
An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering 1347

An Ensemble Machine Learning Botnet Detection Framework

Based on Noise Filtering

Tzong-Jye Liu, Tze-Shiun Lin, Ching-Wen Chen

Department of Information Engineering and Computer Science, Feng Chia University, Taiwan

tjliu@fcu.edu.tw, zxkoaqes@gmail.com, chingwen@fcu.edu.tw*

*Corresponding Author: Tzong-Jye Liu; E-mail: tjliu@fcu.edu.tw

DOI: 10.53106/160792642021112206012

Abstract

During the past decade, one of the most serious cyber

threats has been the growth of botnet. Since botnet

attacks combine the characteristics of many malicious

attacks, they have complex attack behaviors and

communication patterns. In order to improve the

detection rate, many researchers use machine learning

techniques. In this paper, we proposed an ensemble

classification framework based on noise filtering to

improve detection performance. The experimental results

show that the proposed framework improves the detection

rate and reduces the false alarm rate. We also compare

the proposed classification model with other ensemble

classification models. The experimental results also show

that the classification model has the highest accuracy and

lower false alarm rate.

Keywords: Botnet detection, Ensemble classifier,

Intrusion detection, Machine learning, Noise

filtering

1 Introduction

With the rapid development of applications on the

Internet, more and more cyber threats exist. These

cyber threats include spam [1], Trojan horses [2],

distributed denial of service [3], botnet [4], etc. One of

the most serious cyber threats is the growth of botnets.

A botnet is a collection of hosts that are infected by the

malware. Infections on these hosts are usually carried

out through known vulnerabilities and the infected

hosts are called bots. Bots are usually controlled by the

botmaster to perform the cyberattack.

Although the botnet detection technology [5-6] has

been developed for many years, there is still no

effective solution to eliminate botnets. After hackers

modify attack parameters or malicious programs, the

existing detection solutions will fail. Recently,

researchers have begun to detect cyberattacks based on

machine learning as well as deep learning techniques

[7-11]. These detection solutions can identify existing

attacks or even unknown attacks.

When we want to identify cyberattacks by using the

machine learning techniques, we have to train the

classification model by using the training dataset first.

The training dataset is a set of feature vectors extracted

from botnet and normal network behaviors. After

establishing the classification model, we can identify

cyberattacks by using the classification model. It is a

challenge to design a classification model for detecting

cyberattacks because the real network behavior is

highly variable.

In order to prevent detection by classification

models, botnet flows usually pretended to be normal

flows. Therefore, many cyberattacks have the same

characteristics as normal flow behavior. The normal

and botnet flows that have similar characteristics are

the noise flows. After the features of these flows are

extracted and put into a dataset, noise [12-13] may be

formed in the dataset. These noises will reduce the

detection rate of the classification model and also

increase its false alarm rate. The detection rate is the

ratio of the number of correctly detected botnet flows

to the total number of botnet flows. The false alarm

rate is the ratio of the number of misclassified normal

flows to the total number of normal flows.

When we want to identify the cyberattack on the

Internet by using a classification model, designing a

classification model with a high detection rate is the

main goal. However, if the false alarm rate of the

classification model is too high, system administrators

will lose trust in the classification model due to a large

number of false alarms. Therefore, the second goal of

designing a classification model is to reduce the false

alarm rate.

The motivation of this paper is to design a

classification model that considers both low false alarm

rate and high detection rate. To achieve this goal, we

will start by filtering the noise in the input flows. For a

given classification algorithm Ω, the proposed

classification framework is an ensemble classification

model. It first classifies the input flows into classes T

and F. Class T contains flows that are correctly

classified by the algorithm Ω, and class F contains

noise flows that will be misclassified by the algorithm

Ω. Therefore, in order to improve the overall

1348 Journal of Internet Technology Volume 22 (2021) No.6

performance, flows in class F will be classified using

another classification algorithm, which is trained by

using the classification result of flows in class T.

The contributions of this study are as follows: (1)

This paper proposes an ensemble classification

framework based on noise filtering to improve

classification performance. Experimental results show

that the framework achieves both low false alarm rate

and high detection rate. (2) We compare the proposed

classification model with other ensemble classification

models. The experimental results also show that the

classification model has the highest accuracy rate and

lower false alarm rate. (3) Even after testing different

types of botnet flows, the false alarm rate is still very

small. (4) The t-distributed stochastic neighbor

embedding (t-SNE) visualization technique is used to

understand the characteristics of the dataset.

The following of this paper is organized as follows.

Section 2 discusses related work. The proposed

framework is in Section 3. The experimental results of

the proposed framework are in Section 4. Finally, we

give conclusion and future work in Section 5.

2 Related Work

The network intrusion detection system was first

proposed in 1980 [14]. It can identify malicious

behaviors and block them to protect users on the

Internet. Recently, botnet detection [4] has become the

main research direction of network intrusion detection.

Since attacks of botnet combine the characteristics of

many malicious attacks, they have complex attack

behaviors and communication patterns [15]. In order to

improve the detection rate, many researchers use

machine learning and deep learning techniques [7-11,

16]. In [17], the co-training method is used for network

intrusion detection. A small number of known training

samples are used to predict unlabeled samples, and

these samples are added to the training dataset for

retraining in an iterative manner. The procedure

improves the accuracy of the detection system when

there is a limited training sample.

An ensemble machine learning classification model

is integrated by many classification algorithms to

improve classification performance. It was originally

developed through classical methods such as Bagging

[18], Boosting [19], Stacking [20], and used logical

operations to make decisions on the results of multiple

classifiers. Woźniak et al. believe that using an

ensemble classification model is better than using a

single classifier [21]. In [22], the authors proposed an

optimal feature selection algorithm. The algorithm uses

FVV index feature selection method to select

appropriate features. Then, the algorithm removes

some useless or small impact features and improves the

performance of the model. The solution in [23] uses

auto-encoder to recalculate features. This solution

makes the classification model more sensitive to the

feature values of abnormal network flows. In [24],

Singh and De proposed an ensemble feature selection

method. Seven feature selection methods are used to

calculate the average, and features higher than the

average are selected to train the model. The method

improves the system performance and also reduces the

overall computation time.

In [13], the authors discussed the problem of noise

in the training dataset. They divided the noise handing

methods into the robustness approaches, the filtering

approaches and the noise consideration approaches.

The robustness approaches refer to the use of

classification algorithms that are not sensitive to noise.

The filtering approaches are to find and eliminate the

noise in the training dataset before training the

classification model. The noise consideration

approaches refer to considering noises in the process of

training the classification model. In [25], the authors

said that noise in the training dataset will affect the

classification results. They proposed a system that

divides the samples in the dataset into two categories:

clean samples and misclassified samples. The

misclassification analysis is performed on the

misclassified samples to improve the classification

accuracy. However, the solutions in [13, 25] are not for

the botnet detection.

Recently, researchers have begun to consider noise

issues in botnet flow detection. In the hybrid sampling

method, [26] uses one-side selection under-sampling

method to remove a small amount of noise. However,

the authors only focus on the feature extraction process.

In the paper, the hybrid sampling method is used to

deal with the problem of unbalanced datasets in

machine learning. Then, the algorithm uses CNN and

BiLSTM to extract the features of network flows.

Therefore, a balanced dataset was constructed for

training. The above process also reduces the training

time of the model and improves the classification

performance. In [27], the sparse and low-rank matrix in

the robust principal component analysis method is used

for optimization operations to achieve the purpose of

noise filtering. The model proves that it is effective for

C&C communication detection.

Recently, researchers have begun to use deep

learning techniques to design botnet detection solutions.

In [28], the authors use convolution layer to extract

flow-based features. Then, the feedforward artificial

neural network is used to train the classification model.

From the experimental results, the model can obtain

higher detection accuracy and lower false alarm rate. In

[10], the authors proposed an effective deep neural

network (DNN) framework to detect cyberattacks. The

solution automatically recognizes malicious

characteristics by processing both host-level and

network-level events. The authors evaluated the

performance of the proposed solution on various NIDS

and HIDS datasets. The proposed framework is highly

scalable and can be enhanced to process large amounts

An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering 1349

of data in real time. The paper in [11] proposes a deep

learning botnet detection framework for IoT networks.

Experimental results show that the proposed deep

learning model is better than classical machine learning

classifiers. The authors also analyzed the

characteristics of the datasets by using the t-distributed

stochastic neighbor embedding (t-SNE) visualization

technique.

Machine learning algorithms are vulnerable to

various adversarial attacks. In [29], the authors

proposed a P2P botnet detection mechanism. It can

detect noise-injected P2P botnet flows, and the

detection rate can be as high as 90%. In [30], the

authors proposed a technique that can detect domain

name system homograph attacks and randomly

generated domain names. Three adversarial attacks

DeepDGA, CharBot and MaskDGS are considered to

verify the robustness of the proposed model. After

performing 10-fold cross-validation on four different

DGA datasets, the average accuracy of the proposed

model reached 0.99. In [31], the authors analyzed

adversarial attacks on network intrusion detection

systems. The authors randomly modify the values of

four features: flow duration, send bytes, receive bytes

and exchanged bytes, and update the corresponding

derived features to perform the adversarial attacks.

This paper provides a perspective of network intrusion

detection through the analysis of adversarial

disturbances. In [32], the authors proposed an

adversarial attack against the deep learning NIDS in

the Internet of Things environment. The author uses

saliency maps to find the most critical features. The

attacker only needs to modify less than 0.005% of the

bytes in the malicious data packet to successfully

compromise a state-of-the-art NIDS.

3 The Proposed Framework

In this section, first, we will discuss the proposed

classification framework in Section 3.1. In Section 3.2,

we discussed the constructions of the pre-classifier and

T-classifier. At the end, we will discuss the

construction of the F-classifier in Section 3.3.

3.1 The Classification Framework

The proposed classification framework is shown in

Figure 1. It is an ensemble classifier that contains three

classifiers: pre-classifier, T-classifier and F-classifier.

The pre-classifier is the first layer of the

classification framework. It predicts the class to which

the testing data belongs. Class T is a set of testing data

that will be correctly classified by the T-classifier;

class F is a set of testing data that will be misclassified

by the T-classifier. We have to emphasize that the

classification result of the pre-classifier is just a

prediction. The T-classifier divides the testing data in

class T into normal and botnet flows.

Figure 1. The classification framework

The F-classifier divides the testing data in class F

into normal and botnet flows. Since the testing data in

class F will be misclassified by the T-classifier, the

testing data in class F is the noise. In the F-classifier,

we cannot use the features or the classification

algorithms used in the T-classifier. We will find

another features and classification algorithms to train

the classification model of F-classifier. The testing data

in class F will be classified by the classification model

trained using the classification results of testing data in

class T.

3.2 The Construction of the Pre-classifier and

T-classifier

In this subsection, we discuss the steps to construct

the pre-classifier and T-classifier.

Let ΩT be the classification algorithm to be

considered in this paper. ΩT may be support vector

machine (SVM), decision tree (DT) or naïve Bayes

(NB). The steps to construct the pre-classifier and T-

classifier are shown in Figure 2. First, we use the

algorithm ΩT and the training dataset to train the O-

classifier. Then, the training dataset is divided into

classes T’ and F’ by the O-classifier. Class T’ contains

data correctly classified by the O-classifier; class F’

contains data misclassified by the O-classifier.

Figure 2. The steps to construct the pre-classifier and

T-classifier

Second, the data in class T’ and the algorithm ΩT are

used to train the T-classifier according to the botnet

and normal labels on the data. Then, the T-classifier is

established.

Now, let us discuss the construction of the pre-

classifier. To construct the pre-classifier, we have to

select a classification algorithm. Let the selected

algorithm be Ωp. From Figure 2, the training dataset is

divided into classes T’ and F’ by the O-classifier.

1350 Journal of Internet Technology Volume 22 (2021) No.6

Therefore, we can train the pre-classifier using the

training dataset with labels T’ and F’. The selection of

algorithm Ωp will be discussed in the next section.

In general, the number of flows in class T’ is greater

than the number of flows in class F’. If the number of

flows in class T’ is less than the number of flows in

class F’, the algorithm ΩT is not suitable for identifying

botnet flows. It is better to choose another

classification algorithm for the O-classifier.

If ΩT correctly classifies the testing dataset, i.e., the

accuracy of algorithm ΩT is very high, then class F’

may be empty or contain only a small number of flows.

In this case, improving the performance of the

algorithm ΩT is unnecessary. Without loss of generality,

we assume that class F’ is not an empty set or contains

only a small number of flows. To train the pre-

classifier, we have to balance the number of flows in

both classes T’ and F’. Because we want the F-

classifier to only classify noise data, the over-sampling

technique is applied to the class F’, and overfitting

occurs. If class F’ contains only a small number of

flows and over-sampling techniques are used, the pre-

classifier will misclassify most flows as class F. Then,

most flows will be classified by the F-classifier.

Therefore, this paper does not consider the

classification algorithm with very high accuracy in ΩT.

3.3 The Construction of the F-classifier

Class F contains data that will be misclassified by

the T-classifier. Therefore, for the F-classifier, we

cannot use the features and the classification algorithm

used in the T-classifier.

Although the flows in class F are the noise of the

dataset, the same category of flows in both classes T

and F share the same connection properties. The source

and destination ports used in these flows have locality

property. In other words, the distribution of ports of

flows in class F is similar to that in class T. Therefore,

we will use the data classified by the T-classifier to

construct the classification model of F-classifier. As

shown in Figure 1, the behavior analysis module trains

the F-classifier by using the classification results of the

T-classifier. For the F-classifier, the feature vector is

composed of the source and destination port numbers.

 To construct the F-classifier, we have to select a

classification algorithm. The classification algorithm

will be determined by the experimental results and will

be discussed in the next section.

4 Experimental Results

This section evaluates the performance of the

proposed framework. All experiments were run on a

Linux computer with version 4.15.0. The system was

written using Python 3 with version 3.6.9. The machine

learning package we used is Scikit-learn [33], version

0.22.1. The source code for the proposed classification

framework is available in [34]. In the proposed

framework, three classification algorithms are

considered. They are the support vector machine (SVM)

with RBF kernel, Gaussian naïve Bayes (NB) and

decision tree (DT) classifiers. The parameters used in

these algorithms are the default values of the Scikit-

learn machine learning package.

In the following of this section, Section 4.1

discusses the datasets used in the experiments. Section

4.2 discusses the performance metrics. Sections 4.3

and 4.4 are experiments on feature selection and

algorithm selection, respectively. Section 4.5 is the

performance evaluation of the proposed framework.

Then, we compare the proposed framework with the

other ensemble classification methods in Section 4.6.

Finally, we present a case study on the robustness of

the proposed framework in Section 4.7.

4.1 The Dataset

The CTU-13 [35] dataset was used in this study. The

CTU-13 dataset is a collection of 13 different botnet

samples. In this paper, three scenarios CTU-Malware-

Capture-Botnet-42 (CTU42), CTU-Malware-Capture-

Botnet-43 (CTU43) and CTU-Malware-Capture-Botnet-

50 (CTU50) are used to evaluate the performance of

the proposed framework. All three scenarios are Neris

botnet packet capture. The first scenario, CTU42, is

used to train the classification model. The other two

scenarios are used to test the performance of the

proposed framework. CTU42 is also used for feature

selection and algorithm selection. Two scenarios,

CTU-Malware-Capture-Botnet-46 (CTU46) and CTU-

Malware-Capture-Botnet-54 (CTU54), are used to

evaluate the robustness of the proposed framework.

These two scenarios are Virut botnet capture.

For each scenario, we collect botnet and normal

flows from the complete packet capture (PCAP) format

files based on the IP addresses specified in the dataset

document. A flow is a sequence of bidirectional

packets between specific source hosts and/or from

specific destination hosts. For botnet flows, the flows

of all infected IPs will be collected. For normal flows,

we only collect flows from the following three IPs:

147.32.84.170, 147.32.84.134 and 147.32.84.164; it is

because the documentation of the dataset indicates that

other flows are less reliable.

Table 1 lists the details of these scenarios. It also

shows the characteristics of botnet communication in

these scenarios [35]. In order to understand the

properties of the dataset, we apply t-SEN technology to

visualize the flow records of the dataset. The t-SNE

technology maps high-dimensional data to low-

dimensional data [9, 11]. In Figure 3, the visualization

of normal and botnet flow records for each scenario is

shown. We can see in the figure that many normal and

botnet flow records overlap. The proposed noise

filtering technique will filter these noise flow records

and improve the detection performance.

An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering 1351

Table 1. CTU42, CTU43, CTU46, CTU50 and CTU54 in the CTU-13 Dataset

Characteristics of botnet scenarios
Scenario Bot Name

IRC SPAM CF PS HTTP
Type # of IPs Packets Flows

Bot 1 206424 14428
CTU42 Neris √ √ √

Normal 3 943115 27067

Bot 1 177948 19440
CTU43 Neris √ √ √

Normal 2 68994 8471

Bot 10 1536686 93736
CTU50 Neris √ √ √ √

Normal 3 1189716 27612

Bot 1 31391 859
CTU46 Virut √ √ √

Normal 3 125972 4623

Bot 1 290492 33040
CTU54 Virut √ √ √

Normal 3 623954 26898

CF: ClickFraud, PS: Port Scan

Figure 3. t-SNE visualization of normal and botnet flows records

1352 Journal of Internet Technology Volume 22 (2021) No.6

4.2 Performance Metrics

In order to evaluate the proposed framework, this

paper uses standard performance metrics. These

metrics include true positive rate (TPR), false positive

rate (FPR) and accuracy (ACC). The true positive rate

(also known as the detection rate) is the ratio of the

number of correctly detected botnet flows and the total

number of botnet flows. The false positive rate (also

known as the false alarm rate) is the ratio of the

number of misclassified normal flows to the total

number of normal flows. The accuracy is the ratio of

the number of correctly detected botnet and normal

flows to the total number of flows. The equations for

these three metrics are eq. (1)-(3), where true positive

(TP) is the number of botnet flows correctly classified;

true negative (TN) is the number of normal flows

correctly classified; false positive (FP) is the number

of normal flows incorrectly classified; false negative

(FN) is the number of botnet flows incorrectly

classified.

TP

TPR
TP FN

=

+

 (1)

FP

FPR
FP TN

=

+

 (2)

TP TN

ACC
TP TN FP FN

+
=

+ + +

 (3)

4.3 The Feature Selection

In the proposed framework, we have to find the best

set of features. The same features are used in O-

classifier, pre-classifier and T-classifier. Then, these

three classifiers will operate in the same feature space.

In order to extract features from the flow, the

packets are collected as a bidirectional flow according

the five-tuple (protocol plus source and destination IP

addresses and ports) of each packet. In our experiments,

we only consider TCP and UDP flows. We do not

consider ICMP packets. Then, for each flow, we

extracted 27 features. These features are categorized

into five types: packet number, packet size, packet

interval, outbound packets and return packets.

Outbound packets are packets that are sent from the

source to the destination. Return packets are packets

that are sent back from the destination to the source.

Then, we will select the appropriate features for the

proposed framework based on the Fisher score [36].

Table 2 shows the 27 features, which are ranked

according to the Fisher score calculated using the

CTU42 dataset.

The first experiment is to find the appropriate

number of features for each classification algorithm

(SVM, NB or DT). In the experiment, we determined

the appropriate number of features from the algorithm

ΩT because we did not consider the interaction between

the number of features and noise. We will add features

one by one in the rank listed in Table 2 and evaluate

the accuracy of the classification algorithm.

Table 2. Features ranked according to their Fisher score

Rank Feature Name Rank Feature Name Rank Feature Name

1 Frequency of Change of Direction 10 Standard Deviation of Packet Size 19 Sum of Packet Interval

2 Return-First Packet Size 11 Maximum Packet Size 20 Sum of Packet Size

3 Outbound-First Packet Size 12 Outbound-Maximum Packet Size 21 Return-Sum of Packet Size

4 Return-Minimum Packet Size 13 Outbound-Average of Packet Size 22 Minimum Packet Interval

5 Outbound-Minimum Packet Size 14 Outbound-Standard Deviation of Packet Size 23 Return-Number of Packets

6 Minimum Packet Size 15 Return-Standard Deviation of Packet Size 24 Number of Packets

7 Return-Average of Packet Size 16 Average of Packet Interval 25 Outbound-Number of Packets

8 Average of Packet Size 17 Standard Deviation of Packet Interval 26 Outbound-Sum of Packet Size

9 Return-Maximum Packet Size 18 Maximum Packet Interval 27 Number of Change of Direction

Since the normal and botnet flows in CTU42 are

imbalanced, the under-sampling technique is used

randomly and uniformly for the class with a large

number of flows. In order to find the best parameter

value, a 10-fold cross validation technique is used.

Since the under-sampling technique randomly samples

the data, we repeat the above process 10 times to

obtain the average of the 100 results. Figure 4 shows

the experimental results. For SVM, the appropriate

features are the first six features. For DT, the

appropriate features are all 27 features. For NB, when

the number of features is three, the algorithm will

obtain maximum accuracy.

Figure 4. The number of features for classification

algorithms

An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering 1353

If the algorithm of the O-classifier is determined, the

features selected above are used on the pre-classifier

and the T-classifier. As mentioned in Section 3, the

features of the F-classifier are the source port and the

destination port.

From Figure 4, we also know that the accuracy of

DT is 97.8% if all 27 features are used. Since the

accuracy of the algorithm DT is very high, there are

only a few flows left in class F’ when training the pre-

classifier. Even sometimes the class F’ is an empty set.

Therefore, in the following experiments, we do not

consider the case where the algorithm of O-classifier is

DT.

4.4 The Algorithm Selection

As mentioned in Section 3, for the proposed

framework, the T-classifier and the O-classifier use

algorithm ΩT. In the following of this paper, we only

consider that algorithm ΩT is SVM or NB. In this

subsection, we will find the classification algorithm of

the pre-classifier and the F-classifier that are applicable

for the two classification algorithms of ΩT. In the

experiment, the three algorithms of SVM, DT and NB

were tested against the pre-classifier and F-classifier.

A 10-fold cross validation technique is also used. Since

the under-sampling technique randomly samples data,

we will repeat this process 10 times to obtain the

average of the 100 results.

Consider the case where the algorithm ΩT is SVM. It

can be seen from the experiment that if the pre-

classifier uses SVM and the F-classifier uses SVM or

NB, the accuracy of the proposed framework can reach

up to 99.3%. The average accuracy improvement rate

is 9.9%. However, the F-classifier will classify flows

that are misclassified by the T-classifier. For the F-

classifier, it is better to choose a different algorithm

from the T-classifier. Therefore, in this case, the F-

classifier uses NB. That is, if the algorithm ΩT is SVM,

the appropriate combination of the proposed

framework for the pre-classifier, T-classifier and F-

classifier is SVM-SVM-NB. The results are shown in

Table 3.

Table 3. Algorithms for the pre-classifier and F-classifier

The algorithm ΩT The proposed framework

Algorithm Accuracy Pre-classifier T-classifier F-classifier Accuracy Improvement rate

SVM 90.4% SVM SVM NB 99.3% 9.9%

NB 83.1% DT NB SVM 97.0% 16.7%

Consider the case where the algorithm ΩT is NB. It

can be seen from the experiment that if the pre-

classifier uses DT and the F-classifier uses NB or SVM,

the accuracy of the proposed framework can reach up

to 97.0%, and the average accuracy improvement rate

is 16.7%. However, for the F-classifier, it is better to

choose a different algorithm from the T-classifier. In

other words, if the T-classifier is NB, the appropriate

combination of the proposed framework for the pre-

classifier, T-classifier and F-classifier is DT-NB-SVM.

The results are summarized in Table 3.

4.5 The Performance of the Proposed

Framework

In this subsection, we will evaluate the performance

of the proposed framework. CTU42 is used for the

training dataset. Two other scenarios of Neris (viz.,

CTU43 and CTU50) are used to test the performance

of the proposed framework. The under-sampling

technique randomly samples the training data, so we

repeat the test 100 times and take the average the 100

results. The experimental results of the proposed

framework are in Table 4.

Table 4. The performance of the proposed framework

(a) The algorithm ΩT is SVM, the proposed framework is SVM-SVM-NB

The algorithm ΩT The proposed framework Improvement rate
Scenario

TPR FPR ACC TPR FPR ACC TPR FPR ACC

CTU42 81.3% 0.5% 93.2% 99.1% 0.4% 99.4% 21.8% -13.5% 6.7%

CTU43 99.9% 0.7% 99.7% 100.0% 0.6% 99.8% 0.1% -13.3% 0.1%

CTU50 81.6% 0.4% 85.7% 99.0% 0.3% 99.2% 21.3% -28.2% 15.7%

(b) The algorithm ΩT is NB, the proposed framework is DT-NB-SVM

The algorithm ΩT The proposed framework Improvement rate
Scenario

TPR FPR ACC TPR FPR ACC TPR FPR ACC

CTU42 80.7% 14.6% 83.7% 97.0% 0.1% 98.9% 20.3% -99.4% 18.1%

CTU43 96.7% 11.0% 94.4% 95.1% 0.3% 96.5% -1.6% -97.6% 2.3%

CTU50 77.1% 18.8% 78.0% 90.0% 0.2% 92.2% 16.8% -99.1% 18.2%

1354 Journal of Internet Technology Volume 22 (2021) No.6

First, we compare the accuracy of the proposed

framework and the algorithm ΩT. The proposed

framework improves accuracy in all cases. Second, let

us consider the false positive rate. Experimental results

show that the proposed framework significantly

reduces the false positive rate. In other words, the

proposed framework can prevent normal flows from

being classified as botnet flows. Finally, let us consider

the true positive rate. For most tests, the proposed

framework can also increase the true positive rate.

Therefore, the improvement of the accuracy of the

proposed framework is mainly affected by the

reduction of the false positive rate. From Table 4(a), If

the algorithm ΩT is SVM, the true positive rate is

increased by as much as 21.8%, and the false positive

rate is reduced by as much as 28.2%. From Table 4(b),

if the algorithm ΩT is NB, the true positive rate is

increased by as much as 20.3%, and the false positive

rate is reduced by as much as 99.4%.

4.6 The Comparison with Other Methods

In this subsection, we compare the proposed

framework with other ensemble network intrusion

detection solutions [37-38]. In [37], the authors select

features by using the p-value. Then, the voting

technique is applied to three different classification

algorithms. The authors also show five combinations

of the proposed voting technique. [38] proposed a two-

level classification model for network intrusion

detection. The authors combine ReliefF and borderline-

SMOTE algorithms to improve classification accuracy.

In the experiment, the parameters used by these

algorithms are the default values of the Scikit-learn

machine learning package. CTU42 is also used to train

the classification models. Two other scenarios, CTU43

and CTU50, of Neris are used to test the performance

of the classification models. The under-sampling

technique randomly samples the training data, so we

repeat the test 100 times and get the average of these

100 results.

Table 5 shows the experimental results. The two

methods in group A are the proposed two classification

models. The five methods in group B are the

classification models in [37]; and the six methods in

group C are the classification models in [38]. It can be

seen from Table 5 that the proposed method, SVM-

SVM-NB, has the highest accuracy. Although the false

positive rate of SVM-SVM-NB is higher than that of

DT-NB-SVM, its false positive rate is also lower than

the methods in [37] and [38]. Therefore, the proposed

method has the highest accuracy and lower false

positive rate.

Table 5. The comparison with other methods

Scenario: CTU42 Scenario: CTU43 Scenario: CTU50
Group Method

TPR FPR ACC TPR FPR ACC TPR FPR ACC

SVMRBF-SVMRBF-NB 99.1% 0.4% 99.4% 100.0% 0.6% 99.8% 99.0% 0.3% 99.2%
A

DT-NB-SVMRBF 97.0% 0.1% 98.9% 95.1% 0.3% 96.5% 90.0% 0.2% 92.2%

DT-KNN-LR 96.2% 0.7% 98.2% 99.8% 0.6% 99.7% 86.1% 1.2% 89.0%

DT-SVMPoly-LR 87.7% 0.5% 95.4% 100.0% 0.7% 99.7% 82.7% 0.5% 86.5%

DT-SVMRBF-LR 88.2% 0.6% 95.5% 100.0% 0.8% 99.7% 84.3% 0.6% 87.8%

DT-SVMLiner-LR 87.4% 1.5% 94.6% 100.0% 0.9% 99.7% 85.0% 1.2% 88.2%

B

[37]

AB-SVMRBF-GB 96.0% 2.1% 97.3% 100.0% 1.0% 99.7% 85.8% 1.7% 88.6%

C4.5+KNN 93.6% 7.2% 93.0% 85.9% 3.6% 89.1% 78.0% 11.0% 80.5%

C4.5+NB 83.3% 67.1% 50.4% 79.8% 73.3% 63.7% 74.0% 63.3% 65.5%

KNN+C4.5 96.3% 3.8% 96.3% 98.9% 2.2% 98.6% 91.7% 6.3% 92.2%

KNN+NB 94.3% 73.3% 50.2% 95.7% 72.9% 74.9% 87.8% 73.7% 73.8%

NB+KNN 96.5% 3.4% 96.6% 99.5% 2.0% 99.0% 93.1% 5.7% 93.4%

C

[38]

NB+C4.5 93.3% 5.3% 94.2% 86.5% 2.7% 89.8% 78.9% 7.8% 81.9%

SVMα: Support Vector Machine with kernel function α, NB: Naïve Bayes, DT: Decision Tree, KNN: k-Nearest Neighbor, LR:

Logistic Regression, AB: AdaBoost, GB: Gradient Boosting

4.7 A Case study on the Robustness of the

Proposed Framework

In this subsection, we present a case study on the

robustness of the proposed framework. We will use

both CTU46 and CTU54 to perform the robustness test.

These two scenarios both contains flows of Virut

botnets. As it was mentioned, CTU42 contains flows of

Neris botnet. From Table 1, the characteristics of

botnet flow records of Neris and Virut are partially

different.

In the experiment, we respectively use CTU42,

CTU46 and CTU54 to train the proposed methods;

then, test CTU46 and CTU54. The under-sampling

technique randomly samples the training data, so we

repeated the test 100 times and get the average of these

100 results. In Table 6, when we training the models

using CTU42 and test the Virut dataset, the true

positive rate and the accuracy of the proposed model

will decrease in some cases. However, the false

positive rate is still very small. From the experimental

results, SVM-SVM-NB is more robust than DT-NB-

SVM.

An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering 1355

Table 6. A case study of the robustness test

Scenario: CTU46 Scenario: CTU54
Training Method

TPR FPR ACC TPR FPR ACC

SVM-SVM-NB 100.0% 0.5% 99.6% 90.1% 0.4% 94.4%
CTU42

DT-NB-SVM 79.9% 0.3% 96.6% 71.8% 0.2% 84.4%

SVM-SVM-NB 99.9% 0.7% 99.4% 93.9% 0.5% 96.4%
CTU46

DT-NB-SVM 99.4% 0.1% 99.9% 91.7% 0.3% 95.3%

SVM-SVM-NB 100.0% 1.0% 99.1% 99.8% 0.6% 99.6%
CTU54

DT-NB-SVM 99.8% 0.1% 99.9% 99.7% 0.3% 99.7%

Also in Table 6, when we use CTU46 and CTU54 to

retrain the model respectively, the performance

improves. The performance of the model is not the best

if CTU46 is the training dataset. It is because CTU46

contains only a few flows (see Table 1).

Therefore, when the attack behavior changes, the

performance of the proposed models may decrease.

However, when we retrain the model using a dataset

with new attack behaviors, the performance of the

model will improve even if the training dataset

contains few samples.

5 Conclusion and Future Work

This paper discusses how noise filtering technology

is applied to the botnet detection problem. We

proposed an ensemble classification framework for

botnet detection. The major advantages of the proposed

framework are as follows: (1) The proposed framework

improves both the detection rate and the accuracy rate.

(2) The experimental results show that the proposed

framework significantly reduces the false alarm rate. (3)

Even after testing different types of botnet flows, the

false alarm rate is still very small. That is, the proposed

framework can prevent the normal flow from being

classified as a botnet flow. The result prevents the

system administrator from losing confidence in the

classifier.

One problem with the proposed framework is the

high computational complexity. First, let us discuss the

training phase. From Figure 2, to construct the

proposed classifier, we have to train the O-classifier

first. Then, use the classification results to train the

pre-classifier and the T-classifier. Therefore, three

training processes and one testing process are required

to construct the proposed classifier. Now, let us discuss

the testing phase. From Figure 1, a flow has to pass

through two levels of classifiers to get its class. This is

the same as the classification process of most ensemble

classifier. However, the F-classifier is trained using the

classification results of T-classifier. The delay occurs

on the F-classifier. According to the classification

results on the CTU42 dataset, only 38.4% of total

flows are classified by the F-classifier. In other words,

most testing flows will be quickly classified by the T-

classifier.

Recently, many deep learning botnet detection

solutions have been proposed, and the performance of

these solutions is better than machine learning

solutions. For deep learning solutions, features are

inferred and optimized for the desired output

automatically. Therefore, it is difficult for us to

understand the impact for each feature on the solution.

Bases on the results of this study, in future work, we

will apply noise filtering technology to deep learning

botnet detection solutions. We will also try to improve

the above-mentioned problem.

References

[1] W. Z. Khan, M. K. Khan, F. T. B. Muhaya, M. Y. Aalsalem,

H. C. Chao, A Comprehensive Study of Email Spam Botnet

Detection, IEEE Communications Surveys & Tutorials, Vol.

17, No. 4, pp. 2271-2295, Fourth Quarter, 2015.

[2] A. A. Awad, S. G. Sayed, S. A. Salem, Collaborative

Framework for Early Detection of RAT-Bots Attacks, IEEE

Access, Vol. 7, pp. 71780-71790, May, 2019.

[3] A. Wang, W. Chang, S. Chen, A. Mohaisen, Delving into

Internet DDoS Attacks by Botnets: Characterization and

Analysis, IEEE/ACM Transactions on Networking, Vol. 26,

No. 6, pp. 2843-2855, December, 2018.

[4] J. Canavan, The Evolution of Malicious IRC Bots,

Proceedings of Virus Bulletin Conference 2005, Dublin,

Ireland, 2005, pp. 104-114.

[5] F. Haddadi, A. N. Zincir-Heywood, Benchmarking the Effect

of Flow Exporters and Protocol Filters on Botnet Traffic

Classification, IEEE Systems Journal, Vol. 10, No. 4, pp.

1390-1401, December, 2016.

[6] I. Ghafir, V. Prenosil, M. Hammoudeh, T. Baker, S. Jabbar, S.

Khalid, S. Jaf, BotDet: A System for Real Time Botnet

Command and Control Traffic Detection, IEEE Access, Vol.

6, pp. 38947-38958, June, 2018.

[7] O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K.

Taha, K. Kim, Data Randomization and Cluster-Based

Partitioning for Botnet Intrusion Detection, IEEE

Transactions on Cybernetics, Vol. 46, No. 8, pp. 1796-1806,

August, 2016.

[8] I. Ahmad, M. Basheri, M. J. Iqbal, A. Rahim, Performance

Comparison of Support Vector Machine, Random Forest, and

Extreme Learning Machine for Intrusion Detection, IEEE

Access, Vol. 6, pp. 33789-33795, May, 2018.

[9] S. Sriram, R. Vinayakumar, M. Alazab, S. KP, Network Flow

based IoT Botnet Attack Detection using Deep Learning,

1356 Journal of Internet Technology Volume 22 (2021) No.6

IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), Toronto,

Canada, 2020, pp. 189-194.

[10] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,

A. Al-Nemrat, S. Venkatraman, Deep Learning Approach for

Intelligent Intrusion Detection System, IEEE Access, Vol. 7,

pp. 41525-41550, April, 2019.

[11] R. Vinayakumar, M. Alazab, S. Srinivasan, Q. Pham, S. K.

Padannayil, K. Simran, A Visualized Botnet Detection

System Based Deep Learning for the Internet of Things

Networks of Smart Cities, IEEE Transactions on Industry

Applications, Vol. 56, No. 4, pp. 4436-4456, July-August,

2020

[12] G. L. Libralon, A. C. P. de Leon Ferreira de Carvalho, A. C.

Lorena, Pre-Processing for Noise Detection in Gene

Expression Classification Data, Journal of the Brazilian

Computer Society, Vol. 15, No. 1, pp. 3-11, March 2009.

[13] B. Frenay, M. Verleysen, Classification in the Presence of

Label Noise: A Survey, IEEE Transactions on Neural

Networks and Learning Systems, Vol. 25, No. 5, pp. 845-869,

May, 2014.

[14] J. P. Anderson, Computer Security Threat Monitoring and

Surveillance, James P. Anderson Company, 1980.

[15] G. Vormayr, T. Zseby, J. Fabini, Botnet Communication

Patterns, IEEE Communications Surveys & Tutorials, Vol. 19,

No. 4, pp. 2768-2796, Fourth Quarter, 2017.

[16] L. Silva, L. Utimura, K. Costa, M. Silva, S. Prado, Study on

Machine Learning Techniques for Botnet Detection, IEEE

Latin America Transactions, Vol. 18, No. 5, pp. 881-888,

May, 2020.

[17] S. Wu, J. Yu, X. Fan, Research on Intrusion Detection

Method Based on SVM Co-training, 2011 Fourth

International Conference on Intelligent Computation

Technology and Automation, Shenzhen, Guangdong, China,

2011, pp. 668-671.

[18] L. Breiman, Bagging Predictors, Machine Learning, Vol. 24,

No. 2, pp. 123-140, August, 1996.

[19] Y. Freund, R. E. Schapire, Experiments with a New Boosting

Algorithm, Proceedings of the 13th International Conference

on Machine Learning, Bari, Italy, 1996, pp. 148-156.

[20] D. H. Wolpert, Stacked Generalization, Neural Networks, Vol.

5, No. 2, pp. 241-259, 1992.

[21] M. Woźniak, M. Graña, E. Corchado, A Survey of Multiple

Classifier Systems as Hybrid Systems, Information Fusion,

Vol. 16, pp. 3-17, March, 2014.

[22] E. Zhu, Y. Chen, C. Ye, X. Li, F. Liu, OFS-NN: An Effective

Phishing Websites Detection Model Based on Optimal

Feature Selection and Neural Network, IEEE Access, Vol. 7,

pp. 73271-73284, June, 2019.

[23] Y. F. Hsu, Z. He, Y. Tarutani, M. Matsuoka, Toward an

Online Network Intrusion Detection System Based on

Ensemble Learning, 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), Milan, Italy,

2019, pp. 174-178.

[24] K. J. Singh, T. De, Efficient Classification of DDoS Attacks

Using an Ensemble Feature Selection Algorithm, Journal of

Intelligent Systems, Vol. 29, No. 1, pp. 71-83, January, 2020.

[25] R. Pruengkarn, C. C. Fung, K. W. Wong, Using

Misclassification Data to Improve Classification Performance,

2015 12th International Conference on Electrical Engineering/

Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), Hua Hin, Thailand, 2015, pp. 1-5.

[26] K. Jiang, W. Wang, A. Wang, H. Wu, Network Intrusion

Detection Combined Hybrid Sampling with Deep

Hierarchical Network, IEEE Access, Vol. 8, pp. 32464-32476,

February, 2020.

[27] E. S. C. Vilaça, T. P. B. Vieira, R. T. de Sousa, J. P. C. L. da

Costa, Botnet Traffic Detection Using RPCA and

Mahalanobis Distance, 2019 Workshop on Communication

Networks and Power Systems (WCNPS), Brasilia, Brazil,

2019, pp. 1-6.

[28] S. Chen, Y. Chen, W. Tzeng, Effective Botnet Detection

Through Neural Networks on Convolutional Features, 2018

17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications/ 12th IEEE

International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE), New York, USA, 2018,

pp. 372-378.

[29] P. Narang, C. Hota, H. T. Sencar, Noise-Resistant

Mechanisms for the Detection of Stealthy Peer-to-Peer

Botnets, Computer Communications, Vol. 96, pp. 29-42,

December, 2016.

[30] V. Ravi, M. Alazab, S. Srinivasan, A. Arunachalam, K. P.

Soman, Adversarial Defense: DGA-Based Botnets and DNS

Homographs Detection Through Integrated Deep Learning,

IEEE Transactions on Engineering Management, pp. 1-18,

March, 2021.

[31] G. Apruzzese, M. Colajanni, M. Marchetti, Evaluating the

Effectiveness of Adversarial Attacks against Botnet Detectors,

2019 IEEE 18th International Symposium on Network

Computing and Applications (NCA), Cambridge, USA, 2019,

pp. 1-8.

[32] H. Qiu, T. Dong, T. Zhang, J. Lu, G. Memmi, M. Qiu,

Adversarial Attacks Against Network Intrusion Detection in

IoT Systems, IEEE Internet of Things Journal, Vol. 8, No. 13,

pp. 10327-10335, July, 2021.

[33] Scikit-learn: machine learning in Python, [Online]. Available:

https://scikit-learn.org/stable/.

[34] Source code for Noise Filtering Framework, [Online].

Available: https://github.com/BotnetNoiseFilter/NoiseFilter.

[35] The CTU-13 Dataset. A Labeled Dataset with Botnet, Normal

and Background Traffic, [Online]. Available: http://www.

stratosphereips.org/datasets-ctu13.

[36] C. C. Aggarwal, Data Mining: The Textbook, Springer, 2015.

[37] M. Raihan-Al-Masud, H. A. Mustafa, Network Intrusion

Detection System Using Voting Ensemble Machine Learning,

2019 IEEE International Conference on Telecommunications

and Photonics (ICTP), Dhaka, Bangladesh, 2019, pp. 1-4.

[38] J. Zhang, Y. Zhang, K. Li, A Network Intrusion Detection

Model Based on the Combination of ReliefF and Borderline-

SMOTE, Proceedings of the 2020 4th High Performance

Computing and Cluster Technologies Conference & 2020 3rd

An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering 1357

International Conference on Big Data and Artificial

Intelligence, Qingdao, China, 2020, pp. 199-203.

Biographies

Tzong-Jye Liu received the Ph.D.

degree in 1999 from the Department

of Computer Science, National Tsing

Hua University, Taiwan. After he got

his Ph.D. degree, he worked several

years in the computer industry in

Taiwan. He was an Assistant

Professor at the Feng Chia University (2004-2008),

Taiwan. Dr. Liu is currently an Associate Professor at

the Department of Information Engineering and

Computer Science, Feng Chia University, Taiwan. His

research interests include operating systems,

distributed computing and network security.

Tze-Shiun Lin received his M.S.

degree in the Department of

Information Engineering and

Computer Science from the Feng Chia

University, Taiwan, 2020. Currently,

he is a software engineer for work as

the development of ASP.NET and WPF applications.

His research interests include machine learning, data

mining, and e-learning.

Ching-Wen Chen received a M.S.

degree in the Department of Computer

Science from the National Tsing-Hua

University, Taiwan, 1995. He

obtained his Ph.D. in Computer

Science and Information Engineering

from the National Chiao-Tung University, Taiwan,

2002. He was an Assistant Professor at Chaoyang

University of Technology (2002-2005) and Feng Chia

University (2005-2007), Taiwan and an Associate

Professor at the Feng Chia University (2007-2013),

Taiwan. Currently, he is a Professor at the Department

of Information Engineering and Computer Science at

the Feng Chia University, Taiwan. His research

interests include computer architecture, parallel

processing, embedded systems, mobile computing, and

wireless sensor network.

1358 Journal of Internet Technology Volume 22 (2021) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

