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Abstract 

During the past decade, one of the most serious cyber 

threats has been the growth of botnet. Since botnet 

attacks combine the characteristics of many malicious 

attacks, they have complex attack behaviors and 

communication patterns. In order to improve the 

detection rate, many researchers use machine learning 

techniques. In this paper, we proposed an ensemble 

classification framework based on noise filtering to 

improve detection performance. The experimental results 

show that the proposed framework improves the detection 

rate and reduces the false alarm rate. We also compare 

the proposed classification model with other ensemble 

classification models. The experimental results also show 

that the classification model has the highest accuracy and 

lower false alarm rate. 

Keywords: Botnet detection, Ensemble classifier, 

Intrusion detection, Machine learning, Noise 

filtering 

1 Introduction 

With the rapid development of applications on the 

Internet, more and more cyber threats exist. These 

cyber threats include spam [1], Trojan horses [2], 

distributed denial of service [3], botnet [4], etc. One of 

the most serious cyber threats is the growth of botnets. 

A botnet is a collection of hosts that are infected by the 

malware. Infections on these hosts are usually carried 

out through known vulnerabilities and the infected 

hosts are called bots. Bots are usually controlled by the 

botmaster to perform the cyberattack. 

Although the botnet detection technology [5-6] has 

been developed for many years, there is still no 

effective solution to eliminate botnets. After hackers 

modify attack parameters or malicious programs, the 

existing detection solutions will fail. Recently, 

researchers have begun to detect cyberattacks based on 

machine learning as well as deep learning techniques 

[7-11]. These detection solutions can identify existing 

attacks or even unknown attacks. 

When we want to identify cyberattacks by using the 

machine learning techniques, we have to train the 

classification model by using the training dataset first. 

The training dataset is a set of feature vectors extracted 

from botnet and normal network behaviors. After 

establishing the classification model, we can identify 

cyberattacks by using the classification model. It is a 

challenge to design a classification model for detecting 

cyberattacks because the real network behavior is 

highly variable. 

In order to prevent detection by classification 

models, botnet flows usually pretended to be normal 

flows. Therefore, many cyberattacks have the same 

characteristics as normal flow behavior. The normal 

and botnet flows that have similar characteristics are 

the noise flows. After the features of these flows are 

extracted and put into a dataset, noise [12-13] may be 

formed in the dataset. These noises will reduce the 

detection rate of the classification model and also 

increase its false alarm rate. The detection rate is the 

ratio of the number of correctly detected botnet flows 

to the total number of botnet flows. The false alarm 

rate is the ratio of the number of misclassified normal 

flows to the total number of normal flows. 

When we want to identify the cyberattack on the 

Internet by using a classification model, designing a 

classification model with a high detection rate is the 

main goal. However, if the false alarm rate of the 

classification model is too high, system administrators 

will lose trust in the classification model due to a large 

number of false alarms. Therefore, the second goal of 

designing a classification model is to reduce the false 

alarm rate. 

The motivation of this paper is to design a 

classification model that considers both low false alarm 

rate and high detection rate. To achieve this goal, we 

will start by filtering the noise in the input flows. For a 

given classification algorithm Ω, the proposed 

classification framework is an ensemble classification 

model. It first classifies the input flows into classes T 

and F. Class T contains flows that are correctly 

classified by the algorithm Ω, and class F contains 

noise flows that will be misclassified by the algorithm 

Ω. Therefore, in order to improve the overall 
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performance, flows in class F will be classified using 

another classification algorithm, which is trained by 

using the classification result of flows in class T. 

The contributions of this study are as follows: (1) 

This paper proposes an ensemble classification 

framework based on noise filtering to improve 

classification performance. Experimental results show 

that the framework achieves both low false alarm rate 

and high detection rate. (2) We compare the proposed 

classification model with other ensemble classification 

models. The experimental results also show that the 

classification model has the highest accuracy rate and 

lower false alarm rate. (3) Even after testing different 

types of botnet flows, the false alarm rate is still very 

small. (4) The t-distributed stochastic neighbor 

embedding (t-SNE) visualization technique is used to 

understand the characteristics of the dataset. 

The following of this paper is organized as follows. 

Section 2 discusses related work. The proposed 

framework is in Section 3. The experimental results of 

the proposed framework are in Section 4. Finally, we 

give conclusion and future work in Section 5. 

2 Related Work 

The network intrusion detection system was first 

proposed in 1980 [14]. It can identify malicious 

behaviors and block them to protect users on the 

Internet. Recently, botnet detection [4] has become the 

main research direction of network intrusion detection. 

Since attacks of botnet combine the characteristics of 

many malicious attacks, they have complex attack 

behaviors and communication patterns [15]. In order to 

improve the detection rate, many researchers use 

machine learning and deep learning techniques [7-11, 

16]. In [17], the co-training method is used for network 

intrusion detection. A small number of known training 

samples are used to predict unlabeled samples, and 

these samples are added to the training dataset for 

retraining in an iterative manner. The procedure 

improves the accuracy of the detection system when 

there is a limited training sample. 

An ensemble machine learning classification model 

is integrated by many classification algorithms to 

improve classification performance. It was originally 

developed through classical methods such as Bagging 

[18], Boosting [19], Stacking [20], and used logical 

operations to make decisions on the results of multiple 

classifiers. Woźniak et al. believe that using an 

ensemble classification model is better than using a 

single classifier [21]. In [22], the authors proposed an 

optimal feature selection algorithm. The algorithm uses 

FVV index feature selection method to select 

appropriate features. Then, the algorithm removes 

some useless or small impact features and improves the 

performance of the model. The solution in [23] uses 

auto-encoder to recalculate features. This solution 

makes the classification model more sensitive to the 

feature values of abnormal network flows. In [24], 

Singh and De proposed an ensemble feature selection 

method. Seven feature selection methods are used to 

calculate the average, and features higher than the 

average are selected to train the model. The method 

improves the system performance and also reduces the 

overall computation time. 

In [13], the authors discussed the problem of noise 

in the training dataset. They divided the noise handing 

methods into the robustness approaches, the filtering 

approaches and the noise consideration approaches. 

The robustness approaches refer to the use of 

classification algorithms that are not sensitive to noise. 

The filtering approaches are to find and eliminate the 

noise in the training dataset before training the 

classification model. The noise consideration 

approaches refer to considering noises in the process of 

training the classification model. In [25], the authors 

said that noise in the training dataset will affect the 

classification results. They proposed a system that 

divides the samples in the dataset into two categories: 

clean samples and misclassified samples. The 

misclassification analysis is performed on the 

misclassified samples to improve the classification 

accuracy. However, the solutions in [13, 25] are not for 

the botnet detection. 

Recently, researchers have begun to consider noise 

issues in botnet flow detection. In the hybrid sampling 

method, [26] uses one-side selection under-sampling 

method to remove a small amount of noise. However, 

the authors only focus on the feature extraction process. 

In the paper, the hybrid sampling method is used to 

deal with the problem of unbalanced datasets in 

machine learning. Then, the algorithm uses CNN and 

BiLSTM to extract the features of network flows. 

Therefore, a balanced dataset was constructed for 

training. The above process also reduces the training 

time of the model and improves the classification 

performance. In [27], the sparse and low-rank matrix in 

the robust principal component analysis method is used 

for optimization operations to achieve the purpose of 

noise filtering. The model proves that it is effective for 

C&C communication detection. 

Recently, researchers have begun to use deep 

learning techniques to design botnet detection solutions. 

In [28], the authors use convolution layer to extract 

flow-based features. Then, the feedforward artificial 

neural network is used to train the classification model. 

From the experimental results, the model can obtain 

higher detection accuracy and lower false alarm rate. In 

[10], the authors proposed an effective deep neural 

network (DNN) framework to detect cyberattacks. The 

solution automatically recognizes malicious 

characteristics by processing both host-level and 

network-level events. The authors evaluated the 

performance of the proposed solution on various NIDS 

and HIDS datasets. The proposed framework is highly 

scalable and can be enhanced to process large amounts 
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of data in real time. The paper in [11] proposes a deep 

learning botnet detection framework for IoT networks. 

Experimental results show that the proposed deep 

learning model is better than classical machine learning 

classifiers. The authors also analyzed the 

characteristics of the datasets by using the t-distributed 

stochastic neighbor embedding (t-SNE) visualization 

technique. 

Machine learning algorithms are vulnerable to 

various adversarial attacks. In [29], the authors 

proposed a P2P botnet detection mechanism. It can 

detect noise-injected P2P botnet flows, and the 

detection rate can be as high as 90%. In [30], the 

authors proposed a technique that can detect domain 

name system homograph attacks and randomly 

generated domain names. Three adversarial attacks 

DeepDGA, CharBot and MaskDGS are considered to 

verify the robustness of the proposed model. After 

performing 10-fold cross-validation on four different 

DGA datasets, the average accuracy of the proposed 

model reached 0.99. In [31], the authors analyzed 

adversarial attacks on network intrusion detection 

systems. The authors randomly modify the values of 

four features: flow duration, send bytes, receive bytes 

and exchanged bytes, and update the corresponding 

derived features to perform the adversarial attacks. 

This paper provides a perspective of network intrusion 

detection through the analysis of adversarial 

disturbances. In [32], the authors proposed an 

adversarial attack against the deep learning NIDS in 

the Internet of Things environment. The author uses 

saliency maps to find the most critical features. The 

attacker only needs to modify less than 0.005% of the 

bytes in the malicious data packet to successfully 

compromise a state-of-the-art NIDS. 

3 The Proposed Framework 

In this section, first, we will discuss the proposed 

classification framework in Section 3.1. In Section 3.2, 

we discussed the constructions of the pre-classifier and 

T-classifier. At the end, we will discuss the 

construction of the F-classifier in Section 3.3. 

3.1 The Classification Framework 

The proposed classification framework is shown in 

Figure 1. It is an ensemble classifier that contains three 

classifiers: pre-classifier, T-classifier and F-classifier. 

The pre-classifier is the first layer of the 

classification framework. It predicts the class to which 

the testing data belongs. Class T is a set of testing data 

that will be correctly classified by the T-classifier; 

class F is a set of testing data that will be misclassified 

by the T-classifier. We have to emphasize that the 

classification result of the pre-classifier is just a 

prediction. The T-classifier divides the testing data in 

class T into normal and botnet flows. 

 

Figure 1. The classification framework 

The F-classifier divides the testing data in class F 

into normal and botnet flows. Since the testing data in 

class F will be misclassified by the T-classifier, the 

testing data in class F is the noise. In the F-classifier, 

we cannot use the features or the classification 

algorithms used in the T-classifier. We will find 

another features and classification algorithms to train 

the classification model of F-classifier. The testing data 

in class F will be classified by the classification model 

trained using the classification results of testing data in 

class T. 

3.2 The Construction of the Pre-classifier and 

T-classifier 

In this subsection, we discuss the steps to construct 

the pre-classifier and T-classifier. 

Let ΩT be the classification algorithm to be 

considered in this paper. ΩT may be support vector 

machine (SVM), decision tree (DT) or naïve Bayes 

(NB). The steps to construct the pre-classifier and T-

classifier are shown in Figure 2. First, we use the 

algorithm ΩT and the training dataset to train the O-

classifier. Then, the training dataset is divided into 

classes T’ and F’ by the O-classifier. Class T’ contains 

data correctly classified by the O-classifier; class F’ 

contains data misclassified by the O-classifier. 

 

Figure 2. The steps to construct the pre-classifier and 

T-classifier 

Second, the data in class T’ and the algorithm ΩT are 

used to train the T-classifier according to the botnet 

and normal labels on the data. Then, the T-classifier is 

established. 

Now, let us discuss the construction of the pre-

classifier. To construct the pre-classifier, we have to 

select a classification algorithm. Let the selected 

algorithm be Ωp. From Figure 2, the training dataset is 

divided into classes T’ and F’ by the O-classifier. 
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Therefore, we can train the pre-classifier using the 

training dataset with labels T’ and F’. The selection of 

algorithm Ωp will be discussed in the next section. 

In general, the number of flows in class T’ is greater 

than the number of flows in class F’. If the number of 

flows in class T’ is less than the number of flows in 

class F’, the algorithm ΩT is not suitable for identifying 

botnet flows. It is better to choose another 

classification algorithm for the O-classifier. 

If ΩT correctly classifies the testing dataset, i.e., the 

accuracy of algorithm ΩT is very high, then class F’ 

may be empty or contain only a small number of flows. 

In this case, improving the performance of the 

algorithm ΩT is unnecessary. Without loss of generality, 

we assume that class F’ is not an empty set or contains 

only a small number of flows. To train the pre-

classifier, we have to balance the number of flows in 

both classes T’ and F’. Because we want the F-

classifier to only classify noise data, the over-sampling 

technique is applied to the class F’, and overfitting 

occurs. If class F’ contains only a small number of 

flows and over-sampling techniques are used, the pre-

classifier will misclassify most flows as class F. Then, 

most flows will be classified by the F-classifier. 

Therefore, this paper does not consider the 

classification algorithm with very high accuracy in ΩT.  

3.3 The Construction of the F-classifier 

Class F contains data that will be misclassified by 

the T-classifier. Therefore, for the F-classifier, we 

cannot use the features and the classification algorithm 

used in the T-classifier. 

Although the flows in class F are the noise of the 

dataset, the same category of flows in both classes T 

and F share the same connection properties. The source 

and destination ports used in these flows have locality 

property. In other words, the distribution of ports of 

flows in class F is similar to that in class T. Therefore, 

we will use the data classified by the T-classifier to 

construct the classification model of F-classifier. As 

shown in Figure 1, the behavior analysis module trains 

the F-classifier by using the classification results of the 

T-classifier. For the F-classifier, the feature vector is 

composed of the source and destination port numbers. 

 To construct the F-classifier, we have to select a 

classification algorithm. The classification algorithm 

will be determined by the experimental results and will 

be discussed in the next section. 

4 Experimental Results 

This section evaluates the performance of the 

proposed framework. All experiments were run on a 

Linux computer with version 4.15.0. The system was 

written using Python 3 with version 3.6.9. The machine 

learning package we used is Scikit-learn [33], version 

0.22.1. The source code for the proposed classification 

framework is available in [34]. In the proposed 

framework, three classification algorithms are 

considered. They are the support vector machine (SVM) 

with RBF kernel, Gaussian naïve Bayes (NB) and 

decision tree (DT) classifiers. The parameters used in 

these algorithms are the default values of the Scikit-

learn machine learning package. 

In the following of this section, Section 4.1 

discusses the datasets used in the experiments. Section 

4.2 discusses the performance metrics. Sections 4.3 

and 4.4 are experiments on feature selection and 

algorithm selection, respectively. Section 4.5 is the 

performance evaluation of the proposed framework. 

Then, we compare the proposed framework with the 

other ensemble classification methods in Section 4.6. 

Finally, we present a case study on the robustness of 

the proposed framework in Section 4.7. 

4.1 The Dataset 

The CTU-13 [35] dataset was used in this study. The 

CTU-13 dataset is a collection of 13 different botnet 

samples. In this paper, three scenarios CTU-Malware-

Capture-Botnet-42 (CTU42), CTU-Malware-Capture-

Botnet-43 (CTU43) and CTU-Malware-Capture-Botnet-

50 (CTU50) are used to evaluate the performance of 

the proposed framework. All three scenarios are Neris 

botnet packet capture. The first scenario, CTU42, is 

used to train the classification model. The other two 

scenarios are used to test the performance of the 

proposed framework. CTU42 is also used for feature 

selection and algorithm selection. Two scenarios, 

CTU-Malware-Capture-Botnet-46 (CTU46) and CTU-

Malware-Capture-Botnet-54 (CTU54), are used to 

evaluate the robustness of the proposed framework. 

These two scenarios are Virut botnet capture. 

For each scenario, we collect botnet and normal 

flows from the complete packet capture (PCAP) format 

files based on the IP addresses specified in the dataset 

document. A flow is a sequence of bidirectional 

packets between specific source hosts and/or from 

specific destination hosts. For botnet flows, the flows 

of all infected IPs will be collected. For normal flows, 

we only collect flows from the following three IPs: 

147.32.84.170, 147.32.84.134 and 147.32.84.164; it is 

because the documentation of the dataset indicates that 

other flows are less reliable. 

Table 1 lists the details of these scenarios. It also 

shows the characteristics of botnet communication in 

these scenarios [35]. In order to understand the 

properties of the dataset, we apply t-SEN technology to 

visualize the flow records of the dataset. The t-SNE 

technology maps high-dimensional data to low-

dimensional data [9, 11]. In Figure 3, the visualization 

of normal and botnet flow records for each scenario is 

shown. We can see in the figure that many normal and 

botnet flow records overlap. The proposed noise 

filtering technique will filter these noise flow records 

and improve the detection performance. 
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Table 1. CTU42, CTU43, CTU46, CTU50 and CTU54 in the CTU-13 Dataset 

Characteristics of botnet scenarios 
Scenario Bot Name 

IRC SPAM CF PS HTTP 
Type # of IPs Packets Flows 

Bot 1 206424 14428 
CTU42 Neris √ √ √   

Normal 3 943115 27067 

Bot 1 177948 19440 
CTU43 Neris √ √ √   

Normal 2 68994 8471 

Bot 10 1536686 93736 
CTU50 Neris √ √ √ √  

Normal 3 1189716 27612 

Bot 1 31391 859 
CTU46 Virut  √  √ √ 

Normal 3 125972 4623 

Bot 1 290492 33040 
CTU54 Virut  √  √ √ 

Normal 3 623954 26898 

CF: ClickFraud, PS: Port Scan 

 

 

 

 

 

 

Figure 3. t-SNE visualization of normal and botnet flows records 
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4.2 Performance Metrics 

In order to evaluate the proposed framework, this 

paper uses standard performance metrics. These 

metrics include true positive rate (TPR), false positive 

rate (FPR) and accuracy (ACC). The true positive rate 

(also known as the detection rate) is the ratio of the 

number of correctly detected botnet flows and the total 

number of botnet flows. The false positive rate (also 

known as the false alarm rate) is the ratio of the 

number of misclassified normal flows to the total 

number of normal flows. The accuracy is the ratio of 

the number of correctly detected botnet and normal 

flows to the total number of flows. The equations for 

these three metrics are eq. (1)-(3), where true positive 

(TP) is the number of botnet flows correctly classified; 

true negative (TN) is the number of normal flows 

correctly classified; false positive (FP) is the number 

of normal flows incorrectly classified; false negative 

(FN) is the number of botnet flows incorrectly 

classified. 

 
TP

TPR
TP FN

=

+

 (1) 

 
FP

FPR
FP TN

=

+

 (2) 

 
TP TN

ACC
TP TN FP FN

+
=

+ + +

 (3) 

4.3 The Feature Selection 

In the proposed framework, we have to find the best 

set of features. The same features are used in O-

classifier, pre-classifier and T-classifier. Then, these 

three classifiers will operate in the same feature space. 

In order to extract features from the flow, the 

packets are collected as a bidirectional flow according 

the five-tuple (protocol plus source and destination IP 

addresses and ports) of each packet. In our experiments, 

we only consider TCP and UDP flows. We do not 

consider ICMP packets. Then, for each flow, we 

extracted 27 features. These features are categorized 

into five types: packet number, packet size, packet 

interval, outbound packets and return packets. 

Outbound packets are packets that are sent from the 

source to the destination. Return packets are packets 

that are sent back from the destination to the source. 

Then, we will select the appropriate features for the 

proposed framework based on the Fisher score [36]. 

Table 2 shows the 27 features, which are ranked 

according to the Fisher score calculated using the 

CTU42 dataset. 

The first experiment is to find the appropriate 

number of features for each classification algorithm 

(SVM, NB or DT). In the experiment, we determined 

the appropriate number of features from the algorithm 

ΩT because we did not consider the interaction between 

the number of features and noise. We will add features 

one by one in the rank listed in Table 2 and evaluate 

the accuracy of the classification algorithm. 

Table 2. Features ranked according to their Fisher score 

Rank Feature Name Rank Feature Name Rank Feature Name 

1 Frequency of Change of Direction 10 Standard Deviation of Packet Size 19 Sum of Packet Interval 

2 Return-First Packet Size 11 Maximum Packet Size 20 Sum of Packet Size 

3 Outbound-First Packet Size 12 Outbound-Maximum Packet Size 21 Return-Sum of Packet Size 

4 Return-Minimum Packet Size 13 Outbound-Average of Packet Size 22 Minimum Packet Interval 

5 Outbound-Minimum Packet Size 14 Outbound-Standard Deviation of Packet Size 23 Return-Number of Packets 

6 Minimum Packet Size 15 Return-Standard Deviation of Packet Size 24 Number of Packets 

7 Return-Average of Packet Size 16 Average of Packet Interval 25 Outbound-Number of Packets 

8 Average of Packet Size 17 Standard Deviation of Packet Interval 26 Outbound-Sum of Packet Size 

9 Return-Maximum Packet Size 18 Maximum Packet Interval 27 Number of Change of Direction 

 

Since the normal and botnet flows in CTU42 are 

imbalanced, the under-sampling technique is used 

randomly and uniformly for the class with a large 

number of flows. In order to find the best parameter 

value, a 10-fold cross validation technique is used. 

Since the under-sampling technique randomly samples 

the data, we repeat the above process 10 times to 

obtain the average of the 100 results. Figure 4 shows 

the experimental results. For SVM, the appropriate 

features are the first six features. For DT, the 

appropriate features are all 27 features. For NB, when 

the number of features is three, the algorithm will 

obtain maximum accuracy. 

 

Figure 4. The number of features for classification 

algorithms 
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If the algorithm of the O-classifier is determined, the 

features selected above are used on the pre-classifier 

and the T-classifier. As mentioned in Section 3, the 

features of the F-classifier are the source port and the 

destination port. 

From Figure 4, we also know that the accuracy of 

DT is 97.8% if all 27 features are used. Since the 

accuracy of the algorithm DT is very high, there are 

only a few flows left in class F’ when training the pre-

classifier. Even sometimes the class F’ is an empty set. 

Therefore, in the following experiments, we do not 

consider the case where the algorithm of O-classifier is 

DT. 

4.4 The Algorithm Selection 

As mentioned in Section 3, for the proposed 

framework, the T-classifier and the O-classifier use 

algorithm ΩT. In the following of this paper, we only 

consider that algorithm ΩT is SVM or NB. In this 

subsection, we will find the classification algorithm of 

the pre-classifier and the F-classifier that are applicable 

for the two classification algorithms of ΩT. In the 

experiment, the three algorithms of SVM, DT and NB 

were tested against the pre-classifier and F-classifier. 

A 10-fold cross validation technique is also used. Since 

the under-sampling technique randomly samples data, 

we will repeat this process 10 times to obtain the 

average of the 100 results. 

Consider the case where the algorithm ΩT is SVM. It 

can be seen from the experiment that if the pre-

classifier uses SVM and the F-classifier uses SVM or 

NB, the accuracy of the proposed framework can reach 

up to 99.3%. The average accuracy improvement rate 

is 9.9%. However, the F-classifier will classify flows 

that are misclassified by the T-classifier. For the F-

classifier, it is better to choose a different algorithm 

from the T-classifier. Therefore, in this case, the F-

classifier uses NB. That is, if the algorithm ΩT is SVM, 

the appropriate combination of the proposed 

framework for the pre-classifier, T-classifier and F-

classifier is SVM-SVM-NB. The results are shown in 

Table 3. 

Table 3. Algorithms for the pre-classifier and F-classifier 

The algorithm ΩT The proposed framework 

Algorithm Accuracy Pre-classifier T-classifier F-classifier Accuracy Improvement rate 

SVM 90.4% SVM SVM NB 99.3% 9.9% 

NB 83.1% DT NB SVM 97.0% 16.7% 

 

Consider the case where the algorithm ΩT is NB. It 

can be seen from the experiment that if the pre-

classifier uses DT and the F-classifier uses NB or SVM, 

the accuracy of the proposed framework can reach up 

to 97.0%, and the average accuracy improvement rate 

is 16.7%. However, for the F-classifier, it is better to 

choose a different algorithm from the T-classifier. In 

other words, if the T-classifier is NB, the appropriate 

combination of the proposed framework for the pre-

classifier, T-classifier and F-classifier is DT-NB-SVM. 

The results are summarized in Table 3. 

4.5 The Performance of the Proposed 

Framework 

In this subsection, we will evaluate the performance 

of the proposed framework. CTU42 is used for the 

training dataset. Two other scenarios of Neris (viz., 

CTU43 and CTU50) are used to test the performance 

of the proposed framework. The under-sampling 

technique randomly samples the training data, so we 

repeat the test 100 times and take the average the 100 

results. The experimental results of the proposed 

framework are in Table 4.  

Table 4. The performance of the proposed framework 

(a) The algorithm ΩT is SVM, the proposed framework is SVM-SVM-NB 

The algorithm ΩT The proposed framework Improvement rate 
Scenario 

TPR FPR ACC TPR FPR ACC TPR FPR ACC 

CTU42 81.3% 0.5% 93.2% 99.1% 0.4% 99.4% 21.8% -13.5% 6.7% 

CTU43 99.9% 0.7% 99.7% 100.0% 0.6% 99.8% 0.1% -13.3% 0.1% 

CTU50 81.6% 0.4% 85.7% 99.0% 0.3% 99.2% 21.3% -28.2% 15.7% 

 
(b) The algorithm ΩT is NB, the proposed framework is DT-NB-SVM 

The algorithm ΩT The proposed framework Improvement rate 
Scenario 

TPR FPR ACC TPR FPR ACC TPR FPR ACC 

CTU42 80.7% 14.6% 83.7% 97.0% 0.1% 98.9% 20.3% -99.4% 18.1% 

CTU43 96.7% 11.0% 94.4% 95.1% 0.3% 96.5% -1.6% -97.6% 2.3% 

CTU50 77.1% 18.8% 78.0% 90.0% 0.2% 92.2% 16.8% -99.1% 18.2% 

 

 



1354 Journal of Internet Technology Volume 22 (2021) No.6 

 

First, we compare the accuracy of the proposed 

framework and the algorithm ΩT. The proposed 

framework improves accuracy in all cases. Second, let 

us consider the false positive rate. Experimental results 

show that the proposed framework significantly 

reduces the false positive rate. In other words, the 

proposed framework can prevent normal flows from 

being classified as botnet flows. Finally, let us consider 

the true positive rate. For most tests, the proposed 

framework can also increase the true positive rate. 

Therefore, the improvement of the accuracy of the 

proposed framework is mainly affected by the 

reduction of the false positive rate. From Table 4(a), If 

the algorithm ΩT is SVM, the true positive rate is 

increased by as much as 21.8%, and the false positive 

rate is reduced by as much as 28.2%. From Table 4(b), 

if the algorithm ΩT is NB, the true positive rate is 

increased by as much as 20.3%, and the false positive 

rate is reduced by as much as 99.4%. 

 

4.6 The Comparison with Other Methods 

In this subsection, we compare the proposed 

framework with other ensemble network intrusion 

detection solutions [37-38]. In [37], the authors select 

features by using the p-value. Then, the voting 

technique is applied to three different classification 

algorithms. The authors also show five combinations 

of the proposed voting technique. [38] proposed a two-

level classification model for network intrusion 

detection. The authors combine ReliefF and borderline-

SMOTE algorithms to improve classification accuracy.  

In the experiment, the parameters used by these 

algorithms are the default values of the Scikit-learn 

machine learning package. CTU42 is also used to train 

the classification models. Two other scenarios, CTU43 

and CTU50, of Neris are used to test the performance 

of the classification models. The under-sampling 

technique randomly samples the training data, so we 

repeat the test 100 times and get the average of these 

100 results. 

Table 5 shows the experimental results. The two 

methods in group A are the proposed two classification 

models. The five methods in group B are the 

classification models in [37]; and the six methods in 

group C are the classification models in [38]. It can be 

seen from Table 5 that the proposed method, SVM-

SVM-NB, has the highest accuracy. Although the false 

positive rate of SVM-SVM-NB is higher than that of 

DT-NB-SVM, its false positive rate is also lower than 

the methods in [37] and [38]. Therefore, the proposed 

method has the highest accuracy and lower false 

positive rate. 

Table 5. The comparison with other methods 

Scenario: CTU42 Scenario: CTU43 Scenario: CTU50 
Group Method 

TPR FPR ACC TPR FPR ACC TPR FPR ACC 

SVMRBF-SVMRBF-NB 99.1% 0.4% 99.4% 100.0% 0.6% 99.8% 99.0% 0.3% 99.2% 
A 

DT-NB-SVMRBF 97.0% 0.1% 98.9% 95.1% 0.3% 96.5% 90.0% 0.2% 92.2% 

DT-KNN-LR 96.2% 0.7% 98.2% 99.8% 0.6% 99.7% 86.1% 1.2% 89.0% 

DT-SVMPoly-LR 87.7% 0.5% 95.4% 100.0% 0.7% 99.7% 82.7% 0.5% 86.5% 

DT-SVMRBF-LR 88.2% 0.6% 95.5% 100.0% 0.8% 99.7% 84.3% 0.6% 87.8% 

DT-SVMLiner-LR 87.4% 1.5% 94.6% 100.0% 0.9% 99.7% 85.0% 1.2% 88.2% 

B 

[37] 

AB-SVMRBF-GB 96.0% 2.1% 97.3% 100.0% 1.0% 99.7% 85.8% 1.7% 88.6% 

C4.5+KNN 93.6% 7.2% 93.0% 85.9% 3.6% 89.1% 78.0% 11.0% 80.5% 

C4.5+NB 83.3% 67.1% 50.4% 79.8% 73.3% 63.7% 74.0% 63.3% 65.5% 

KNN+C4.5 96.3% 3.8% 96.3% 98.9% 2.2% 98.6% 91.7% 6.3% 92.2% 

KNN+NB 94.3% 73.3% 50.2% 95.7% 72.9% 74.9% 87.8% 73.7% 73.8% 

NB+KNN 96.5% 3.4% 96.6% 99.5% 2.0% 99.0% 93.1% 5.7% 93.4% 

C 

[38] 

NB+C4.5 93.3% 5.3% 94.2% 86.5% 2.7% 89.8% 78.9% 7.8% 81.9% 

SVMα: Support Vector Machine with kernel function α, NB: Naïve Bayes, DT: Decision Tree, KNN: k-Nearest Neighbor, LR: 

Logistic Regression, AB: AdaBoost, GB: Gradient Boosting 

4.7 A Case study on the Robustness of the 

Proposed Framework 

In this subsection, we present a case study on the 

robustness of the proposed framework. We will use 

both CTU46 and CTU54 to perform the robustness test. 

These two scenarios both contains flows of Virut 

botnets. As it was mentioned, CTU42 contains flows of 

Neris botnet. From Table 1, the characteristics of 

botnet flow records of Neris and Virut are partially 

different. 

In the experiment, we respectively use CTU42, 

CTU46 and CTU54 to train the proposed methods; 

then, test CTU46 and CTU54. The under-sampling 

technique randomly samples the training data, so we 

repeated the test 100 times and get the average of these 

100 results. In Table 6, when we training the models 

using CTU42 and test the Virut dataset, the true 

positive rate and the accuracy of the proposed model 

will decrease in some cases. However, the false 

positive rate is still very small. From the experimental 

results, SVM-SVM-NB is more robust than DT-NB-

SVM. 
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Table 6. A case study of the robustness test 

Scenario: CTU46 Scenario: CTU54 
Training Method 

TPR FPR ACC TPR FPR ACC 

SVM-SVM-NB 100.0% 0.5% 99.6% 90.1% 0.4% 94.4% 
CTU42 

DT-NB-SVM 79.9% 0.3% 96.6% 71.8% 0.2% 84.4% 

SVM-SVM-NB 99.9% 0.7% 99.4% 93.9% 0.5% 96.4% 
CTU46 

DT-NB-SVM 99.4% 0.1% 99.9% 91.7% 0.3% 95.3% 

SVM-SVM-NB 100.0% 1.0% 99.1% 99.8% 0.6% 99.6% 
CTU54 

DT-NB-SVM 99.8% 0.1% 99.9% 99.7% 0.3% 99.7% 

 

Also in Table 6, when we use CTU46 and CTU54 to 

retrain the model respectively, the performance 

improves. The performance of the model is not the best 

if CTU46 is the training dataset. It is because CTU46 

contains only a few flows (see Table 1). 

Therefore, when the attack behavior changes, the 

performance of the proposed models may decrease. 

However, when we retrain the model using a dataset 

with new attack behaviors, the performance of the 

model will improve even if the training dataset 

contains few samples. 

5 Conclusion and Future Work 

This paper discusses how noise filtering technology 

is applied to the botnet detection problem. We 

proposed an ensemble classification framework for 

botnet detection. The major advantages of the proposed 

framework are as follows: (1) The proposed framework 

improves both the detection rate and the accuracy rate. 

(2) The experimental results show that the proposed 

framework significantly reduces the false alarm rate. (3) 

Even after testing different types of botnet flows, the 

false alarm rate is still very small. That is, the proposed 

framework can prevent the normal flow from being 

classified as a botnet flow. The result prevents the 

system administrator from losing confidence in the 

classifier.  

One problem with the proposed framework is the 

high computational complexity. First, let us discuss the 

training phase. From Figure 2, to construct the 

proposed classifier, we have to train the O-classifier 

first. Then, use the classification results to train the 

pre-classifier and the T-classifier. Therefore, three 

training processes and one testing process are required 

to construct the proposed classifier. Now, let us discuss 

the testing phase. From Figure 1, a flow has to pass 

through two levels of classifiers to get its class. This is 

the same as the classification process of most ensemble 

classifier. However, the F-classifier is trained using the 

classification results of T-classifier. The delay occurs 

on the F-classifier. According to the classification 

results on the CTU42 dataset, only 38.4% of total 

flows are classified by the F-classifier. In other words, 

most testing flows will be quickly classified by the T-

classifier. 

Recently, many deep learning botnet detection 

solutions have been proposed, and the performance of 

these solutions is better than machine learning 

solutions. For deep learning solutions, features are 

inferred and optimized for the desired output 

automatically. Therefore, it is difficult for us to 

understand the impact for each feature on the solution. 

Bases on the results of this study, in future work, we 

will apply noise filtering technology to deep learning 

botnet detection solutions. We will also try to improve 

the above-mentioned problem. 
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