
An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1457

An Augmented Load-Balancing Algorithm for

Task Scheduling in Cloud-Based Systems

Franck Seigneur Nininahazwe, Jian Shen, Micheal Ernest Taylor

School of Computer and Software, Nanjing University of Information Science and Technology, China

seigneurinuyasha777@yahoo.fr, s_shenjian@126.com, delen007@live.com*

*Corresponding Author: Franck Seigneur Nininahazwe; E-mail: seigneurinuyasha777@yahoo.fr

DOI: 10.53106/160792642021122207001

Abstract

Task scheduling in the cloud offers many advantages

to cloud providers and users, such as managing cloud

computing performances and maximizing resource

utilization. However, the load might not be balanced

among the multiple data centers leading to some servers

being overloaded while others are idle or barely working.

This paper proposes an augmented load-balancing

algorithm (ALA) inspired by particle location-based

search system and the Artificial Bee Colony’s (ABC)

memory mechanism. The search system is modified by

adding the best response time criterion, best path and a

data center level-based distribution system to ensure an

even load handling. In contrast with the ABC and Particle

Swarm Optimization (PSO) algorithms, the (ALA) takes

into account the number of virtual machines (VMs) per

host and the response time of each data center when

scheduling the given tasks. The proposed algorithm is

evaluated against other well-known techniques with a

different number of experiment using the designed

system model proposed. The experiments results show

that (ALA) distributed the load as equally as possible and

kept the system balanced having an improved response

time and processing time.

Keywords: Cloud computing, Artificial Bee Colony,

Particle Swarm Optimization, Load-balancing,

Data centers

1 Introduction

The National Institute of Standards and Technology

(NIST) defines cloud computing as: “A model for

enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider

interaction” [1].

The institute also defined 4 categories of cloud

computing. For public cloud, the full computing

infrastructures are situated in the buildings of the

enterprises that are providing different cloud services.

Companies or organizations with the same objective

use community cloud jointly (student community,

professional community). A private cloud is owned

and controlled by one company. Moreover, Hybrid

cloud uses both public and private clouds [1].

The cloud has four major services, Infrastructure as

a service offers you the possibility to rent

infrastructures such as servers maintained by a cloud

provider. Software as a service is a subscription-based

method that offers software over the internet. This

service uses host software, manage it and handle any

update or security patch. Platform as a service is a

development service that provides testing and deliver

mobile or web applications. Functions as a service

includes one more layer to PaaS. It allows developers

to upload working chunks of code that are intended to

be set off by a specific action. This service does not

use any of IaaS resources until the specified event

starts, which reduces the utilization fees [1].

Cloud computing has been gaining some popularity

over the last few years. Using it comes with many

advantages such as not having to buy and maintain

your own IT infrastructure, storage or networking but

instead pay for only what you use [2-4].

Cloud computing also comes with some

responsibilities, such as ensuring all user requirements

and services are met. This makes load balancing a

major task in cloud computing. It is a series of actions

that allows the load to be distributed equally among

many servers, nodes or VMs preventing other nodes

from being overloaded, under loaded or idle [2-4]. A

good load balancing technique ensures this. It helps

high traffic websites and enterprises achieve high

performances with lower costs and business steadiness.

The absence of one could lead to system overload and

an unsatisfied client.

Cloud load balancing benefits comes from the

scalable and global aspect of the cloud itself. An

Efficient load balancer can handle increased traffic and

redistribute it to different servers or networks. High-

performing client applications can work faster and

produce better performances. If a server or node fails,

the workload can be redistributed to other working

servers or nodes efficiently. It can be used by big and

1458 Journal of Internet Technology Volume 22 (2021) No.7

small businesses to balance the load across several

cloud resources [2-7].

Load balancing techniques are far from perfect.

Some challenges need to be addressed, such as

maintaining the system’s stability while increasing its

performance, decreasing the execution time of the

given tasks, and improving the load balancing

technique’s response time. Efficient resource

utilization and other challenges that are being

addressed by researchers [1-7].

The solution to load balancing issues is a better task

scheduling algorithm. There are many types of load-

balancing techniques which are generally grouped

based on system state [1] or process initiation [5]. The

System state-based algorithms classification is

discussed further later.

The focus of this work is to design an augmented

load-balancing algorithm that combines the search

system of the Particle Swarm Optimization with the

memory mechanism of Artificial Bee Colony. The

response time of each datacenter is added in the search

system allowing optimized searching for the most

suitable to process the request, compute the best path

and schedule the tasks by considering how many

available VMs per host at given. A well-balanced

system is designed to enable equal distribution of tasks

among multiple VMs and processes. Based on in-depth

research, this work has not been done. Unlike most

researchers in the field, this work improves the

servicing time and the degree of imbalance of the

system. It focuses on the response time, resources

usage and the standard deviation of the servicing time.

2 Related Work

Allocation of tasks in an even manner is a huge

problem in cloud computing. Being able to distribute

tasks properly means resources are properly used. A

good task scheduling algorithm should be involved to

solve this issue of which many solutions have been

proposed. The focus of this work is on state based

load-balancing algorithms.

Authors in [8] propose a task scheduling technique

inspired by ant colony concentrating on the

infrastructure as a service. Simulations performed

using CloudSim prove that the scheduler performs

better than algorithms based on random assignments

and genetics. However, the main issue is that it was

compared with only those two. M. Junaid et al. [9]

propose a hybrid model that classifies the files

available in the cloud-based on their format. They used

Support Vector Machine (SVM) to classify files

according to their format such as video, images and

audio in the cloud. The grouping is then fed into Ant

Colony Optimization (ACO) using File Type

Formatting (FTF) for greater load-balancing in the

cloud.

Walaa Hashem et al. [10] and Dhinesh Babu et al.

[11] propose an improved algorithm based on the

honey bee. After the experiments, their algorithms

perform better than well-known algorithms of the same

category such as ABC and ACO. L. Shen et al. [12]

suggest an optimized ABC inspired algorithm to boost

the overall load-balancing execution and realize greater

adaptivity. However, their algorithm was only

compared with two other type of ABC algorithms.

Akash Dave et al. [13] proposed a technique based

on PSO in order to balance the load on Xen servers.

They used the original PSO and only made the

comparison with a single algorithm. Jigna Acharya et

al. [14] proposed another algorithm based on PSO but

tried to reduce the amount of time it took to complete a

set of tasks. They only tested the makespan of their

algorithm and only against the First Come First Served

(FCFS) algorithm.

Thanh Tung Khuat et al. [15] proposed a hybrid

technique of ABC and PSO in order to solve effort

estimation using agile methodologies in software

projects. The results show that their method

outperformed ABC and PSO. Abraham Kiran Joseph et

al. [16] introduce a hybrid technique of ABC and PSO

but for test case optimization. Noosheen Baktash et al.

[17] worked on a hybrid ABC and PSO task scheduling

technique for optimization in a dynamic environment

which proved to perform better against algorithms like

Multi Quantum Swarm Optimization (mQSO) and

Resampling Particle Swarm Optimization (RPSO).

Their focus was on offline errors. S.G. Domanal et al.

[18] developed a hybrid bio-inspired technique that

combines a modified PSO plus a modified Cat Swarm

Optimization (CSO) for task allocation and resource

management in cloud environments. A.F.S. Devaraj et

al. [19] propose a hybrid algorithm of firefly and

Improved Multi-Objective Particle Swarm Optimization

(IMPSO). The firefly algorithm is used to reduce the

search space while the IMPSO identifies the enhanced

response. The results are very promising.

Chukiat Worasucheep [20] introduces a hybrid ABC

task scheduling technique with differential evolution.

The outcome shows that it operates better than the

original ABC and the original Opposition based

Differential Evolution algorithm (ODE). FAN Chengli

et al. [21] suggest a hybrid ABC technique with

memory mechanism and fluctuating neighborhood

search which seems to perform quite well for the

benchmark functions they considered.

Nikhit Pawed et al. [22] suggested a mixture of

ACO and ABC with dynamic feedback for resource

usage. Its performance were excellent compared to

existing ACO and ABC. Although their algorithm

performed well, it was compared with only ABC and

ACO.

M.A. Shahid et al. [23] suggest a novel technique

that employs fault tolerance for task scheduling in the

cloud computing environment after concluding that

most load balancing techniques do not consider fault

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1459

tolerance issues. Nevertheless, their proposed

algorithm is only theoretical and they do not offer any

experimentation.

S. Velliangiri et al. [24] suggest a hybrid electro

search with a genetic algorithm (GA) to enhance the

behavior of load balancing techniques by considering

variables such as makespan and resource utilization.

Their algorithm exceeds current algorithms such as GA

and ACO.

H. Yong et al. [25] introduce a chaotic algorithm

with the artificial firefly technique and a task

scheduling optimization strategy founded on that same

algorithm. Their algorithm seems more suitable for

solving large-scale task scheduling problems in cloud-

fog network in comparison to other task scheduling

algorithms.

The main contribution of this work will be optimum

scheduling, load-balancing, servicing time and

response time that leads to better resource utilization

and a more stable system.

2.1 Background

In this section, the background of cloud computing

technology related to this work is presented. However,

there are several categories of load balancing. The

focus is inclined to the category of this paper’s

augmented load-balancing algorithm.

2.1.1 Load-Balancing Algorithms Classification

As mentioned earlier, this work focuses primarily on

system state-based load-balancing. The System state-

based load-balancing techniques can be classified into

two major groups, namely static and dynamic

algorithms [14]. The most known ones are compared in

Table 1.

Table 1. Main algorithms comparison

Algorithms Advantages Disadvantages

Round Robin

Simple technique and the focus is on fairness.

Works in circular manner.

Fast when dealing with equal load distribution.

No starvation.

Not adaptive and scalable.

Some node maybe overloaded while others are idle.

Do not register the previous node state.

Min-Min
Fast and simple.

Made for small tasks.

Prioritize small tasks.

Larger tasks will wait in queue for a long time.

Does not consider the current node load.

Min-Max
Simple technique.

Smaller tasks are run concurrently.

Prioritize larger tasks.

Smaller tasks will wait longer.

Poor task scheduling.

ABC

Self-coordinating and inspired from nature.

Bigger system size will increase performance.

Made for heterogeneous environments.

Throughput does not increase with more resources.

Throttled Load-

Balancing

Keeps a list of VMs and their state.

Satisfying performance.

Starts by scanning the entire list of VMs.

Current VM load does not matter.

ACO
Under loaded nodes are identified from the get go.

Not centralized.

Network overhead issues.

Delay when moving through the network.

PSO
Simple implementation.

Can be robust.

Memory.

Can converge prematurely.

‧ Static algorithms are suitable for stable and

homogenous environments. Static techniques are not

adaptive. They do not check the state of the previous

node while distributing tasks. Static load-balancing

algorithms presents three main techniques: round

robin, min-min, min-max.

‧ Dynamic algorithms are good for heterogeneous

environment. They are flexible and tasks assignment

is computed according to the actual state of the

different nodes. It makes them more complex. They

can be implemented in a distributed system or non-

distributed ones. There are several dynamic

algorithms out there. They are created and improved

upon regularly such as: ABC, ACO, PSO and

throttled load-balancing.

Hybrid algorithms that combine two or more

algorithms from the same category or from the two

different categories also exist [26]. They usually

perform better due to the inheritance of the advantages

of other involved algorithms.

2.1.2 Nature-Based Load-Balancing Techniques

In cloud computing, many of the techniques used for

dynamic load-balancing are inspired from nature by

studying the behavior of animals. Figure 1 presents

some of the most known nature inspired task

scheduling algorithms.

There are several nature-based techniques but this

work focuses on two well-known swarm algorithms

(ABC and PSO). These algorithms were chosen based

on their working schemes and procedures that are

functional and corresponds to how the (ALA) functions.

The augmented load-balancing algorithm functions

1460 Journal of Internet Technology Volume 22 (2021) No.7

Figure 1. Nature inspired load-balancing techniques

better in terms of servicing time and improves load

distribution among multiple VMs.

‧ ABC (Artificial Bee Colony): ABC is founded on

the foraging system of honey bees’ colony. It is

composed of three distinct type of bees: scout bees,

employed bees and onlooker bees [20]. In the

initialization phase, the standard ABC algorithm

randomly set up an original population of food

sources. Let 1 2{ , , ..., }n
i i i i

B b b b= represent the th
i

food source, at that point the location of food

sources are computed. Each employed bee
i

X go to

the different food sources in the same area, collect

information and then return to the hive. That

knowledge is shared with the onlooker bees by

carrying out dances. Onlooker bees determine the

food source relying upon that information and

computing the odds [5]. Each food source
i

B is

given a control criterion, which store the number of

unsuccessful trials. If a food source cannot be

enhanced within
i

trial ,
i

B will be forgotten and the

employed bees transformed into scout bees [27]. At

the same time, a new food source will be randomly

produced [28]. The ABC algorithm has the

advantages of doing exploitation and exploration

and has a fast convergence and possesses few

control parameters [29].

‧ PSO (Particle Swarm Optimization): PSO is a

population-related optimization technique where the

system is initiated along with a population of

randomized particles. The algorithm then looks for

the general best position by revising each particles

best position [2]. Every particle in this algorithm

symbolizes a bird matching a solution, and its fitness

possesses a value measured by a fitness function

[14]. Particles use velocity to help them navigate in

the exploration zone [15]. Assume that the

exploration area is D-dimensional. The location of

the th
i particle could be depicted by a D-dimensional

vector
1

{ , ..., },
i i iD
y y y= while the pace or velocity

of the same particle could be defined as
i

V =

1
{ , ..., }

i iD
v v [17]. Every particle looks for the

highest relevant solution within the exploration area

by revising its position along with its velocity

records. The advantage of this algorithm is that it

checks all the VMs to find the fittest. The fittest will

be the one that wastes the least the memory [29].

2.1.3 Problem Statement

With the large number of tasks that need to be

scheduled in cloud environments, issues of deviation

for VM response and task processing arise, impeding

the effectiveness of cloud computing systems causing

these systems to be overloaded, idle or under loaded.

The inefficiency of these systems and their inability to

respond and process client requests taunt its use.

Several Load balancing techniques have been proposed

in the literature to resolve these impending issues.

These imbalances in response and servicing time of

client request further ignites fluctuations issues in these

systems amounting to huge differences between the

average, minimum, maximum response and processing

time. Furthermore, overloaded VMs cause incoming

client requests to be queued for a longer period before

being processed. Response time and processing time

are significant issues of task scheduling in cloud

computing that cannot be overlooked.

2.1.4 Main Contribution

In this research, an augmented load-balancing

algorithm is proposed for scheduling tasks in a cloud

system. Hence, the contributions are as follows:

‧ Datacenters response time is used as the first factor

to find the best datacenter. PSO particles are then

used to find the best path from each region using

how much time it would take to get there.

‧ ABC memory mechanism is used to memorize the

best path to the chosen datacenter.

‧ The VMs/Host list is gotten from the concerned

datacenter, which is used to schedule the incoming

tasks evenly.

‧ The efficacy of the proposed algorithm is

demonstrated as the response time and servicing

time are enhanced with more balance and

consistency in the system.

3 Proposed Augmented Load-Balancing

Algorithm (ALA)

In this section, the goals of the proposed augmented

algorithm and a detailed description of the algorithm

are presented.

3.1 Methodology

This work approach task scheduling in a different

manner. The tasks have to be scheduled in an even

manner to keep the system balanced and improve the

servicing time of different operations. Hence a

combination of the PSO search system and ABC

memory mechanism is used. The datacenters are

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1461

chosen as if they were a food source. To choose the

best existing source, the response time of each

datacenter is computed, the particles are then used to

find the best route to get to that datacenter taking a

lesser time. Once the path has been chosen the ABC

memory mechanism is used while the route stays the

same unless a datacenter with a better response time is

found. At that point a list of VMs hosted by different

physical machines in the datacenter is given. The list is

used so that different tasks can be scheduled to

different VMs and hosts evenly. The number of used

VMs depends largely on the number of tasks received.

The overview steps of the proposed algorithm are

presented in Figure 2. Further details are given in the

algorithm description.

Figure 2. Algorithm overview steps

The methodology of this algorithm has been

formulated in a manner to satisfy the following

objectives:

‧ Reduce response time: the response time represents

the time it takes for a user-base to send a request to a

datacenter and receive a response. The response time

should not change massively regardless of the

location of the user-base.

‧ Reduce processing time: the processing time

defines the time it takes for a VM to receive a task to

the moment of its completion. The processing time

of the same type of tasks should be similar.

‧ Consistency: consistency is defined as the system’s

ability to maintain almost the same computation

time from light, medium to heavy load and not

deviate but work the same way in different

datacenters. To measure the system consistency the

degree of imbalance and standard deviation that are

well-known statistic measurements are used.

This research has some limitations. The users do not

have different hardware or internet broadband. The

tasks differ in size and not in composition. It is a

scenario-based simulation and does not take into

account the unpredictability of real life events.

3.1.1 Algorithm Description

The proposed augmented algorithm draws

inspiration from the PSO search and ABC memory

mechanisms and proposes a different method of

scheduling tasks. The response time of each datacenter

is added to enhance the search session. It is used as an

indication of the destination for the search session. A

well-defined position for each one and the local best

position to get the best path to the selected datacenter is

used. Every path taken will be memorized until a better

one is found. The tasks are then distributed to the VMs

in the datacenter in an even manner after the VMs list

per host is received. A detailed pseudo-code of the

algorithm is presented in Figure 3.

The algorithm has 4 phases as explained below.

‧First phase

This is the initialization phase, every particle, VM,

host, datacenter and user-base are initialized. All

components of the system are preconfigured and

settings does not change.

‧Second phase

The response time of each data center is computed

in order to determine the fastest depending on the

different regions.

d d

RT TST RRT= − (1)

Where RT represents the response time, RST is the

request submission time, RRT is the request reaction

time and d represents the datacenter. The algorithm

also checks the different attributes of the datacenters to

measure their performances. If the response time

achieved by a chosen datacenter deteriorate during the

run of the algorithm, a better datacenter will be chosen

by computing again the least response time for the

concerned user-base or region.

‧Third phase

Each employed bee is replaced by particles that will

be in charge of finding the best path to a given

datacenter. Their position and velocity are updated

after each sequence to make sure that no better path

has opened up. The following equations are used.

1 1 2

* * 1*()

* 2*()

i i i i

i i

v W v c rd Pb x c

rd Gb x

+
= + − +

−

 (2)

1 1i i i

p p v
+ +
= + (3)

Where
i
v is used to obtain the velocity of th

i particle,

i
p the position of that same particle and i is its index.

The constant W is the inertia weight and is used to

1462 Journal of Internet Technology Volume 22 (2021) No.7

Figure 3. Algorithm pseudo-code

balance the local and global search capabilities. c1 and

c2 are the coefficients of acceleration that each particle

can take per iteration. rd1, rd2 represent two random

figures that reside between (0, 1). Pb is used as the best

position of the said particle while Gb is the best

position of the entire swarm. The finest position in a

neighborhood is the local best position (lbest) for a

given region, which leads to the best datacenter

available for that region.
i
x is the current particle

position. The particles best position and local best

position are updated if necessary using a fitness

function (ft). The fittest particles indicate the best path

to a given datacenter. The local best position that leads

to the best path to a given datacenter is memorized

using onlooker bees memory mechanism and can only

change if a better path is found.

0

()
tn t

ft x x x= − (4)

Where represents the departure time of an x

particle and represents the arrival time.

 () ()if ft Pb ft lbest lbest Pb< → = (5)

 () ()
i i

if ft p ft Pb Pb p< → = (6)

Different user-bases from the same region or a

single user-base might send tasks to different

datacenters simultaneously if the two datacenters have

quick response time and both paths are just about alike.

‧Fourth phase

At the datacenter level, the list of VMs hosted by the

physical machines (hosts) is produced allowing the

number of incoming tasks to be evenly allocated. A

quick operation is made to ensure an even distribution

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1463

of tasks.

 (|) 0tasks mod VMs Hosts = (7)

If the result is not 0 the remaining task(s) are given

to the first host with a VM with the least allocations. If

there are other incoming tasks, they will also be

allocated to VMs with less task’s allocations than the

others. If all available VMs are not allocated, then the

new tasks are allocated to those. After completion of a

task, the status of concerned VMs/Host is updated. A

complete system check is done for more user requests.

If there is, it then returns to the second phase and

continues the process. If all the requests have been

processed then it terminates.

The next section talks about the implementation and

test of ALA compared to different other algorithms, the

simulation setup, the libraries used and the different

scenarios and why they were chosen. Finally, the

results and their corresponding analysis are presented.

4 Performance Evaluation

4.1 Simulation Setup

To assess the performance of the proposed

augmented algorithm (ALA), a simulation model is

created using the CloudSim and CloudAnalyst libraries

(CloudSim based library). The library is implemented

in eclipse with JDK 8 on a computer with windows 10.

The computer runs on a RAM of 16 GB with a six core

processor Intel i7-8750H at a base clock speed of 2.20

GHz. To validate the performances of the algorithm, a

simulation of 1 hour (1H), 1 day (1D) and 3 days (3D)

of continuous cloud task scheduling is conducted. One

hour is chosen as a minimum and it is noted that at that

point lightweight load is handled. One day of

continuous tasks scheduling represents a medium load.

Three days were chosen to ascertain a change in the

load handling after a couple of days when the load is

heavy.

CloudSim is one of the best tools to implement the

provided techniques and can be extended quite easily

with programming knowledge. It is an expandable

simulation library that enables simulation and

modeling of Cloud computing applications and

systems. A system model is designed based on the

libraries of CloudSim to enable experimentation.

This design is inspired by the work of authors in [8],

[10], and [22] in cloud computing which was used to

design this system. Figure 4 shows a detailed map of

the simulation model. There are 12 user-bases (UB)

and four datacenters (DC). UB1 and UB12 are in North

America with DC1 (Region 0), UB11 and UB2 are in

South America with DC2 (Region 1), UB10 and UB3

are in Europe (Region 2), Ub9 and UB4 are in Asia

with DC3 (Region 3), UB8 and UB5 are in Africa with

DC4 (Region 4), and finally UB6 and Ub7 are in

Oceania (Region 5). Each datacenter has several

physical machines (PMs) which support the different

VMs.

Figure 4. Simulation model

1464 Journal of Internet Technology Volume 22 (2021) No.7

As in Figure 4, the system comprises three main

parts: the user-bases, the load balancer and the

datacenters.

‧ The user-bases are composed of several users to

generate requests continuously to complete the

simulation runtime. Their requests are sent to the

internet via the nearest router. Each user-base has 10

simultaneous users.

‧ The load balancer receives the incoming requests

from different user-bases via the router connecting

the load balancer to the internet. It’s responsible for

distributing the afore-mentioned tasks among the

several datacenters and also makes sure of system

stability and balance. Load balancing algorithms

with memory options such as the best PM, VM, and

most requested task, will use the cache to store that

information so they can be accessed quickly during

the next iteration.

‧ The datacenters are in charge of processing every

single task which comes through the core switch.

The PMs are responsible of hosting the different

VMs and will be used to process the different tasks

are located there. Each VM in the system can handle

a threshold of 10 simultaneous tasks.

Table 2 shows the datacenters different properties

such as the Operating System (OS), Virtual Machine

Manager (VMM), number of VMs (N° VMs), the

bandwidth (BW), the number of physical machines

(PMs) and so on. It also indicates that the four

datacenters do not have the same capabilities and

cannot handle the same number of tasks.

Table 2. Datacenters configuration

Datacenters DC1 DC2 DC3 DC4

Region ID 0 1 3 4

OS Linux Linux Linux Linux

VMM Xen Xen Xen Xen

BW (Mbit/s) 3000 2000 4000 3500

N° PMs 15 5 17 12

N° VMs 30 10 35 25

Memory (GB) 32 24 32 16

Storage (TB) 6 4 5 6

N° Processor/PM 4 4 6 5

Processors Speed

(GHz)
3 2.6 2.5 2.7

VM Policy
Time

Shared

Time

Shared

Time

Shared

Time

Shared

In Table 3, the user-bases general configurations

were used. Each user-base has a different number of

users’ requests they can send. At the end of an hour of

continuous task scheduling a total of 421 563 tasks are

handled, after one day it is 15 220 871 tasks and finally

after three days it is 35 373 935 tasks. The system will

have to handle a continually increasing number of

tasks and it will be the responsibility of the chosen

balancing techniques to correctly schedule them.

In Table 3, Avg USR/HR represents the average

number of users per hour, RQST/USR/HR represents

the number of requests per user per hour and DT

SZE/RQST represents data size per request.

Table 3. User-Bases configuration

User-Base Region
Avg

USR/HR

RQST

/USR/HR

DT SZ/RQST

(KB)

UB1 0 200 360 1000

UB2 1 100 260 500

UB3 2 150 200 1000

UB4 3 300 400 2000

UB5 4 100 100 1500

UB6 5 50 50 300

UB7 5 70 350 400

UB8 4 150 300 2000

UB9 3 250 60 3000

UB10 2 170 160 1800

UB11 1 110 230 2300

UB12 0 190 120 2200

4.2 Results and Discussion

To decide the efficiency of the proposed algorithm,

analysis of several effects from the response time, the

processing time to the resources usage, degree of

imbalance and standard deviation are considered. A

comparison of ALA against a set of algorithms namely

ABC, PSO, TLB (threshold load balancer), ACO, and

SJF (short job first) was made and results were

analyzed.

4.2.1 Response Time Analysis

As mentioned before, the response time is when it

takes for a user-base to send a request and the

datacenter to respond. In the first experiment, different

algorithms’ response time was computed and results

were given in milliseconds. Figure 5 illustrates the

minimum (Min), maximum (Max), and average (Avg)

overall response time after simulating one hour, one

day and three days of continuous task scheduling.

In Figure 5, the response time of the different

algorithms was compared. It can be seen that, the

proposed augmented algorithm (ALA) performs better

and has a low minimum, maximum and average

response time. ACO and TLB average response time

are closest to that of ALA but the ACO maximum time

increase when it gets to one day and three days. This

increase results from ACO having issues when moving

through the network. If the load becomes increasingly

heavy, it causes the response time to increase in some

cases. The maximum response times for ABC and PSO

are high throughout the experiments. Their average is

low but does not defeat ALA’s. The SJF algorithm did

better with the maximum response time for one day

and three days, but ALA maintained a better average

response time. The minimum response time of the

algorithms is low and the differences are small.

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1465

Figure 5. Minimum maximum and average overall response time (ms) after

(a) 1 Hour (b) 1 Day and (c) 3 Days of continuous task scheduling

Figure 6. Minimum maximum and average overall processing time (ms) after

(a) 1 Hour (b) 1 Day and (c) 3 Days of continuous task scheduling

4.2.2 Processing Time Analysis

In this section, the processing time in milliseconds

of the algorithms is the time it takes for each task to be

completed. In Figure 6, the minimum, maximum and

average (Avg) servicing time of the system and then in

Figure 7 the average processing time achieved by the

four datacenters are presented.

In Figure 6, it can be concluded that ALA performs

better than the others. However, the minimum

processing time is higher than the rest for one day and

three days of experiments. It results from the reduction

in the minimum for the other algorithms while ALA

minimum stays the same. The average processing time

of the proposed algorithm is better than the ACO, TLB

and other algorithms compared, as shown in Figure 7.

The ACO maximum processing time increases after

one day due to network overhead that the algorithm

suffers from. The proposed algorithm and SJF

managed a low maximum time but the proposed

1466 Journal of Internet Technology Volume 22 (2021) No.7

algorithm performed much better. The proposed

algorithm (ALA) maintained a low minimum,

maximum and average processing time compared to

the rest and kept those times consistent throughout the

experiments.

Figure 7. Average processing time (ms) of each datacenter after

(a) 1 Hour (b) 1 Day and (c) 3 Days of continuous task scheduling

4.2.3 System Consistency Analysis

‧Resource Utilization

Throughout the experiments, the algorithms were

expected to behave differently. Therefore, in Figure 8

and Figure 9 an analysis and comparison of how many

VMs have been used after each experiment by the

algorithms are conducted. The number of tasks that

was assigned to each datacenter is also analyzed.

Figure 8. Number of VMs used at each datacenter after

(a) 1 Hour (b) 1 Day and (c) 3 Days of constant task scheduling

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1467

Figure 9. Number of tasks handled by each datacenter after

(a) 1 Hour (b) 1 Day and (c) 3 Days of constant task scheduling

It is clear in Figure 8 that not all algorithms work the

same way and use the same number of VMs. For ABC,

though it chooses a food source (VM) and only

changes it if it deteriorates, it leads to the usage of a

limited number of VMs. A new VM will be used only

if the one at work is busy or has a problem. The same

issues occur with the PSO algorithm. Although it

checks every VM, it only allocates tasks to the number

of VMs which are considered as being the solution.

Since allocating tasks evenly among the VMs is the

goal, the proposed algorithm will use all the VMs at its

disposition to enhance the processing time and keep

the maximum processing time low. The ACO

algorithm uses also all the available VMs since the ants

will park the whole network allocating and re-

allocating tasks but is slowed down by the backward

and forward movements of the ants. For the SJF

algorithm, since it deals with short jobs first, it means

it may not have the opportunity to use all of the

available VMs. In the end, only TLB, ACO and the

proposed algorithm (ALA) managed to use all the

available VMs.

In Figure 9, it can be seen that none of the

algorithms distribute the load equally to the different

datacenters and that would be an unrealistic goal since

they are dispatched to different regions and have

different configurations. However, it can also be seen

that ALA reduces the load on the DC1 and share it

with DC3 and DC4 the two next most capable DCs.

Where a task goes not only depend on the performance

of the DC, the region UB it’s in but also the response

time of said DC. Considering all those factors it can be

said that our algorithm distributes the load in a more

efficient way.

‧ Degree of Imbalance

Figure 10 shows the Degree of Imbalance (DI) for

the different techniques. The degree of imbalance

computes the unevenness amongst the multiple VMs in

a given datacenter. The smaller the measurement of the

DI the better because it indicates that the load of the

system is better balanced and that the scheduler is more

efficient.

Figure 10. Overall degree of imbalance after 1 Hour 1

Day and 3 Days of constant task scheduling

 {() / }max min avgDI pt pt pt= − (8)

Where ,
max

pt ,
min

pt and
avg

pt are the maximum,

minimum and average processing time of VMs in

datacenter respectively.

Due to the process of scheduling incoming tasks

evenly among the available VMs and choosing the best

datacenter for each region, ALA produces a low degree

of imbalance not only in the overall system but also

with each data center and does so with the low,

1468 Journal of Internet Technology Volume 22 (2021) No.7

medium and a large number of tasks, like it can be seen

in Figure 10 and Figure 11. The ABC, PSO and TLB

algorithms produce a fluctuating degree of imbalance,

as shown in Figure 11. The difference is most likely

due to the amount of load that is being handle and the

fact that they do not use all the available VMs, leading

to some overloading and an increase in processing time.

For ACO, it is about the same issue but the network

overhead it is known for does not help. For TLB the

fact that it has high maximum processing time means it

will not have a good degree of imbalance. The SJF

algorithm managed the second best degree of

imbalance throughout the experiments. Some

datacenters will still be able to handle any load

depending on their performances but the efficacy of

each algorithm will stay very important.

Figure 11. Degree of imbalance of each datacenter after

(a) 1 Hour (b) 1 Day and (c) 3 Days of constant task scheduling

‧ Standard Deviation

In Figure 12, a computation of standard deviation is

presented. The standard deviation is used to compute

the degree of variation or scattering of an array of

values. A small standard deviation demonstrates that

the figures are inclined to gravitate around the value of

the mean of a given set. But on the other hand, a big

standard deviation demonstrates that the figures are

stretched out upon a broader range.

 2()2 /
i
x Nσ μ= Σ − (9)

Where N represents the number of datacenters,
i
x

each datacenter value, and µ the mean value.

The standard deviation of ALA is not only low but

also better than the other algorithms. ACO manages the

second best values which proves that although its

maximum processing time increases, most values are

close to the mean. It is the same thing for the TLB

algorithm although it is slightly higher than the ACO

one. ABC although not that low still performs well. On

the other hand, PSO has a bad standard deviation and

the cause of that is most certainly the fact that the

algorithm can sometimes fall into false solutions

leading to an increase in processing time and the

scattering of the values. SJF has the second worst

standard deviation, most likely due to how it treats

different size tasks. It can then be concluded that ALA

achieves better performances in this given situation as

seen in Figure 12.

Figure 12. Standard deviation after 1 Hour 1 Day and

3 Days of constant task scheduling

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1469

4.2.4 Discussion

The augmented load balancing algorithm (ALA) for

task scheduling inspired by the PSO search system and

ABC memory mechanism has proven efficient. It

added the response time in the search criteria to find

the most suitable datacenter for each region and the

shortest path to get there improving the requests

response time. Generating a list of VMs per host from

the chosen datacenter and scheduling tasks evenly

enhanced the processing time and system consistency.

In the experiments above many factors from the

response time to the system consistency using a

different number of tasks sent constantly for 1 hour,

one day and three days have been evaluated. However,

it was not perfect especially with the maximum

response time. The SJF algorithm did better with the

maximum response time for one day and three days.

However, ALA performed better than the other

techniques in the different experiments presented.

Therefore, based on the experiments, it can be inferred

that ALA takes up the challenge regarding the

evaluated areas.

5 Conclusion

With the quick rise of cloud computing, several

algorithms have been suggested to tackle the

scheduling of the continually rising number of tasks. In

this paper, an augmented load balancing algorithm

(ALA) has been developed for task scheduling and

resource optimization purposes. The algorithm is

inspired by two major swarm algorithms namely ABC

and PSO. It takes advantage of some of their strong

points and adds a response time criterion in search of a

suitable datacenter for each region and the best path to

get there. It also schedules tasks evenly among the

available VMs per host making sure that no VM is

busy while others are providing little to no work at all.

Experiments are conducted for one hour, one day and

three days to assess the performance of the algorithm

and are performed on a specially designed simulation

model. The final results clearly show that not only the

maximum response time is reduced to get closer to the

average time, but also that the different tasks are

processed quicker. The consistency of the algorithm is

also tested by evaluating its resource utilization, how

many tasks are scheduled towards each datacenter and

also how balanced the load is. The final important

point is the standard deviation that demonstrates that

the different processing time have an inclination to

gravitate around the value of the mean which means

that it only slightly deviate from it. The augmented

load balancing algorithm (ALA) not only produce a

better scheduling scheme but also a more stable one

which is balanced all around.

Acknowledgements

We would like to thank Dengzhi Liu, Kondwani

Michael Kamoto, Francis Mawuli Nakoty and

Athanase Nkuzimana; all postgraduate students at

Nanjing University of Information Science and

Technology for all their useful insights and help during

the different stages of this work.

References

[1] M. Mesbahi, A. M. Rahmani, Load Balancing in Cloud

Computing: A State of the Art Survey, International Journal

of Modern Education and Computer Science, Vol. 8, No. 3,

pp. 64-78, March, 2016.

[2] M. Hamdan, E. Hassan, A. Abdelaziz, A. Elhigazi, B.

Mohammed, S. Khan, A. V. Vasilakos, M. N. Marsono, A

comprehensive survey of load balancing techniques in

software-defined network, Journal of Network and Computer

Applications, Vol. 174, Article No. 102856, January, 2021.

[3] M. Ala’anzy, M. Othman, Load Balancing and Server

Consolidation in Cloud Computing Environments: A Meta-

Study, IEEE Access, Vol. 7, pp. 141868-141887, September,

2019.

[4] S. K. Mishra, B. Sahoo, P. P. Parida, Load balancing in cloud

computing: A big picture, Journal of King Saud University –

Computer and Information Science, Vol. 32, No. 2, pp. 149-

158, February, 2020.

[5] R. S. Sajjan, R. Y. Biradar, Load Balancing and its

Algorithms in Cloud Computing: A Survey, International

Journal of Computer Sciences and Engineering, Vol. 5, No. 1,

pp. 95-100, January, 2017.

[6] G. Muthusamy, S. R. Chandran, Cluster-based Task

Scheduling Using K-Means Clustering for Load Balancing in

Cloud Datacenters, Journal of Internet Technology, Vol. 22,

No. 1, pp. 121-130, January, 2021.

[7] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, A. El-Sayed,

Cloudlet Scheduling Based Load Balancing on Virtual

Machines in Cloud Computing Environment, Journal of

Internet Technology, Vol. 20, No. 5, pp. 1371-1378,

September, 2019.

[8] E. Pacini, C. Mateos, C. García Garino, Balancing throughput

and response time in online scientific Clouds via Ant Colony

Optimization, Advances in Engineering Software, Vol. 84, pp.

31-47, June, 2015.

[9] M. Junaid, A. Sohail, A. Ahmed, A. Baz, I. A. Khan, H.

Alhakami, A Hybrid Model for Load Balancing in Cloud

Using File Type Formatting, IEEE Access, Vol. 8, pp.

118135-118155, June, 2020.

[10] W. Hashem, H. Nashaat, R. Rizk, Honey bee based load

balancing in cloud computing, KSII Transactions on Internet

and Information Systems, Vol. 11, No. 12, pp. 5694-5711,

December, 2017.

[11] L. D. D. Babu, P. V. Krishna, Honey bee behavior inspired

load balancing of tasks in cloud computing environments,

Applied Soft Computing, Vol. 13, No. 5, pp. 2292-2303, May,

1470 Journal of Internet Technology Volume 22 (2021) No.7

2013.

[12] L. Shen, J. Li, Y. Wu, Z. Tang, Y. Wang, Optimization of

Artificial Bee Colony Algorithm Based Load Balancing in

Smart Grid Cloud, 2019 IEEE PES Innovative Smart Grid

Technologies-Asia (ISGT 2019), Chengdu, China, 2019, pp.

1131-1134.

[13] A. Dave, B. Patel, G. Bhatt, Y. Vora, Load balancing in cloud

computing using particle swarm optimization on Xen Server,

2017 Nirma University International Conference on

Engineering (NUiCONE 2017), Gujarat, India, 2017, pp. 1-6.

[14] J. Acharya, M. Mehta, B. Saini, Particle swarm optimization

based load balancing in cloud computing, International

Conference on Communication and Electronics Systems

(ICCES 2016), Coimbatore, India, 2016, pp. 1-4.

[15] T. T. Khuat, M. H. Le, A Novel Hybrid ABC-PSO Algorithm

for Effort Estimation of Software Projects Using Agile

Methodologies, Journal of Intelligent Systems, Vol. 27, No. 3,

pp. 489-506, 2018.

[16] A. K. Joseph, G. Radhamani, A Hybrid Model of Particle

Swarm Optimization (PSO) and Artificial Bee Colony (ABC)

Algorithm for Test Case Optimization, https://www.semantics

cholar.org/paper/A-Hybrid-Model-of-Particle-Swarm-Optimi

zation-(-PSO-Joseph-Radhamani/116f77d76ede5f3e4c3bde92

e9aa22356cd70aa1, 2013.

[17] N. Baktash, M. R. Meybodi, A New Hybrid Model of PSO

and ABC Algorithms for Optimization in Dynamic Environment,

International Journal of Computer Theory and Engineering,

Vol. 4, No. 3, pp. 362-364, June, 2012.

[18] S. G. Domanal, R. M. R. Guddeti, R. Buyya, A Hybrid Bio-

Inspired Algorithm for Scheduling and Resource Management

in Cloud Environment, IEEE Transactions on Services

Computing, Vol. 13, No. 1, pp. 3-15, January-February, 2020.

[19] A. F. S. Devaraj, M. Elhoseny, S. Dhanasekaran, E. L. Lydia,

K. Shankar, Hybridization of firefly and Improved Multi-

Objective Particle Swarm Optimization algorithm for energy

efficient load balancing in Cloud Computing environments,

Journal of Parallel and Distributed Computing, Vol. 142, pp.

36-45, August, 2020.

[20] C. Worasucheep, A Hybrid Artificial Bee Colony with

Differential Evolution, International Journal of Machine

Learning and Computing, Vol. 5, No. 3, pp. 179-186, June,

2015.

[21] C. Fan, Q. Fu, G. Long, Q. Xing, Hybrid artificial bee colony

algorithm with variable neighborhood search and memory

mechanism, Journal of Systems Engineering and Electronics,

Vol. 29, No. 2, pp. 405-414, April, 2018.

[22] N. Pawar, U. K. Lilhore, N. Agrawal, A Hybrid ACHBDF

Load Balancing Method for Optimum Resource Utilization In

Cloud Computing, International Journal of Scientific

Research in Computer Science, Engineering and Information

Technology, Vol. 2, No. 6, pp. 367-373, November-December,

2017.

[23] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud, S. Musa,

A Comprehensive Study of Load Balancing Approaches in

the Cloud Computing Environment and a Novel Fault

Tolerance Approach, IEEE Access, Vol. 8, pp. 130500-

130526, July, 2020.

[24] S. Velliangiri, P. Karthikeyan, V. M. Arul Xavier, D.

Baswaraj, Hybrid electro search with genetic algorithm for

task scheduling in cloud computing, Ain Shams Engineering

Journal, Vol. 12, No. 1, pp. 631-639, March, 2021.

[25] H. Yong, Load balancing strategy for medical big data based

on low delay cloud network, Journal of Engineering, Vol.

2020, No. 9, pp. 799-804, September, 2020.

[26] C. Chukwuneke, H. Inyiama, S. Amaefule, M. Onyesolu, D.

C. Asogwa, Review of Hybrid Load Balancing Algorithms in

Cloud Computing Environment, International Journal of

Trend in Research and Development, Vol. 6, No. 6, pp. 31-37,

December, 2019.

[27] A. Ullah, N. M. Nawi, J. Uddin, S. Baseer, A. H. Rashed,

Artificial bee colony algorithm used for load balancing in

cloud computing: Review, International Journal of Artificial

Intelligence, Vol. 8, No. 2, pp. 156-167, June, 2019.

[28] F. S. Abu-Mouti, M. E. El-Hawary, Overview of Artificial

Bee Colony (ABC) algorithm and its applications, 2012 IEEE

International Systems Conference (SysCon 2012), Vancouver,

Canada, 2012, pp. 590-595.

[29] M. Rana, S. Bilgaiyan, U. Kar, A study on load balancing in

cloud computing environment using evolutionary and swarm

based algorithms, 2014 International Conference on Control,

Instrumentation, Communication and Computational Technologies

(ICCICCT 2014), Kanyakumari District, India, 2014, pp. 245-

250.

Biographies

Franck Seigneur Nininahazwe

received the M.Sc. degree from the

Nanjing University of Information

Science and Technology, Nanjing,

China, in 2018. He is currently

working towards the Ph.D. degree with the School of

Computer and Software, Nanjing University of

Information Science and Technology. His research

focuses on task scheduling and load-balancing in cloud

computing systems.

Jian Shen received the M.E. and

Ph.D. degrees in computer science

from Chosun University, Gwangju,

South Korea, in 2009 and 2012,

respectively. Since late 2012, he has

been a Professor with the Nanjing

University of Information Science and Technology,

Nanjing, China. His research interests include public

cryptography, cloud computing and security, and

information security systems.

An Augmented Load-Balancing Algorithm for Task Scheduling in Cloud-Based Systems 1471

Micheal Ernest Taylor received his

M.Sc. degree from the Nanjing

University of Information Science and

Technology, Nanjing, China, in 2018.

He is currently working towards his

Ph.D. with the School of Computer

and Software, Nanjing University of Information

Science and Technology. His research focuses on

resource management and load-balancing in cloud

computing systems.

1472 Journal of Internet Technology Volume 22 (2021) No.7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

