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Abstract 

In order to prevent food shortage in the future, human 

kind must rely on aquafarming to compensate for 

shortage in marine resources. Our proposed scheme 

monitors water quality via the Internet of Things (IoT). 

Given that the survival rate of white shrimp is highly 

dependent on water quality, this study collects water 

quality-related data through the IoT sensors, including 

data on temperature, oxygen content, and more. The main 

goals of the proposed big data analysis include the 

following: (1) to analyze a variety of environmental 

factors of a culture pond and determine whether it is a 

suitable environment for culturing white shrimp, and (2) 

to analyze the correlation between a single environmental 

factor against other environmental factors. The above 

analysis should help aquafarmers examine whether a 

culture pond is suitable for culturing white shrimp; 

moreover, aquafarmers will also learn how to, when 

water quality deteriorates, adjust a single factor to 

improve the overall water quality. Experimental results 

indicate that the analysis performed can indeed 

effectively help us better understand the living 
environment of the white shrimp as well as how to adjust 

one single environmental factor in order to elevate the 

overall water quality. The results of this study will aid 

aquafarmers in obtaining a better grasp of the overall 

culture environment. With the water quality analysis and 

monitoring system to initiate relevant equipment, the 

livability of white shrimp has reached 37%, which is 

higher than that of general breeding approaches. The 

approach developed in this article can effectively reduce 

the waste of water resources and enhance the livability of 

white shrimp. 
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1 Introduction 

Changes in fishing industry resources has long been 

determined by climate and its fickleness due to the fact 

that changes in climate directly or indirectly result in 

changes in the oceanic environment. Currently, the 

aquafarming industry is facing several problems: (1) 

ageing population in aquafarming labor force; (2) the 

fact that most aquafarmers rely on experience and rules 

of thumb, leaving no record or teaching method behind; 

(3) drastic changes in water quality and temperature 

caused by climate change that in turn lead to low 

survival rate of white shrimp; and (4) the difficulty 

brought by demand for heavy manpower to care for 

water quality and farming of a high-priced aquatic 

product like the white shrimp. Islam et al. [1] 

mentioned that, despite the efforts made by many 

developing countries towards actively promoting fish 

farming, many areas are faced with declining 

productivity of aquatic products due to fish disease; 

hence, they are in need of better approaches to monitor 

water quality and analyze disease symptoms. Piplani et 

al. [2] discussed how, in India, more than 14.5 million 

fish farmers make their living through aquafarming; 

between 2014 and 2015, inland fisheries increased by 

7.9% and saw 5.5 billion US dollars input in foreign 

exchange. However, aquafarming calls for extensive 

care on factors such as the monitoring of weather, 

water quality, and fish feed; therefore, in order to 

achieve and make use of the best water quality 

environment, it becomes even more important to 

conduct big data analysis on environmental factors. 

Han et al. [3] raised discussion on the topic of 

gradually declining natural resources. China has long 

remained highly dependent on aquatic products as an 

essential source of protein. The Han’s research [3] 

investigates disease distribution of essential fish in 

China. Given the above, we can see how it is crucial in 

aquafarming to monitor water quality and select the 

suitable fish kind for culturing based on the water 

quality condition of a specific environment; it follows 

naturally that fish farmers must have a firm grasp of 

the environmental factors of their culture pond. 

Meanwhile, they must also be capable to utilize 

adjustments of a single factor to elevate water quality 

whenever there is change in environmental factors. 
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Lv et al. [4] examined how to access data from the 

IoT and store it. The study also takes a close look into 

how IoT data can satisfy the “5V” requirements of bid 

data – volume, velocity, variety, value, and veracity. 

The study also discusses confidentiality and privacy 

protection ; meanwhile, their study can benefit from its 

discussion on how to integrate IoT data and big data 

analysis to achieve the 5V when establishing our own 

scheme. On a different note, Xu et al. [5] employed 

hierarchical k-means for fast-speed processing of big 

data clustering while Jacobs and Bean [6] opted for 

spectral ensemble clustering and matrix computations 

to reduce computational complexity, which is hugely 

advantageous towards big data analysis. Ke et al. [7] 

focused on the tools needed for real-time analysis in 

big data analysis systems; factors that must be taken 

into consideration include expandability, flexibility of 

adjustment, and programming.  

In order to enhance the production rate of culturing 

white shrimp as well as help aquafarmers better deal 

with water quality, our study aims at investigating two 

target questions using big data analysis: (1) whether a 

culture environment is suitable for farming white 

shrimp, and (2) the impact of a single environmental 

factor on other environmental factors. Prior to running 

big data analysis, data cleaning must be completed; on 

this note, our study adopts Teager energy operator 

(TEO) [8] and adaptive threshold [9] for inaccurate 

data cleaning. Since environmental factors increase or 

decrease gradually, drastic change in signals indicate a 

problematic issue such as network transmission error; 

given the above, TEO can highlight an issue like 

drastic signal change while adaptive threshold removes 

signals with too drastic a change. Our study utilizes 

Gaussian distribution and fuzzy sets for environmental 

factor analysis of white shrimp. Our study divides 

environmental factors into five scales using a Likert 

scale [10]. If an environmental factor falls within the 

scale of 1, it is indication that the environment in 

question is not appropriate for culturing white shrimp, 

and aquafarmers will be advised to select a different 

fish kind for culturing. Moreover, our study adopts a 

multiple linear regression approach to analyze the 

impact a single environmental factor casts on other 

environmental factors; meanwhile, the analysis results 

help aquafarmers obtain better grasp of a single 

environmental factor to elevate the overall water 

quality. Our study creates an intelligent aquafarming 

platform that monitors environmental factors of a 

culture pond; the webpage platform also provides 

statement analysis. Experimental results show that our 

experiment environment suits white shrimp farming; 

additionally, the analysis results of the impact of a 

single environmental factor towards other factors can 

help aquafarmers learn how to use a single environmental 

factor to improve the overall environment. Our 

research facilitates production rate and water quality 

control, which increases farming profits and reduces 

labor costs. The suggested approach has proven the 

livability can be up to 37%. 

2 Related Works 

Fabregas et al. [11] proposed screening for shrimp 

diseases using an artificial intelligence-based approach. 

Shrimp are among the high-priced aquatic products, 

and yet white spot syndrome virus (WSSV) can affect 

shrimp production. Dabrowski et al. [12] established a 

water quality monitoring system that utilizes Bayesian 

wave filters to conduct water quality prediction, which 

informs of changes in water quality and helps prevent 

further deterioration in water quality. The error rate of 

this approach is roughly 11%. Meanwhile, Caparida et 

al. [13] offered real-time water quality monitoring that 

employs fuzzy logic to perform water quality evaluation 

and takes a step further to control surrounding 

equipment so as to optimize water quality condition. In 

Konovalov et al. [14], underwater recognition is used 

for measuring fish size; the study runs positioning of 

all areas in a culture pond and then uses that 

information to calculate distance and measure the size 

of fish. Wang et al. [15] suggested employing robotic 

fish to obtain visual data on water quality and fish 

energy, which facilitates in-depth exploration of water 

quality. On a different note, Jayanthi et al. [16] 

mentioned how India is seeing vast increase in 

aquafarming, especially with shrimp farming, but 

white spot syndrome virus (WSSV) is causing decline 

in shrimp production.  

Bharill et al. [17] focused on an Apache Spark 

system that features a clustering algorithm based on 

fuzzy logic. This proposed approach runs faster than 

other algorithms. Liu et al. [18] proposed using parallel 

fuzzy c-means for image recognition, which runs faster 

than the traditional fuzzy c-means approach. The 

proposed system in Liu et al. [18] is implemented on 

an Apache Spark system, enabling the function of 

parallel fuzzy c-mean processing. Meanwhile, Wu et al. 

[19] recommend the application of fuzzy algorithm 

towards big data for the purpose of clustering. Fuzzy 

algorithm can not only be effectively applied to 

different data analysis but also works with an Apache 

Spark system. Segatori et al. [20] suggested applying 

fuzzy decision trees towards big data analysis, which 

should facilitate the clustering of same-type data while 

allowing for expansion of the tree based on clustering 

needs. Małysiak-Mrozek et al. [21] examined the 

benefits adding fuzzy algorithm to big data analysis. 

Fuzzy algorithm offers flexibility of adjusting data 

range, which facilitates big data computational 

applications. 

Hu [22] designed an IoT-based monitoring 

aquafarming alarm system. Most aquafarming systems 

monitor only a single factor; in order to monitor 

dissolved oxygen content, Hu the proposed scheme 

must obtain sensor data on soil temperature, moisture, 
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atmospheric pressure, and CO2 concentration; moreover, 

it must detect these data every 3 minutes. The IoT 

detects multiple environmental factors to run analysis. 

Chen et al. [23] established a fish farm with automatic 

monitoring system. The acquired data is transmitted 

back to the remote server via ZigBee wireless sensors. 

The system monitors environmental factors of the 

culture pond while remaining real-time grasp and 

control of said factors, including temperature, oxygen 

content, pH level, and water level, all through the 

sensor modules and monitoring system. Rajeswari et al. 

[24] discussed aquafarming environment monitoring, 

including the monitoring of dissolved oxygen content 

in the water, temperature, and power consumption 

circumstances. When the main power source is cut off, 

the system activates a solar power battery, which 

prevents fish kills caused by lack of oxygen. In the 

method proposed by Vatrapu et al. [25], it is argued 

that traditional databases are incapable of storing large 

amounts of IoT data, which brings about the need for 

setting up cloud services for data storage and big data 

analysis. Chiang et al. [26] has proposed the method of 

water salinity difference detector, primarily controlling 

the real-time changes in the fish pool to avoid 

excessive salinity in the water, which causes the death 

of the fish. The Li et al. [27] suggests a way to predict 

oxygen levels because this factor is critical to culture 

ponds; accurately predicting the oxygen levels can 

increase the livability of the breeding species. 

3 The Proposed Scheme 

3.1 Subsection 

Figure 1 is an illustration of the intelligent 

aquafarming system proposed in this study. We have 

implemented intelligent aquafarming sensors by the 

culture ponds; the sensors are for salinity, temperature, 

oxygen content, pH level, and oxidation-reduction 

potential (ORP). To reduce the wasting of power, the 

sensors are only activated every 5 minutes. The 

proposed system transmits data via 4G networks, 

which ensures network quality and reduces packet loss. 

We have also established an IoT XMPP platform that 

stores data in the database via XML approach. The 

platform can present data in the form of charts and 

statements; it can even unify the format of IoT data and 

export it for normalization. This study proposes 

applying big data analysis to conduct further analysis 

of the IoT data and, from there, obtain understanding 

of the environmental conditions of the white shrimp 

culture ponds as well as the relationship between 

different environmental factors. 

 

Figure 1. System illustration 

3.2 Teager Energy Operator 

First of all, prior to running data analysis, the data 

must be cleaned and normalized. Since environmental 

factors of culture ponds increase or decrease only 

gradually, any data that exhibits harsher fluctuation 

must be filtered. This study applies TEO for 

calculation, excluding any data with that stands out for 

its fluctuation. As shown in Figure 2, the TEO 

computation is as follows: 

 ( ) ( ) ( ) ( )
2

1 1
s s s s

T D i D i D i D i⎡ ⎤ = − + ∗ −⎣ ⎦  (1) 

 

Figure 2. TEO curve diagram 

Here, ( )
s

D i  stands for the original data, s represents 

different sensors, i stands for sensor data i=1~n, and 

( )
s

T D i⎡ ⎤⎣ ⎦  is the result after TEO computation. 

3.3 Adaptive Threshold Computation 

When the system computes and obtains the TEO 

value, it will then compute the adaptive threshold (AT). 

If TEO is higher than AT, it indicates that the value is 

seeing great fluctuation; hence, the corresponding 

original data will be excluded. The computation is as 

follows: 

Step 1: For the initial value, let k=1, 

( ) ( )
k

s s
T i T D i⎡ ⎤= ⎣ ⎦ . 



1566 Journal of Internet Technology Volume 22 (2021) No.7 

 

Step 2: Define ( )
+1k

s
T n  as follows: 

 ( )
( ) ( ) ( )

( )

+1

,   

=

,

k k k

s s s
k

s
k

s

T i if T i E T n

T i

E T i otherwise

⎧ ⎫⎡ ⎤<
⎪ ⎣ ⎦⎪
⎨ ⎬

⎡ ⎤⎪ ⎪
⎣ ⎦⎩ ⎭

 (2) 

In which ( )
k

s
E T n⎡ ⎤
⎣ ⎦

 stands for the average of 

( )
k

s
T i . 

Step 3: Repeat Step 2 until 

( ) ( )
+1k k

s s
E T n E T n⎡ ⎤ ⎡ ⎤=
⎣ ⎦ ⎣ ⎦

, then stop the computation. 

( )
k

s
E T n⎡ ⎤
⎣ ⎦

 is AT. 

Step 4: Use AT to identify values with greater 

fluctuation, and then proceed to exclude them. The 

computation is as follows: 

 ( )
( ) ( ),   

=

,

s s

s

D i if T D i AT
D i

none otherwise

⎧ ⎫⎡ ⎤ <⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪⎩ ⎭

 (3) 

As shown in Figure 2, the red line represents the AT 

value. 

3.4 Evaluating the Environmental Factors for 

White Shrimp 

This study aims at analyzing whether the current 

farming environment is suitable for culturing white 

shrimp. This study applies multiple factors to compute 

whether at a certain given moment the environment is 

suitable for culturing white shrimp. The key 

environmental factors to watch include salinity, 

temperature, oxygen content, pH level, and ORP level. 

When it comes to these five environmental factors, 

each organism has its own range of adaption. Suppose 

the upper limit threshold is 
,u i

Thr  and set the lower 

limit to 
,l i

Thr . This study employs normal distribution 

to determine the probability value for each 

environmental factor to fall between 
,u i

Thr and 
,l i

Thr . 

The equation is as follows: 

 ( )( )
( )( )

2

2

1
; , exp

22

s
D i u

f D i u σ

σσ π

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (4) 

σ  stands for standard deviation, u stands for the 

mean value, and 2
σ  stands for the variance. Following 

the above, environmental factors at all times are input 

to a multiple factor fuzzy logic. This study employs 5 

scales for environment evaluation; the probability of 

100% is divided equally into 5 sets. However, taking 

environmental factors and dividing them into clear-cut 

sets will lead to problematic results such as “bad” 

environment or indeterminacy of adaptiveness. For 

instance, if the probability falls at 20%, then it is scale 

1; nevertheless, the system will deem the environment 

to be not adaptive. Therefore, this study employs fuzzy 

logic to help with determination while using Π-type 

membership function. Each scale is defined as shown 

in Figure 3, with ( ) ( )( )= ; ,
s s
P i f D i u σ . Next, the 

system computes data of each sensor and identifies 

which scale cluster the probability of that sensor will 

fall into. The equation is as follows: 

 

5

1

1

5, ( )

( ) , ( )  and ( )

1, ( )

s

s s j s j

s

P i PE

EF i j P i PE P i PE

P i PE

−

⎧ ⎫>=
⎪ ⎪

= < >⎨ ⎬
⎪ ⎪

<=⎩ ⎭

 (5) 

 

Figure 3. Determining the 5 scales of environmental 

factors 

Following the above, the system computes the rating 

of all environmental factors; if any environmental 

factor rates at scale 1, it is indication that that particular 

environmental factor is not suitable for culturing white 

shrimp and that environmental factor is given a rating 

of scale 1. The algorithm is as follows: 

 

Algorithm 1. Determine whether the body temperature 

and heart rate falls within the normal 

range. 

Algorithm for overall environmental rating 

if EFi >= Bisection then 

EP = E [EFi] 

else 

EP =rating of scale 1 

end if 

 

EP represents the result of overall environmental 

factor rating while [ ]iE EF  is the mean value of 
i

EF . 

3.5 Multiple Linear Regression Analysis 

This study first runs single linear regression to 

determine how the environmental factors affect each 

other; for instance, fish feed casts impact on the ORP 

value. The model for computing single linear 

regression is as follows: 

 ( ) ( )1s s
D n a bD n

−

= +  (6) 

Next, the system finds the value of a and b with the 

following equation: 
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 ( )
2

, 1 1( ) ( )
x x s s

S D n D n
− −

= −∑  (7) 

 ( )
2

, ( ) ( )
y y s s

S D n D n= −∑  (8) 

 ( )( ), 1 1( ) ( ) ( ) ( )
x y s s s s

S D n D n D n D n
− −

= − −∑  (9) 

( )1s
D n

−

 stands for the mean value of 
1
( )

s
D n

−

 while 

( )
s

D n  stands for the mean value of ( )
s

D n . Then, the 

system identifies the values of a and b using the 

following algorithm: 

 , 1( ) ( )
s t s

a D n bD n
−

= −  (10) 

 
,

,

x y

x x

S
b

S
=  (11) 

When the above is completed, the system proceeds 

to identify the correlation coefficient corr. When 

corr>0, it is considered positive linear correlation; 

when corr<0, it is considered negative linear 

correlation. The equation is as follows: 

 
,

, ,

x y

x x y y

S
corr

S S

=

⋅

 (12) 

The next step is to run multiple linear regression 

analysis to compute the correlation between multiple 

environmental factors. The equation is as follows: 

 ( ) ( )1

T

s s
D n b D n

−

=  (13) 

Finally, the system computes the optimal solution 

for T
b  and identifies the correlation coefficient. When 

corr>0, it is considered positive linear correlation; 

when corr<0, it is considered negative linear 

correlation. This linear regression algorithm can not 

only help with analysis of correlation between different 

environmental factors but also help us understand 

environmental changes caused by fish feed, which can 

serve useful for aquafarmers to control how much fish 

feed they should cast in order to maintain an adaptive 

water quality for the whiteleg shrimp. 

4 Experiment Results 

4.1 Intelligent Aquafarming Platform 

The intelligent aquafarming platform created in this 

study can be divided into two parts: (1) the IoT 

monitoring system, and (2) the intelligent aquafarming 

webpage platform. Figure 4 is an illustration of the IoT 

monitoring system; the sensors are for salinity, 

temperature, oxygen content, pH level, and ORP level. 

Our proposed IoT system is power efficient; it only 

activates every 5 minutes to run sensor detection. The 

IoT monitoring system utilizes 4G network for packet 

transmission and the sensor-detected data is sent back 

to the intelligent aquafarming platform. As shown in 

Figure 5, the intelligent aquafarming platform adopts 

XML format for data transmission; meanwhile, the 

intelligent aquafarming platform features chart and 

statement presentation with the function of outputting 

data. The proposed system provides charts and 

statements that offer a curve diagram view of 

environmental factor trends. 

 

Figure 4. IoT monitoring system 

 

Figure 5. Intelligent aquafarming platform
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4.2 Big Data Experimental Results 

This study includes over 15,000 entries of data on 

white shrimp; for determination of white shrimp 

environmental factors, the study analyzed data on 

overall environmental conditions dating from 

December 2018 to March 2019, as shown in Figure 6 

to Figure 9. Table 1 demonstrates the five scales to 

indicate the water quality. Experimental results show 

that the overall water quality dropped to below 0.2 in 

December 2018, which classified it as a scale 1 

environment that warranted subsequent procedures 

such as water relief and change of water. Afterwards, 

the water quality returned to the standard above scale 2. 

 

Figure 6. The mean value of overall environmental factors in December 2018 

 

Figure 7. The mean value of overall environmental factors in January 2019 

 

Figure 8. The mean value of overall environmental factors in February 2019 
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Figure 9. The mean value of overall environmental factors in March 2019 

Table 1. The definitions of the five water-quality Scale 

Five-scale Ranges Definition 

>0.9 Excellent 

0.7~0.9  Good 

0.5~0.7  Neutral 

0.25~0.5  Bad 

<0.25  Awful 

 

This study utilized big data analysis to effectively 

obtain knowledge on the overall conditions of an 

aquafarming environment. Next, this study used 

multiple linear regression analysis to examine the 

impact of a single environmental factor on other 

environmental factors. Figure 10 to Figure 14 illustrate 

experimental results on the impact of a single 

environmental factor on other environmental factors. 

Figure 10 shows the influence of dissolved oxygen on 

other environmental factors. It can be seen from the 

figure how dissolved oxygen bears negative correlation 

to all other environmental factors. Meanwhile, Figure 

11 exhibits how ORP affects other environmental 

factors. The figure illustrates ORP casting positive 

correlation to all other environmental factors with the 

exception of salinity. In Figure 12, we can see the 

impact of pH level on other environmental factors. As 

seen in the figure pH level exhibits positive correlation 

to ORP but little correlation to other factors. What 

Figure 13 demonstrates is the effect of salinity on other 

environmental factors; salinity only exhibits positive, 

low correlation towards ORP and dissolved oxygen 

while remaining low correlation to all other factors. 

Figure 14, on the other hand, demonstrates the effect of 

temperature on other environmental factors. 

Temperature shows positive correlation only to pH 

level and salinity; it bears low correlation to all other 

factors. 

 

Figure 10. The effect of dissolved oxygen on other environmental factors 
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Figure 11. The effect of ORP on other environmental factors 

 

Figure 12. The effect of pH level on other environmental factors 

 

Figure 13. The effect of salinity on other environmental factors 
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Figure 14. The effect of temperature on other environmental factors 

Table 2 shows the impact of each and every 

environmental factor on other environmental factors. 

We can see from the chart that ORP bears positive 

influence on all factors except for salinity; hence, we 

can conclude and confirm the importance of ORP to 

aquafarming. However, for traditional aquafarmers, in 

order to monitor ORP values, they must purchase water 

quality sensors and invest manpower for regular 

measurement-taking, which lead to increase in labor 

costs. With this in mind, this study designed the 

intelligent aquafarming platform so that it can 

automatically detect and monitor ORP values, 

effectively reducing labor costs while safeguarding the 

overall environmental condition of a culture pond. 

Table 2. The effect of each environmental factor on other environmental factors. 

Correlation T  Salt PH DO  ORP 

T None Modestly correlated Moderately correlated Modestly correlated Modestly correlated 

Salt Modestly correlated None Modestly correlated Modestly correlated Modestly correlated 

PH Modestly correlated Modestly correlated None Modestly correlated Highly correlated 

DO Modestly correlated Modestly correlated Modestly correlated None Modestly correlated 

ORP Highly correlated Modestly correlated Highly correlated Highly correlated None 

 

This study utilized multiple linear regression 

analysis to investigate the effect of each environmental 

factor towards other factors. When environmental 

factors are reduced, this allows aquafarmers to adjust a 

single environmental factor to the effect of improving 

the overall water quality. For instance, since ORP 

affects other factors, the aquafarmer can improve water 

quality by changing the water. Our proposed big data 

analysis can not only help aquafarmers maintain a firm 

grasp of whether a certain culture environment is 

suitable for farming white shrimp but also enable them 

to maintain a desirable living environment for white 

shrimp by adjusting a single factor. 

This research conducts the white shrimp experiment 

in the school’s culture pond. The pond capacity is 200 

tons. There are fifty thousand white shrimp larvae 

initially; four months later, the numbers of harvested 

white shrimp are 18,500, about 280 kilograms, and the 

average weight is 15 grams with an average length of 

14 centimeters. The overall breeding rate is about 37%. 

Figure 15 demonstrates the white shrimp larvae, and 

Figure 16 illustrates the length of the shrimp. 

Consequently, the research presents that the white 

shrimp livability has reached 37%, which is higher 

than that of other general breeding approaches. 

 

Figure 15. The length of the white shrimp 

 

Figure 16. The white shrimp larvae 



1572 Journal of Internet Technology Volume 22 (2021) No.7 

 

5 Conclusion 

The proposed scheme makes use of TEO and 

adaptive threshold to filter out inaccurate information; 

meanwhile, it applies Gaussian distribution and fuzzy 

algorithm to compute and determine environmental 

factors in white shrimp farming. Experimental results 

indicate that our proposed method can successfully 

monitor water quality conditions of the living 

environment of white shrimp; the results also confirm 

that our marine culture pond is suitable for farming 

white shrimp. Moreover, our research on the effect of a 

single environmental factor on other environmental 

factors can help aquafarmers learn about environmental 

factors through water quality monitoring. The 

experimental results can serve to help aquafarmers 

improve the overall water quality condition by 

adjusting a single environmental factor, in turn 

elevating the production rate and quality of their 

aquatic products. In the future, our proposed scheme 

can incorporate deep learning so that when the water 

quality condition approaches scale 2, the system is 

capable of determining which environmental factor is 

exhibiting abnormality before adjusting that single 

environmental factor to improve the overall water 

quality, eventually realizing the goal of intelligent 

automatic farming. 
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