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Abstract 

In a space environment, liquid alloys are in a 

thermodynamically metastable state, which facilitates 

research on the material structure and thermophysical 

properties of deep undercooling melt. Limited by the cost 

and technology of performing experiments in space, 

researchers developed electrostatic levitation that uses a 

drop pipe device to simulate the space environment. A 

high-speed camera was used to capture the falling image 

of the deep undercooling melt to study the melting and 

solidification process. Due to the exposure time and 

hardware limitations of the image acquisition equipment, 

the image resolution of the deep undercooling melt is low, 

which is not conducive to studying the thermophysical 

properties and solidification interface of the melt. 

Software design methods, such as super-resolution 

reconstruction, can more accurately reconstruct image 

contour information and effectively improve the image 

resolution. The most current deep learning-based super-

resolution reconstruction algorithms directly perform Y-

channel or Y, Cb, and Cr three-channel learning on the 

reconstructed image. This is insufficient in terms of 

providing more prior information to solve the super-

resolution reconstruction. In this study, a single-frame 

image super resolution reconstruction network that is 

based on frequency-domain feature learning is proposed. 

It builds a time–frequency transformation layer at the 

front end of the neural network and uses the frequency to 

realize the neural network in the frequency domain. To 

evaluate the super-resolution reconstruction performance, 

the proposed algorithm is compared with the current 

mainstream interpolation, sparse coding, super resolution 

convolutional neural network, and enhanced single-image 

super-resolution deep residual algorithms. The proposed 

algorithm achieves good reconstruction effects on deep 

undercooled melt images in terms of the objective 

evaluation and visual perception. At the same time, the 

peak signal-to-noise ratio and structural similarity index 

measure achieved results that exceed the aforementioned 

comparison algorithms. 

Keywords: Deep undercooling melt, Super resolution 

reconstruction, Convolutional neural network, 

Frequency domain learning, Feature selection 

1 Introduction 

The degree of undercooling refers to the difference 

between the theoretical crystallization temperature of a 

substance and the actual crystallization temperature. In 

materials science and the related fields, researchers 

often use methods such as inhibiting nucleation to keep 

the alloy liquid in a liquid state under extreme 

undercooling. This is called deep undercooling. The 

application of deep undercooling technology can lead 

to the development of new materials with excellent 

properties that are difficult to obtain under general 

solidification conditions. Liquid metal deep undercooling 

technology is an important means of modern 

solidification theory research. At the same time, 

because the liquid alloy is in a thermodynamically 

metastable state in the space environment, such an 

environment is very helpful to study the material 

structure and thermophysical properties of the deep 

undercooled melt. Further research on the 

microstructure of liquid alloys is of great significance 

for the deep understanding of their macroscopic 

properties, preparation, liquid–solid phase transition, 

and crystal growth; it is also an important research 

topic in space materials science [1-3]. To study the 

characteristics of the melt in the deep undercooled state, 

researchers simulated the microgravity space 

environment using a vacuum drop tube on the ground. 

A levitation device was installed at the top of the drop 

tube. When the melted sample freefalls in a 50 m drop 

tube and reaches the bottom of the drop tube, its falling 

speed is 31.3 m/s. The experimental equipment 

consists of a high-speed camera with a high frame rate 

of 106 frames/s and a low resolution for imaging. The 

number of pixels that are imaged during each exposure 

time is usually in the range 48–120, and the image 
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quality is low. Therefore, it is impossible to accurately 

measure the edge of the image and the texture 

information inside the droplet. As a result, image 

super-resolution technology is needed to reconstruct 

the low-imaging melt image into a high-resolution melt 

image; subsequently, the diameter of the droplet can be 

calculated. Changes in the physical parameters such as 

the sample density, specific heat, surface tension, and 

viscosity have also been reported [4]. 

In recent years, with the development of computer 

technology and the evolution of related algorithms, 

super-resolution reconstruction algorithms that are 

based on deep learning have become mainstream and 

they have achieved better results than traditional 

algorithms [5]. The main concept is to form a training 

set that is based on a large number of low–high-

resolution image pairs. To obtain super-resolution 

reconstructed images, we designed a neural network 

model to characterize the mapping relationship 

between the low- and high-resolution images. In 2014, 

Dong et al. [6] used convolutional neural networks to 

construct an end-to-end mapping system for the first 

time; they combined sparse coding knowledge to 

explain this. They also obtained the leading 

reconstruction effect at the time and called their model 

the super resolution convolutional neural network 

(SRCNN). SRCNN needs to upsample the low-

resolution images to the target size for feature learning. 

In 2016, Shi et al. [7] proposed the addition of a sub-

pixel convolutional layer to the network. With this 

addition, the algorithm avoids the problem of the 

SRCNN’s high computational complexity and 

improves its computational efficiency. Kim et al. [8] 

considered the network structure and introduced a 

residual network into the model; moreover, they 

increased the network depth to 20 layers. At the same 

time, because the image features that were obtained by 

residual learning are relatively sparse, the convergence 

speed of the model training improved. A generative 

adversarial network (GAN) is an important branch of 

convolutional neural networks (CNNs). Based on GAN, 

Ledig et al. proposed SRGAN [9]; they added 

perceptual and adversarial losses to the model test. The 

addition improved the realism of the reconstructed 

images. The results showed that SRGAN can generate 

more textural details and achieve better results in terms 

of visual effects. At the same time, in the field of video 

super-resolution reconstruction, Caballero et al. 

proposed VEPCN [10], which is based on the spatio-

temporal information of multi-frame images; the model 

satisfied the real-time requirements of the reconstruction. 

Presently, most researchers that specialize in deep 

learning have focused on the intermediate structure of 

the network; they have increased the depth and width 

of the network, or have changed the network structure 

[7, 11-12]. Although this improves the image 

reconstruction effect, it also increases the complexity 

of the model and requires considerable computations 

and time. However, because the super-resolution 

reconstruction algorithm is an uncertain problem, 

obtaining more prior information is a key issue. Owing 

to the end-to-end characteristics of the neural network, 

the input often consists of a three-channel RGB/YCbCr. 

When we start to train the network model, the 

characteristic information that is accepted by the 

network is limited; a priori data cannot be extracted 

from the existing data information. These restrictions 

make it difficult to reconstruct the images accurately. 

Therefore, this study considered the two ends of the 

neural network, especially the input end of the research 

and transformation. The literature [13] used frequency 

as the input data to realize image classification and 

semantic segmentation. This inspired us to extract 

more frequency domain features to realize single-frame 

image super resolution (SR) reconstruction. Thus, this 

study proposes a single-frame image SR reconstruction 

network that is based on frequency-domain features. 

First, the network with the frequency domain feature 

extraction module performs discrete cosine transform 

(DCT) operations on the image to realize the time–

frequency domain conversion of the image. Second, 

the network arranges and reorganizes the acquired 

frequency-domain features to refine the shallow 

features in model learning. Subsequently, the multi-

channel feature selection module adopts an adaptive 

learning method for weighting and matching the 

features of each channel to characterize the 

corresponding effects of the different feature channels 

on the image composition and the relationship between 

the features of the same layer. At the same time, long 

and short hop connections are used in the network to 

deepen the network depth. 

The contributions of this investigation are as follows. 

1. This study uses the frequency domain analysis 

method to perform a DCT transformation on the 

reconstructed image to realize the time–frequency 

domain conversion. The image feature channels were 

reorganized and reshaped. In comparison to the time-

domain analysis method, the input feature channel was 

added at the front of the network. The extraction of 

shallow features is more refined, which improves the 

utilization of the shallow features. 

2. This study constructs a dynamic feature selection 

model and provides different coefficients to features 

that are at the same level through adaptive learning. It 

characterizes the relationship between the features at 

the same level and the importance of the image 

composition. 

3. The algorithm that is adopted in this study 

incorporates a long–short-hop connection. Every ten 

feature selection modules can create short jump 

connections. It makes a long jump connection before 

and after the feature selection module at the beginning 

and the end. This can effectively increase the depth of 

the network so that the model can use more abstract 

deep features to characterize the mapping relationship 
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between the images. 

2 Frequency Domain Feature Learning 

Algorithm 

This study proposes a super-resolution 

reconstruction algorithm that is based on frequency-

domain feature learning from the perspective of the 

image frequency domain. It provides more shallow 

features at the front end of the network through a time-

frequency domain transformation and enhances the 

constraints. Simultaneously, a multi-channel feature 

extraction and selection model was built in the middle 

of the network. Finally, a super-resolution reconstructed 

image was obtained after upsampling and reconstruction. 

The block diagram of the network structure of this 

algorithm is shown in Figure 1. 

 

Figure 1. Super-resolution reconstruction algorithm that is based on frequency domain feature learning 

2.1 Extraction of the Frequency Features 

Li et al. [14] proposed a method that combines the 

image transform domain with a CNN. They converted 

the input image to the frequency domain using a 

Fourier transform; the Fourier coefficients were used 

as the input of the next layer of the network. They 

believed that the convolution of the network filter and 

the spatial image is equivalent to the multiplication of 

the filter and the Fourier coefficients of the 

corresponding image. 

This accelerates the training and inference processes 

of the network. However, the experimental results 

show that the aforementioned operation has not 

achieved optimal spatial learning method results. In 

fact, commonly used neural networks generally process 

the RGB images, and most of these images are 

obtained through JPEG encoding. From this 

perspective, this study uses the JPEG encoding process 

to perform DCT [15-16], complete the time–frequency 

domain transformation of the image, and then extract 

the frequency domain features of the image. 

In general, when considering super-resolution 

reconstruction algorithms that are based on deep 

learning, there are two commonly used spatial learning 

methods. One is to feed the RGB image directly into 

the model to reconstruct the image. The other is to 

transform the image into the RGB–YCbCr color space 

to form three sets of characteristic channels of Y, Cb, 

and Cr, which increases the prior information and 

enhances the constraint conditions. In the second 

reconstruction method, the channel separation 

operation of the image is one of the steps of JPEG 

encoding the RGB image (the general JPEG encoding 

step is shown in Figure 2), and the further operation is 

the DCT transformation that can obtain the frequency 

coefficient. During image composition, different 

frequency information play different roles. The main 

portion of the image, the basic gray part, comprises 

low-frequency information; it has a relatively small 

decisive effect on the image structure. The intermediate 

frequency information of the image reflects the basic 
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structure of the image, especially the edge structure. 

The high-frequency information of the image mainly 

reflects the texture and details of the image, and it has a 

further strengthening effect on the image content 

compared to the intermediate frequency information. 

This study utilizes the DCT transform to perform a 

time–frequency domain conversion on the image. After 

obtaining more sets of frequency features, it directly 

performs model learning on them. It not only reflects 

the important role of frequency in image composition, 

but also obtains more characteristic channels; thus, it 

increases the constraint conditions and solves the 

extremely ill-posed problem of SR reconstruction. 

 

Figure 2. JPEG encoding process 

For any image I, H represents the length and W 

represents the width. When DCT is performed on the 

image in sequence, blocks that have a size of N × N 

along with 
H W

N N
×  DCT coefficient matrices can be 

obtained. It is assumed here that H and W are integers 

of N (the value of N in JPEG coding is usually eight). 

For the (m, n)th block, the DCT coefficient 
, 1 2
( , )

m n
C k k  

can be calculated using Equation (1). 

 
1 2

2 1

1 1

, 1 2 , 1 2 , 1 2
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n n

C k k I n n w n n
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Here, 
1
k  and 

2
k  indicate that the DCT coefficients 

are in the 
1
k th row and 

2
k th column of the block, 

respectively. 
1 2
, 1 2
( , )DCT

k k
w n n  is the basis function of the 

DCT transform. In particular, the basis function of the 

two-dimensional DCT transform can be expressed as 

follows. 
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Here, 
1 2

1 2
,

1 1

.
k k

k k
L

N

δ δ+ +

=  The classic DCT 

transform is usually applied to orthogonal images, and 

the basis functions are pairwise orthogonal, which 

constitutes the orthogonal basis family. Figure 3(a) 

shows a grayscale image of the orthogonal base family 

after the aforementioned DCT transformation when N= 

8; an orthogonal dictionary heat map is shown in 

Figure 3(b). 

 

(a) DCT transform 

orthogonal basis family 

function gray scale image 

(b) DCT transform 

orthogonal dictionary heat 

map 

Figure 3. DCT conversion Correspondingly, the 

inverse DCT can be expressed as follows. 
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In the specific operation, we first use Equation (4) 

(
r
k ,

g
k , and 

b
k  is the weighting factor, that is defined 

in the ITU-R BT.601 standard where 0.299
r
k = , 

0.587
g
k = , and 0.114

b
k = ) to transform the image 

into the YCbCr space. 

 

* * *

1

r g b

r g b

Y k R k G k BCb

B Y Cr R Y k k k

= + +

= − = − + + =

  (4) 

Then, we can use Equation (1) to perform the DCT 

transformation on the images that belong to the three 

channels. Thus, we completed the time–frequency 

domain conversion of the image and obtained a feature 

map that characterizes the image with the DCT 

frequency coefficients. As shown in the next section, 

we rearranged and reorganized these features. 

2.2 Feature Channel Arrangement and 

Reorganization 

Because different frequencies have different effects 

on the composition of the image structure, further 

processing is needed for the frequency domain 

characteristics of the image that are obtained after the 

preliminary DCT transformation (specifically in the 

form of two-dimensional DCT grouping coefficients). 

This is done to reflect the importance of the different 
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frequency characteristics on the image composition. 

The standard JPEG image encoding utilizes a DCT 

transform base function that is N × N in the YCbCr 

color space. Thus, we also applied the same block size 

in the operation of the previous section. As shown in 

Figure 4, the specific operation assigns frequency 

coefficients with the same relative position in all the N 

× N blocks to the same feature channel; a frequency 

feature of the image is represented by this, while 

maintaining the spatial relationship of each frequency 

coefficient. Thus, each color space of Y, Cb, and Cr 

can provide N × N feature channels, and there are a 

total of N × N × C feature channels in the frequency 

domain. Assuming that the shape of the original RGB 

input image is H W C× × , where 3C =  represents the 

image color space, H represents the length of the image, 

and W represents the width of the image. After the 

frequency domain conversion and the feature channel 

arrangement and recombination, the overall image 

input feature shape becomes a three-dimensional cube 

that has a size of 
H W

C N N
N N

× × × × . This shows that 

in comparison to the method that is based on spatial 

learning, after the different DCT coefficients are 

regrouped and arranged, the number of feature maps is 

increased from C to C × N × N. This makes the 

preliminary shallow feature vector classification more 

refined and enhances the constraints on the image 

reconstruction. Because this operation is a 

rearrangement of the frequency characteristic 

information, the input data volume maintains the same 

size as that which is based on spatial domain learning, 

and the utilization of the image information improves. 

 

Figure 4. Schematic diagram of the channel 

recombination of the characteristic coefficients 

2.3 Feature Channel Selection Model 

After arranging and reorganizing the frequency 

coefficients in the previous section, we obtained a set 

of feature maps with different frequency vectors as the 

distinguishing standard. The previous article explained 

that the high, medium, and low frequency spectrums 

constitute the various structural parts of the image, and 

their importance is different. At the same time, it has 

been demonstrated in the literature [13] that in 

computer vision tasks such as image classification, 

target recognition, and semantic segmentation, some 

frequency characteristic channels can only provide less 

information for the subsequent learning model. By 

contrast, it increases the number of calculations of the 

model operation. Therefore, constructing an effective 

selection mechanism for these characteristic channels 

is helpful for building the reconstruction model and 

reducing the number of model calculations. The feature 

channel selection mechanism has the following two 

approaches: static and dynamic selection mechanisms. 

The static selection method utilizes mathematical 

methods to calculate the statistical feature information 

of each feature channel, it manually sets a gating 

function, and each feature channel is compared with 

the threshold set by the gating function. When the 

overall feature of the feature channel is greater than the 

threshold set by the gating function, the weight that is 

obtained by this feature channel is 1; otherwise, it is 

assigned to be 0, which can be expressed as follows. 

 { , 0, }out in

n n
F F M G M G= ≥ <   (5) 

 ( )in

M n
M C F=   (6) 

Here, G represents the threshold set by the gating 

function, M represents the mathematical statistical 

feature of the feature channel, out

n
F  represents the input 

feature channel, and in

n
F  represents the output feature 

channel. 

The purpose of the dynamic selection mechanism is 

to dynamically adjust the weight coefficients of each 

feature channel during the model training process 

through the front and back feedback mechanisms. This 

is done to reflect the importance of the different 

frequency features in the image structure. Based on the 

aforementioned concept, this study proposes a 

learning-based feature channel selection module that 

adaptively learns and adjusts the weight coefficients 

that are obtained by each frequency feature. Figure 5 

shows a schematic diagram of the feature channel 

selection module based on the learning strategy that is 

proposed in this study. 

 

Figure 5. Frequency domain feature selection module 

As shown in Figure 6, for n groups of feature maps, 

if the image feature map is marked as 

1 2 1
{ , , , , }

n n
X x x x x

−

= … , where n represents the 

number of frequency feature channels, we can 

calculate the statistical features of the n feature maps 

(the statistical feature that is applied in this study is the 
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average value) 
k
y , as shown in Equation (7). The 

statistical features of each feature map were then 

obtained. To show the relationship between each 

feature map, the dimensionality reduction operation 

D
F  is used to concentrate the statistical features from n 

k
y  to n* *

k
y . Based on the purpose of assigning weight 

coefficients to each feature channel, we performed a 

dimension expansion operation 
rc

F  on all the statistical 

features *

k
y  to restore the number of coefficients to n, 

that is, the weight coefficient Raf of each feature 

channel. The weight coefficient Ra is multiplied by the 

corresponding feature channels to reflect the 

relationship between each feature channel and 

dynamically adjust the degree of influence of each 

feature channel on the image reconstruction. 

 

1 1

1
( ) ( , ),

*

H W

k GAP k k

i j

y F x x i j k n
H W

′ ′

= =

= = ≤
′ ′

∑∑   (7) 

In a convolutional neural network, the weight 

coefficient can be obtained by the following operation. 

 

2 1
( ( ( ))) ( )

rc D k k
Ra f F F y Sigmoid Z Relu Z y= = ⋅ ⋅ ⋅  (8) 

Here, 
k
y  can be obtained by the global average 

pooling layer, and 
1

Z  and 
2

Z  represent the 

dimensionality reduction and dimensionality upgrade 

operations, which can be obtained by the fully 

connected layers with different sizes. Finally, the 

Sigmoid function is used to normalize the value range 

of each coefficient that is between 0 to 1. 

 

Figure 6. Implementation of the feature selection in 

the convolutional neural network 

2.4 Extraction of Deep Feature Information 

The feature channel selection module represents the 

relationship between the feature maps in the same layer 

of the network and the difference in the image 

composition. However, these feature maps only 

represent shallow feature information, which is 

insufficient to abstractly express the more accurate 

nonlinear mapping relationship between the high-

resolution images. Increasing the network depth is an 

important way to solve this problem. However, simply 

increasing the depth of the network can easily cause 

the gradient to disappear and explode. At the same 

time, if too many regularization layers are added to the 

network, it will cause model degradation, which 

indicates that there is oversaturation of the training 

model. He et al. [17] proposed the idea of residual 

learning and successfully solved the aforementione 

problems using local jump connections. 

Based on this, the study used the long–short-skip 

connection method in the Unet [18] network to connect 

the feature selection modules in a sequence. As shown 

in Figure 7, “long-skip” refers to the part between the 

front end of the first feature selection module and the 

back end of the last feature selection module. “Short-

skip” refers to the use of a skip connection for every e 

feature selection module, so that E feature selection 

modules form a group of “short-skip” connections 

where g = E/e (E is an integer multiple of e). After the 

long–short-skip connection operation, the feature 

selection module can be effectively superimposed, 

which increases the network depth and extracts more 

abstract deep-level feature information. 

 

Figure 7. Network structure diagram of the long skip 

connection and short skip connection between the 

feature selection modules 

3 Experimental Results and Analysis 

3.1 Deep Undercooled Melt Datasets 

The datasets in this study are taken as a high-

resolution image of the melting process of a deep 

undercooled melt in a vacuum levitation device. The 

vacuum levitation device is shown in Figure 8(a), and 

the deep undercooled melt image is illustrated in 

Figure 8(b). The image is sequentially down-sampled 

two, three, and four times to simulate the image 

degradation process; the resulting images are used as 

low-resolution images. Subsequently, deep undercooled 

melt image datasets were constructed. The overall flow 

of the algorithm is illustrated in Figure 9. 
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(a) Electrostatic levitation 

experimental device 

(b) Electrostatic levitation 

state undercooled melt 

image 

Figure 8. Electrostatic levitation device and the 

“static” undercooled melt image 

Super-resolution reconstruction algorithm based on 

frequency domain feature learning 

Input: Image to be reconstructed, learning rate = 

0.0001, batch size = 16, optimizer: ADAM, 

loss: L1 norm1 

1. Train:  

2. For epoch ≤ 300 do 

3. Image to be reconstructed: 
l
I  RGB→YCbCr 

converted: 
l
I ′  

4. Use the DCT transform to complete the time-

frequency domain conversion, feature shaping, 

and recombination 

5. Go through the feature selection module that is 

connected by long and short hops, upsampling, 

and reconstruction layer in turn, and perform 

forward propagation 

6. The reconstructed image and the high-resolution 

image use the L1 norm to calculate the error 

7. Backpropagation to update the network weights 

8. end for 

9. End train 

Output: Super-resolution reconstructed image 

Figure 9. Block diagram of the overall network model 

that is based on the frequency domain feature learning 

algorithm 

3.2 Comparison and Analysis of the Results 

This section presents an analysis of the experimental 

results. For comparison with existing models, the 

selected ideas and corresponding algorithms include 

the following: the bicubic interpolation algorithm that 

was one of the earliest proposed models (BICUBIC), 

the traditional field theory development, which is 

relatively complete, the classic sparse coding algorithm 

[16] (ScSR), the pioneering work of the super-

resolution reconstruction of the images that use deep 

learning methods, SRCNN [6], and the currently 

enhanced single-image super-resolution deep residual 

network algorithm (EDSR) [12] with improved 

reconstruction effects. At the same time, to facilitate 

the subsequent display and comparison, the super-

resolution reconstruction algorithm that is based on 

frequency domain feature learning that is proposed in 

this study is called FSSR. 

The comparative experimental analysis is divided 

into an objective index evaluation, subjective feeling, 

and task-based evaluation [19-20]. In the objective 

index evaluation, the PSNR and SSIM [21-22] of each 

reconstructed image are calculated, and then the 

average value is taken to characterize the 

reconstruction effect of the algorithm on the entire data 

set. In the subjective perception part, one is selected 

from the image that is reconstructed two, three, and 

four times, and the sensory evaluation of the same 

image from each algorithm is compared. Based on the 

task-based evaluation, pixel scanning was used to 

calculate the error between the reconstructed image of 

each algorithm and the high-resolution image, and the 

relative error reduction of each algorithm. 

 

 

 

Table 1. PSNR (dB) value of the deep undercooled melt image that is reconstructed two, three, and four times 

PSNR Scale BICUBIC ScSR SRCNN EDSR FSSR 

X2 35.94 37.76 38.03 39.24 39.82 

X3 32.27 33.36 34.75 35.61 36.14 
Deep undercooled  

melts datasets 
X4 30.79 32.37 32.84 33.46 34.05 

 

Table 1 shows the PSNR (dB) values that are 

reconstructed two, three, and four times for the deep 

undercooled melt image when using different 

algorithms. The best results are expressed in the bold 

font (the same below). It can be observed from the 

table that the FSSR algorithms that are proposed in this 

study achieved the best results. Moreover, the 

reconstruction results that use deep learning methods 

(SRCNN, EDSR, FSSR) surpassed the traditional 

algorithms. In particular, as far as this algorithm is 

concerned, it exceeds the second-place EDSR 

algorithm by 0.58 dB when it is reconstructed two 

times; it exceeds the second-place EDSR algorithm by 

0.53 dB when it is reconstructed three times; and it 

exceeds the second-place EDSR algorithm by 0.59 dB 

when it is reconstructed four times. It verifies that the 

reconstruction effect of this algorithm is better in terms 

of comparing the pixel-level. 
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Table 2. SSIM value of the deep undercooled melt image after being reconstructed two, three, and four times 

SSIM Scale BICUBIC ScSR SRCNN EDSR FSSR 

X2 0.9303 0.9562 0.9624 0.9647 0.9657 

X3 0.8671 0.8774 0.9127 0.9158 0.9173 
Deep undercooled  

melts datasets 

X4 0.8246 0.8359 0.8841 0.8964 0.9053 

 

Table 2 shows the SSIM values for the deep 

undercooled melt image that is reconstructed two, three, 

and four times when different algorithms are used. It 

can be observed from the table that the FSSR 

algorithms achieved the best results. In comparison to 

the second-ranked EDSR algorithm, the results of this 

algorithm improved by 0.001, 0.0015, and 0.0089 

when it was reconstructed two, three, and four times, 

respectively. This shows that the reconstructed image 

that uses this algorithm is more similar to the original 

image structure, and the image reconstruction quality is 

higher. 

The relationship between the multiple reconstructions 

and the reconstruction algorithm is shown in Figure 10. 

It can be observed that regardless of the PSNR or 

SSIM, each algorithm achieved the best results when it 

was reconstructed twice. At the same time, as the 

reconstruction multiple increases, the reconstruction 

effect decreases to varying degrees, which indicates 

that the reconstruction multiple increases. The 

difficulty of reconstruction also increases, which also 

tests the stability of the algorithm model. Among them, 

the BICUBIC algorithm exhibits the most dramatic 

changes, and the FSSR algorithm has the best 

performance. The PSNR and SSIM that were obtained 

by this algorithm after four reconstructions of the deep 

undercooled melt image exceeded the value when the 

BICUBIC algorithm was used three times. This shows 

that the algorithm model greatly improved. 

Figure 11, Figure 12, and Figure 13 compare the 

overall effect and partial magnification n of the 

reconstructed image along the two-to-four times 

reconstructed scale. As shown in Figure 11, each 

reconstruction algorithm has a better sensory effect at 

the two-times scale, and the image edges are more 

natural after the magnification. In Figure 12, the two 

spots in the figure are used to compare the 

magnification. In comparison to the other algorithms, 

where the size and brightness of the spots in this 

algorithm are closer to the original image, and the other 

algorithms have different degrees of magnification and 

they blur or even disappear. In Figure 13, the main part 

of the local magnification is the upper right edge of the 

melt; BICUBIC, ScSR, and SRCNN all have ripple 

spots. The proposed algorithm and the EDSR 

algorithm remove most of the noise, which is helpful 

for observing the edge of the image. 

To further evaluate the algorithms to reflect the 

value of the subsequent applications, we compared the 

performance of the reconstruction algorithms that are 

based on the task-based evaluation concept. We 

observed the change in the melting interface, which is 

important for studying the specific heat of the deep 

undercooled melt and other image-specific thermal 

thermophysical parameters. The thermophysical 

parameters can be obtained by measuring the area of 

the deep undercooled melt image. We measured the 

image area in this study by binarizing the image (after 

the literature review and the related experimental tests, 

the threshold value that was selected in this study was 

0.33) [23]; the pixel scanning method was then used to 

measure the image area. Figure 14 shows an example 

of the image binarization. Furthermore, the task-based 

algorithm evaluation was realized by comparing the 

regional absolute errors. 

 

 

(a) PSNR of the different algorithms when  

reconstructed two, three, and four times 

(b) SSIM of the different algorithms when  

reconstructed two, three, and four 

Figure 10. PSNR and SSIM of the reconstructed image of the deep undercooled melt times 
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Figure 11. Comparison of the “melt350” image reconstruction effects at the two-times reconstruction scale. The 

first layer from left to right is: the original image, the BICUBIC reconstructed image, and the ScSR reconstructed 

image. The second layer from left to right is: the SRCNN reconstructed image, the EDSR reconstructed image, and 

the FSSR reconstructed image 

 

Figure 12. Comparison of the “melt1” image reconstruction effects at the three-times reconstruction scale. The first 

layer from left to right is: the original image, the BICUBIC reconstructed image, and the ScSR reconstructed image. 

The second layer from left to right is: the SRCNN reconstructed image, the EDSR reconstructed image, and the 

FSSR reconstructed image 
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Figure 13. Comparison of the “melt396” image reconstruction effect at the four-times reconstruction scale. The 

first layer from left to right is: the original image, the BICUBIC reconstructed image, and the ScSR reconstructed 

image. The second layer from left to right is: the SRCNN reconstructed image, the EDSR reconstructed image, and 

the FSSR reconstructed image 

 

Figure 14. Example of image binarization 

 

Table 3 lists the scanning area of the reconstructed 

image that was obtained with different algorithms and 

the absolute errors of the corresponding original image 

(HR). As shown in the table, the FSSR algorithm that 

is proposed in this study achieves the best results in the 

reconstructed images for various multiples, and the 

range of the absolute error is small for the different 

reconstruction multiples. This indicates that the 

stability of the algorithm is higher than the other 

algorithms.

Table 3. Scanning area and absolute error of the reconstructed image (mm2) 

Reconstructed two-times Reconstructed three-times Reconstructed four-times 
 Scan 

area 

Absolute error 

(HR=10509) 

Scan 

area 

Absolute error 

(HR=10721) 

Scan 

area 

Absolute error 

(HR=10707) 

BICUBIC 10531 22 10854 133 10731 24 

ScSR 10502 7 10807 86 10716 9 

SRCNN 10502 7 10696 25 10688 19 

EDSR 10499 10 10702 19 10682 25 

FSSR 10504 5 10713 8 10703 4 

 

At the same time, to further explain the performance 

difference between the various algorithms in the area 

error indicator, the error that was obtained by the 

BICUBIC algorithm can be used as the standard to 

compare the performance of each algorithm relative to 

the BICUBIC algorithm. The specific formula can be 

expressed as follows. 

 %
BI C

C

BI

e e
P

e

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (9) 

Here, 
c
e  is the absolute error of the comparison 

algorithms (ScSR, SRCNN, EDSR, FSSR), and 
BI
e  is 

the absolute error of the BICUBIC algorithm. 

Table 4 shows the performance data that was 

calculated using Equation (9). Figure 15 is drawn 

based on the data. It can be observed from these two 

graphs that the performance of the FSSR algorithm that 

is proposed in this study achieved the best results for 

the various reconstruction multiples, and the trend of 

the change was relatively stable. This indicates that the 

scope of the application of this algorithm for the 

reconstruction multiples is better than the other 

comparison algorithms. 
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Table 4. Comparison of the performance of each algorithm relative to the BICUBIC algorithm 

Reconstruction Multiple 2 3 4 

BICUBIC —— —— —— 

ScSR 68.18% 35.34% 62.50% 

SRCNN 68.18% 81.20% 20.83% 

EDSR 54.55% 85.71% -4.17% 

FSSR 77.27% 93.98% 83.33% 

 

 

Figure 15. Comparison of the algorithm performance under the different reconstruction multiples (based on the 

BICUBIC algorithm) 

4 Conclusion 

In this study, a super-resolution reconstruction 

model that is based on deep learning was constructed 

to solve the low-resolution problem of the deep 

undercooled melt images that are acquired by high-

speed cameras. In this study, we investigated the use of 

image frequency domain features for model learning 

from the perspective of the frequency on the image 

structure composition. The method expands the 

shallow features using the time–frequency domain 

transformation while arranging and reorganizing these 

shallow features to refine these features. A feature 

selection model was used to characterize the 

interrelationship between the sibling features and their 

contribution to the image composition. The 

experimental results show that the proposed method 

can effectively reconstruct the deep-undercooled melt 

images. In comparison to the typical super-resolution 

reconstruction algorithms that are used in the various 

development stages in this study, it achieved the best 

results for subjective and objective evaluation and the 

task-based evaluation. The experimental results on five 

public datasets also show that this algorithm achieves 

better results, which further verifies the effectiveness 

and applicability of this algorithm. In future work, we 

intend to further optimize the network structure and 

streamline the parameters; thus, reducing the 

requirement of excessive hardware equipment and a 

long training time for model training. It is also 

necessary to develop more optimized evaluation 

criteria from the perspective of image composition and 

practical application scenarios. 
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