation of the underwater acoustic channel 

characteristics make UWSNs face many challenges, 

such as long propagation delay, poor robustness, and 

high energy consumption that do not exist in land-

based sensor networks. 

Therefore, UWSNs have been a hot research area in 

current research. The U.S. Navy has conducted 

SeaWeb’s submarine wireless communication network 

test many times since 1998. The test has been a major 

part of the U.S. Navy’s experimental long-range sonar 

and ocean network plan [6-7]. Led by Woods Hole 

with the participation of multiple universities and 

institutes in the U. S., a global coastal ocean observation 

network was established to provide the ocean physics, 

ocean chemistry, ocean geology and seabed 

information platforms such as biology. At present, the 

seabed observation network, including Canada’s 

Neptune Observation System, Europe’s ESONET 

Observation Network, and Japan’s DONET Project, 

has been established internationally [8]. Many 

universities and institutes in China have also developed 

their underwater wireless sensor network networks 

since 1980. For instance, a three-dimensional 

monitoring demonstration network for the Taiwan 

Strait and adjacent seas, including 5 sets of buoys, 14 

sets of ecological buoys, and 1 set of seabed bases, was 

established in 2012; and the National Seabed Long-

term Scientific Observation System 1 , led by Tongji 

University and jointly built by the Institute of 

Acoustics of the Chinese Academy of Sciences, was 

formally approved in 2017. The construction period is 

                                                           
1 https://mgg.tongji.edu.cn/mggen/e6/50/c10531a124496/page.htm 

5 years, and the total investment exceeds 2.1 billion. 

UWSNs are very complex systems including the 

technologies of routing protocols, Media Access 

Control (MAC) protocols, localization protocols, 

energy consumption, and security. Although some 

researchers have made surveys on the related 

requirements, protocols, and applications, this paper 

focuses on the intelligent routing algorithms of 

UWSNs. Particularly, we review the state of arts of 

intelligent routing algorithms in UWSNs, as Artificial 

Intelligence (AI) technologies have been widely 

applied in various fields such as the atmosphere, 

medical treatment, climate change, radio communication, 

and marine information technology [9]. The main 

contributions of this paper are three folds: 

‧ We classify underwater routing protocols into two 

types: cross-layer and non-cross-layer routing 

protocols. We further categorize the former into 

traditional routing protocols and intelligent routing 

protocols. 

‧ We categorize the intelligent routing algorithms, 

based on the machine learning algorithms applied, 

into three types: supervised learning based, 

combination of evolution algorithms and supervised 

learning based, and Reinforcement Learning (RL) 

based, and introduce the typical routing systems for 

each category.  

‧ We discuss the challenges and open issues in 

designing and deploying intelligent routing 

algorithms for UWSNs. 

The rest of is paper is organized as follows. Section 

2 summarizes the related surveys, and section 3 

introduces the major challenges in designing and 

developing routing protocols in UWSNs. While routing 

algorithms and intelligent routing algorithms for 

UWSNs are reviewed in sections 4 and 5, respectively, 

the challenges and open issues in designing, developing, 

and deploying intelligent routing algorithms for UWSNs 
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are introduced in section 6 followed by the conclusion 

in section 7. 

2 Related Surveys 

Many researchers have reviewed the related 

technologies, algorithms, and applications in various 

UWSN user scenarios. While Fattah et al. [10] 

summarized the requirements, taxonomy, recent 

advances, and open research issues of UWSNs, Jouhari 

et al. [11] discussed the enabling technologies, 

localization protocols, and internet of underwater 

things for UWSNs. Although Faiza et al. [12] focused 

on the localization schemes in UWSNs, Gupta and 

Goyal [13] put their efforts on the evolution of data 

gathering static and mobility models in UWSNs. 

Although Luo et al. in [14] and Khalid et al. in [15] did 

similar study on reviewing the routing protocols and 

related issues for UWSNs, Luo et al. focused on the 

optimization objectives of routing algorithms and 

categorized the routing algorithms into three types: 

energy-based, data-based, and geographic information-

based; and Khalid et al. paid their attention to the 

localization issues in routing UWSNs, and further 

categorized the routing algorithms into localization-

based and non-localization-based algorithms. In this 

paper, we review the intelligent routing algorithms as 

well as the general routing algorithms for UWSNs. To 

the best of our knowledge, this work is the first effort 

that summarizes the state of arts of AI technologies 

applied in routing UWSNs.  

3 Routing Approaches in UWSNs  

3.1 Challenges in Routing UWSNs 

Routing algorithms for UWSNs are responsible for 

the selection of a path from a source node to a sink 

node. Routing algorithms typically consist of two 

functions: finding the optimal path between a source 

node and a sink node and grouping the data along the 

optimal path, and forwarding them correctly. Unlike 

wireless sensor networks on land supported by mature 

communication technologies such as power control 

technology, MAC protocols, and routing protocols, 

UWSNs highly rely on underwater acoustic 

communication technology. Since underwater acoustic 

data has very different features from land data, as listed 

in Table 1, UWSNs face the following four challenges 

in the routing process: 

‧ Long communication propagation delay. Routing 

in terrestrial wireless networks can be realized 

through multiple polls and repeated confirmations, 

and the delay caused by these operations is 

negligible due to the propagation speed of the radio. 

However, routing in underwater wireless networks 

suffers a long time delay, since the propagation of 

acoustic signals is only approximately 1500 m/s, and 

the repeated confirmation and poll causes a long 

waiting time delay, leading to a reduced 

communication efficiency over the entire network. 

‧ Mobility of nodes. Different from sensor nodes 

fixed on the ground in terrestrial wireless networks, 

the ones in underwater wireless networks are 

typically randomly placed, or semifixed through 

cables and anchors. Therefore, the locations of 

sensor nodes are not fixed during a routing process. 

In dynamic environment, an existing route may be 

broken if the time efficiency and robustness in 

updating and maintaining the route become more 

demanding. As positioning signals such as Global 

Position Signal (GPS) are difficult to be received in 

underwater, it is hard to obtain real-time and 

accurate position information of nodes underwater, 

leading to locality issues that generate certain 

difficulties in the design of routing algorithms. 

‧ Higher packet loss rate of the channel. Due to the 

absorption of sound waves by seawater, the sparse 

distribution of the network caused by expensive 

sensor nodes, and the influence of ocean noise, 

underwater channels generally cannot maintain an 

ideal transmission performance. Therefore, data 

packet loss in routing is inevitable. Therefore, the 

reliability must be considered in underwater routing. 

‧ Energy saving. As the life time of each underwater 

node is limited due to the high transmission power, 

the low battery carried, and the difficulty in battery 

replacement, energy savings must be considered. 

Table 1. Comparison of characteristics between land data and ocean data 

Characteristics of land data Characteristics of ocean data 

Easy access to large amounts of data 
Hard to obtain ocean data 

Difficult for channel data to accurately reflect channel characteristics 

Diversity of data sources 
Ocean data is mainly marine data 

Underwater acoustic channels in different sea areas/sea conditions are very different. 

Low-value density Sparsity of the impulse response of the underwater acoustic channel 

Authenticity Accurately restoring the sound field characteristics is difficult 
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3.2 Underwater Routing Algorithms 

In a real marine environment, the problems of 

UWSNs are mainly reflected in the battery energy, 

processing data, storage capacity, and communication 

bandwidth. Routing algorithms are typically designed 

for such purposes. Although there are many methods to 

categorize routing algorithms for UWSNs in current 

research, no method has been widely recognized. In 

this paper, we categorize the underwater routing 

algorithms according to the layered structure of 

UWSNs and the interaction between such layers.  

Particularly, we divide the underwater routing 

protocols into non-cross-layer and cross-layer. As 

introduced by Li et al. in [16], the non-cross-layer 

protocol mainly divides the entire network into five 

layers. Although each layer is designed and optimized 

independently, the communication is only enabled 

between adjacent layers. The cross-layer routing 

protocols break the strict concept of levels, and enable 

information to be shared among multiple levels to 

achieve joint optimization, as shown in Figure 2.  

 

Figure 2. Classification of routing algorithms for UWSNs 

Cross-layer routing protocols can be subdivided into 

traditional routing protocols and intelligent routing 

algorithms. Traditional ones are often assisted by 

geographic location information. Routing based on 

geographic information as proposed by reference [17] 

used the link quality of neighboring nodes to study a 

channel-aware routing protocol for multi-node 

transmission. It ensured the simple topology 

information successfully bypassing the cavity region. 

Reference [18] proposed a routing approach based on 

reliable pressure. It solved the problem of packet loss 

caused by the harsh underwater environment and 

increased the data packet transfer rate. In order to solve 

the mobility problem of nodes. The reference [19] 

proposed a routing protocol based on hop-by-hop 

dynamic addressing. It did not require any location 

information or maintenance of complex routing tables.  

Non-cross-layer routing protocols are typically 

refined into routing protocols that optimize node 

mobility, energy consumption, and network delay. 

Routing based on energy consumption as proposed in 

[20] presented a routing protocol for vector forwarding. 

It relied on the location information, the remaining 

energy, and the number of retransmissions in the 

previous cycle to determine the data forwarding. It 

achieved a uniform energy consumption and reliable 

data transmission. As reference [21] proposed an 

adaptive and life-cycle-aware routing protocol to find 

the most suitable and economic data transmission route 

to improve the life cycle of the underwater acoustic 

network; reference [22] introduced an energy-saving 

collaborative opportunistic routing protocol, in which 

the source node first determined the forwarding relay 

based on the local depth information and then used a 

fuzzy logic-based relay selection scheme to select the 

best relay to solve the energy consumption problem. 

While a delay-sensitive deep routing algorithm was 

proposed by [23], a delay-sensitive energy-saving deep 

routing algorithm was provided by [24], and a delay-

sensitive adaptive depth routing approach was carried 

out in [25]. To simultaneously improve the end-to-end 

delay and transmission loss, reference [25] also 

introduced three other routing schemes, and developed 

a delay-effective priority factor and the delay-sensitive 

holding time, by slightly reducing the network 

throughput to minimize the end-to-end delay to a large 

extent. It met the strict time requirements of the 

underwater acoustic networking scenarios such as 

earthquake monitoring. 

3.3 Summary 

In summary, hydroacoustic networking routing 

protocols can be categorized into non-cross-layer and 

cross-layer routing protocols, according to the layered 

structure of UWSNs and the interaction among the 

layers. While non-cross-layer routing protocols can be 

further divided into three types based on the mobility, 

energy consumption, and delay of senser nodes, cross-

layer routing protocols can be clustered into AI-based 

and traditional. AI-based routing protocols can be 
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further grouped based on the AI algorithms applied, 

while traditional routing protocols can be separated 

based on the objectives the routing protocol aimed to 

optimize. Such objectives may be to reduce end-to-end 

delay, system energy consumption, and system 

distribution loss. However, the highly differentiated 

marine hydroacoustic communication channel makes 

such routing algorithms unable to meet the needs of 

large-scale underwater systems for robust and reliable 

networking applications. One of the important reasons 

is the complicated time-space-frequency characteristics 

of the underwater acoustic channel. Also, the 

traditional routing theories and technologies still have 

difficulty in carrying out a good adaptive matching 

design in a timely, reasonable, and effective manner. 

4 Intelligent Routing Algorithms in UWSNs 

In recent years, with the rapid development and 

deployment of AI technologies [26] in various fields 

such as the atmosphere, medical treatment, climate 

change, and radio communication, relevant methods of 

AI have been applied in marine information technology 

such as ocean big data and smart oceans. AI 

technologies bring new ideas to break through the 

traditional routing technology bottleneck in UWSNs, 

such as to select optimal underwater routing nodes 

reasonably and rapidly, to automatically learn the 

dynamic changes of the underwater acoustic channel 

amplitude-time-space-frequency, to adapt to the 

dynamic changes of underwater acoustic channel, and 

to constitute feedback to the signal transmitter. 

AI technologies have been widely applied in the 

routing algorithms on land. As early as 1994, Boyan et 

al. [27] proposed an intelligent routing algorithm based 

on Q-learning in communication networks. Experiments 

showed the proposed routing algorithm, comparing 

with the traditional shortest path routing, could 

effectively avoid network congestion and reduce the 

transmission delay of data packets. In 2010, Hu et al. 

[28] proposed the QELAR that applied the Q-learning 

to optimize the energy consumption and lifespan of 

wireless sensor in wireless sensor networks. Basagni et 

al. [17] further applied the Q-learning to enable reliable 

transmission and accelerate the forwarding of wireless 

sensor networks. 

5 Data-driven Underwater Intelligent 

Routing Algorithms 

Intelligent routing algorithms can be driven by 

mathematical models or data. Although many AI 

algorithms have been proposed in current research, 

most of them are based on mathematical models, 

intelligent routing algorithms driven by underwater 

acoustic data are still in their infancy. Mathematical 

model driven routing algorithms usually make some 

assumptions for application scenarios to simplify the 

problems. However, it is difficult to fully meet such 

assumptions in the real underwater network 

environment, making the routing algorithms based on 

mathematical model unable to ensure its performance 

in the real scene. AI algorithms driven by data can 

address this issue by training intelligent models based 

on massive data. They have demonstrated a strong 

learning, generalization, and expression abilities in 

solving routing optimization problems and giving 

intelligence to UWSNs.  

Data-driven aritificial intelligent routing algorithms 

can be clustered by the types of AI algorithms applied. 

AI algorithms can be categorized into supervised 

learning, semi-supervised learning, unsupervised 

learning, and RL according to the number of labeled 

samples used to train the models. Supervised learning 

approaches uses samples with labels to train models, 

semi-supervised learning uses a small volume of 

labeled samples together with a big volume of 

unlabeled samples due to the difficulty in obtaining 

labeled samples. Unsupervised learning does not need 

labeled samples to train models. However, 

unsupervised learning approaches typically do not have 

time efficiency. Accordingly, unsupervised learning is 

hardly used in routing algorithms. RL is a type of 

environment-friendly AI approaches that can adapt to 

the change of environment. Evolutionary algorithms 

are a type of optimization technology. Since they 

simulate the behavior of animals in natural evolution, 

they are also AI approaches.  

In the rest of this subsection, we categorize the data-

driven routing approaches into supervised learning 

based, evolutionary algorithms based, and RL based, 

and discuss the typical routing systems for each 

category. We list all the related references in Table 2. 

5.1 Intelligent Routing Algorithm Based on 

Supervised Learning 

Supervised learning refers to the use of known input 

and output samples to train the model so that the model 

can accurately complete a type of machine learning 

task of input to output mapping [29]. In recent years, 

intelligent underwater routing methods based on 

supervised learning have mainly included decision 

trees (DT) [30], artifical Neuron Networks (NN) [31], 

and support vector machine (SVM) [32]. The purpose 

is to learn more complex strategies through labeled 

data.  

Regarding routing application in UWSNs, it is 

possible to provide an intelligent routing method in an 

underwater dynamic link in changing network 

environment. References [33-35] applied DT to route 

for UWSNs. Although reference [33] relied on DT to 

select the best message sending path to improve 

network coverage preservation, reference [34] applied 

DT and dynamic programming to solve the problem 

that determined the visiting time and a deadline respect 
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Table 2. Intelligent routing algorithms for UWSNs 

Type AI algorithms Reference Optimization 

[33] network coverage preservation 
DT 

[34-35] data transmission delay 

[36] data fusion 
NN 

[37] DDoS attacking detection 

Supervised learning based 

SVM [38] node selection 

ACO [43-45] routing path 

[46] network topology 

[47-49] distance and energy GA 

[50] Security data transmission 

[53] Localization of nodes 
SA 

[52, 54-55] Cluster head selection, Lifetime and energy 

[57-58] network life time and energy usage 

[59] solve multi-objective optimization problem 

Evolutionary algorithms & 

supervised learning 

WOA 

[60] Work with ANN 

[56, 63, 67] energy saving and improve life time 

[65] congestion avoidance Classical RL 

[66] message deliveries 

[61-62] adaptive to energy consumption and delay 

Reinforcement learning 

based 

Q-learning 
[17, 64] packet forwarding 

 

to the amount of captured data and the type of event in 

routing UWSNs, and reference [35] applied DT-based 

classifier to classify the application specific events in 

UWSNs. It enabled an energy-efficient transmission by 

suppressing the duplicate packet transmission and 

reducing the transmission of control packets for delay-

sensitive routing. 

Other supervised learning algorithms are also 

applied to routing approaches for UWSNs. As 

reference [36] applied back propagation NN for data 

fusion to reduce engergy consumption through 

decreasing the amount of transferred data, reference 

[37] applied NN to detect distributed denial of service 

(DDoS) attacking over UWSNs, and reference [38] 

applied fuzzy logic interence and SVM to determine 

the appropriate sensors to forward packets to the 

destination in routing UWSNs.  

5.2 Intelligent Routing Algorithms Combining 

Evolutionary Algorithms and Supervised 

Learning 

At present, the combination of evolutionary 

algorithms and supervised learning algorithms is used 

more frequently. Taking the network state and traffic 

matrix as input, the corresponding routing strategy is 

calculated through an evolutionary algorithm as output 

to obtain a training model. When a new flow arrives, 

the appropriate routing path is output through the 

training model. Evolutionary algorithms[39], including 

ant colony optimization (ACO) algorithms [40], 

simulated annealing (SA) algorithms [41], genetic 

algorithms (GA) [42], etc., combined with supervised 

learning algorithms, have been applied in 

communication network routing and communication 

quality evaluation. 

 

Figure 3. Intelligent routing model combining 

evolutionary algorithms and supervised learning 

Applying intelligent routing protocols that combine 

supervised learning and evolutionary algorithms are 

often dynamic, and the goal is to obtain the optimal 

path that meets the quality of service requirement in 

UWSNs. The idea of such approach is shown in Figure 

3. The input of the evolutionary algorithm layer (global 

network state) and output (optimal path) are used as 

datasets for supervised learning, and then in the 

dynamic routing process, the supervised learning 

model can quickly calculate the optimal path according 

to the input network state. The running time is much 

shorter than the ones only applying evolutionary 

routing algorithms, but the network delay and jitter is 

similar. 
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5.2.1 Ant Colony Optimization Model 

The ACO algorithm is an optimization algorithm 

that simulates the foraging behavior of ants [40]. The 

ACO algorithm periodically selects a forward ant from 

each network node, and its task is to find a path to the 

destination. The identifier of each access node is saved 

in the memory carried by the ant. The rules for forward 

ants to select relay nodes are as follows: 

( ) ( )

( ) ( )
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( , )
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k

u M
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In (1), ( , )
k
p r s  is the probability that ant k chooses 

to move from node r to node s; T is the routing table on 

each node, which is used to store the pheromone 

concentration on each connection; C represents the 

visibility function. 
0

(1/ )
jn

E P gn−  is the initial energy 

of the node level, 
jn

P gn  is the energy consumption of 

node j  after n round data collection, and α  and β  are 

the parameters that control the relative importance of 

pheromones and visibility, respectively. The selection 

probability is a compromise between visibility (the 

higher the energy of the node, the more likely it is to be 

selected) and the pheromone concentration (that is, the 

more traffic on connection ( , )r s , the more likely this 

connection is to be selected). The path loss ( )
CH
L i  and 

average throughput 
ave

C  of each cluster head are 

defined by (2) and (3), respectively. After round of 

data collection, the remaining energy is computed by 

(4).  
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References [43-45] applied ACO algorithms to route 

UWSNs in a clustered and energy-efficient manner. 

They divided an UWSN into many clusters, each 

consisting of one cluster head node (CHN) and several 

cluster member nodes (CMNs). Although reference [43] 

proposed HENPC algorithm that applied ACO to select 

the optimal node by defining the path loss function 

from each node to the cluster head, the average 

throughput within the cluster, and the remaining 

energy of node data collection, reference [44] 

combined fuzzy c-means and ACO to create and 

manage the data transmission in UWSNs, and 

reference [45] selected CHN based on the residual 

energy of nodes and the distance factor. The selected 

CHN collects data sent by the CMNs and transmits 

them to the sink node. 

5.2.2 Genetic Algorithm Model 

The GA is a computational model that simulates the 

biological evolution process of natural selection and 

the genetic mechanism of Darwin’s biological 

evolution theory [42]. It is a method of searching for 

the optimal solution by simulating the natural evolution 

process. The selection of the fitness function directly 

affects the convergence speed of the genetic algorithm 

and whether the optimal solution can be found. 

Generally, the fitness function is obtained by 

transforming the objective function.  

Reference [46] reviewed the approaches that applied 

GA in WSNs for optimizing energy consumption. 

Regarding UWSNs, GAs could be used to estimate the 

distance and energy of nodes for node selection in 

various types of routing approaches to extend the 

network lifetime [47-48], to improve the localization of 

nodes in UWSNs to improve the routing approaches 

indirectly [49], or to partially establish half of the key 

for the secure underwater communication with less 

computation and energy consumption [50]. 

5.2.3 Simulated Annealing Algorithms 

SA algorithms are a type optimization approaches 

simulating the behavior of solids in a heat bath [41]. 

When we put a solid in a heat bath, the temperature of 

the solid is firstly raised to a point in which the atoms 

of the solid can randomly move, and then decreased so 

that the atoms of the solid can rearrange into a 

crystallization state, which minimizes the total energy 

of the system. Carefully selecting the cooling schedule 

allows a solid to become a crystal that has the lowest 

energy instead of an amorphous state with higher 

energy. As we can view the solution of an optimization 

problem as a solid in a heat bath, the cost of the 

objective function as the energy of a solid, the optimal 

solution as the ground energy state of a solid, moving a 

solution to a neighboring position can be viewed as the 

rapid quenching, and the search algorithm can be 

viewed as the cooling schedule. Accordingly, a SA 

algorithm can be developed to mimic the physical 

annealing process of physical material.  

While reference [51] applied SA to improve the 

coverage of networks, reference [52] proposed to apply 

SA to optimize the selection of cluster heads for a 

cluster routing algorithm with better load balancing. 

SA was also used to improve the localization of nodes 

[53], or extend the network lifetime or reduce the 

energy consumption of nodes [54-55].  

5.2.4 Whale Optimization Algorithm Model 

The whale optimization algorithm (WOA) [56] is 
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also an evolution algorithm imitating the hunting 

behavior of humpback whales. In the WOA algorithm, 

the position of each humpback whale represents a 

feasible solution. In ocean activities, humpback whales 

have a special hunting method. This foraging behavior 

is called the bubble-net predation strategy. 

Humpback whales surround their prey when hunting. 

To describe this behavior, the mathematical model of 

the whale algorithm is formulated by (5), in which t is 

the current number of iterations; *( )X t  is the best 

whale position vector so far, and ( )X t  is a vector 

representing the current whale position. A and C are 

coefficients, and they can be obtained by (7) and (8), 

respectively. 
1
r  and 

2
r  are random numbers ranging in 

(0,1), a is the value that decreases linearly from 2 to 0, 

t represents the current number of iterations, and 
max
T  

is the maximum number of iterations. 

 | * ( ) ( ) |D CX t X t= −  (5) 

 ( 1) *( )X t X t AD+ = −  (6) 

 
1

2A ar a= −  (7) 

 
2

2C r=  (8) 

 
2

2

max

t
a

T
= −  (9) 

When searching for prey, the mathematical model is 

formulated by (10) and (11), in which 
rand

X  is a 

randomly selected whale position vector. 

 | ( ) |
rand

D CX X t= −  (10) 

 ( 1)
rand

X t X AD+ = −  (11) 

The algorithm considers that when A ≥ 1, a 
rand

X  is 

randomly selected, and the positions of other whales 

are updated according to the 
rand

X . This forces the 

whale to deviate from the prey and search for a more 

suitable prey. This strengthens the exploration 

capabilities of the algorithm so that the WOA 

algorithm can avoid local optima and perform a global 

search. 

WOA was typically used to optimize the selection of 

cluster head nodes to enable cluster routing approaches 

for better energy usage and longer lifetime in UWSNs 

[57-58]. WOA also had multi-objective versions [59] 

to balance multiple objectives for routing UWSNs or 

combined with other algorithms such as NN to further 

improve the performance of routing approaches for 

UWSNs [60]. 

5.3 Intelligent Routing Algorithm Based on 

Reinforcement Learning 

Unlike supervised learning relies on data with labels 

to train models for routing applications in our case, RL 

can be typically seen as a process in which a RL agent 

interacts with the environment in discrete time steps. In 

the sense that RL may use a small volume of labeled 

samples together with a large volume of samples 

without labels to enable routing applications, it also 

can be seen as a type of semi-supervised learning 

algorithms. 

RL requires searching between scenarios and 

appropriate decisions, and rewarding and punishing 

that search strategy based on feedback, similar to the 

way humans interact with the environment. The main 

body of RL is the agent. By interacting with the 

environment, the behavior is mapped to environmental 

feedback rewards. The agent continuously learns from 

environmental feedback and optimizes and corrects its 

own behavior through environmental rewards to adapt 

to maximize the return.  

At each time point t, the RL agent takes actions 

according to state 
t
s  and receives a feedback reward 

t
r . 

The goal of RL is to find a strategy ( )sπ . The strategy 

function is a mapping from state to action and can 

maximize decreasing rewards, where [0,1]k∈  is the 

reward discount factor. 

Q-learning is one of the main techniques commonly 

used in RL. Q-learning does not require an 

environment model and does not need to adjust its own 

structure. It can handle learning problems through 

random conversion and reward values. The process of 

Q-learning can be regarded as a Markov decision 

process (MDP). The current state of the agent and the 

selected behavior determine the fixed state transition 

probability distribution and the agent’s next state and 

instant rewards. 

The Q-function, as formulated by (12), is often used 

to predict the sum of the maximum decreasing rewards 

corresponding to state t and action 
t
s  observed at time 

t
a .  

 
1 1 * 1 1

( , )

( , ) ( , , ) ( , )
i

i i

i i s s i i i i i

Q s a

R s a P s a s Q s a

π

γ
+ ∈ + + +

=

+ Σ
 (12) 

In (12), ( , )
i i

R s a represents the reward obtained 

when the agent takes action 
i
a  in state 

i
s , 

1
( , , )

i i i
P s a s

+
 represents the probability of the agent 

transitioning to state 
i
s  when it takes action 

i
a  in state 

1i
s

+
, and 

* 1 1 1 1
( , ) ( , )

i i i i
Q s a maxQ s a

π+ + + +
=  represents the 

return value obtained when the agent takes action 
1i

a
+

 

in the next state 
1i

s
+

. Based on the above formula, the 

Q-value is updated by (13). 
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In the underwater acoustic sensor network, each data 

packet can become an agent; the current information of 

the sensor node includes the remaining energy of the 

node, the depth of the node and the information of 

neighbor nodes, which constitute the current state of 

the node. In the current state, a node forwarding a data 

packet to another node constitutes an act. After a node 

sends a data packet to one of its neighboring nodes, 

this node can obtain a return value, and both the 

sending node and the receiving node will be updated to 

the latest state. Based on this return value, the agent 

can make routing decisions in a certain scenario. In 

such a routing decision algorithm, each node can 

obtain necessary information such as the Q-value of 

the node and all its neighboring nodes through periodic 

broadcasts of the nodes in the network. Therefore, 

whenever a node needs to send a data packet, the agent 

can immediately make an optimal path choice while 

meeting the requirements of reducing energy 

consumption.  

Reference [61] proposed the DQELR, a routing 

protocol based on a deep Q-network that is adaptive to 

energy consumption and delay. DQELR used the Q-

value as the reward value for decision-making in 

certain scenarios. It extended the life of the network by 

selecting forwarding nodes with higher remaining 

energy, meanwhile reducing energy consumption and 

strictly limiting the communication delay.  

Reference [62] proposed an efficient routing 

protocol based on Q-learning over 3D underwater 

wireless sensor networks. In 3D underwater wireless 

sensor networks, magnetic induction communication is 

a promising choice due to several unique features, such 

as a small transmission delay, constant channel 

behavior and a sufficiently long communication range. 

The proposed routing protocol apply Q-learning to 

study resource management in hierarchical networks. 

By defining the single-hop reward metric of distance 

and energy, the update formula is derived, and the 

relationship between energy priority and distance 

priority is derived. An adjustment factor is set to adjust 

the ratio between energy savings and low latency, 

which can meet different needs. 

Reference [63] proposed DMARL, an efficient 

routing protocol based on multiagent RL for underwater 

optical wireless sensor networks (UOWSNs). UOWSNs 

have high transmission rate, ultrawideband nature and 

low latency, but limited energy resources caused by 

water movement and highly dynamic topology. It is 

challenging to provide low-consumption and reliable 

routing in UOWSNs. DMARL addressed this issue by 

modeling the whole network as a distributed multiagent 

system, and considering the remaining energy and link 

quality in the design of the routing protocol. It 

proposed two optimization strategies to accelerate the 

convergence of RL algorithms to improve the network 

adaptability and life time. 

Reference [64] proposed a distributed Q-learning 

game theory to route UWSNs. The proposed approach 

was based on RL and game theory was designed as a 

routing game model to provide an effective packet 

forwarding mechanism. The Q-learning game 

paradigm captured the dynamics of underwater sensor 

network systems in a decentralized and distributed 

manner. 

Reference [65] proposed a congestion avoidance 

routing protocol (RCAR) based on RL to avoid 

congestion meanwhile maintaining energy 

consumption in underwater acoustic sensor networks 

(UASNs). Since UASNs face many challenges such as 

energy saving, large propagation delay, high packet 

error rate, and low bandwidth, network congestion 

control, the traditional point-to-point congestion 

control algorithm cannot guarantee the best end-to-end 

performance. RCAR applied RL to converge the 

optimal routing path and explore the surface receiver 

hop by hop. A reward function was defined, 

considering both congestion and energy, to make 

appropriate routing decisions. To accelerate the 

convergence of the algorithm, a dynamic virtual 

routing pipe with a variable radius was introduced. 

Such pipe was related to the average remaining energy 

of the sending node. RCAR protocol also provided 

cross-layer information, and the MAC layer handshake 

was ensured in the information update method for the 

optimal routing decision. 

Reference [66] proposed an efficient protocol called 

MLProph based on machine learning for routing in 

opportunistic networks (OppNetS). Various factors 

such as the predictability value inherited from other 

routing schemes, node popularity, node power 

consumption, speed, and location are used to train 

models. MLProph overperformed PROPHET+, a 

probability-based OppNet routing protocol, in the 

number of successful deliveries, discarded messages, 

overhead, and hop count, but at the cost of a slight 

increase in buffer time and buffer occupancy.  

Reference [67] proposed CARMA, a multipath 

adaptive routing for UWSNs based on channel-aware 

RL. Routing solutions for multi-path UWSNs suffered 

from significant performance degradation due to their 

inability to adapt to the overwhelming dynamics of 

underwater environment. CARMA enabled multi-path 

adaptive routing based on channel-aware RL, and 

adaptively switched between single-path and multipath 

routing under the guidance of a distributed RL 

framework. It jointly optimized routing energy 

consumption and data packet transmission rate. The 

simulations and sea experiments demonstrated that 

CARMA presented higher performance than three 

other routing solutions. 
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Reference [28] focused on energy-saving and 

extending service life of underwater sensor networks. 

It proposed QELAR, a self-adaptive, energy-saving 

and life-cycle-aware routing protocol based on RL. 

OELAR used a general MAC protocol and aimed to 

extend the remaining energy distribution of sensor 

nodes more evenly throughout the lifetime of the 

network. The remaining energy of each node and the 

energy distribution between a group of nodes were 

used to calculate the reward function, which helped to 

select the appropriate transponder for the data packet. 

6 Challenges and Open Issues 

The methods that train the models driven by data for 

intelligent routing algorithm can be online or offline. 

Intelligent routing algorithms based on supervised 

learning generally adopt offline training methods, 

while models based on RL can be trained online in real 

environments or offline in simulation environments. 

For RL, online training can ensure the trained model to 

adapt to the changes in the network environment and 

avoid the difficulties and additional costs caused by the 

establishment of an offline simulation environment. 

However, the routing security and reliability problems 

brought by online training make it difficult to deploy 

intelligent routing algorithms that require online 

training in actual deployment. In fact, in the process of 

online RL, security is a problem that has been widely 

studied. 

Although data-driven intelligent routing approaches 

have been used in some scenarios of UWSNs, it is 

often difficult to obtain massive data to enable AI 

algorithms [68]. The experimental environment is also 

a big challenge for intelligent routing approaches in 

UWSNs [69]. Since real and large-scaled underwater 

environment is hard to establish, many underwater 

routing protocols are sticked in the simulation stage 

and never been experimentally verified. However, 

simulated environment simplifies real environment, 

some corner situations in real environment may never 

be verified in simulated environment.  

Security attack is also a concern in routing UWSNs 

[70]. As periodically replacement of sensor nodes is 

unaffordable in underwater environment, while 

wireless sensors in UWSNs have various restrictions 

such as battery and time delay, routing protocols in 

UWSNs are vulnerable to various attacks. The safety 

aspects of intelligent routing protocols should be taken 

account. Energy Consumption has been a hot research 

topic in sensor networks. As it is hard to replace the 

battery of sensor nodes in UWSNs, reducing the 

energy consumption of intelligent routing approach is 

the key to maintain the network life span. Accordingly, 

the intelligent routing protocols should consider the 

residual energy of each individual sensor node as well 

as the energy balance of the whole network. Time 

synchronization is also an issue that should be 

addressed for intelligent routing algorithms in large-

scaled UWSNs to improve the routing precision and 

energy consumption. Time synchronization is also the 

basis for the sensor nodes working together in UWSNs. 

7 Conclusion 

This paper has summarized the routing algorithms in 

UWSNs. Routing algorithms for UWSNs have been 

divided into two types: cross-layer based and non-

cross-layer based. While non-cross-layer based routing 

algorithms for UWSNs can be further grouped 

according to the mobility of sensor nodes, the energy 

efficiency, and the network delay, the cross-layer based 

can be further separated into two categories: intelligent 

routing algorithms and traditional cross-layer routing 

algorithms. While traditional cross-layer routing 

algorithms are clustered by their optimization 

objectives, intelligent cross-layer routing algorithms 

are grouped by the AI algorithms applied.  

Intelligent routing algorithms are mainly divided 

into three types: supervised learning based, the 

combination of evolutionary algorithms and supervised 

learning, and RL based. Classical RL and Q-learning 

are “environmentally friendly” since they enable the 

collaboration between algorithms and environment. 

They can automatically adapt to different routing 

application scenarios and optimize multiple network 

performance indicators. Intelligent routing algorithms 

based on supervised learning take the network state 

and the traffic matrix as the input and output the 

corresponding routing strategy, and supervised 

learning is used to obtain a training model. When the 

new data stream arrives, the appropriate routing path is 

output through the trained model. Intelligent routing 

algorithms are typically sensitive to environmental 

perception and have faster convergence speed. 

Intelligent routing algorithms based on evolutionary 

algorithms often combine evolutionary algorithms with 

supervised/reinforcement learning to search the best 

route for the optimization of some specific objectives. 

This paper also analyzed challenges and open issues in 

designing intelligent routing algorithms. 
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