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Abstract 

The cloud computing has driven the fast development 

of the IoT services and applications. When a amount of 

real-time events in smart IoT applications are delivered to 

the cloud for processing, the loading on cloud computing 

becomes heavier, which can result in processing delays 

and exceeding their deadlines. The nodes in fog 

computing are closer to edge devices, which can process 

such these real-time events in this layer. With this fog 

process, the event processing efficiency can be enhanced 

and delays can also be solved in cloud computing.  

This paper designs a set of fog computing framework 

called distributed fog computing scheme (D-FOG) that 

can improve the better processing performance of real-

time IoT applications than conventional cloud computing. 

Through the simulation experiments, the final results 

indicate that the D-FOG yields the better performance in 

terms of Expired event rate, Event success rate, Average 

delay time, and Average processing time. Consequently, 

the proposed D-FOG is more effective and efficient in 

real-time events processing than conventional cloud 

computing. 

Keywords: Cloud computing, Fog computing, D-FOG, 

Real-time IoT applications 

1 Introduction 

The maturation of cloud computing technology is 

driving rapid development of Internet of Things (IoT) 

services and applications. Cloud computing uses a 

concentrated processing architecture and virtual 

technology to produce a cloud environment that can 

provide large quantities of calculation [6]. This enables 

users to process a large amount of IoT events without 

the need to install high-performance computing 

equipment on the user-end. However, there are also 

disadvantages. One disadvantage in cloud computing is 

that to process each IoT event, the event must be 

uploaded to the cloud before it can be processed. Many 

factors in this process can increase the uploading time, 

which can cause the entire processing time to become 

longer [13]. IoT has many real-time applications, 

including product production monitoring in 

manufacturing and road monitoring in traffic and 

transportation, etc. [1, 11]. These services and 

applications have many events that require real-time 

processing. When a large number of events are 

uploaded to the cloud for processing at the same time, 

it can result in delayed processing and exceeding the 

processing deadline. 

To solve delay problems derived from a large 

number of real-time events of smart IoT applications to 

be processed in cloud computing, the CISCO proposed 

an early fog computing concept in 2014 [7]. Fog 

computing technology uses a distributed processing 

framework to disperse calculation, transmission, 

control, and storage services on the user’s equipment 

and system or on nearby systems. Examples are mobile 

phones and gateways, etc. Fog computing can be used 

to process urgent real-time events on edge devices near 

the user. This not only can reduce delays, but can also 

shorten process time and ensure that the calculation is 

completed within the deadline, which makes real-time 

event processing more efficient and lightens the load 

on cloud computing processing. 

Although the fog computing concept was proposed 

in 2014, the OpenFog Consortium that specializes in 

the study of fog computing was not established until 

the end of 2015. The Consortium officially published 

its white paper on fog computing architecture in 2017 

and fog computing gradually began to attract people’s 

attention [3]. Currently, most studies are still focused 

on the precise definition of the fog computing concept. 

However, the purpose of this paper is to propose a fog 

computing scheme that can increase the efficiency of a 

real-time IoT application and solve processing delays. 

This scheme can also effectively shorten processing 

time to ensure that real-time events of smart IoT 

applications can be processed within the deadline. 

Thus, the main purposes of this paper are as follows: 

‧ To solve processing delays and deadline problems 

that result from a large number of real-time IoT 

application events in cloud processing, we propose a 
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distributed fog framework into the conventional 

cloud computing processing architecture called the 

distributed fog computing scheme (D-FOG), to 

effectively improve processing efficiency for real-

time events in existing IoT applications, 

‧ In this paper, we will propose four key performance 

indicators (KPIs) such like Expired event rate, Event 

success rate, Average delay time, and Average 

processing time. Also, we will set up experimental 

environments for simulations.  

‧ The simulations conducted in this paper used the 

proposed D-FOG scheme to simulate a real-time IoT 

application. The D-FOG can be used to effectively 

improve the processing efficiency of real-time IoT 

applications. 

The rest of this paper is organized as follows. 

Section 1 describes the background of the D-FOG and 

the research scope and purpose. Section 2 surveys 

literature reviews about cloud computing, IoT and fog 

computing. In Section 3, this paper examines the 

operational flows of the D-FOG research processes and 

design of the D-FOG algorithm. Section 4 covers the 

simulated experiments setup and analyzes the results. 

Finally, we draw a conclusion and illustrate and 

analyze their simulation results, also we indicate the 

further research direction in Section 5. 

2 Related Work 

2.1 Cloud Computing 

The Cloud computing is mainly to increase the 

capacity and capability of Information Technology (IT) 

networks by centralizing how to store and process data. 

It allows consumers to access information through the 

Internet without installing them in advance. In addition, 

cloud computing can also reduce the costs of building 

IT infrastructure and acquiring new resources. Cloud 

computing also achieves the benefits of multitenant 

architecture by maintaining one application. New 

services offerings can be created by integrating 

existing services of cloud computing and focusing on 

added value. Since it is possible to combine 

components of computing stack on demand, it is easier 

to turn ideas into real products with limited cost and 

focus on the product design [6, 22]. 

The American National Institute of Standards and 

Technology (NIST) defines cloud computing as “a type 

of computing resource access and sharing mode that 

can be adjusted at any time according to the user’s 

needs.” This type of computing can use minimal 

management work or service supplier interaction to 

achieve rapid configuration and release [15]. Cloud 

computing defined by NIST is composed of five 

essential characteristics, three service models, and four 

deployment types, as shown in Figure 1. The 

descriptions of cloud computing are as follows.  

 

Figure 1. Overview of the cloud computing 

The following are the five main essential 

characteristics: 

(1) On-demand Self-service: The user can use the 

cloud service according to their own needs, and does 

not require using the cloud supplier to make settings. 

Users can use the webpage to adjust their own settings. 

(2) Broad Network Access: Use the Internet 

connection to make service available everywhere so 

that the user can use the service just by connecting to 

the Internet. 

(3) Resource Pooling: Cloud service providers can 

use a multi-rental model for users and allocate 

resources according to the user’s requirements. 

(4) Rapid Elasticity: Users can rapidly adjust the 

resource scale according to needs. 

(5) Measured Service: Resources on the cloud must 

be able to be measured. This means that the cloud 

provider can implement resource planning, control 

access, and tabulate fees. 

Then, there are three main types of services models: 

(1) Software as a Service (SaaS): Users can directly 

implement programs provided on the cloud 

architecture and do not need to install any software 

system or worry about updating problems. Users can 

just pay according to their own use status. 

(2) Platform as a Service (PaaS): The cloud 

provider provides a development platform for users so 

users can use this platform’s development tools to 

install their own programs on the cloud for 

development and testing. 

(3) Infrastructure as a Service (IaaS): The cloud 

provider provides infrastructure facilities such as 

storage equipment and network. Users can flexibly 

control the required development environment in this 

environment. Users can freely choose the operating 

system or programs, and do not need to understand 

base level cloud architecture. They just directly use the 

services provided by the cloud provider. 

In addition, there are four main deployment types: 
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(1) Private Cloud: Used by a single organization. 

This prevents security problems caused by different 

users. Generally, this cloud is managed by the 

organization itself or managed by a third-party. 

(2) Community Cloud: A community cloud is 

mutually shared by multiple organizations. Generally, 

these organizations have similar objectives. Members 

in the organization can use the community cloud 

service to share important topics and use this to 

complete specific tasks or cooperate with policies. 

(3) Public Cloud: Compared to a private cloud, a 

public cloud is provided for use by the public. It can be 

managed and operated by businesses or academic or 

government organizations. 

(4) Hybrid Cloud: A hybrid cloud refers to a cloud 

formed by two or more of the aforementioned cloud 

types. Although different types of clouds are 

independent and separate, the two can be connected 

through a professional technology to transfer data and 

programs. 

The development and application of cloud computing 

has not only improved efficiency, but also significantly 

reduced costs (building computer rooms, renting 

bandwidth, and management of information personnel). 

Also, it improves enterprises’ mastery of production 

capacity, and allows enterprises to more focus on 

developing services. Therefore, cloud computing is 

widely used in fields such as AI, Internet of Things, 

machine learning, and big data [18]. 

2.2 Internet of Things (IoT) and Related 

Applications 

A growing number of physical objects are embedded 

with sensors, software, and other technologies for the 

purpose of connecting and exchanging data with other 

devices and systems over the Internet. That realizes the 

idea of the Internet of Things (IoT). In modern society, 

the Internet has become one of the important 

communication channels between people. The rising of 

the IoT technology not only connects people together, 

but also communicates with other objects. In other 

words, the Internet is no longer just a communication 

channel between people, but also a bridge connecting 

global things and things, people and things. Nowadays, 

the use of IoT has grown rapidly. There are a lot of IoT 

applications being developed and deployed in various 

industries including environmental monitoring, healthcare 

service, inventory and production management, food 

supply chain, transportation, workplace and home 

support, security, and surveillance [4-5, 20]. 

The current IoT architecture is usually divided into 

three layers, the perception layer, the network layer, 

and the application layer, as shown in Figure 2 [12]. 

The following is a brief description of three conceptual 

layers. 

 

Figure 2. The conceptual architecture of IoT 

(1) Perception Layer: It is also known as the sensor 

or device layer, the perception layer is implemented as 

the bottom layer in the IoT architecture. The perception 

layer uses smart devices (RFID, sensors, actuators, etc.) 

to interact with physical devices. The information 

measured, collected, and processed by objects is 

transmitted into the upper layer of the IoT architecture 

via smart devices. 

(2) Network Layer: It is also known as the 

transmission layer, this layer is implemented as the 

middle layer in IoT architecture. The network layer is 

used to receive and process the information provided 

by the perception layer, and determine the routes to 

transmit the information to the hub, devices, and 

applications of the IoT via integrated networks. The 

network layer is the most important layer in the IoT 

architecture, because it combines various devices 

(switching, router, gateway, cloud computing, etc.) and 

various communication technologies (Bluetooth, Wi-Fi, 

Long-Term Evolution, etc.) is integrated in this layer. 

The network layer uses various communication 

technologies and protocols to transmit data between 

different things or applications among heterogeneous 

network. 

(3) Application Layer: It is also known as the 

business layer and implemented as the top layer in IoT 

architecture. The application layer receives the data 

transmitted from the network layer and uses the data to 

provide the required services. For example, the 

application layer can provide storage services to back 

up the received data to the database, or provide 

analysis and evaluation services to predict the future 

state of physical devices. There are many applications 

in this layer, for example, smart grid, smart 

transportation, smart cities, etc., each application has 

different requirements. 

Currently, The IoT has different applications and 

services in different fields. The following describes a 
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few commonly seen IoT applications, including 

environmental monitoring; smart cities; smart 

business/inventory and product management; smart 

homes/building management; smart health-care; and 

smart security/ surveillance [1, 4, 11].  

(1) Transportation and Logistics Domain: The 

advanced cars, trains, buses and bicycles are equipped 

with sensors, actuators and processing power. After the 

roads themselves and the transported goods are also 

equipped with tags and sensors, they can transmit 

important information to traffic control stations and 

transport vehicles, better arrange traffic routes, help 

warehouse management, provide the tourists with 

appropriate traffic information and monitor the status 

of transported goods. 

(2) Healthcare Domain: The application of the 

Internet of Things technology provides many benefits 

for the healthcare domain, resulting in many 

applications, including tracking objects and personnel 

(staff and patients), identification and authentication 

of people, and automatic collection of sensing data. 

(3) Smart Environment Domain: Smart environment 

means that whether it is an office, home, factory or 

leisure environment, the environment can be made 

relaxed and comfortable through smart objects. 

(4) Personal and social domain: Applications in this 

domain allow users to interact with other people to 

maintain and establish social relationships. When we 

are doing something or have done something, it may be 

automatically triggered to send a message to a friend. 

2.3 Fog Computing and Related Applications 

The cloud computing can provide on-demand, 

scalable storage and processing service for IoT 

scalable requirements. However, for health monitoring, 

emergency response, and other delay-sensitive 

applications, the delay caused by transmitting data to 

the cloud and back to the application is unacceptable. 

In addition, transferring large amounts of data to the 

cloud for storage and processing is inefficient, because 

it takes up the bandwidth of the network and cannot be 

scalable [13, 19]. 

In order to solve the above problems, edge computing 

uses computing resources near the IoT sensor as local 

storage and preliminary data processing. This will 

reduce network congestion and speed up analysis and 

final decision-making. However, edge devices cannot 

handle multiple IoT applications competing for their 

limited resources, which will cause resource competition 

and increase processing delays [3, 14]. The fog 

computing seamlessly integrates edge devices and 

cloud resources to overcome these limitations. It 

avoids contention for edge resources by leveraging 

cloud resources and coordinating the use of distributed 

edge devices. Also, the fog computing is a distributed 

mechanism that uses cloud and edge resources and its 

own infrastructure to provide cloud-like services to the 

edge of the network, as shown in Figure 3 [8]. 

 

Figure 3. The fog computing framework 

The fog computing uses edge devices near users to 

process IoT data locally for massive storage, 

communication, control, configuration, and management. 

The advantage of this method is the use of edge 

devices close to the sensor while taking advantage of 

the on-demand scalability of cloud resources. The fog 

computing includes the data processing or analysis 

applications in distributed clouds and edge devices. It 

can also assist in the management and programming of 

computing, network and storage services between the 

cloud data center and end devices. In addition, it 

supports user mobility, resource and interfaces 

heterogeneity, and distributed data analysis, and solves 

the needs of a wide range of distributed applications 

that need the requirement of low latency[10, 16-17]. 

Fog computing can be utilized in many real-time IoT 

applications such as smart grid, smart factory, 

industrial automation, smart traffic management, smart 

medical care, and real-time analysis application 

systems, which are separately introduced below [2, 9, 

21]: 

(1) Smart Grid: This uses smart meters to monitor 

real-time electricity supply in areas and uses fog 

computing platform for analysis. If there are any 

special changes, the grid will respond and use the 

fastest speed to stabilize the grid. 

(2) Smart Factory and Industrial Automation: This 

uses factory environment sensors to collect 

temperature or gas content values inside factories. The 

information is transmitted to fog nodes for real-time 

data analysis. If an abnormal value is discovered, the 

system can automatically notify factory personnel in 

real-time for emergency processing. This increases the 

factory’s operational safety. Production line sensors 

can also be used to detect the line’s work status and 

transmit the data to fog nodes for analysis. This can be 

used to check in real-time whether the products on the 

automated production line conform to product 
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specifications. If an abnormality is discovered, the fog 

nodes will transmit a correction command to the 

automated production line and adjust the production 

line work in real-time. Combining production line 

monitoring and fog nodes’ real-time data analysis can 

increase the factory’s production efficiency. 

(3) Smart Traffic Management: This uses roadside 

deployment of fog nodes to collect vehicle traffic 

information and conduct real-time data analysis to 

respond to traffic in real-time. This can be used to 

automatically adjust traffic lights and alleviate traffic 

congestion. If a car accident happens, the system can 

alert rescue units in real-time, suggest to other drivers 

to use alternative routes, and achieve real-time sharing 

of traffic information. 

(4) Smart Medical Care: This uses wearable devices 

to monitor physiological values and upload the 

monitored data to fog nodes for real-time data analysis. 

When there is an abnormal physiological value, the 

system can send a help signal in real-time to the family 

or directly to a rescue unit for emergency processing to 

make the best use of the crucial treatment period. 

(5) Real-time Analysis Application: Weather 

monitoring is a real-time analysis application. Various 

types of sensors are used to collect temperature, wind 

speed, and rainfall quantity data, which are uploaded to 

the fog nodes for real-time data analysis. This provides 

the public with accurate weather data and can also send 

out real-time severe weather warnings so that the 

public can have more time to make disaster prevention 

preparations. 

We discussed the various features of cloud 

computing, edge computing, and fog computing in 

detail. Table 1 gives the overall comparisons of their 

tasks, response time, computing power, and network 

bandwidth. 

Table 1. Features comparison among cloud computing, edge computing, and fog computing 

Features Cloud Edge Fog 

Task Large amount of remote computing High-performance real-time computing Near-end computing 

Response time Long Short Medium 

Computing ability High Low Medium 

Network bandwidth High Low Medium 

 

3 Operations Issue and Algorithm Design 

in D-FOG 

The D-FOG scheme proposed in this paper 

introduces a distributed fog computing framework into 

the conventional cloud computing processing 

architecture to effectively process real-time events in 

smart IoT applications. Each event’s priority sequence 

is used to conduct the process queuing. The operational 

flow procedures of D-FOG are as described below and 

shown in Figure 4. 

 

Figure 4. D-FOG operational flow procedures 

(1) The fog nodes can receive events produced by 

edge devices and first format the data. 

 

(2) The D-FOG scheme can determine which events 

will be processed in the fog computing layer based on 

priority level, data quantity, and processing time for 

each event. Each event’s priority can be determined by 

the IoT applications. Hence, events that do not require 

real-time processing will be uploaded to cloud 

computing for processing. Higher priority events that 

require real-time processing are immediately placed 

into the processing queue. 

(3) After the events are processed, the results are 

immediately sent back to the edge devices. After the 

event data that is to be stored in formatted type, they 

will be uploaded to the cloud storage in lots. 

(4) After all the processing procedures have been 

completed, the fog nodes will release memory and wait 

for new events to be uploaded. 

Based on the operational flow of the D-FOG as 

shown in Figure 4, the pseudo code of the D-FOG 

algorithm can be designed as follows: 

4 Simulations Environments and Results 

Analysis 

This section describes the simulations environment 

setup including software and hardware settings, list and 

illustrate KPIs and their calculation formulas. Also, we 

make the analysis of each KPI and summarize the 

simulations results. 
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Algorithm D-FOG(){ 
INPUT: 

  RTED = [] 
  FRTE = [] 
  Seqlist = [] 
  count = 0 
  dcount = RTE * initial_ratio 
  Uploadlist = [] 
  DPARAMETER = [] 
  RTE = 0 
 

OUTPUT:  
  To complete real-time IoT events and response messages. 
 

Method: 

BEGIN{ 
  // Receive the real-time events 
  RTED = sensor.recv (1024) 
   
  // Format the data into a format 
  FRTE = DATAFOMAT (RTED) 
  
  SEQ (FRTE) //Set event processing sequence 
  IF (count > dcount): 
      PROCESSINGHELP() 
    PROCESSINGDATA() 
  ELSE 
    PROCESSINGDATA() 
  UPLOADDATA()      // Upload data to cloud storage 
  PARAMETERUPDATE() // Update the default parameter 
  RELEASEMEM()      // Release memory 
} END 
 
PROCEDURE DATAFOMAT(data){ 
  x = data.split (",") 
  RETURN x 
} END DATAFOMAT 
 
PROCEDURE SEQ(data){ 
  y = [] 
  IF (data[0] == "data type"): 
      y.append(sequence) 
      FOR index in range(len(data)): 
      y.append(data[index]) 
  Seqlist.append(y)   
  count = count + 1 
} END SEQ 
 
PROCEDURE PROCESSINGHELP(){ 
  remsg=""                 
  fog2.connect((host, port)) 
  FOR index in range(len(Seqlist)): 
      IF (index != 0): 
      remsg = remsg + a[index] + "," 
  fog2.send(remsg.encode('utf-8'))   
  a=fog2.recv(1024) 
  RETURN a 
} END PROCESSINGHELP 
 
PROCEDURE PROCESSINGDATA(){ 
  remsg = "" 
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  bamsg = [] 
  PD = Seqlist[0]  
  RTEd = DPARAMETER[0]  
  TT = PD [3]  
  IF (NOW-TT > RTEd): 
     RETURN EE 
  ELSE: 
     IF (PD[1] == " data type "): 
         IF (float(PD[3]) > 40):  
             PD.append("error") 
         ELSE: 
             PD.append("cloud")  
     FOR index in range(len(a)): 
         IF (index != 0): 
             remsg=remsg + PD[index] + "," 
     bamsg.append(PD[5]) 
     bamsg.append(remsg) 
     PD.append(get_time_stamp())  
     RETURN bamsg 
} END PROCESSINGDATA  
 
PROCEDURE UPLOADDATA(){ 
  uploadlist.append (data) 
} END UPLOADDATA 
 
PROCEDURE PARAMETERUPDATE (){ 
  DPARAMETER [0] = deadline     
  IF (RTE == 100): 
     deadline[0] = 100APT * initial_ratio 
  ELSE IF (RTE == 200): 
     deadline[1] = 200APT * initial_ratio 
  ELSE IF (RTE == 500): 
     deadline[2] = 500APT * initial_ratio 
  ELSE IF (RTE == 1500): 
     deadline[2] = 1500APT * initial_ratio 
} END PARAMETERUPDATE 
 
PROCEDURE RELEASEMEM(){ 
global count 
del Seqlist 
count = count - 1 
Uploadlist = [] 
FRTE = []  
RTED = [] 
} END RELEASEMEM 
 

END D-FOG 

 

4.1 Experiments Configuration Setup 

For this experiment, we can utilize the VirtualBox to 

set up a fog computing simulated environment and also 

use Web Services to set up a cloud computing virtual 

environment on the Windows. Also, we take the 

environmental monitoring of smart factory as a 

practical case for simulations. The data types of real 

time events include temperature and humidity. The 

simulations data is generated by the random function in 

the sensor emulation of the smart factory system. The 

simulated environment is divided into three main parts. 

The first part is the edge devices, which are responsible 

for collecting data and transmitting the events regularly 

to the fog computing in the second part. The fog selects 

the real-time event that it can process and the 

remaining events are uploaded to the third part: cloud 

computing, for processing. The simulated environment 

configuration architecture is shown in Figure 5. The 

related hardware/software (HW/SW) configuration 

specifications are as shown in Table 2.  
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Figure 5. Simulated environment configuration 

architecture 

Table 2. Simulations environment specifications 

HW/SW Physical Machine VM 

O.S. Windows 10 Ubuntu 

CPU 
Intel® Core™ i7-4790 

CPU @ 3.60GHz 

1 Cores with 

2.6 GHz 

Memory 8 GB 2 GB 

Disk 250 GB 50 GB 

 

4.2 Descriptions of KPIs 

In this paper, we propose four key performance 

indicators (KPIs) in terms of Expired event rate, Event 

success rate, Average delay time, and Average 

processing time which are used to analyze the 

simulation results to be compare between the D-FOG 

and conventional cloud schemes. The descriptions of 

the KPIs are shown in Table 3. 

Table 3. The descriptions of three keys performance indicators 

Key Performance Indicators (KPIs) Purposes 

Expired Event Rate  

(EER, Unit: %) 

The EER represents that the percentage of processing time of each real-time event is 

exceeded the deadline time (EE) for all real-time event (RTE), as shown in Formula (1). 

Event Success Rate  

(ESR, Unit: %) 

The ESR is to confirm that the percentage of real-time event is successfully completed 

within the deadline (CE), as shown in Formula (2). 

Average Delay Time 

(ADT, Unit: ms) 

This KPI is to measure the average delay time (ADT) of each real-time event, as shown in 

Formula (3). 

Average Processing Time 

(APT, Unit: ms) 

This KPI is to measure the average processing time (APT) of each real-time event, as 

shown in Formula (4). 

 

The correctly identified for Expired event rate, 

Event success rate, Average delay time, and Average 

processing time are expressed in Formulas (1), (2), (3), 

and (4). 

 EER (%) = (EE / RTE) × 100  (1) 

 ESR (%) = (CE / RTE) × 100 (2) 

 ADT (ms) = DT / RTE  (3) 

 APT (ms) = PT / RTE  (4) 

4.3 Results Analysis 

We did perform five time experiments for averaging 

the simulation results under D-FOG and conventional 

cloud processing architectures (i.e. Cloud platform). 

Also, the simulations were carried out using 100, 200, 

500, and 1500 real-time events (Assume: constant 

packet size) in smart factory system, respectively. The 

simulation results in terms of KPIs: Expired event rate, 

Event success rate, Average delay time, and Average 

processing time are as shown in Figure 6, Figure 7, 

Figure 8, and Figure 9, respectively. Hence, the total 

simulation results are summarized as shown in Table 4. 

 

Figure 6. Expired event rate 

 

Figure 7. Event success rate 
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Figure 8. Average delay time 

 

Figure 9. Average processing time 

Table 4. The summarized experimental results 

D-FOG 

Events KPIs 100 200 500 1500 

Expired Event Rate 9.00% 14.50% 16.92% 29.59% 

Event Success Rate 74.20% 68.90% 63.04% 55.89% 

Average Delay Time(ms) 23.36 69.94 406.81 718.25 

Average Processing Time(ms) 137.35 176.69 610.57 1456.48 

CLOUD 

Events KPIs 100 200 500 1500 

Expired Event Rate 30.60% 40.30% 42.64% 43.35% 

Event Success Rate 57.20% 48.60% 48.88% 48.37% 

Average Delay Time(ms) 74.22 186.30 414.27 1228.37 

Average Processing Time(ms) 580.84 724.10 2366.18 5959.54 

 

The experimental results indicate that when using 

the D-FOG scheme in the case of 100 events, the 

Expired event rate can be reduced by 21.6%, the Event 

success rate can be increased by 17%, Average delay 

time can be reduced by 50.86 ms to achieve 68.52% 

improvement ratios, and the Average processing time 

can be reduced by 443.49 ms to achieve 76.35% 

improvement ratios. In the case of 200 events, the 

Expired event rate can be reduced by 25.8%, the Event 

success rate can be increased by 20.3%, Average delay 

time can be reduced by 116.35 ms to achieve 62.46% 

improvement ratios, and the Average processing time 

can be reduced by 547.41 ms to achieve 75.6% 

improvement ratios. In the case of 500 events, the 

Expired event rate can be reduced by 25.72%, the 

Event success rate can be increased by 14.16%, 

Average delay time can be reduced by 7.46 ms to 

achieve 1.8% improvement ratios, and the Average 

processing time can be reduced by 1755.61 ms to 

achieve 74.2% improvement ratios. In the case of 1500 

events, the Expired event rate can be reduced by 

13.76%, the Event success rate can be increased by 

7.52%, Average delay time can be reduced by 510.12 

ms to achieve 41.53% improvement ratios, and the 

Average processing time can be reduced by 4503.06 

ms to achieve 75.56% improvement ratios. The 

comparative simulations are illustrated in Table 5. 

Hence, this proves that use of the D-FOG scheme can 

significantly improve the better events processing 

efficiency of real-time IoT applications than 

conventional cloud architecture. 

Table 5. Comparative improving ratios for simulations 

Improving Ratios 

Events 

KPIs 
100 200 500 1500 

Expired Event Rate 21.60% 25.80% 25.72% 13.76% 

Event Success Rate -17.00% -20.30% -14.16% -7.52% 

Average Delay Time 
68.52% 

(-50.86 ms) 

62.46% 

(-116.35 ms) 

1.80% 

(-7.46 ms) 

41.53% 

(-510.12 ms) 

Average Processing Time 
76.35% 

(-443.49 ms) 

75.60% 

(-547.41 ms) 

74.20% 

(-1755.61 ms) 

75.56% 

(-4503.06 ms) 
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5 Conclusion 

As the quantity of real-time IoT applications 

increase, the number of real-time events that require 

real-time processing will increase. When a large 

number of these events are simultaneously uploaded to 

cloud computing for processing, it can cause 

processing delays and make the processing time pass 

the processing deadline. To solve this problem, some 

people have proposed the fog computing concept. 

Current studies on fog computing are focused on 

defining its concept and application. In this paper, we 

propose a novel scheme that actually utilizes the fog 

computing framework, which we called the D-FOG.  

The proposed D-FOG utilizes the fog computing as 

processing scheme framework in this paper. Also, we 

set up the experimental environments for simulations 

using four KPIs in terms of: Expired event rate, event 

success rate, Average delay time, and average 

processing time. The experimental results of KPIs 

indicate that in Expired event rate can be lower by 

21.6%, 25.8%, 25.72% and 13.76%; Event success rate 

can be increased of 17%, 20.3%, 14.16% and 7.52%; 

Average delay time can be reduced by 50.86 ms, 

116.35 ms, 7.46 ms and 510.12 ms, and also Average 

processing time can be reduced by 443.49 ms, 547.41 

ms, 1755.61 ms and 4503.06 ms in 100, 200, 500 and 

1500 real-time events of smart factory system, 

respectively. In summary, the results of this D-FOG 

scheme are compared to that of conventional cloud 

computing processing to prove that the proposed D-

FOG scheme is more efficient and has better results 

than a conventional cloud computing processing 

architecture. Also, the D-FOG can provide a more 

efficient distributed processing architecture for all real-

time IoT applications. Consequently, the D-FOG 

scheme not only can solve processing delays in real-

time event processing, but can also provide superior 

service quality in real-time IoT applications to achieve 

better processing efficiency and effective outcomes. 

In the future research, we will expand the execution 

of simulation experiments, incorporate more fog 

computing nodes and process larger amounts of data to 

obtain more accurate data results. In the information 

security, we will enhance the secure communication 

with neighboring nodes in the D-FOG scheme, 

establish a trust mechanism for communication 

between fog nodes, and make the transmission, 

processing, and storage of data more secure. 
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