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Abstract 

Aiming at the low efficiency of cloud computing 

resource task scheduling and uneven resource allocation, 

this paper proposes a cloud computing task scheduling 

strategy that integrates the Berger model into the 

improved Ant clony and SFLA-BIAS (Berger-Improve 

Ant Clony Optimization-Shuffled Frog Leaping 

Algorithm). Firstly, a cloud computing task scheduling 

model based on time and cost is constructed; secondly, 

the general balance function of Berger model is used in 

combination with the virtual machine for probability 

selection, and the feedback factor is used to optimize the 

path. Finally, in each individual iteration of ACO, the 

improved SFLA is introduced to update the individual. In 

the simulation experiment, BIAS can effectively improve 

the efficiency of cloud computing task allocation by 

comparing with the ACO and SFLA algorithms in the 

virtual machine load, execution time and consumption 

cost indicators. 

Keywords: Cloud computing, Berger model, ACO, 

SFLA 

1 Introduction 

With the development of the express delivery of 

Internet technology and its applications, industrial 

production and various areas of people’s lives will 

generate massive amounts of data, which requires 

continuous increases in data processing speeds. 

However, improving the physical performance and 

quantity of hardware devices for processing can no 

longer meet current data processing requirements. The 

concept of cloud computing meets the needs of the 

current era. It provides resources to users through the 

form of services such as basic resource facilities, 

applications and software platforms by using “charge 

on demand” as the computing standard [1].  

Cloud computing takes the resource pool composed 

of computers as the carrier. Users obtain the task 

resources they need on demand without having to care 

about the specific implementation mechanism and 

process. Task scheduling allocates virtual resources to 

more tasks as reasonably as possible through virtual 

machines via scheduling algorithms. This is the key to 

cloud computing task scheduling. Task scheduling in 

cloud computing is generally divided into two parts: 

mapping the tasks submitted by the user to a set of 

available virtual machine resources and mapping the 

virtual machine and host to virtualize host machine 

creation or migration. Obviously, virtual machines are 

an important part of task scheduling, and efficient 

scheduling will directly affect the efficiency of cloud 

computing systems. Therefore, the use of high-

performance scheduling algorithms plays a vital role in 

task scheduling. 

This paper studies the time and cost of cloud 

computing, proposes a resource scheduling model 

based on time and cost, and uses the Ant colony 

algorithm and shuffled frog leaping algorithm to solve 

resource scheduling. Simulation experiments show that 

the algorithm has good resource scheduling effects in 

both small tasks and large tasks. 

2 Related Knowledge 

Effective allocation of virtual resources to tasks 

under constrained conditions is the main goal of task 

scheduling in current cloud computing. This is because 

the bandwidth, storage, resources, cost and time 

requirements of each task’s own characteristics are 

different, and the heterogeneity and dynamics of the 

cloud computing environment further complicate the 

processing of the problem. Therefore, task scheduling 

is essentially an NP problem. 

For task scheduling under cloud computing, many 

scholars use metaheuristic algorithms to improve 

scheduling effects. These include Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), Artificial Bee 

Colony (ABC), Shuffled Frog Leaping Algorithm 

(SFLA), Bat Algorithm (BA), and Whale Optimization 

Algorithm (WOA). Due to space limitations, this 

article only gives examples of the above algorithms. In 

terms of GA, [2-4] used GA for cloud computing task 

scheduling, The results showed that the use of GA in 

cloud computing tasks can reduce task completion time 
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and improve resource utilization. When [5-7] used 

ACO for task scheduling in cloud computing, the 

results showed that it effectively reduces the 

completion time and improves efficiency.  

References [8-11] used the PSO algorithm, which 

achieved certain effects in cloud computing task 

scheduling. The simulation experiment shows that the 

improved PSO algorithm can obtain better cloud 

computing resource scheduling effects, In terms of 

improved ABC, the results of [12-15] showed that it 

can effectively reduce energy consumption and save 

user costs. References [16-18] used improved SFLA in 

the cloud computing workflow and showed that it has 

obvious effects on virtual machine scheduling. In 

addition, [19-22] used improved BA, which optimized 

cloud computing scheduling and improved efficiency. 

Reference [23] used WOA, and it further improved the 

effect of cloud computing task scheduling.  

From the above research, it can be found that the 

metaheuristic algorithm can effectively solve the task 

scheduling in cloud computing, especially a merged 

metaheuristic algorithm, which has better scheduling 

effects in certain aspects of cloud computing. On the 

basis of the above research, this article constructs a 

cloud computing scheduling model and fuses different 

metaheuristic algorithms to further improve the effect 

of cloud computing scheduling. 

3 Cloud Computing Task Scheduling Model 

3.1 Virtual Machine Load 

With the continuous allocation of resources, the 

processing capacity of virtual machines and the load of 

system resources will also change. Obviously, the 

performance parameters of a single virtual machine 

cannot represent the dynamic monitoring of the system. 

To formally describe changes, the following forms are 

used to record each virtual machine: 

 ( ) [ , , ]
j j j j

Load VM id VM vmTime=  (1) 

Herein, 
j

id  is used to indicate the number of the 

j virtual machine, which is unique; 
j

VM mainly 

includes the j  virtual machine’s CPU performance 

(
_j cpu

VM ), storage capacity (
_j mem

VM ), network 

bandwidth ( j bwVM
−

) and cost ratio (
_ cosj t

VM ); and 

j
vmTime  refers to the execution time of the j  virtual 

machine to complete the task assigned to it by the 

system. 

3.2 Time and Cost 

Suppose I  refers to a resource allocation scheme for 

tasks submitted by users in cloud computing. Based on 

the virtual machine’s operating load model, the 

completion time of each virtual machine’s execution of 

system delivery tasks can be monitored, 

( )
j

vmTime VM  refers to the time for the virtual 

machine to complete the task, and ( )finishTime I  

refers to the resource allocation time. For the I  

allocation strategy, the required system completion 

time should be the maximum completion time of all 

virtual machines, namely, 

 ( ) max( ( ))
j

finishTime I vmTime VM=  (2) 

In the same way, it is known that the operating cost 

of each virtual machine 
j

VM ’s unit time is the 

complete execution cost that 
_ cosj t

VM  can obtain for 

plan I : 

 
_ cos

1

Cos ( ) ( )
m

j j t

j

finish t I vmTime VM VM
=

= ×∑  (3) 

3.3 Task Scheduling Constraint Function 

To better allocate resources, this paper constructs a 

task scheduling constraint function based on cost and 

time. By setting different weights, the value of the 

scheduling constraint function is maximized. 

(1) Execution time constraint function: 

 min

max min

( )
( )

finishTime I finishTime
resTime I

finishTime finishTime

−

=

−

 (4) 

Herein, 
max

finishTime and 
min

finishTime  express the 

predicted maximum execution time and minimum 

execution time of the task, 
_i taskLtenthT  and 

_i InputFilesizeT  

respectively represent the execution length of the task 

in the part of task 
i
T  and the length of other input 

information, M  represents the number of virtual 

machines, 
_

min( )
j cpu

VM  and 
_

max( )
j cpu

VM  represent 

the minimum and maximum computing power of a 

single virtual machine, 
_

min( )j bwVM  and 
_

max( )j bwVM  

represent a single virtual machine Minimum and 

maximum communication capacity。respectively; that 

is, the concurrent execution time of all tasks deployed 

on the virtual machine with the worst performance and 

the best performance. The calculation formula is 

 

max

_ _

1 1

_ _min( ) min( )

N N

i TaskLength i InputFileSize

i i

j cpu j bw

finishTime

T T

M VM M VM

= =

= +

× ×

∑ ∑  (5) 

 

min

_ _

1 1

_ _max( ) max( )

N N

i TaskLength i InputFileSize

i i

j cpu j bw

finishTime

T T

M VM M VM

= =

= +

× ×

∑ ∑  (6) 
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(2) Constraint function of execution cost: 

 min

max min

Cos ( ) Cos
Cos ( )

Cos Cos

finish t I finish t
res t I

finish t finish t

−

=

−

 (7) 

Herein, 
max

Cosfinish t and
min

Cosfinish t  represent 

the maximum and minimum execution costs 

predicted by the task,
_ cos

( )
j t

Max VM  and 
_cos

( )
j t

Min VM  

respectively represent the maximum and minimum cost 

consumption of a single virtual machine. respectively; 

that is, the sum of the costs required to deploy all tasks 

on the virtual machine with the highest and lowest unit 

cost. The specific calculation formula is as follows: 

 
max max _ cos

Cos ( )
j t

finish t finishTime Max VM= ×  (8) 

 min max _ cosCos ( )
j t

finish t finishTime Min VM= ×  (9) 

Therefore, based on the above two constraint factors, 

the task scheduling constraint function can be 

constructed as follows: 

 ( ) ( ) Cos ( )F I t resTime I c res t I= × + ×  (10) 

In the formula, ( )F I  represents the corresponding 

objective function of the I -th resource allocation plan, 

where， t  and c  are the influence weights of time and 

cost, respectively; the value range is [0, 1]; and 

1t c+ = . That is, for tasks that require high time 

factors, the proportion of t  can be increased. For tasks 

that are sensitive to cost factors, the weight of c  can be 

increased. When t  is the same as c , it not only 

satisfies the system’s constraints on task execution 

time but also satisfies the user’s requirements for cost 

reduction. 

4 BIAS-Based Cloud Computing Task 

Scheduling 

In this paper, the improved Ant colony-SFLA is 

used in cloud computing task scheduling. First, the 

individual ants are mapped to cloud computing tasks 

one by one. Second, the pheromone is updated and 

combined with the virtual machine using the general 

balance function of the Berger model for probability 

selection, and the feedback factor is used to select the 

path. Finally, in each individual iteration of ACO, the 

improved SFLA is introduced to update the individual, 

and the optimal cloud computing scheduling scheme is 

obtained. 

4.1 ACO 

ACO is a bionic optimization algorithm that 

simulates the foraging behavior of real ant colony 

bodies. It has positive feedback, distributed and 

heuristic search characteristics and has achieved good 

results in solving complex optimization problems. The 

essence of this algorithm is to use pheromones as a 

medium for communication among individuals in the 

population. Its formula is as follows: 

 
1

(1 )
m

k

ij ij ij

k

τ ρ τ τ

=

= − • + Δ∑  (11) 

 
/

0

kk

ij

Q L
τ

⎧
Δ = ⎨

⎩
 (12) 

 
1

[ ( , )][ ( )] [ ]

( ) [ ( , )][ ( )] [ ]

0

, [1, ],

j j

M
k

ij i i

i

k

w i j t

p t w i j t

otherwise

if i j M j tabu

α β

α β

τ η

τ η

=

⎧
⎪
⎪

= ⎨
⎪
⎪⎩

∈ ∉

∑
 (13) 

In the above formula, ρ  refers to the pheromone 

volatile factor, m  refers to the number of ants, k

ijτ  

refers to the number of pheromones released by ant k  

on path ( , )i j , 
k

L  refers to the path length covered by 

ant k , and k

ijp  refers to the probability for ant k  to 

choose path ( , )i j . 

4.1.1 Improved Pheromone 

To improve the pheromone, the ACO pheromone 

update process is divided into two steps. This article 

limits the value of the pheromone to a specific interval 

[ A , B ]. The first step is the sequential update stage, 

which uses the optimal solution of the first n  iterations 

to update the pheromone on the path. The second step 

is the optimal solution of the current iteration or the 

pheromone on the global optimal path that can be 

updated. 

 

max

min
1

( 1) (1 ) ( ) ( )
r

w

ij i ij ij

w

t t t

τ

τ

τ ρ τ τ

=

⎡ ⎤
+ = − + Δ⎢ ⎥

⎣ ⎦
∑  (14) 

 
max

( ) ( )w

ij i
t F wτ ρ τΔ =  (15) 

Herein, when
1

(1 ) ( ) ( )
r

w

i ij ij

w

t tρ τ τ

=

− + Δ∑  is greater 

than A , the value of formula (14) is A . When 

1

(1 ) ( ) ( )
r

w

i ij ij

w

t tρ τ τ

=

− + Δ∑  is smaller than B , the value 

of formula (14) is B . Under other circumstances, the 

value of formula (15) is
1

(1 ) ( ) ( )
r

w

i ij ij

w

t tρ τ τ

=

− + Δ∑ . In the 

formula, 
i

ρ  refers to the pheromone volatilization 

coefficient, and 
max

τ  and 
min

τ  refer to the maximum 

value and minimum values of the pheromone, 

respectively. r  refers to the update according to the 

path length of the respective solutions obtained from 
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small to large by ant r , w  refers to the serial number, 

and ( )F w  is the quality function with 

expression ( ) 1F w w= . 

4.1.2 Path Selection of Feedback Factors 

The improvement of pheromones mainly considers 

the influence of heuristic information on the path. This 

makes it easy for ants to choose the shortest path in the 

initial iteration of the algorithm without considering 

the influence of the combination of paths selected as 

the solution on the final path length, which leads to 

blindness of the search. Through research, it is found 

that the overall length of the path where some short 

solution elements are located is often very large, which 

causes the algorithm to eventually converge to the local 

optimum instead of the global optimum.  

To avoid the possibility of losing the original 

optimal solution at the initial stage of the algorithm, it 

is necessary to add a feedback factor to the path that 

the ants travel to consider the long-term impact of the 

selected path on the search process. In the initial stage, 

when the solution element tends to guide the ant to find 

a short path, it is given a higher weight. By contrast, 

when the solution element may lead the ant to a longer 

path, the weight of the element should be reduced. In 

this way, ants can choose different paths in the initial 

search stage, which increases the diversity of multiple 

paths and prevents the algorithm from falling into the 

local optimal solution. 

 mi

( , ) max min

( )
d

a A r s

c a c
L L

c c
∈

−

= ×

−

∑  (16) 

In the formula, 
min
c  and 

max
c  represent the 

minimum and maximum path length between two 

points, respectively; 
mid
c  is the average value of the 

two; and ( )c a  is the path length. 

4.1.3 Probability Selection Based on Balance 

Constraints 

When ant k  selects the next resource node as the 

current task resource by probability, it obviously lacks 

the judgment of whether the resource is available. To 

make better use of virtual machine resources and 

improve resource utilization, this paper adopts the 

general expected balance constraint of the Berger 

model to set, i.e., to select the ratio of the load balance 

of the virtual machine that meets the task conditions 

and the similarity of the virtual machine resources to 

express probability. The balance constraints of virtual 

machine resources are expressed as follows: 

 ln
AR

ER
η θ=  (17) 

In the formula, θ  is the equilibrium coefficient 

whose value is between 0 and 1, and AR  refers to the 

VM load balance. The virtual machine execution time 

is used mainly because the more time the user spends 

on tasks, the higher the virtual machine utilization, that 

is, the higher the load balance. Therefore, its value 

is
( )

( )

j

j

vmTime VM

vmTime VM bestTime+

 bestTime refers to the 

average execution time of each virtual machine in the 

optimal search path so far, and ER  refers to the 

similarity between the resource parameters expected by 

the normalized virtual machine and the general 

resources expected by the task and is usually expressed 

by Euler’s formula. 2

1

( )
K

i i i

i

D X Y

=

= −∑ (
i

X  is the 

virtual machine’s parameter, and 
i
Y  is the task 

parameter). 

4.2 SFLA 

SFLA is a heuristic optimization algorithm that 

executes heuristic searches by executing heuristic 

functions to obtain the global optimal solution. The 

idea is to decompose the frog group into different 

numbers of subgroups, search in the subgroups 

according to a certain strategy, and perform a global 

exchange. 

4.2.1 Local Optimization 

Local update using the differential evolution 

algorithm randomly selects a target individual to 

update. The update object of this subgroup is still the 

worst individual in the subgroup, and the update 

strategy is not static in the whole optimization process. 

To achieve the optimization effect of increasing the 

diversity of the population in the early stage of 

evolution and increasing the convergence speed of the 

algorithm in the later stage, the mutation method is 

used to optimize it. 

(1) Mutation operation 

In the early stage of the algorithm, to maintain the 

diversity of the population and improve the global 

search ability, the worst individual in the subgroup was 

updated according to formula (18), and three 

individuals were randomly selected. One of the 

individuals is used as the target individual, and the 

other two individuals are used to update the moving 

step length using the rand difference operator. 

Herein, 
1r

X  is the target individual, 
2r

X  and 
3r

X  

are two other individuals randomly selected, and '

w
X  is 

an newly generated individual. 
1

(0,1)F ∈ , 
2

(0,1)F ∈ , 

and 
1 2

1F F+ = . In the later stage of the algorithm, to 

help converge to the best point, the best individual in 

the subgroup is used as the target individual, and the 

difference operator best mutation is introduced. The 

update strategy is formula (19), where 
2r

X  and 
3r

X  
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are two randomly selected individuals, '

w
X  is a new 

individual, and 
b

X  is the optimal individual. 

2
(0,1)F ∈  in the group. 

 '

1 1 2 3
( )

w r r r
X X F X X= + ∗ −  (18) 

 '

2 2 3
( )

w b r r
X X F X X= + ∗ −  (19) 

(2) Select operation 

After an iteration, the new individual '

w
X  and the 

worst individual 
w

X  of the subgroup are evaluated for 

fitness. According to the laws of nature, individuals 

with better fitness values are selected to enter the next 

generation population, as shown in formula (20). 

 ' '( ) ( )
w w w w

X X if f X f X= >=  (20) 

(3) Cross operation 

To further provide the local search ability of the 

algorithm and maintain the diversity of the population, 

a crossover operation is introduced. The update 

strategy is shown in formula (21). 

 
'

'

(0,1)

j j

j w i

w

X rand CR
X

rand otherwise

⎧ ≥⎪
= ⎨
⎪⎩

 (21) 

In the formula, ' j

w
X  is the value of the current 

individual at the j th dimension, CR  is the cross 

factor, and (0,1)rand  is the random factor. 

4.2.2 Global Optimization 

Suppose the number of all frog subgroups is m , and 

the optimal frog individuals in each subgroup are 

(1), (2),.... ( )
b b b
P P P m . The global optimal value is 

g
P . 

Choose two individuals among (1)
b
P  and ( )

b
P m  as the 

father generation. Combine 
g
P  to cross and generate 

offspring according to formula (22). 

 
1 2 3

1 2 3

( ) ( ) ( )

( ) ( ) ( )

b b b

b b b

P i r P i r P j r P g

P j r P j r P i r P g

= + +⎧
⎨

= + +⎩
 (22) 

In the formula, the values of 
1 2 3

1r r r+ + = , 

1 2 3
, , (0,1)r r r ∈  and 

1 2 3
, ,r r r  determine the size of the 

cross region. An elite retention strategy is adopted in 

the frog population to eliminate the poor individuals, 

but because 
b
P  represents the internal optimal 

individuals in each subgroup, this leads to a local 

optimum. Therefore, crossover operations between the 

optimal individuals in different subgroups can avoid 

falling into the local optimum and achieve the global 

optimum. 

4.3 Algorithm Flow 

Step 1: Initialize ACO and SFLA parameter values, 

set relevant parameter values, and perform one-to-one 

correspondence between tasks in cloud computing task 

scheduling and ACO individuals; 

Step 2: Use optimized pheromone and path update 

methods for processing; 

Step 3: Each individual ant can select appropriate 

execution resources for the current task under the 

condition of satisfying the balance constraint; 

Step 4: When an individual ant completes an 

algorithm iteration, the optimal individual is obtained, 

and a resource allocation plan for all tasks is obtained. 

Individuals are selected with the help of SFLA; 

Step 5: During this iteration, all ants have completed 

their search process, and the optimal solution in all 

allocation strategies is calculated. All virtual machines 

on the path are updated with global pheromones. Skip 

to Step 6; otherwise, skip to Step 2; 

Step 6: The number of iterations increases by 1; 

Step 7: If the number of iterations meets the 

algorithm termination condition, then stop the iteration 

and output the optimal resource allocation plan; 

otherwise, go to Step 2. 

5 Simulation Experiment 

To further illustrate the effect of the BIAS algorithm, 

ACO and SFLA are selected as reference objects. The 

hardware platform selects the CPU as a Core i3, 

memory 4GDDR3, hard disk capacity 100 GB, 

software platform Windows 7 operating system and 

software MATLAB 2011. Under different iteration 

times, different task numbers illustrate the effects of 

the BIAS algorithm in cloud computing task 

scheduling, The number of algorithm iterations is set to 

200, and the number of ants is set to 8. ρ  is 0.01, α  is 

3, β  is 2, θ  is 1, w  is 2, A  is 1, B  is 5，
1
r  is 0.5, 

2
r  

is 0.4, r  is 0.1, 
1
F  is 0.5, and 

2
F is 0.5 。 The 

experiment is divided into a comparison of indicators 

under different iterations, a comparison of indicators 

under small-scale tasks and a comparison of indicators 

under large-scale tasks. The related parameters of the 

small task set are shown in Table 1 to Table 2, and the 

related parameters of the large task set are shown in 

Table 3 to Table 4. 

Table 1. Collection of small tasks 

ID type Length
File 

size 

Expect 

time 

Expect 

bandwidth 

Expect 

Cost 

0 0 3000 2000 10   

1 0 5000 4000 15   

2 0 2500 1000 10   

3 1 2000 1000  100  

4 1 2500 1800  1500  

5 1 800 1200  1200  

6 2 3000 1200   16 

7 2 1000 1500   6 

8 2 1000 1000   10 
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Table 2. Small task set corresponds to virtual machine 

configuration 

ID 
Number of 

PE 

PE speed 

(MIPS) 

RAM 

(MB) 

Bandwidth 

(bit) 
price 

0 4 250 2048 2000 7 

1 2 128 1024 3000 5 

2 2 112 1024 1200 3 

Table 3. Large task set 

Category Scope 

Number of tasks [100, 500] 

Task length (MI) [5000, 15000] 

General expectation type 0, 1, 2 

Expected time (ms) [50, 500] 

Expected bandwidth (bit) [300, 1500] 

Expect cost [10, 50] 

Table 4. Large task set corresponds to virtual machine 

configuration 

Data center Virtual machine 

Number of data 

centers 
10 

Number of 

virtual machines
50 

Number of 

hosts 
[2, 6] Number of PE [2, 8] 

Management 

type 

Time 

sharing 

PE speed 

(MIPS) 
[250, 2000] 

Unit time spent [1, 15] RAM (MB) [512, 2048] 

  Bandwidth (bit) [500, 1500] 

  
Management 

type 
Time sharing 

 

5.1 Comparison of Indicators under Different 

Iterations 

Figures 1 to Figure 3 show a comparison of the three 

algorithms at different iterations in terms of time spent, 

cost and virtual machine load. Figure 1 shows that as 

the number of iterations increases, the BIAS algorithm 

can save time compared to ACO. Figure 2 shows that 

the BIAS algorithm has been very stable in terms of 

cost, while the cost-consumption curves of the ACO 

and SFLA algorithms show some twists and turns, 

indicating that the BIAS algorithm has good stability in 

terms of cost. Figure 3 shows a comparison of the three 

algorithms in terms of virtual machine load. From the 

figure, it is found that the BIAS algorithm has better 

advantages in virtual machine loading and is obviously 

superior to the ACO and SFLA algorithms. This 

indicates that BIAS can effectively reduce the load and 

improve the processing power of the cloud server. 
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Figure 1. Comparison of time consumption under 

different iterations 
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Figure 2. Comparison of economic costs under 

different iterations 
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Figure 3. Comparison of virtual machine load under 

different iterations 
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5.2 Comparison of Indicators under Small-

scale Tasks 

The number of small-scale tasks is set from 100 to 

1000, with 100 tasks incrementing each time. Figure 4 

to Figure 6 show a comparison of the three algorithms 

under small-scale tasks in terms of time, cost and 

virtual machine load. From Figure 4, it is found that 

the time-consuming curves of the three algorithms all 

show different degrees of fluctuation, and the number 

of tasks increases with an increasing number of tasks. 

Overall, BIAS is better than the other two algorithms, 

with an average reduction of 16.7% and 46.7% 

compared to SFLA and ACO, respectively.  
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Figure 4. Comparison of time consumption under 

small-scale tasks 
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Figure 5. Comparison of cost consumption under 

small-scale tasks 

Figure 5 shows a comparison of the cost of the three 

algorithms. From the curve, the cost of the BIAS 

algorithm is significantly lower than those of SFLA 

and ACO by 16.7% and 33.3%, respectively. This 

shows that the BIAS algorithm has certain advantages 

in terms of cost. Figure 6 shows a comparison of the 

three algorithms in terms of virtual machine load. As  
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Figure 6. Comparison of virtual machine load under 

small-scale tasks 

the number of tasks increases, the load of the three 

algorithms increases continuously. However, in terms 

of the overall effect, BIAS decreased by 11.1% and 

27.8% compared with SFLA and ACO, respectively. 

5.3 Comparison of Indicators under Large-

scale Tasks 

The number of large-scale tasks is set from 3000 to 

10000, with 1000 tasks incrementing each time. Figure 

7 to Figure 9 show a comparison of the three 

algorithms under large-scale tasks in terms of time, 

cost, and virtual machine load. From Figure 7, it is 

found that BIAS has obvious advantages in the 

comparison of completion time under large-scale tasks. 

As the number of tasks increases, the curves of the 

three algorithms show an upward trend. However, the 

BIAS curve has the least fluctuation and the slowest 

increase, which indicates that the algorithm performs 

well in terms of time spent. BIAS is reduced by 20.7% 

and 40.8% compared with SFLA and ACO, 

respectively. 
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Figure 7. Comparison of time consumption under 

large-scale tasks 
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Figure 8 shows a comparison of the cost of the three 

algorithms. It is found from the figure that the cost of 

the BIAS algorithm is the lowest. This is mainly 

because the introduction of the task evaluation 

mechanism to determine the resources required by the 

task can effectively save the cost of the task, thus 

reducing the cost. Along with the increasing number of 

large-scale tasks, the corresponding curve of BIAS is 

relatively flat compared with the other two algorithms. 

This shows that BIAS can be adapted to task 

scheduling on a large scale in terms of cost, and 

compared with the SFLA and ACO algorithms, it is 

reduced by 14.2% and 37.1%, respectively.  
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Figure 8. Comparison of cost consumption under 

large-scale tasks 

Figure 9 shows the effect of the virtual machine load 

under large-scale tasks. The BIAS algorithm has 

certain advantages over the virtual machine load values 

of the other two algorithms, which are 18.75% and 

37.5% lower than that of the SFLA and ACO 

algorithms, respectively. This shows that the BIAS 

algorithm can effectively reduce the virtual machine 

load value and can be suitable for cloud computing 

task scheduling on a large scale. 
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Figure 9. Comparison of virtual machine load under 

large-scale tasks 

From Figure 7 to Figure 9, it can be found that the 

algorithm in this paper has better advantages in large 

tasks than the ACO and SFLA algorithms, which 

shows that the improvement strategy of the ACO 

algorithm is effective, especially the SFLA algorithm 

is used in the individual update., Provides a better 

individual quality for the next iteration. At the same 

time, the upward trend of the algorithm in this paper in 

the three figures shows the stability of the algorithm in 

this paper and the stability of the algorithm in this 

paper in terms of large tasks. 

4 Conclusion 

Aiming at the problem of long time and low cost of 

resource scheduling under cloud computing, this paper 

uses the fusion algorithm of ant colony and SFLA to 

solve the problem of cloud computing resource 

scheduling. First, build a model based on time and cost. 

Secondly, optimize the pheromone, probability 

selection and path selection of ACO. Use SFLA to 

update the individual of each iteration of ACO. Finally, 

simulation experiments show that the algorithm in this 

paper has advantages in time and cost. However, the 

algorithm in this paper does not consider the energy 

consumption problem in resource scheduling. In future 

research, a comprehensive analysis of time, cost, and 

energy consumption will be carried out. 
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