
A Study into Cloud Computing Task Scheduling Based on BIAS Algorithm 1375

A Study into Cloud Computing Task Scheduling

Based on BIAS Algorithm

Kun Li, Liwei Jia, Xiaoming Shi

Computer Teaching and Research Section Department of Public Infrastructure, Henan Medical College, China

sunlik_1982@126.com, zzujialiwei@126.com, hnshixiaoming@yeah.net*

*Corresponding Author: Kun Li; E-mail: sunlik_1982@126.com

DOI: 10.53106/160792642021112206014

Abstract

Aiming at the low efficiency of cloud computing

resource task scheduling and uneven resource allocation,

this paper proposes a cloud computing task scheduling

strategy that integrates the Berger model into the

improved Ant clony and SFLA-BIAS (Berger-Improve

Ant Clony Optimization-Shuffled Frog Leaping

Algorithm). Firstly, a cloud computing task scheduling

model based on time and cost is constructed; secondly,

the general balance function of Berger model is used in

combination with the virtual machine for probability

selection, and the feedback factor is used to optimize the

path. Finally, in each individual iteration of ACO, the

improved SFLA is introduced to update the individual. In

the simulation experiment, BIAS can effectively improve

the efficiency of cloud computing task allocation by

comparing with the ACO and SFLA algorithms in the

virtual machine load, execution time and consumption

cost indicators.

Keywords: Cloud computing, Berger model, ACO,

SFLA

1 Introduction

With the development of the express delivery of

Internet technology and its applications, industrial

production and various areas of people’s lives will

generate massive amounts of data, which requires

continuous increases in data processing speeds.

However, improving the physical performance and

quantity of hardware devices for processing can no

longer meet current data processing requirements. The

concept of cloud computing meets the needs of the

current era. It provides resources to users through the

form of services such as basic resource facilities,

applications and software platforms by using “charge

on demand” as the computing standard [1].

Cloud computing takes the resource pool composed

of computers as the carrier. Users obtain the task

resources they need on demand without having to care

about the specific implementation mechanism and

process. Task scheduling allocates virtual resources to

more tasks as reasonably as possible through virtual

machines via scheduling algorithms. This is the key to

cloud computing task scheduling. Task scheduling in

cloud computing is generally divided into two parts:

mapping the tasks submitted by the user to a set of

available virtual machine resources and mapping the

virtual machine and host to virtualize host machine

creation or migration. Obviously, virtual machines are

an important part of task scheduling, and efficient

scheduling will directly affect the efficiency of cloud

computing systems. Therefore, the use of high-

performance scheduling algorithms plays a vital role in

task scheduling.

This paper studies the time and cost of cloud

computing, proposes a resource scheduling model

based on time and cost, and uses the Ant colony

algorithm and shuffled frog leaping algorithm to solve

resource scheduling. Simulation experiments show that

the algorithm has good resource scheduling effects in

both small tasks and large tasks.

2 Related Knowledge

Effective allocation of virtual resources to tasks

under constrained conditions is the main goal of task

scheduling in current cloud computing. This is because

the bandwidth, storage, resources, cost and time

requirements of each task’s own characteristics are

different, and the heterogeneity and dynamics of the

cloud computing environment further complicate the

processing of the problem. Therefore, task scheduling

is essentially an NP problem.

For task scheduling under cloud computing, many

scholars use metaheuristic algorithms to improve

scheduling effects. These include Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Artificial Bee

Colony (ABC), Shuffled Frog Leaping Algorithm

(SFLA), Bat Algorithm (BA), and Whale Optimization

Algorithm (WOA). Due to space limitations, this

article only gives examples of the above algorithms. In

terms of GA, [2-4] used GA for cloud computing task

scheduling, The results showed that the use of GA in

cloud computing tasks can reduce task completion time

1376 Journal of Internet Technology Volume 22 (2021) No.6

and improve resource utilization. When [5-7] used

ACO for task scheduling in cloud computing, the

results showed that it effectively reduces the

completion time and improves efficiency.

References [8-11] used the PSO algorithm, which

achieved certain effects in cloud computing task

scheduling. The simulation experiment shows that the

improved PSO algorithm can obtain better cloud

computing resource scheduling effects, In terms of

improved ABC, the results of [12-15] showed that it

can effectively reduce energy consumption and save

user costs. References [16-18] used improved SFLA in

the cloud computing workflow and showed that it has

obvious effects on virtual machine scheduling. In

addition, [19-22] used improved BA, which optimized

cloud computing scheduling and improved efficiency.

Reference [23] used WOA, and it further improved the

effect of cloud computing task scheduling.

From the above research, it can be found that the

metaheuristic algorithm can effectively solve the task

scheduling in cloud computing, especially a merged

metaheuristic algorithm, which has better scheduling

effects in certain aspects of cloud computing. On the

basis of the above research, this article constructs a

cloud computing scheduling model and fuses different

metaheuristic algorithms to further improve the effect

of cloud computing scheduling.

3 Cloud Computing Task Scheduling Model

3.1 Virtual Machine Load

With the continuous allocation of resources, the

processing capacity of virtual machines and the load of

system resources will also change. Obviously, the

performance parameters of a single virtual machine

cannot represent the dynamic monitoring of the system.

To formally describe changes, the following forms are

used to record each virtual machine:

 () [, ,]
j j j j

Load VM id VM vmTime= (1)

Herein,
j

id is used to indicate the number of the

j virtual machine, which is unique;
j

VM mainly

includes the j virtual machine’s CPU performance

(
_j cpu

VM), storage capacity (
_j mem

VM), network

bandwidth (j bwVM
−

) and cost ratio (
_ cosj t

VM); and

j
vmTime refers to the execution time of the j virtual

machine to complete the task assigned to it by the

system.

3.2 Time and Cost

Suppose I refers to a resource allocation scheme for

tasks submitted by users in cloud computing. Based on

the virtual machine’s operating load model, the

completion time of each virtual machine’s execution of

system delivery tasks can be monitored,

()
j

vmTime VM refers to the time for the virtual

machine to complete the task, and ()finishTime I

refers to the resource allocation time. For the I

allocation strategy, the required system completion

time should be the maximum completion time of all

virtual machines, namely,

 () max(())
j

finishTime I vmTime VM= (2)

In the same way, it is known that the operating cost

of each virtual machine
j

VM ’s unit time is the

complete execution cost that
_ cosj t

VM can obtain for

plan I :

_ cos

1

Cos () ()
m

j j t

j

finish t I vmTime VM VM
=

= ×∑ (3)

3.3 Task Scheduling Constraint Function

To better allocate resources, this paper constructs a

task scheduling constraint function based on cost and

time. By setting different weights, the value of the

scheduling constraint function is maximized.

(1) Execution time constraint function:

 min

max min

()
()

finishTime I finishTime
resTime I

finishTime finishTime

−

=

−

 (4)

Herein,
max

finishTime and
min

finishTime express the

predicted maximum execution time and minimum

execution time of the task,
_i taskLtenthT and

_i InputFilesizeT

respectively represent the execution length of the task

in the part of task
i
T and the length of other input

information, M represents the number of virtual

machines,
_

min()
j cpu

VM and
_

max()
j cpu

VM represent

the minimum and maximum computing power of a

single virtual machine,
_

min()j bwVM and
_

max()j bwVM

represent a single virtual machine Minimum and

maximum communication capacity。respectively; that

is, the concurrent execution time of all tasks deployed

on the virtual machine with the worst performance and

the best performance. The calculation formula is

max

_ _

1 1

_ _min() min()

N N

i TaskLength i InputFileSize

i i

j cpu j bw

finishTime

T T

M VM M VM

= =

= +

× ×

∑ ∑ (5)

min

_ _

1 1

_ _max() max()

N N

i TaskLength i InputFileSize

i i

j cpu j bw

finishTime

T T

M VM M VM

= =

= +

× ×

∑ ∑ (6)

A Study into Cloud Computing Task Scheduling Based on BIAS Algorithm 1377

(2) Constraint function of execution cost:

 min

max min

Cos () Cos
Cos ()

Cos Cos

finish t I finish t
res t I

finish t finish t

−

=

−

 (7)

Herein,
max

Cosfinish t and
min

Cosfinish t represent

the maximum and minimum execution costs

predicted by the task,
_ cos

()
j t

Max VM and
_cos

()
j t

Min VM

respectively represent the maximum and minimum cost

consumption of a single virtual machine. respectively;

that is, the sum of the costs required to deploy all tasks

on the virtual machine with the highest and lowest unit

cost. The specific calculation formula is as follows:

max max _ cos

Cos ()
j t

finish t finishTime Max VM= × (8)

 min max _ cosCos ()
j t

finish t finishTime Min VM= × (9)

Therefore, based on the above two constraint factors,

the task scheduling constraint function can be

constructed as follows:

 () () Cos ()F I t resTime I c res t I= × + × (10)

In the formula, ()F I represents the corresponding

objective function of the I -th resource allocation plan,

where， t and c are the influence weights of time and

cost, respectively; the value range is [0, 1]; and

1t c+ = . That is, for tasks that require high time

factors, the proportion of t can be increased. For tasks

that are sensitive to cost factors, the weight of c can be

increased. When t is the same as c , it not only

satisfies the system’s constraints on task execution

time but also satisfies the user’s requirements for cost

reduction.

4 BIAS-Based Cloud Computing Task

Scheduling

In this paper, the improved Ant colony-SFLA is

used in cloud computing task scheduling. First, the

individual ants are mapped to cloud computing tasks

one by one. Second, the pheromone is updated and

combined with the virtual machine using the general

balance function of the Berger model for probability

selection, and the feedback factor is used to select the

path. Finally, in each individual iteration of ACO, the

improved SFLA is introduced to update the individual,

and the optimal cloud computing scheduling scheme is

obtained.

4.1 ACO

ACO is a bionic optimization algorithm that

simulates the foraging behavior of real ant colony

bodies. It has positive feedback, distributed and

heuristic search characteristics and has achieved good

results in solving complex optimization problems. The

essence of this algorithm is to use pheromones as a

medium for communication among individuals in the

population. Its formula is as follows:

1

(1)
m

k

ij ij ij

k

τ ρ τ τ

=

= − • + Δ∑ (11)

/

0

kk

ij

Q L
τ

⎧
Δ = ⎨

⎩
 (12)

1

[(,)][()] []

() [(,)][()] []

0

, [1,],

j j

M
k

ij i i

i

k

w i j t

p t w i j t

otherwise

if i j M j tabu

α β

α β

τ η

τ η

=

⎧
⎪
⎪

= ⎨
⎪
⎪⎩

∈ ∉

∑
 (13)

In the above formula, ρ refers to the pheromone

volatile factor, m refers to the number of ants, k

ijτ

refers to the number of pheromones released by ant k

on path (,)i j ,
k

L refers to the path length covered by

ant k , and k

ijp refers to the probability for ant k to

choose path (,)i j .

4.1.1 Improved Pheromone

To improve the pheromone, the ACO pheromone

update process is divided into two steps. This article

limits the value of the pheromone to a specific interval

[A , B]. The first step is the sequential update stage,

which uses the optimal solution of the first n iterations

to update the pheromone on the path. The second step

is the optimal solution of the current iteration or the

pheromone on the global optimal path that can be

updated.

max

min
1

(1) (1) () ()
r

w

ij i ij ij

w

t t t

τ

τ

τ ρ τ τ

=

⎡ ⎤
+ = − + Δ⎢ ⎥

⎣ ⎦
∑ (14)

max

() ()w

ij i
t F wτ ρ τΔ = (15)

Herein, when
1

(1) () ()
r

w

i ij ij

w

t tρ τ τ

=

− + Δ∑ is greater

than A , the value of formula (14) is A . When

1

(1) () ()
r

w

i ij ij

w

t tρ τ τ

=

− + Δ∑ is smaller than B , the value

of formula (14) is B . Under other circumstances, the

value of formula (15) is
1

(1) () ()
r

w

i ij ij

w

t tρ τ τ

=

− + Δ∑ . In the

formula,
i

ρ refers to the pheromone volatilization

coefficient, and
max

τ and
min

τ refer to the maximum

value and minimum values of the pheromone,

respectively. r refers to the update according to the

path length of the respective solutions obtained from

1378 Journal of Internet Technology Volume 22 (2021) No.6

small to large by ant r , w refers to the serial number,

and ()F w is the quality function with

expression () 1F w w= .

4.1.2 Path Selection of Feedback Factors

The improvement of pheromones mainly considers

the influence of heuristic information on the path. This

makes it easy for ants to choose the shortest path in the

initial iteration of the algorithm without considering

the influence of the combination of paths selected as

the solution on the final path length, which leads to

blindness of the search. Through research, it is found

that the overall length of the path where some short

solution elements are located is often very large, which

causes the algorithm to eventually converge to the local

optimum instead of the global optimum.

To avoid the possibility of losing the original

optimal solution at the initial stage of the algorithm, it

is necessary to add a feedback factor to the path that

the ants travel to consider the long-term impact of the

selected path on the search process. In the initial stage,

when the solution element tends to guide the ant to find

a short path, it is given a higher weight. By contrast,

when the solution element may lead the ant to a longer

path, the weight of the element should be reduced. In

this way, ants can choose different paths in the initial

search stage, which increases the diversity of multiple

paths and prevents the algorithm from falling into the

local optimal solution.

 mi

(,) max min

()
d

a A r s

c a c
L L

c c
∈

−

= ×

−

∑ (16)

In the formula,
min
c and

max
c represent the

minimum and maximum path length between two

points, respectively;
mid
c is the average value of the

two; and ()c a is the path length.

4.1.3 Probability Selection Based on Balance

Constraints

When ant k selects the next resource node as the

current task resource by probability, it obviously lacks

the judgment of whether the resource is available. To

make better use of virtual machine resources and

improve resource utilization, this paper adopts the

general expected balance constraint of the Berger

model to set, i.e., to select the ratio of the load balance

of the virtual machine that meets the task conditions

and the similarity of the virtual machine resources to

express probability. The balance constraints of virtual

machine resources are expressed as follows:

 ln
AR

ER
η θ= (17)

In the formula, θ is the equilibrium coefficient

whose value is between 0 and 1, and AR refers to the

VM load balance. The virtual machine execution time

is used mainly because the more time the user spends

on tasks, the higher the virtual machine utilization, that

is, the higher the load balance. Therefore, its value

is
()

()

j

j

vmTime VM

vmTime VM bestTime+

 bestTime refers to the

average execution time of each virtual machine in the

optimal search path so far, and ER refers to the

similarity between the resource parameters expected by

the normalized virtual machine and the general

resources expected by the task and is usually expressed

by Euler’s formula. 2

1

()
K

i i i

i

D X Y

=

= −∑ (
i

X is the

virtual machine’s parameter, and
i
Y is the task

parameter).

4.2 SFLA

SFLA is a heuristic optimization algorithm that

executes heuristic searches by executing heuristic

functions to obtain the global optimal solution. The

idea is to decompose the frog group into different

numbers of subgroups, search in the subgroups

according to a certain strategy, and perform a global

exchange.

4.2.1 Local Optimization

Local update using the differential evolution

algorithm randomly selects a target individual to

update. The update object of this subgroup is still the

worst individual in the subgroup, and the update

strategy is not static in the whole optimization process.

To achieve the optimization effect of increasing the

diversity of the population in the early stage of

evolution and increasing the convergence speed of the

algorithm in the later stage, the mutation method is

used to optimize it.

(1) Mutation operation

In the early stage of the algorithm, to maintain the

diversity of the population and improve the global

search ability, the worst individual in the subgroup was

updated according to formula (18), and three

individuals were randomly selected. One of the

individuals is used as the target individual, and the

other two individuals are used to update the moving

step length using the rand difference operator.

Herein,
1r

X is the target individual,
2r

X and
3r

X

are two other individuals randomly selected, and '

w
X is

an newly generated individual.
1

(0,1)F ∈ ,
2

(0,1)F ∈ ,

and
1 2

1F F+ = . In the later stage of the algorithm, to

help converge to the best point, the best individual in

the subgroup is used as the target individual, and the

difference operator best mutation is introduced. The

update strategy is formula (19), where
2r

X and
3r

X

A Study into Cloud Computing Task Scheduling Based on BIAS Algorithm 1379

are two randomly selected individuals, '

w
X is a new

individual, and
b

X is the optimal individual.

2
(0,1)F ∈ in the group.

 '

1 1 2 3
()

w r r r
X X F X X= + ∗ − (18)

 '

2 2 3
()

w b r r
X X F X X= + ∗ − (19)

(2) Select operation

After an iteration, the new individual '

w
X and the

worst individual
w

X of the subgroup are evaluated for

fitness. According to the laws of nature, individuals

with better fitness values are selected to enter the next

generation population, as shown in formula (20).

 ' '() ()
w w w w

X X if f X f X= >= (20)

(3) Cross operation

To further provide the local search ability of the

algorithm and maintain the diversity of the population,

a crossover operation is introduced. The update

strategy is shown in formula (21).

'

'

(0,1)

j j

j w i

w

X rand CR
X

rand otherwise

⎧ ≥⎪
= ⎨
⎪⎩

 (21)

In the formula, ' j

w
X is the value of the current

individual at the j th dimension, CR is the cross

factor, and (0,1)rand is the random factor.

4.2.2 Global Optimization

Suppose the number of all frog subgroups is m , and

the optimal frog individuals in each subgroup are

(1), (2),.... ()
b b b
P P P m . The global optimal value is

g
P .

Choose two individuals among (1)
b
P and ()

b
P m as the

father generation. Combine
g
P to cross and generate

offspring according to formula (22).

1 2 3

1 2 3

() () ()

() () ()

b b b

b b b

P i r P i r P j r P g

P j r P j r P i r P g

= + +⎧
⎨

= + +⎩
 (22)

In the formula, the values of
1 2 3

1r r r+ + = ,

1 2 3
, , (0,1)r r r ∈ and

1 2 3
, ,r r r determine the size of the

cross region. An elite retention strategy is adopted in

the frog population to eliminate the poor individuals,

but because
b
P represents the internal optimal

individuals in each subgroup, this leads to a local

optimum. Therefore, crossover operations between the

optimal individuals in different subgroups can avoid

falling into the local optimum and achieve the global

optimum.

4.3 Algorithm Flow

Step 1: Initialize ACO and SFLA parameter values,

set relevant parameter values, and perform one-to-one

correspondence between tasks in cloud computing task

scheduling and ACO individuals;

Step 2: Use optimized pheromone and path update

methods for processing;

Step 3: Each individual ant can select appropriate

execution resources for the current task under the

condition of satisfying the balance constraint;

Step 4: When an individual ant completes an

algorithm iteration, the optimal individual is obtained,

and a resource allocation plan for all tasks is obtained.

Individuals are selected with the help of SFLA;

Step 5: During this iteration, all ants have completed

their search process, and the optimal solution in all

allocation strategies is calculated. All virtual machines

on the path are updated with global pheromones. Skip

to Step 6; otherwise, skip to Step 2;

Step 6: The number of iterations increases by 1;

Step 7: If the number of iterations meets the

algorithm termination condition, then stop the iteration

and output the optimal resource allocation plan;

otherwise, go to Step 2.

5 Simulation Experiment

To further illustrate the effect of the BIAS algorithm,

ACO and SFLA are selected as reference objects. The

hardware platform selects the CPU as a Core i3,

memory 4GDDR3, hard disk capacity 100 GB,

software platform Windows 7 operating system and

software MATLAB 2011. Under different iteration

times, different task numbers illustrate the effects of

the BIAS algorithm in cloud computing task

scheduling, The number of algorithm iterations is set to

200, and the number of ants is set to 8. ρ is 0.01, α is

3, β is 2, θ is 1, w is 2, A is 1, B is 5，
1
r is 0.5,

2
r

is 0.4, r is 0.1,
1
F is 0.5, and

2
F is 0.5 。 The

experiment is divided into a comparison of indicators

under different iterations, a comparison of indicators

under small-scale tasks and a comparison of indicators

under large-scale tasks. The related parameters of the

small task set are shown in Table 1 to Table 2, and the

related parameters of the large task set are shown in

Table 3 to Table 4.

Table 1. Collection of small tasks

ID type Length
File

size

Expect

time

Expect

bandwidth

Expect

Cost

0 0 3000 2000 10

1 0 5000 4000 15

2 0 2500 1000 10

3 1 2000 1000 100

4 1 2500 1800 1500

5 1 800 1200 1200

6 2 3000 1200 16

7 2 1000 1500 6

8 2 1000 1000 10

1380 Journal of Internet Technology Volume 22 (2021) No.6

Table 2. Small task set corresponds to virtual machine

configuration

ID
Number of

PE

PE speed

(MIPS)

RAM

(MB)

Bandwidth

(bit)
price

0 4 250 2048 2000 7

1 2 128 1024 3000 5

2 2 112 1024 1200 3

Table 3. Large task set

Category Scope

Number of tasks [100, 500]

Task length (MI) [5000, 15000]

General expectation type 0, 1, 2

Expected time (ms) [50, 500]

Expected bandwidth (bit) [300, 1500]

Expect cost [10, 50]

Table 4. Large task set corresponds to virtual machine

configuration

Data center Virtual machine

Number of data

centers
10

Number of

virtual machines
50

Number of

hosts
[2, 6] Number of PE [2, 8]

Management

type

Time

sharing

PE speed

(MIPS)
[250, 2000]

Unit time spent [1, 15] RAM (MB) [512, 2048]

 Bandwidth (bit) [500, 1500]

Management

type
Time sharing

5.1 Comparison of Indicators under Different

Iterations

Figures 1 to Figure 3 show a comparison of the three

algorithms at different iterations in terms of time spent,

cost and virtual machine load. Figure 1 shows that as

the number of iterations increases, the BIAS algorithm

can save time compared to ACO. Figure 2 shows that

the BIAS algorithm has been very stable in terms of

cost, while the cost-consumption curves of the ACO

and SFLA algorithms show some twists and turns,

indicating that the BIAS algorithm has good stability in

terms of cost. Figure 3 shows a comparison of the three

algorithms in terms of virtual machine load. From the

figure, it is found that the BIAS algorithm has better

advantages in virtual machine loading and is obviously

superior to the ACO and SFLA algorithms. This

indicates that BIAS can effectively reduce the load and

improve the processing power of the cloud server.

0 20 40 60 80 100 120 140 160 180 200
0.0010

0.0020

0.0030

0.0040

Iteration times

T
im

e
 c

o
n
s
u
m

p
ti
o
n

ACO

SFLA

BIAS

Figure 1. Comparison of time consumption under

different iterations

0 20 40 60 80 100 120 140 160 180 200
0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0000

0.0010

0.0020

Iteration times

E
c
o
n
o
m

ic
 c

o
s
t

ACO

SFLA

BIAS

Figure 2. Comparison of economic costs under

different iterations

0 20 40 60 80 100 120 140 160 180 200
0.0080

0.0090

0.0100

0.0110

0.0120

0.0130

0.0140

Iteration times

L
o
a
d

ACO

SFLA

BIAS

Figure 3. Comparison of virtual machine load under

different iterations

A Study into Cloud Computing Task Scheduling Based on BIAS Algorithm 1381

5.2 Comparison of Indicators under Small-

scale Tasks

The number of small-scale tasks is set from 100 to

1000, with 100 tasks incrementing each time. Figure 4

to Figure 6 show a comparison of the three algorithms

under small-scale tasks in terms of time, cost and

virtual machine load. From Figure 4, it is found that

the time-consuming curves of the three algorithms all

show different degrees of fluctuation, and the number

of tasks increases with an increasing number of tasks.

Overall, BIAS is better than the other two algorithms,

with an average reduction of 16.7% and 46.7%

compared to SFLA and ACO, respectively.

100 200 300 400 500 600 700 800 900 1000
0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

Number of Task

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

m
s
)

ACO

SFLA

BIAS

Figure 4. Comparison of time consumption under

small-scale tasks

100 200 300 400 500 600 700 800 900 1000
 0.0000

 20.0000

 40.0000

 60.0000

 80.0000

100.0000

120.0000

140.0000

160.0000

180.0000

Number of Task

E
c
o
n
o
m

ic
 c

o
s
t

(1
 R

M
B

)

ACO

SFLA

BIAS

Figure 5. Comparison of cost consumption under

small-scale tasks

Figure 5 shows a comparison of the cost of the three

algorithms. From the curve, the cost of the BIAS

algorithm is significantly lower than those of SFLA

and ACO by 16.7% and 33.3%, respectively. This

shows that the BIAS algorithm has certain advantages

in terms of cost. Figure 6 shows a comparison of the

three algorithms in terms of virtual machine load. As

100 200 300 400 500 600 700 800 900 1000
 0.0000

 20.0000

 40.0000

 60.0000

 80.0000

100.0000

120.0000

Number of Task

L
o
a
d

ACO

SFLA

BIAS

Figure 6. Comparison of virtual machine load under

small-scale tasks

the number of tasks increases, the load of the three

algorithms increases continuously. However, in terms

of the overall effect, BIAS decreased by 11.1% and

27.8% compared with SFLA and ACO, respectively.

5.3 Comparison of Indicators under Large-

scale Tasks

The number of large-scale tasks is set from 3000 to

10000, with 1000 tasks incrementing each time. Figure

7 to Figure 9 show a comparison of the three

algorithms under large-scale tasks in terms of time,

cost, and virtual machine load. From Figure 7, it is

found that BIAS has obvious advantages in the

comparison of completion time under large-scale tasks.

As the number of tasks increases, the curves of the

three algorithms show an upward trend. However, the

BIAS curve has the least fluctuation and the slowest

increase, which indicates that the algorithm performs

well in terms of time spent. BIAS is reduced by 20.7%

and 40.8% compared with SFLA and ACO,

respectively.

3000 4000 5000 6000 7000 8000 9000 10000
 5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Number of Task

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

m
s
)

ACO

SFLA

BIAS

Figure 7. Comparison of time consumption under

large-scale tasks

1382 Journal of Internet Technology Volume 22 (2021) No.6

Figure 8 shows a comparison of the cost of the three

algorithms. It is found from the figure that the cost of

the BIAS algorithm is the lowest. This is mainly

because the introduction of the task evaluation

mechanism to determine the resources required by the

task can effectively save the cost of the task, thus

reducing the cost. Along with the increasing number of

large-scale tasks, the corresponding curve of BIAS is

relatively flat compared with the other two algorithms.

This shows that BIAS can be adapted to task

scheduling on a large scale in terms of cost, and

compared with the SFLA and ACO algorithms, it is

reduced by 14.2% and 37.1%, respectively.

3000 4000 5000 6000 7000 8000 9000 10000
 500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

Number of Task

E
c
o
n
o
m

ic
 c

o
s
t

(1
 R

M
B

)

ACO

SFLA

BIAS

Figure 8. Comparison of cost consumption under

large-scale tasks

Figure 9 shows the effect of the virtual machine load

under large-scale tasks. The BIAS algorithm has

certain advantages over the virtual machine load values

of the other two algorithms, which are 18.75% and

37.5% lower than that of the SFLA and ACO

algorithms, respectively. This shows that the BIAS

algorithm can effectively reduce the virtual machine

load value and can be suitable for cloud computing

task scheduling on a large scale.

3000 4000 5000 6000 7000 8000 9000 10000
 0.0

 500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

Number of Task

L
o
a
d

ACO

SFLA

BIAS

Figure 9. Comparison of virtual machine load under

large-scale tasks

From Figure 7 to Figure 9, it can be found that the

algorithm in this paper has better advantages in large

tasks than the ACO and SFLA algorithms, which

shows that the improvement strategy of the ACO

algorithm is effective, especially the SFLA algorithm

is used in the individual update., Provides a better

individual quality for the next iteration. At the same

time, the upward trend of the algorithm in this paper in

the three figures shows the stability of the algorithm in

this paper and the stability of the algorithm in this

paper in terms of large tasks.

4 Conclusion

Aiming at the problem of long time and low cost of

resource scheduling under cloud computing, this paper

uses the fusion algorithm of ant colony and SFLA to

solve the problem of cloud computing resource

scheduling. First, build a model based on time and cost.

Secondly, optimize the pheromone, probability

selection and path selection of ACO. Use SFLA to

update the individual of each iteration of ACO. Finally,

simulation experiments show that the algorithm in this

paper has advantages in time and cost. However, the

algorithm in this paper does not consider the energy

consumption problem in resource scheduling. In future

research, a comprehensive analysis of time, cost, and

energy consumption will be carried out.

References

[1] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi,

Cloud computing-The business perspective, Decision Support

Systems, Vol. 51, No. 1, pp. 176-189, April, 2011.

[2] J. F. Li, J. Peng, Task scheduling algorithm based on

improved genetic algorithm in cloud computing environment,

Journal of Computer Applications, Vol. 31, No. 1, pp. 184-

186, January, 2011.

[3] S. Velliangiri, P. Karthikeyan, V. M. A. Xavier, D. Baswaraj,

Hybrid electro search with genetic algorithm for task

scheduling in cloud computing, Ain Shams Engineering

Journal, Vol. 12, No. 1, pp. 631-639, March, 2021.

[4] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, M. U.

Chowdhury, An improved genetic algorithm using greedy

strategy toward task scheduling optimization in cloud

environments, Neural Computing and Applications, Vol. 32,

No. 6, pp. 1531-1541, March, 2020.

[5] M. A. Tawfeek, A. EI-Sisi, A. E. Keshk, F. A. Torkey, Cloud

task scheduling based on ant colony optimization, 2013 8th

International Conference on Computer Engineering &

Systems, Cairo, Egypt, 2013, pp. 64-69.

[6] K. Li, G. Xu, G. Zhao, Y. Dong, D. Wang, Cloud task

scheduling based on load balancing ant colony optimization,

2011 Sixth Annual China Grid Conference, Dalian, China,

2011, pp. 3-9.

[7] A. Gupta, R. Garg, Load balancing based task scheduling

A Study into Cloud Computing Task Scheduling Based on BIAS Algorithm 1383

with ACO in cloud computing, 2017 International

Conference on Computer and Applications, Doha, Qatar,

2017, pp. 174-179.

[8] P. Wang, Y. Lei, P. R. Agbedanu, Z. Zhang, Makespan-

driven workflow scheduling in clouds using immune-based

PSO algorithm, IEEE Access, Vol. 8, pp. 29281-29290,

February, 2020.

[9] W. Zhong, Y. Zhuang, J. Sun, J. Gu, A load prediction model

for cloud computing using PSO-based weighted wavelet

support vector machine, Applied Intelligence, Vol. 48, No. 11,

pp. 4072-4083, November, 2018.

[10] H. Saleh, H. Nashaat, W. Saber, H. M. Harb, IPSO task

scheduling algorithm for large scale data in cloud computing

environment, IEEE Access, Vol. 7, pp. 5412-5420, December,

2018.

[11] Z. Wu, J. Xiong, A Novel Task-Scheduling Algorithm of

Cloud Computing Based on Particle Swarm Optimization,

International Journal of Gaming and Computer-Mediated

Simulations, Vol. 13, No. 2, pp. 1-15, April-June, 2021.

[12] B. Hajimirzaei, N. J. Navimipour, Intrusion detection for

cloud computing using neural networks and artificial bee

colony optimization algorithm, ICT Express, Vol. 5, No. 1, pp.

56-59, March, 2019.

[13] M. R. Thanka, P. U. Maheswari, E. B. Edwin, An improved

efficient: Artificial Bee Colony algorithm for security and

QoS aware scheduling in cloud computing environment,

Cluster Computing, Vol, 22, No. 5, pp. 10905-10913,

September, 2019.

[14] R. Salem, M. A. Salam, H. Abdelkader, A. A. Mohamed, An

artificial bee colony algorithm for data replication

optimization in cloud environments, IEEE Access, Vol. 8, pp.

51841-51852, December, 2019.

[15] S. Janakiraman, M. D. Priya, Improved Artificial Bee Colony

Using Monarchy Butterfly Optimization Algorithm for Load

Balancing (IABC-MBOA-LB) in Cloud Environments,

Journal of Network and Systems Management, Vol. 29, No. 4,

pp. 1-38, October, 2021.

[16] J. Luo, X. Li, M. Chen, Hybrid shuffled frog leaping

algorithm for energy-efficient dynamic consolidation of

virtual machines in cloud data centers, Expert Systems with

Applications, Vol. 41, No. 13, pp. 5804-5816, October, 2014.

[17] P. Kaur, S. Mehta, Resource provisioning and work flow

scheduling in clouds using augmented Shuffled Frog Leaping

Algorithm, Journal of Parallel and Distributed Computing,

Vol. 101, pp. 41-50, March, 2017.

[18] S. Sharma, A. K. Luhach, S. S. Abdhullah, An optimal load

balancing technique for cloud computing environment using

bat algorithm, Indian Journal of Science and Technology, Vol.

9, No. 28, pp. 1-4, July, 2016.

[19] S. Raghavan, P. Sarwesh, C. Marimuthu, K. Chandrasekaran,

Bat algorithm for scheduling workflow applications in cloud,

2015 International Conference on Electronic Design,

Computer Networks & Automated Verification, Shillong,

India, 2015, pp. 139-144.

[20] L. Jacob, Bat algorithm for resource scheduling in cloud

computing, International Journal for Research in Applied

Science and Engineering Technology (IJRASET), Vol. 2, No.

4, pp. 53-57, April, 2014.

[21] A. Ullah, N. M. Nawi, M. H. Khan, Bat algorithm used for

load balancing purpose in cloud computing: an overview,

International Journal of High Performance Computing and

Networking, Vol. 16, No. 1, pp. 43-54, September, 2020.

[22] M. B. Shareh, S. H. Bargh, A. A. R. Hosseinabadi, A. Slowik,

An improved bat optimization algorithm to solve the tasks

scheduling problem in open shop, Neural Computing and

Applications, Vol. 33, No. 5, pp. 1559-1573, March, 2021.

[23] X. Chen, L. Cheng, C. Liu, Q. Z. Liu, J. W. Liu, Y. Mao, J.

Murphy, A WOA-Based Optimization Approach for Task

Scheduling in Cloud Computing Systems, IEEE Systems

Journal, Vol. 14, No. 3, pp. 3117-3128, September, 2020.

Biographies

Kun Li received the B.S. degree in

computer science and technology from

Zhengzhou University, Zhengzhou,

China, in 2005 and received the M.S.

degree in computer software and

theory from Zhengzhou University,

Zhengzhou, China, in 2008. His

research interests include cloud computing and

algorithm design.

Liwei Jia received the B.S. degree in

computer science and technology from

Zhengzhou University, Zhengzhou,

China, in 2005 and received the M.S.

degree in computer software and

theory from Zhengzhou University,

Zhengzhou, China, in 2008. His

research interests include cloud computing and

algorithm design.

Xiaoming Shi received the B.S.

degree in computer science and

technology from Zhengzhou University

Of Light Industry, Zhengzhou, China,

in 2005 and received the M.S. degree

in computer software and theory from

Zhengzhou University, Zhengzhou,

China, in 2008. His research interests

include algorithm design and multi-agent system.

1384 Journal of Internet Technology Volume 22 (2021) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

