
Design a D-Fog Scheme to Enhance Processing Performance of Real-Time IoT Applications in Fog Computing 1335

Design a D-Fog Scheme to Enhance Processing Performance of

Real-Time IoT Applications in Fog Computing

Shin-Jer Yang1, Wen-Hwa Liao2, Wan-Lin Lu1

1 Dept. of Computer Science and Information Management, Soochow University, Taipei, Taiwan
2 Institute of Information and Decision Sciences, National Taipei University of Business, Taipei, Taiwan

 sjyang@csim.scu.edu.tw, whliao@ntub.edu.tw, gra231403@gmail.com *

*Corresponding Author: Shin-Jer Yang; E-mail: sjyang@csim.scu.edu.tw

DOI: 10.53106/160792642021112206011

Abstract

The cloud computing has driven the fast development

of the IoT services and applications. When a amount of

real-time events in smart IoT applications are delivered to

the cloud for processing, the loading on cloud computing

becomes heavier, which can result in processing delays

and exceeding their deadlines. The nodes in fog

computing are closer to edge devices, which can process

such these real-time events in this layer. With this fog

process, the event processing efficiency can be enhanced

and delays can also be solved in cloud computing.

This paper designs a set of fog computing framework

called distributed fog computing scheme (D-FOG) that

can improve the better processing performance of real-

time IoT applications than conventional cloud computing.

Through the simulation experiments, the final results

indicate that the D-FOG yields the better performance in

terms of Expired event rate, Event success rate, Average

delay time, and Average processing time. Consequently,

the proposed D-FOG is more effective and efficient in

real-time events processing than conventional cloud

computing.

Keywords: Cloud computing, Fog computing, D-FOG,

Real-time IoT applications

1 Introduction

The maturation of cloud computing technology is

driving rapid development of Internet of Things (IoT)

services and applications. Cloud computing uses a

concentrated processing architecture and virtual

technology to produce a cloud environment that can

provide large quantities of calculation [6]. This enables

users to process a large amount of IoT events without

the need to install high-performance computing

equipment on the user-end. However, there are also

disadvantages. One disadvantage in cloud computing is

that to process each IoT event, the event must be

uploaded to the cloud before it can be processed. Many

factors in this process can increase the uploading time,

which can cause the entire processing time to become

longer [13]. IoT has many real-time applications,

including product production monitoring in

manufacturing and road monitoring in traffic and

transportation, etc. [1, 11]. These services and

applications have many events that require real-time

processing. When a large number of events are

uploaded to the cloud for processing at the same time,

it can result in delayed processing and exceeding the

processing deadline.

To solve delay problems derived from a large

number of real-time events of smart IoT applications to

be processed in cloud computing, the CISCO proposed

an early fog computing concept in 2014 [7]. Fog

computing technology uses a distributed processing

framework to disperse calculation, transmission,

control, and storage services on the user’s equipment

and system or on nearby systems. Examples are mobile

phones and gateways, etc. Fog computing can be used

to process urgent real-time events on edge devices near

the user. This not only can reduce delays, but can also

shorten process time and ensure that the calculation is

completed within the deadline, which makes real-time

event processing more efficient and lightens the load

on cloud computing processing.

Although the fog computing concept was proposed

in 2014, the OpenFog Consortium that specializes in

the study of fog computing was not established until

the end of 2015. The Consortium officially published

its white paper on fog computing architecture in 2017

and fog computing gradually began to attract people’s

attention [3]. Currently, most studies are still focused

on the precise definition of the fog computing concept.

However, the purpose of this paper is to propose a fog

computing scheme that can increase the efficiency of a

real-time IoT application and solve processing delays.

This scheme can also effectively shorten processing

time to ensure that real-time events of smart IoT

applications can be processed within the deadline.

Thus, the main purposes of this paper are as follows:

‧ To solve processing delays and deadline problems

that result from a large number of real-time IoT

application events in cloud processing, we propose a

1336 Journal of Internet Technology Volume 22 (2021) No.6

distributed fog framework into the conventional

cloud computing processing architecture called the

distributed fog computing scheme (D-FOG), to

effectively improve processing efficiency for real-

time events in existing IoT applications,

‧ In this paper, we will propose four key performance

indicators (KPIs) such like Expired event rate, Event

success rate, Average delay time, and Average

processing time. Also, we will set up experimental

environments for simulations.

‧ The simulations conducted in this paper used the

proposed D-FOG scheme to simulate a real-time IoT

application. The D-FOG can be used to effectively

improve the processing efficiency of real-time IoT

applications.

The rest of this paper is organized as follows.

Section 1 describes the background of the D-FOG and

the research scope and purpose. Section 2 surveys

literature reviews about cloud computing, IoT and fog

computing. In Section 3, this paper examines the

operational flows of the D-FOG research processes and

design of the D-FOG algorithm. Section 4 covers the

simulated experiments setup and analyzes the results.

Finally, we draw a conclusion and illustrate and

analyze their simulation results, also we indicate the

further research direction in Section 5.

2 Related Work

2.1 Cloud Computing

The Cloud computing is mainly to increase the

capacity and capability of Information Technology (IT)

networks by centralizing how to store and process data.

It allows consumers to access information through the

Internet without installing them in advance. In addition,

cloud computing can also reduce the costs of building

IT infrastructure and acquiring new resources. Cloud

computing also achieves the benefits of multitenant

architecture by maintaining one application. New

services offerings can be created by integrating

existing services of cloud computing and focusing on

added value. Since it is possible to combine

components of computing stack on demand, it is easier

to turn ideas into real products with limited cost and

focus on the product design [6, 22].

The American National Institute of Standards and

Technology (NIST) defines cloud computing as “a type

of computing resource access and sharing mode that

can be adjusted at any time according to the user’s

needs.” This type of computing can use minimal

management work or service supplier interaction to

achieve rapid configuration and release [15]. Cloud

computing defined by NIST is composed of five

essential characteristics, three service models, and four

deployment types, as shown in Figure 1. The

descriptions of cloud computing are as follows.

Figure 1. Overview of the cloud computing

The following are the five main essential

characteristics:

(1) On-demand Self-service: The user can use the

cloud service according to their own needs, and does

not require using the cloud supplier to make settings.

Users can use the webpage to adjust their own settings.

(2) Broad Network Access: Use the Internet

connection to make service available everywhere so

that the user can use the service just by connecting to

the Internet.

(3) Resource Pooling: Cloud service providers can

use a multi-rental model for users and allocate

resources according to the user’s requirements.

(4) Rapid Elasticity: Users can rapidly adjust the

resource scale according to needs.

(5) Measured Service: Resources on the cloud must

be able to be measured. This means that the cloud

provider can implement resource planning, control

access, and tabulate fees.

Then, there are three main types of services models:

(1) Software as a Service (SaaS): Users can directly

implement programs provided on the cloud

architecture and do not need to install any software

system or worry about updating problems. Users can

just pay according to their own use status.

(2) Platform as a Service (PaaS): The cloud

provider provides a development platform for users so

users can use this platform’s development tools to

install their own programs on the cloud for

development and testing.

(3) Infrastructure as a Service (IaaS): The cloud

provider provides infrastructure facilities such as

storage equipment and network. Users can flexibly

control the required development environment in this

environment. Users can freely choose the operating

system or programs, and do not need to understand

base level cloud architecture. They just directly use the

services provided by the cloud provider.

In addition, there are four main deployment types:

Design a D-Fog Scheme to Enhance Processing Performance of Real-Time IoT Applications in Fog Computing 1337

(1) Private Cloud: Used by a single organization.

This prevents security problems caused by different

users. Generally, this cloud is managed by the

organization itself or managed by a third-party.

(2) Community Cloud: A community cloud is

mutually shared by multiple organizations. Generally,

these organizations have similar objectives. Members

in the organization can use the community cloud

service to share important topics and use this to

complete specific tasks or cooperate with policies.

(3) Public Cloud: Compared to a private cloud, a

public cloud is provided for use by the public. It can be

managed and operated by businesses or academic or

government organizations.

(4) Hybrid Cloud: A hybrid cloud refers to a cloud

formed by two or more of the aforementioned cloud

types. Although different types of clouds are

independent and separate, the two can be connected

through a professional technology to transfer data and

programs.

The development and application of cloud computing

has not only improved efficiency, but also significantly

reduced costs (building computer rooms, renting

bandwidth, and management of information personnel).

Also, it improves enterprises’ mastery of production

capacity, and allows enterprises to more focus on

developing services. Therefore, cloud computing is

widely used in fields such as AI, Internet of Things,

machine learning, and big data [18].

2.2 Internet of Things (IoT) and Related

Applications

A growing number of physical objects are embedded

with sensors, software, and other technologies for the

purpose of connecting and exchanging data with other

devices and systems over the Internet. That realizes the

idea of the Internet of Things (IoT). In modern society,

the Internet has become one of the important

communication channels between people. The rising of

the IoT technology not only connects people together,

but also communicates with other objects. In other

words, the Internet is no longer just a communication

channel between people, but also a bridge connecting

global things and things, people and things. Nowadays,

the use of IoT has grown rapidly. There are a lot of IoT

applications being developed and deployed in various

industries including environmental monitoring, healthcare

service, inventory and production management, food

supply chain, transportation, workplace and home

support, security, and surveillance [4-5, 20].

The current IoT architecture is usually divided into

three layers, the perception layer, the network layer,

and the application layer, as shown in Figure 2 [12].

The following is a brief description of three conceptual

layers.

Figure 2. The conceptual architecture of IoT

(1) Perception Layer: It is also known as the sensor

or device layer, the perception layer is implemented as

the bottom layer in the IoT architecture. The perception

layer uses smart devices (RFID, sensors, actuators, etc.)

to interact with physical devices. The information

measured, collected, and processed by objects is

transmitted into the upper layer of the IoT architecture

via smart devices.

(2) Network Layer: It is also known as the

transmission layer, this layer is implemented as the

middle layer in IoT architecture. The network layer is

used to receive and process the information provided

by the perception layer, and determine the routes to

transmit the information to the hub, devices, and

applications of the IoT via integrated networks. The

network layer is the most important layer in the IoT

architecture, because it combines various devices

(switching, router, gateway, cloud computing, etc.) and

various communication technologies (Bluetooth, Wi-Fi,

Long-Term Evolution, etc.) is integrated in this layer.

The network layer uses various communication

technologies and protocols to transmit data between

different things or applications among heterogeneous

network.

(3) Application Layer: It is also known as the

business layer and implemented as the top layer in IoT

architecture. The application layer receives the data

transmitted from the network layer and uses the data to

provide the required services. For example, the

application layer can provide storage services to back

up the received data to the database, or provide

analysis and evaluation services to predict the future

state of physical devices. There are many applications

in this layer, for example, smart grid, smart

transportation, smart cities, etc., each application has

different requirements.

Currently, The IoT has different applications and

services in different fields. The following describes a

1338 Journal of Internet Technology Volume 22 (2021) No.6

few commonly seen IoT applications, including

environmental monitoring; smart cities; smart

business/inventory and product management; smart

homes/building management; smart health-care; and

smart security/ surveillance [1, 4, 11].

(1) Transportation and Logistics Domain: The

advanced cars, trains, buses and bicycles are equipped

with sensors, actuators and processing power. After the

roads themselves and the transported goods are also

equipped with tags and sensors, they can transmit

important information to traffic control stations and

transport vehicles, better arrange traffic routes, help

warehouse management, provide the tourists with

appropriate traffic information and monitor the status

of transported goods.

(2) Healthcare Domain: The application of the

Internet of Things technology provides many benefits

for the healthcare domain, resulting in many

applications, including tracking objects and personnel

(staff and patients), identification and authentication

of people, and automatic collection of sensing data.

(3) Smart Environment Domain: Smart environment

means that whether it is an office, home, factory or

leisure environment, the environment can be made

relaxed and comfortable through smart objects.

(4) Personal and social domain: Applications in this

domain allow users to interact with other people to

maintain and establish social relationships. When we

are doing something or have done something, it may be

automatically triggered to send a message to a friend.

2.3 Fog Computing and Related Applications

The cloud computing can provide on-demand,

scalable storage and processing service for IoT

scalable requirements. However, for health monitoring,

emergency response, and other delay-sensitive

applications, the delay caused by transmitting data to

the cloud and back to the application is unacceptable.

In addition, transferring large amounts of data to the

cloud for storage and processing is inefficient, because

it takes up the bandwidth of the network and cannot be

scalable [13, 19].

In order to solve the above problems, edge computing

uses computing resources near the IoT sensor as local

storage and preliminary data processing. This will

reduce network congestion and speed up analysis and

final decision-making. However, edge devices cannot

handle multiple IoT applications competing for their

limited resources, which will cause resource competition

and increase processing delays [3, 14]. The fog

computing seamlessly integrates edge devices and

cloud resources to overcome these limitations. It

avoids contention for edge resources by leveraging

cloud resources and coordinating the use of distributed

edge devices. Also, the fog computing is a distributed

mechanism that uses cloud and edge resources and its

own infrastructure to provide cloud-like services to the

edge of the network, as shown in Figure 3 [8].

Figure 3. The fog computing framework

The fog computing uses edge devices near users to

process IoT data locally for massive storage,

communication, control, configuration, and management.

The advantage of this method is the use of edge

devices close to the sensor while taking advantage of

the on-demand scalability of cloud resources. The fog

computing includes the data processing or analysis

applications in distributed clouds and edge devices. It

can also assist in the management and programming of

computing, network and storage services between the

cloud data center and end devices. In addition, it

supports user mobility, resource and interfaces

heterogeneity, and distributed data analysis, and solves

the needs of a wide range of distributed applications

that need the requirement of low latency[10, 16-17].

Fog computing can be utilized in many real-time IoT

applications such as smart grid, smart factory,

industrial automation, smart traffic management, smart

medical care, and real-time analysis application

systems, which are separately introduced below [2, 9,

21]:

(1) Smart Grid: This uses smart meters to monitor

real-time electricity supply in areas and uses fog

computing platform for analysis. If there are any

special changes, the grid will respond and use the

fastest speed to stabilize the grid.

(2) Smart Factory and Industrial Automation: This

uses factory environment sensors to collect

temperature or gas content values inside factories. The

information is transmitted to fog nodes for real-time

data analysis. If an abnormal value is discovered, the

system can automatically notify factory personnel in

real-time for emergency processing. This increases the

factory’s operational safety. Production line sensors

can also be used to detect the line’s work status and

transmit the data to fog nodes for analysis. This can be

used to check in real-time whether the products on the

automated production line conform to product

Design a D-Fog Scheme to Enhance Processing Performance of Real-Time IoT Applications in Fog Computing 1339

specifications. If an abnormality is discovered, the fog

nodes will transmit a correction command to the

automated production line and adjust the production

line work in real-time. Combining production line

monitoring and fog nodes’ real-time data analysis can

increase the factory’s production efficiency.

(3) Smart Traffic Management: This uses roadside

deployment of fog nodes to collect vehicle traffic

information and conduct real-time data analysis to

respond to traffic in real-time. This can be used to

automatically adjust traffic lights and alleviate traffic

congestion. If a car accident happens, the system can

alert rescue units in real-time, suggest to other drivers

to use alternative routes, and achieve real-time sharing

of traffic information.

(4) Smart Medical Care: This uses wearable devices

to monitor physiological values and upload the

monitored data to fog nodes for real-time data analysis.

When there is an abnormal physiological value, the

system can send a help signal in real-time to the family

or directly to a rescue unit for emergency processing to

make the best use of the crucial treatment period.

(5) Real-time Analysis Application: Weather

monitoring is a real-time analysis application. Various

types of sensors are used to collect temperature, wind

speed, and rainfall quantity data, which are uploaded to

the fog nodes for real-time data analysis. This provides

the public with accurate weather data and can also send

out real-time severe weather warnings so that the

public can have more time to make disaster prevention

preparations.

We discussed the various features of cloud

computing, edge computing, and fog computing in

detail. Table 1 gives the overall comparisons of their

tasks, response time, computing power, and network

bandwidth.

Table 1. Features comparison among cloud computing, edge computing, and fog computing

Features Cloud Edge Fog

Task Large amount of remote computing High-performance real-time computing Near-end computing

Response time Long Short Medium

Computing ability High Low Medium

Network bandwidth High Low Medium

3 Operations Issue and Algorithm Design

in D-FOG

The D-FOG scheme proposed in this paper

introduces a distributed fog computing framework into

the conventional cloud computing processing

architecture to effectively process real-time events in

smart IoT applications. Each event’s priority sequence

is used to conduct the process queuing. The operational

flow procedures of D-FOG are as described below and

shown in Figure 4.

Figure 4. D-FOG operational flow procedures

(1) The fog nodes can receive events produced by

edge devices and first format the data.

(2) The D-FOG scheme can determine which events

will be processed in the fog computing layer based on

priority level, data quantity, and processing time for

each event. Each event’s priority can be determined by

the IoT applications. Hence, events that do not require

real-time processing will be uploaded to cloud

computing for processing. Higher priority events that

require real-time processing are immediately placed

into the processing queue.

(3) After the events are processed, the results are

immediately sent back to the edge devices. After the

event data that is to be stored in formatted type, they

will be uploaded to the cloud storage in lots.

(4) After all the processing procedures have been

completed, the fog nodes will release memory and wait

for new events to be uploaded.

Based on the operational flow of the D-FOG as

shown in Figure 4, the pseudo code of the D-FOG

algorithm can be designed as follows:

4 Simulations Environments and Results

Analysis

This section describes the simulations environment

setup including software and hardware settings, list and

illustrate KPIs and their calculation formulas. Also, we

make the analysis of each KPI and summarize the

simulations results.

1340 Journal of Internet Technology Volume 22 (2021) No.6

Algorithm D-FOG(){
INPUT:

 RTED = []
 FRTE = []
 Seqlist = []
 count = 0
 dcount = RTE * initial_ratio
 Uploadlist = []
 DPARAMETER = []
 RTE = 0

OUTPUT:
 To complete real-time IoT events and response messages.

Method:

BEGIN{
 // Receive the real-time events
 RTED = sensor.recv (1024)

 // Format the data into a format
 FRTE = DATAFOMAT (RTED)

 SEQ (FRTE) //Set event processing sequence
 IF (count > dcount):
 PROCESSINGHELP()
 PROCESSINGDATA()
 ELSE
 PROCESSINGDATA()
 UPLOADDATA() // Upload data to cloud storage
 PARAMETERUPDATE() // Update the default parameter
 RELEASEMEM() // Release memory
} END

PROCEDURE DATAFOMAT(data){
 x = data.split (",")
 RETURN x
} END DATAFOMAT

PROCEDURE SEQ(data){
 y = []
 IF (data[0] == "data type"):
 y.append(sequence)
 FOR index in range(len(data)):
 y.append(data[index])
 Seqlist.append(y)
 count = count + 1
} END SEQ

PROCEDURE PROCESSINGHELP(){
 remsg=""
 fog2.connect((host, port))
 FOR index in range(len(Seqlist)):
 IF (index != 0):
 remsg = remsg + a[index] + ","
 fog2.send(remsg.encode('utf-8'))
 a=fog2.recv(1024)
 RETURN a
} END PROCESSINGHELP

PROCEDURE PROCESSINGDATA(){
 remsg = ""

Design a D-Fog Scheme to Enhance Processing Performance of Real-Time IoT Applications in Fog Computing 1341

 bamsg = []
 PD = Seqlist[0]
 RTEd = DPARAMETER[0]
 TT = PD [3]
 IF (NOW-TT > RTEd):
 RETURN EE
 ELSE:
 IF (PD[1] == " data type "):
 IF (float(PD[3]) > 40):
 PD.append("error")
 ELSE:
 PD.append("cloud")
 FOR index in range(len(a)):
 IF (index != 0):
 remsg=remsg + PD[index] + ","
 bamsg.append(PD[5])
 bamsg.append(remsg)
 PD.append(get_time_stamp())
 RETURN bamsg
} END PROCESSINGDATA

PROCEDURE UPLOADDATA(){
 uploadlist.append (data)
} END UPLOADDATA

PROCEDURE PARAMETERUPDATE (){
 DPARAMETER [0] = deadline
 IF (RTE == 100):
 deadline[0] = 100APT * initial_ratio
 ELSE IF (RTE == 200):
 deadline[1] = 200APT * initial_ratio
 ELSE IF (RTE == 500):
 deadline[2] = 500APT * initial_ratio
 ELSE IF (RTE == 1500):
 deadline[2] = 1500APT * initial_ratio
} END PARAMETERUPDATE

PROCEDURE RELEASEMEM(){
global count
del Seqlist
count = count - 1
Uploadlist = []
FRTE = []
RTED = []
} END RELEASEMEM

END D-FOG

4.1 Experiments Configuration Setup

For this experiment, we can utilize the VirtualBox to

set up a fog computing simulated environment and also

use Web Services to set up a cloud computing virtual

environment on the Windows. Also, we take the

environmental monitoring of smart factory as a

practical case for simulations. The data types of real

time events include temperature and humidity. The

simulations data is generated by the random function in

the sensor emulation of the smart factory system. The

simulated environment is divided into three main parts.

The first part is the edge devices, which are responsible

for collecting data and transmitting the events regularly

to the fog computing in the second part. The fog selects

the real-time event that it can process and the

remaining events are uploaded to the third part: cloud

computing, for processing. The simulated environment

configuration architecture is shown in Figure 5. The

related hardware/software (HW/SW) configuration

specifications are as shown in Table 2.

1342 Journal of Internet Technology Volume 22 (2021) No.6

Figure 5. Simulated environment configuration

architecture

Table 2. Simulations environment specifications

HW/SW Physical Machine VM

O.S. Windows 10 Ubuntu

CPU
Intel® Core™ i7-4790

CPU @ 3.60GHz

1 Cores with

2.6 GHz

Memory 8 GB 2 GB

Disk 250 GB 50 GB

4.2 Descriptions of KPIs

In this paper, we propose four key performance

indicators (KPIs) in terms of Expired event rate, Event

success rate, Average delay time, and Average

processing time which are used to analyze the

simulation results to be compare between the D-FOG

and conventional cloud schemes. The descriptions of

the KPIs are shown in Table 3.

Table 3. The descriptions of three keys performance indicators

Key Performance Indicators (KPIs) Purposes

Expired Event Rate

(EER, Unit: %)

The EER represents that the percentage of processing time of each real-time event is

exceeded the deadline time (EE) for all real-time event (RTE), as shown in Formula (1).

Event Success Rate

(ESR, Unit: %)

The ESR is to confirm that the percentage of real-time event is successfully completed

within the deadline (CE), as shown in Formula (2).

Average Delay Time

(ADT, Unit: ms)

This KPI is to measure the average delay time (ADT) of each real-time event, as shown in

Formula (3).

Average Processing Time

(APT, Unit: ms)

This KPI is to measure the average processing time (APT) of each real-time event, as

shown in Formula (4).

The correctly identified for Expired event rate,

Event success rate, Average delay time, and Average

processing time are expressed in Formulas (1), (2), (3),

and (4).

 EER (%) = (EE / RTE) × 100 (1)

 ESR (%) = (CE / RTE) × 100 (2)

 ADT (ms) = DT / RTE (3)

 APT (ms) = PT / RTE (4)

4.3 Results Analysis

We did perform five time experiments for averaging

the simulation results under D-FOG and conventional

cloud processing architectures (i.e. Cloud platform).

Also, the simulations were carried out using 100, 200,

500, and 1500 real-time events (Assume: constant

packet size) in smart factory system, respectively. The

simulation results in terms of KPIs: Expired event rate,

Event success rate, Average delay time, and Average

processing time are as shown in Figure 6, Figure 7,

Figure 8, and Figure 9, respectively. Hence, the total

simulation results are summarized as shown in Table 4.

Figure 6. Expired event rate

Figure 7. Event success rate

Design a D-Fog Scheme to Enhance Processing Performance of Real-Time IoT Applications in Fog Computing 1343

Figure 8. Average delay time

Figure 9. Average processing time

Table 4. The summarized experimental results

D-FOG

Events KPIs 100 200 500 1500

Expired Event Rate 9.00% 14.50% 16.92% 29.59%

Event Success Rate 74.20% 68.90% 63.04% 55.89%

Average Delay Time(ms) 23.36 69.94 406.81 718.25

Average Processing Time(ms) 137.35 176.69 610.57 1456.48

CLOUD

Events KPIs 100 200 500 1500

Expired Event Rate 30.60% 40.30% 42.64% 43.35%

Event Success Rate 57.20% 48.60% 48.88% 48.37%

Average Delay Time(ms) 74.22 186.30 414.27 1228.37

Average Processing Time(ms) 580.84 724.10 2366.18 5959.54

The experimental results indicate that when using

the D-FOG scheme in the case of 100 events, the

Expired event rate can be reduced by 21.6%, the Event

success rate can be increased by 17%, Average delay

time can be reduced by 50.86 ms to achieve 68.52%

improvement ratios, and the Average processing time

can be reduced by 443.49 ms to achieve 76.35%

improvement ratios. In the case of 200 events, the

Expired event rate can be reduced by 25.8%, the Event

success rate can be increased by 20.3%, Average delay

time can be reduced by 116.35 ms to achieve 62.46%

improvement ratios, and the Average processing time

can be reduced by 547.41 ms to achieve 75.6%

improvement ratios. In the case of 500 events, the

Expired event rate can be reduced by 25.72%, the

Event success rate can be increased by 14.16%,

Average delay time can be reduced by 7.46 ms to

achieve 1.8% improvement ratios, and the Average

processing time can be reduced by 1755.61 ms to

achieve 74.2% improvement ratios. In the case of 1500

events, the Expired event rate can be reduced by

13.76%, the Event success rate can be increased by

7.52%, Average delay time can be reduced by 510.12

ms to achieve 41.53% improvement ratios, and the

Average processing time can be reduced by 4503.06

ms to achieve 75.56% improvement ratios. The

comparative simulations are illustrated in Table 5.

Hence, this proves that use of the D-FOG scheme can

significantly improve the better events processing

efficiency of real-time IoT applications than

conventional cloud architecture.

Table 5. Comparative improving ratios for simulations

Improving Ratios

Events

KPIs
100 200 500 1500

Expired Event Rate 21.60% 25.80% 25.72% 13.76%

Event Success Rate -17.00% -20.30% -14.16% -7.52%

Average Delay Time
68.52%

(-50.86 ms)

62.46%

(-116.35 ms)

1.80%

(-7.46 ms)

41.53%

(-510.12 ms)

Average Processing Time
76.35%

(-443.49 ms)

75.60%

(-547.41 ms)

74.20%

(-1755.61 ms)

75.56%

(-4503.06 ms)

1344 Journal of Internet Technology Volume 22 (2021) No.6

5 Conclusion

As the quantity of real-time IoT applications

increase, the number of real-time events that require

real-time processing will increase. When a large

number of these events are simultaneously uploaded to

cloud computing for processing, it can cause

processing delays and make the processing time pass

the processing deadline. To solve this problem, some

people have proposed the fog computing concept.

Current studies on fog computing are focused on

defining its concept and application. In this paper, we

propose a novel scheme that actually utilizes the fog

computing framework, which we called the D-FOG.

The proposed D-FOG utilizes the fog computing as

processing scheme framework in this paper. Also, we

set up the experimental environments for simulations

using four KPIs in terms of: Expired event rate, event

success rate, Average delay time, and average

processing time. The experimental results of KPIs

indicate that in Expired event rate can be lower by

21.6%, 25.8%, 25.72% and 13.76%; Event success rate

can be increased of 17%, 20.3%, 14.16% and 7.52%;

Average delay time can be reduced by 50.86 ms,

116.35 ms, 7.46 ms and 510.12 ms, and also Average

processing time can be reduced by 443.49 ms, 547.41

ms, 1755.61 ms and 4503.06 ms in 100, 200, 500 and

1500 real-time events of smart factory system,

respectively. In summary, the results of this D-FOG

scheme are compared to that of conventional cloud

computing processing to prove that the proposed D-

FOG scheme is more efficient and has better results

than a conventional cloud computing processing

architecture. Also, the D-FOG can provide a more

efficient distributed processing architecture for all real-

time IoT applications. Consequently, the D-FOG

scheme not only can solve processing delays in real-

time event processing, but can also provide superior

service quality in real-time IoT applications to achieve

better processing efficiency and effective outcomes.

In the future research, we will expand the execution

of simulation experiments, incorporate more fog

computing nodes and process larger amounts of data to

obtain more accurate data results. In the information

security, we will enhance the secure communication

with neighboring nodes in the D-FOG scheme,

establish a trust mechanism for communication

between fog nodes, and make the transmission,

processing, and storage of data more secure.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M.

Ayyash, Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications, IEEE Communications Surveys

& Tutorials, Vol. 17, No. 4, 2347-2376, Fourth Quarter, 2015.

[2] H. Atlam, R. Walters, G. Wills, Fog Computing and the

Internet of Things: A Review, Big Data and Cognitive

Computing, Vol. 2, No. 2, pp. 1-18, June, 2018.

[3] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing

and its Role in the Internet of Things, Proceedings of the 1st

Edition of the MCC workshop on Mobile Cloud Computing,

Helsinki, Finland, 2012, pp. 13-16.

[4] E. Borgia, The Internet of Things Vision: Key Features,

Applications and Open Issues, Computer Communications,

Vol. 54, pp. 1-31, December, 2014.

[5] A. Botta, W. de Donato, V. Persico, A. Pescapé, Integration

of Cloud Computing and Internet of Things: A Survey,

Future Generation Computer Systems, Vol. 56, pp. 684-700,

March, 2016.

[6] R. Buyya, J. Broberg, A. M. Goscinski, Cloud Computing:

Principles and Paradigms, John Wiley & Sons, 2011.

[7] CISCO, Fog Computing and the Internet of Things: Extend

the Cloud to Where the Things Are, 2015. Retrieved from

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/

computing-overview.pdf.

[8] A. V. Dastjerdi, R. Buyya, Fog Computing: Helping the

Internet of Things Realize Its Potential, IEEE Computer, Vol.

49, No. 8, pp. 112-116, August, 2016.

[9] M. S. de Brito, S. Hoque, R. Steinke, A. Willner, T.

Magedanz, Application of the Fog Computing Paradigm to

Smart Factories and Cyber-Physical Systems, Transactions

on Emerging Telecommunications Technologies, Vol. 29, No.

4, Article No. e3184, pp. 1-14, April, 2018.

[10] P. Hu, S. Dhelim, H. Ning, T. Qiu, Survey on Fog Computing:

Architecture, Key Technologies, Applications and Open

Issues, Journal of Network and Computer Applications, Vol.

98, pp. 27-42, November, 2017.

[11] H. D. Kotha, V. M. Gupta, IoT Application, A Survey,

International Journal of Engineering & Technology, Vol. 7,

No. 2.7, pp. 891-896, March, 2018.

[12] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A

Survey on Internet of Things: Architecture, Enabling

Technologies, Security and Privacy, and Applications, IEEE

Internet of Things Journal, Vol. 4, No. 5, pp. 1125-1142,

October, 2017.

[13] W. Lumpkins, The Internet of Things Meets Cloud

Computing, IEEE Consumer Electronics Magazine, Vol. 2,

No. 2, pp. 47-51, April, 2013.

[14] I. Martinez, A. Jarray, A. S. Hafid, Scalable Design and

Dimensioning of Fog-Computing Infrastructure to Support

Latency Sensitive IoT Applications, IEEE Internet of Things

Journal, Vol. 7, No. 6, pp. 5504-5520, June, 2020.

[15] P. Mell, T. Grance, The NIST Definition of Cloud Computing,

SP 800-145, September, 2011. Retrieved from https://

nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication80

0-145.pdf

[16] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J.

Morrow, P. A. Polakos, A Comprehensive Survey on Fog

Computing: State-of-the-Art and Research Challenges, IEEE

Communications Surveys & Tutorials, Vol. 20, No. 1, pp.

416-464, First Quarter, 2018.

Design a D-Fog Scheme to Enhance Processing Performance of Real-Time IoT Applications in Fog Computing 1345

[17] M. Mukherjee, L. Shu, D. Wang, Survey of Fog Computing:

Fundamental, Network Applications, and Research

Challenges, IEEE Communications Surveys & Tutorials, Vol.

20, No. 3, pp. 1826-1857, Third Quarter, 2018.

[18] T. H. Noor, S. Zeadally, A. Alfazi, Q. Z. Sheng, Mobile

Cloud Computing: Challenges and Future Research

Directions, Journal of Network and Computer Applications,

Vol. 115, pp. 70-85, August, 2018.

[19] P. Singh, A. Nayyar, A. Kaur, U. Ghosh, Blockchain and Fog

Based Architecture for Internet of Everything in Smart Cities,

Future Internet, Vol. 12, No. 4, Article No. 61, April, 2020.

[20] L. D. Xu, W. He, S. Li, Internet of Things in Industries: A

Survey, IEEE Transactions on Industrial Informatics, Vol. 10,

No. 4, pp. 2233-2243, November, 2014.

[21] S. Yi, Z. Hao, Z. Qin, Q. Li, Fog Computing: Platform and

Applications, Proceedings of 2015 Third IEEE Workshop on

Hot Topics in Web Systems and Technologies (HotWeb),

Washington, DC, USA, 2015, pp. 73-78.

[22] M. Yigit, V. C. Gungor, S. Baktir, Cloud Computing for

Smart Grid Applications, Computer Networks, Vol. 70, pp.

312-329, September, 2014.

Biographies

Shin-Jer Yang is currently a

Distinguished Professor in the

Department of Computer Science and

Information Management, Soochow

University, Taipei, Taiwan. Professor

Yang is the author/coauthor of more

than 129 refereed technical papers (Journals and

Conferences) on Wired / Wireless Networking and

Applications, Cloud/Internet Computing Applications

and Services, and Network Management and Security.

Also, he takes in charge of more than 30 research

projects. His research interests include Wired/Wireless

Networking Technologies and Applications, Cloud

Computing and Applications, AIoT Applications,

Network Management and Security, and Information

Management.

Wen-Hwa Liao received the Ph.D.

degree in computer science and

information engineering from

National Central University, Taiwan,

in 2002. He is currently a Full

Professor with the Institute of

Information and Decision Sciences,

National Taipei University of Business, Taiwan. His

current research interests include Internet of Things,

Cloud Computing, Wireless Sensor Networks, and

Artificial Intelligence. He has served as the Associate

Editor of the International Journal of Distributed

Sensor Networks (IJDSN) and International Journal of

Vehicle Information and Communication Systems

(IJVICS). He also has served as an Associate Guest

Editor for SCI-indexed journal International Journal of

Ad Hoc and Ubiquitous Computing (IJAHUC).

Wan-Lin Lu Currently, she is a

Research Assistant in the Department

of Computer Science and Information

Management, Soochow University,

Taipei, Taiwan. Her research interests

include Cloud Computing and Service,

IoT and Fog Applications, and Web Applications

Design.

1346 Journal of Internet Technology Volume 22 (2021) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

