
Using PageRank Algorithm to Predict and Prevent Congestion in Software Defined Networking 1265

Using PageRank Algorithm to Predict and

Prevent Congestion in Software Defined Networking

Jian-Bo Chen, Wei-Kang Cheng

Department of Information and Telecommunications Engineering, Ming Chuan University, Taiwan

jbchen@mail.mcu.edu.tw, cyes90111@gmail.com*

*Corresponding Author: Jian-Bo Chen; E-mail: jbchen@mail.mcu.edu.tw

DOI: 10.53106/160792642021112206006

Abstract

This research used the PageRank algorithm to predict

and prevent congestion. Both the traffic volume and the

importance of switches are considered. The most popular

switch can to determined according to the ranking. After

the most popular switch is determined, the weights can be

adjusted to prevent congestion. To prevent congestion

efficiently, the values of weight are also determined

according to the value of ranking. Simulation results

show that this method can evenly distribute loads and

reduce response time.

Keywords: PageRank, Software defined Networking,

Congestion

1 Introduction

In a traditional network, the routing protocol uses

metrics to determine the best path. Metrics vary

according to different routing protocols. For example,

the metric for RIP (Routing Information Protocol) is

hop count; the metric for OSPF (Open Shortest Path

First) is the cost, which depends on bandwidth; the

default metric for EIGRP (Enhanced Interior Gateway

Routing Protocol) is bandwidth and delay, which also

depends on bandwidth. Although these metrics are

different, all metrics are static. Being static means that

once the values of the metric are defined or calculated,

these metrics become fixed values. When network

traffic is generated by hosts, the loads on switches or

links increases. In this situation, the metric should be

adjusted to satisfy the current network environment

needs. But these routing protocols do not capture the

loading information, so cannot adjust the metrics

immediately.

In SDN (Software Defined Networking), the Control

Plane and Data Plane are separated from switches.

Control Plane is a central controller which captures

information from switches. Based on that information,

the controller can determine the best path from source

to destination. Once the best path is determined, the

controller then adds flow entries to every switch along

this path. Each switch has been added to an entry that

instructs how traffic is to be processed or forwarded. In

traditional networks, every router has its own routing

table. The routing entries in the routing table are

generated by the router itself according to specific

routing protocols such as RIP, OSPF, or EIGRP. The

traditional routing protocols use their own algorithms

to find the best path, for example, RIP uses the

Bellman-Ford algorithm; OSPF uses the Shortest Path

First algorithm, and EIGRP uses the Diffusion Update

Algorithm. In the SDN environment, the functions of a

traditional router and switch are combined into a new

device, called “SDN switch”. In the SDN switch, the

table for instructing how traffic is to be processed or

forwarded is called a “flow table”. Each entry in the

flow table is called a “flow entry”. The flow entry

content is added by the controller, not the switch itself.

Hence, the main responsibility of the SDN switch is to

forward the packet according to the flow table. The

hardware design for the SDN switch focuses on fast

switching only. All other software tasks are transferred

to the controller, meaning that the switch is a Data

Plane.

The controller can obtain real-time network loads so

that it can re-calculate the metric to achieve a new best

path instead of plying an old path. Then the new path is

added to the switches by the controller. Therefore, we

can dynamically adjust the metric according to current

network loads. [1]

Once the controller collects the loading information,

how to appropriately change to the best path is another

challenge. On the topic of congestion prediction or

congestion prevention, many researchers have used

different methodologies to solve these problems. Some

researchers have used statistical methods that can

prevent congestion according to past or current traffic.

[2-3] Some researchers have employed artificial

intelligence methods which build a training model,

then this training model predicts congestion. [4-5] But

there are few researchers who have used some kinds of

page ranking algorithms to solve these problems. Page

ranking algorithm is used to rank the importance of a

web page. The importance of a web page not only

takes into consideration the number of ingress links but

1266 Journal of Internet Technology Volume 22 (2021) No.6

also considers the importance of the web page which

creates this link. The main concept of this paper is to

predict which switch is the most popular switch. The

most popular switch is determined not only by

considering the incoming traffic but also needs to

consider the popularity of the switch which generates

this traffic. This concept is rarely proposed in the

literature. Most studies consider only the number of

links, not the importance of nodes. When using the

page ranking algorithm to predict and prevent

congestion, both the traffic volume and the importance

of switches are considered to achieve higher

performance.

In this study, the researchers want to predict which

switch is the most likely to be congested, which is

referred to as a “popular” switch. If the most popular

switch can be identified in advance, the controller can

determine the new best path, so that future traffic will

avoid going through this switch. Consequently,

network congestion can be prevented and traffic can be

evenly distributed. In order to implement this kind of

prediction, the PageRank algorithm is used as the

prediction method in this paper. [6-7]

PageRank algorithm was proposed by Larry Page in

1998. [8] The original design for the PageRank

algorithm was to analyze the importance of web pages.

PageRank algorithm gives one PageRank value,

denoted as PR value, for each web page. The web page

with the highest PR value is considered the most

popular web page. In the original version of the

PageRank algorithm, there are no weights, that is, each

hyperlink is counted as one. Some researchers

proposed a weighted PageRank algorithm that can add

weights to each hyperlink. [9]

Some researchers use the PageRank algorithm to

solve problems other than those associated with web

pages [10-11]. Other researchers have improved the

efficiency of the PageRank algorithm [12-13]. In this

paper, the weighted PageRank algorithm is used to

identify the popular switch, which will likely be

congested. When the network traffic is generated from

source host to destination host, the traffic will go

through a path from source to destination and pass

from switch to switch. In the mechanism proposed in

this paper, the switch acts as a web page; the network

traffic acts as the hyperlink. After the controller

captures the network traffic, the controller can use

these switches and traffic to generate a directional

graph. The weights of each link are the volume of

network traffic requested. Based on this directional

graph, a weighted PageRank algorithm can be adapted

to calculate the PR value for each switch. The switch

with the highest PR value is defined as the most

popular switch, which is predicted as likely to be

congested. The controller can re-calculate a new best

path which avoids going through this switch if at all

possible. Thus, the network traffic can be redistributed

to other switches, and congestion will be prevented.

This paper is organized as follows. Section 2

describes some related background information.

Section 3 presents the proposed mechanism. Section 4

shows the simulation results. Section 5 comprises the

conclusions from this research.

2 Related Background Information

In this section, some background information is

introduced, including shortest path first algorithms and

web ranking algorithms. Then the PageRank algorithm

and the weighted PageRank algorithm are introduced.

2.1 Shortest Path First Algorithms

In order to find the shortest path in a given graph,

Edsger Dijkstra proposed the Dijkstra algorithm in

1959. This algorithm can find the shortest paths

between nodes in a graph. The basic operation is

described as: In a given source node, when finding the

shortest path to destination nodes, the distance from

this source node to all neighbor nodes is updated with

the minimum distance. After some iterations, the

shortest path from the source node to all other nodes in

the graph can be found. [14]

Dijkstra algorithm can find the shortest path, but it is

a kind of Breadth-First Search algorithm. Peter Hart,

Nils Nilsson, and Bertram Raphael proposed the A*

algorithm in 1968 which is a kind of Depth-First-

Search algorithm. A* algorithm can achieve better

performance by using a heuristic function to reduce the

search time. [15-16] In the A* algorithm, if g(n)

represents the actual distances from the source node to

any node n; h(n) represents the estimated distances

from any node n to the target node. Then the formula

for the A* algorithm is defined in Eq. (1).

 () () ()f n g n h n= + (1)

This formula follows some performance characteristics.

First, if g(n) equal to zero, the algorithm only needs to

calculate the heuristic function h(n). In this case, this

algorithm is a Best-First-Search algorithm consuming

less execution time but it may not find the best solution.

Second, if h(n) is not larger than the actual distance

from node n to the target node, the best solution can be

found. In the case of being less than h(n), the more

nodes need to be calculated which will decrease

performance. Third, if h(n) is equal to zero, the

algorithm only needs to calculate g(n) without a

heuristic function. In this case, the A* algorithm

becomes a single source Dijkstra algorithm.

2.2 Web Ranking Algorithms

In this section, some web ranking algorithms are

introduced. The first web ranking algorithm is the

PageRank algorithm which was proposed by Larry

Page in 1998. It is the kind of ranking algorithm used

in the Google search engine. The concept of the

Using PageRank Algorithm to Predict and Prevent Congestion in Software Defined Networking 1267

PageRank algorithm is to consider the quantity and

quality of relationships between web pages. Hence, a

higher ranking page means that it has a large number

of hyperlinks with higher popularity directed to it.

Hyperlink-Induced Topic Search (HITS) algorithm

is a kind of web link analysis algorithm that was

proposed by Jon Kleinberg in 1999. [17] In this

algorithm, two kinds of web pages are defined,

including the Authority page and the Hub page.

Authority page is a page with many incoming links

from other web pages; Hub page is a page that has

many links out to other important web pages. In this

algorithm, both the Authority score and Hub score can

be computed to rank the importance of Authority pages

and Hub pages. Authority score is calculated by the

summation of the total Hub scores that are pointed to

this page; Hub score is calculated by the summation of

the total Authority values that this page points to.

TF-IDF (Term Frequency - Inverse Document

Frequency) is a kind of text-mining technology that

can rank the keyword of any document. [18] The

importance of a keyword will increase according to the

number of times this keyword appears in a document,

and it will decrease according to the number of times

this keyword appears in the set of documents. Some

variations of TF-IDF algorithms can rank the keywords

in search engines.

Due to the increase of blogs, the EigenRumor

algorithm was proposed by K. Fujimura, T. Inoue, and

M. Sugisaki in 2005. [19] The focus of this algorithm

is to find the most appropriate blogs in the search

environment. EigenRumore algorithm scores each blog

page according to the weights of hub and authority

values based on eigenvector calculations. Then the

rank scores of blogs can be obtained.

The comparison between these ranking algorithms is

shown in Table 1. [20] From this table, it can be seen

that only the PageRank algorithm deals with web

structure without considering web contents. The aim of

this research is to predict and prevent congestion based

on traffic flow, which is only concerned with network

topology (web structure), not requested content (web

content). Therefore, PageRank is selected for the

proposed method, and the operational details are

described in later sections.

Table 1. Comparison of ranking algorithms

Algorithm PageRank HITS TF-IDF EigenRumor

Author Larry Page Jon Kleinberg K. Spärck Jones K. Fujimura, et.al

Year 1998 1998 1972 2005

Web Structure Yes Yes No No

Web Content No Yes Yes Yes

2.3 PageRank Algorithm

In 1998, Larry Page stated the main purpose of the

PageRank algorithm is to analyze the relationship and

importance of web pages. Each web page has its own

PageRank value (PR value) which represents the

importance of this web page. There are two key

concepts for the PageRank algorithm. First, if a web

page is linked by another important web page, then this

web page is more important and its PR value should be

increased. Second, if a web page with a high PR value

links to another web page, then the linked web page

should have increased PR value because it is linked by

an important web page.

The PR value is calculated according to the quantity

and quality of links. PageRank algorithm is based on a

probability operation. The formula for PR value is

shown in Eq. (2) and is described as follows.

1 () () ()
()

() () ()

d PR B PR C PR D
PR A d

N L B L C L D

− ⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠
� (2)

If there are three web pages (B, C, and D) linked to

web page A, PR(A) denotes the PR value of web page

A. L(B) denotes the sum of links which are egress links

by web page B. PR(A) is the sum of these three web

pages’ PR values divided by the sum of its egress links.

N is the total number of web pages in this network

topology and d is the damping factor which always is

0.85 in order to avoid the black hole page which has no

egress link to other web pages. In the PageRank

algorithm, the sum of all PR values of these web pages

is 1, and the web page with highest the PR value is the

most important web page in the network topology.

2.4 Weighted PageRank Algorithm

In the original design of the PageRank algorithm,

the weight for each link is the same, that is, there is no

concept of weights in the links. This means that the

probability of each link to another web page is the

same. Some researchers proposed an improvement of

the PageRank algorithm with weights in each link. If

the relationship between the two web pages is more

significant, a higher weight is assigned to this link.

Otherwise, the link is assigned with a lower weight.

The formula for weighted PR value is shown in Eq. (3)

and is described as follows
 (3)

()() ()1
()

() () ()

CABA DA
W PR CW PR B W PR Cd

PR A d
N WL B WL C WL C

− ⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
� (3)

In Eq. (3), WBA is the weight of the link which is

from page B to page A. WL(B) is the total weights of all

1268 Journal of Internet Technology Volume 22 (2021) No.6

egress links from page B.

3 Proposed Method

In this section, the proposed method is introduced,

including how to find the popular switch, and how to

adjust the weights.

3.1 Find the Popular Switch

An example network topology is used to describe

the proposed method, as shown in Figure 1. In this

topology, the topology graph G = (V, E) contains six

switches, and the bandwidth for each link is assumed

the same so that the initial weight can be defined as 1.

This topology is described below.

S1

S2

S3

S4

S5

S6

1

1

1

1

1

1

1

1

Figure 1. Original graph of network topology

G = (V, E)

V = {S1, S2, S3, S4, S5, S6}

E = {(S1, S2), (S1, S3), (S2, S4),(S2, S5), (S3, S4),

(S3, S5), (S4, S6), (S5, S6)}

W[i][j]=1 for (Si, Sj) ∈ E

where G is the topology; V is the set of switches; E is

the set of links; W is the weight of links.

When the traffic is generated, the controller captures

the traffic for each link. In an SDN environment, the

controller can use PortStats and FlowStats events to

obtain the amount of traffic easily. After a specific time

period, the controller uses this traffic volume to

generate a directional graph, G'(V', E'). The generation

process of G' is described below.

Firstly, there is no traffic, so that V' = {} and E' = {}.

When the first traffic was generated, it is assumed that

the traffic is sourced from S1 to S6, based on the

shortest path first algorithm, the traffic will go through

S1->S2->S4->S6, so that V' = {S1, S2, S4, S6} and E' =

{<S1, S2>, <S2, S4>, <S4, S6>}. The weights w[1][2] =

w[2][4] = w[4][6] = 1. When the second traffic was

generated, it is assumed that the second traffic is

sourced from S1 to S5, based on the shortest path first

algorithm, the traffic will go through S1->S2->S5, so at

this time, V' = {S1, S2, S4, S6, S5} and E' = {<S1, S2>,

<S2, S4>, <S4, S6>, <S2, S5>}. The weights w[1][2] =

2, w[2][4] = w[4][6] = w[2][5] = 1. After a period of

time, the final directional graph will be generated.

In this directional graph, the PageRank algorithm

can be adopted to find the switch with the highest PR

value. A switch with the highest PR value means that

some important switches have a higher amount of

traffic going to this one switch, and this switch is the

most popular switch. This popular switch is predicted

to have more and more traffic and soon be

overwhelmed. Hence, the original weights are adjusted,

the SPF algorithm is executed again, and new flow

entries are added to switches. Then the congestion of

this popular switch will be prevented.

An example can illustrate how to generate the

directional graph and how to use the weighted

PageRank algorithm. Assuming that after a period of

time, the controller captures traffic, a directional graph

is generated, as shown in Figure 2. In this graph, for

example, assume that S1 sends 5 requests to S3 and S3

sends 8 requests to S1. The weights in the directional

graph between S1 and S3 are 5 and 8.

Figure 2. Directional graph generated by traffic

In this example, the ingress traffic can easily be

counted to find out which one is the highest traffic

switch. The ingress traffic count is shown in Table 2,

and S1 is the highest volume traffic switch.

Table 2. Ingress traffic for each switch

 Traffic Count

 S1 17

S2 15

S3 14

S4 14

S5 15

S6 15

In this proposed method, the highest traffic switch

may not be the popular switch. In the weighted

directional graph, the weighted PageRank algorithm is

used to obtain the PR values for each switch. In this

example, there are six switches so that the initial PR

values for each switch is 1/6, that is, PR(S1) = PR(S2)

= PR(S3) = PR(S4) = PR(S5) = PR(S6)=1/6. After

several iterations of the weighted PageRank algorithm,

the final converged PR values are shown in Table 3.

Using PageRank Algorithm to Predict and Prevent Congestion in Software Defined Networking 1269

Table 3. Converged PR values

 PR value

PR(S1) 0.1697

PR(S2) 0.1525

PR(S3) 0.2116

PR(S4) 0.1659

PR(S5) 0.1644

PR(S6) 0.1359

In Table 3, one can see that the switch with the

highest PR value is S3. But based on Table 2, the

highest traffic switch is S1, showing that the highest

traffic switch is not the most popular switch. In the

example, switch S3 is the most popular switch, which

will be overwhelmed. In order to prevent congestion in

S3, the initial weights are adjusted for some links. After

the SPF algorithm is re-executed, the traffic will be

prevented going through S3 as much as possible, and

the traffic can be evenly distributed to all other

switches.

3.2 Adjust the Weights

Using the PageRank algorithm with the amount of

traffic, one can predict which switch will be congested.

The goal is to prevent this switch from being congested.

In the proposed mechanism, SPF algorithm is used to

find the best path, so one only needs to adjust the

initial weights and execute the SPF algorithm again to

obtain a new path, and then add these flow entries to

the switches. Two methods are proposed to adjust the

weights. The first is to add a fixed value to the weights;

the second is to add a value that is dependent on the PR

value.

In the first method, based on the previous section,

the switch with the highest PR value is S3, so the

weights for all links connected to S3 must be adjusted.

In this example, 1 is added to each link so that the

weights for S1 to S3, S4 to S3, and S5 to S3 are changed

to 2, as shown in Figure 3.

Figure 3. Adjust weights with a fixed value

In the second method, a specific value is added to

the weight of each link. The value added is the

maximum PR values for its adjacent switches, that is,

max(PR(i), PR(j)), where i, j are the two adjacent

switches connected by this link. When the weight of

each link is adjusted, a new weighted graph is

generated as shown in Figure 4. For example, the

weight is 1.1659 for the link between S2 and S4,

because PR(S2) is 0.1525 and PR(S4) is 0.1659,

max(PR(S2), PR(S4)) is 0.1659, so the weight for S2 and

S4 is adjusted to 1.1659.

Figure 4. Adjust weight with PR values

For adoption of both method 1 and method 2, the

SPF algorithm was executed in this new weighted

graph. The new path was added to these switches by

the SDN controller. The pseudo-code for the proposed

method is shown below.

G is the network topology with node V, edge E, and weighted matrix W

G' is the directional graph with node V', edge E', and weighted matrix W'

initialize the network topology G(V, E) with weighted matrix W

while loop

 find the shortest path for each node in G

 add flow entries to each node

 for every generated traffic

 find the shortest path from source to destination

 for every node in this path

 if node is not in V'

 add this node to V'

 for every link in this path

 if link is not in E'

 add this link to E' and update W'

 else

 update W'

 execute the weighted PageRank algorithm with G' and W'

 update W for all links connected to the node with maximum PageRank

1270 Journal of Internet Technology Volume 22 (2021) No.6

4 Simulation Results

In the experimental simulation, a scale-free topology

was used. A scale-free topology is one type of complex

topology with some specific features. The most

important feature is that most of the nodes connect to

little nodes, and little nodes connect to most of the

nodes. These key nodes are called “hubs”, and the hub

nodes can support the failure of network nodes.

Internet topology is a kind of scale-free topology so

scale-free topology was adopted for simulation

topology in this study. In this simulation, a scale-free

topology with 100 nodes was used.

The purpose of the simulation is to predict which

switch will be overwhelmed and to prevent congestion.

If the loads can be evenly distributed to all switches,

then congestion will not occur. Therefore, the

percentage of loads and standard deviation for each

link will be calculated. If the standard deviation is low,

it means that the loads are distributed evenly to all

switches.

Some methods are compared with the proposed

model. The first just uses the SPF algorithm with

original weights, denoted as “Dijkstra/A*”. In this

method, in spite of the loads added in this topology, the

initial weights still remain the same; that is, this

method does not consider current loads. The second

method is choosing the largest amount of traffic as the

popular switch; that is, this method counts all the

traffic and finds the switch with the highest traffic,

denoted as “Highest Traffic”. This method only

considers the amount of traffic, rather than the

relationship of traffic loads. The third method is using

the proposed PageRank algorithm to find the most

popular switch, denoted as “PageRank_fix”. When the

most popular switch is identified, the weights have a

fixed value added for all links connected to this switch.

The fourth method is also the PageRank algorithm,

denoted as “PageRank_PR”. But, different from the

third method, this method adds the PR values to each

link to adjust the weights.

When the controller gathers the topology, it uses the

SPF algorithm to find the shortest path and add flow

entries to switches. Then traffic is randomly generated

in this topology. To get the loads and to calculate the

percentage for each link, multimedia requests are

added to generate streaming contents in the topology.

The number of requests was increased from 50 to 500;

and this traffic was used to find the largest volume of

traffic and PR values. Then weights were adjusted and

the standard deviation calculated, as shown in Figure 5.

It can be seen that “PageRank_fix” and

“PageRank_PR” can achieve lower standard deviations

than “Dijkstra/A*” and “Highest Traffic”. Moreover,

“PageRank_PR” has a lower standard deviation than

“PageRank_fix” because the weights for all links were

adjusted to improve the distribution of loads.

Although standard deviation can prove that the loads

are evenly distributed, the aim is to know whether the

response time will be decreased when the proposed

methods are adopted. Using the same experimental

environment, the number of requests was increased

from 50 to 500. When requests increase, the response

time increases. In Figure 6, it can be seen that

“PageRank_fix” and “PageRank_PR” can achieve

better response times than the other two methods.

Figure 5. Comparison of standard deviations

Figure 6. Comparison of response time

5 Conclusion

This paper proposed a congestion prediction and

prevention method using the PageRank algorithm.

PageRank algorithm can consider both the traffic

volume and the importance of switches. The simulation

results illustrate that this proposed method can evenly

distribute the loads to every switch and reduce

response time better than other methods. However, in

order to use the PageRank algorithm, the controller

must collect all the traffic in the topology, that is, there

must be a high volume of Packet-in / Packet-out traffic

from switches to controller. In a heavy loading

environment, the channels between the controller and

switches will be the bottleneck. In addition, the

computing resources of the controller must also be

considered. In future studies, the researchers will use

out-of-band channels and multi-controllers to solve

these issues.

Using PageRank Algorithm to Predict and Prevent Congestion in Software Defined Networking 1271

References

[1] E. Akin, T. Korkmaz, Comparison of Routing Algorithms

with Static and Dynamic Link Cost in SDN, 16th IEEE

Annual Consumer Communications & Networking

Conference, Las Vegas, NV, USA, 2019, pp. 1-8.

[2] G. Saldamli, H. Mishra, N. Ravi, R. R. Kodati, S. A.

Kuntamukkala, L. Tawalbeh, Improving Link Failure

Recovery and Congestion Control in SDNs, 10th

International Conference on Information and Communication

Systems, Irbid, Jordan, 2019, pp. 30-35.

[3] B. Zhu, J. Zhao, D.-A. Li, R. Bai, Application of Congestion

Avoidance Mechanism in Multimedia Transmission over

Mesh Networks, International Journal of Ad Hoc and

Ubiquitous Computing, Vol. 31, No. 4, pp. 266-276, 2019.

[4] J. Wu, Y. Peng, M. Song, M. Cui, L. Zhang, Link Congestion

Prediction using Machine Learning for Software-Defined-

Network Data Plane, International Conference on Computer,

Information and Telecommunication Systems, Beijing, China,

2019, pp. 1-5.

[5] Z. Yuan, P. Zhou, S. Wang, X. Zhang, Research on Routing

Optimization of SDN Network Using Reinforcement

Learning Method, 2nd International Conference on Safety

Produce Informatization, Chongqing, China, 2019, pp. 442-

445.

[6] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, S. Salsano,

Traffic Engineering with Segment Routing: SDN-Based

Architectural Design and Open Source Implementation,

Fourth European Workshop on Software Defined Networks,

Bilbao, Spain, 2015, pp. 111-112.

[7] M. Beshley, M. Seliuchenko, O. Panchenko, A. Polishuk,

Adaptive Flow Routing Model in SDN, 14th International

Conference on the Experience of Designing and Application

of CAD Systems in Microelectronics, Lviv, Ukraine, 2017, pp.

298-302.

[8] S. Brin, L. Page, The Anatomy of a Large-scale Hypertextual

Web Search Engine, Computer Networks and ISDN Systems,

Vol. 30, No. 1-7, pp. 107-117, April, 1998.

[9] S.-Y. Lee, Y.-G. Kim, S.-J. Lee, K. M. Lee, An Improvement

of Weighted PageRank to Handle the Zero Link Similarity,

Joint 7th International Conference on Soft Computing and

Intelligent Systems and 15th International Symposium on

Advanced Intelligent Systems, Kitakyushu, Japan, 2014, pp.

610-613.

[10] M. Tepper, G. Sapiro, A Short-Graph Fourier Transform Via

Personalized PageRank Vectors, IEEE International

Conference on Acoustics, Speech and Signal Processing,

Shanghai, China, 2016, pp. 4806-4810.

[11] C.-C. Kuo, C.-L. Hou, C.-S. Yang, The Study of a Risk

Assessment System based on PageRank, Journal of Internet

Technology, Vol. 20, No. 7, pp. 2255-2264, December, 2019.

[12] H. Choi, J. Um, H. Yoon, M. Lee, Y. Choi, W. Lee, S. Song,

H. Jung, A Partitioning Technique for Improving the

Performance of PageRank on Hadoop, 2012 7th International

Conference on Computing and Convergence Technology,

Seoul, Korea, 2012, pp. 458-461.

[13] Z. Zhu, Q. Peng, Z. Li, X. Guan, O. Muhammad, Fast

PageRank Computation Based on Network Decomposition

and DAG Structure, IEEE Access, Vol. 6, pp. 41760-41770,

June, 2018.

[14] P. L. Frana, T. J. Misa, An Interview with Edsger W. Dijkstra,

Communications of the ACM, Vol. 53, No. 8, pp. 41-47,

August, 2010.

[15] A. Candra, M. A. Budiman, K. Hartanto, Dijkstra’s and A-

Star in Finding the Shortest Path: a Tutorial, International

Conference on Data Science, Artificial Intelligence, and

Business Analytics, Medan, Indonesia, 2020, pp. 28-32.

[16] J.-R. Jiang, H.-W. Huang, J.-H. Liao, S.-Y. Chen, Extending

Dijkstra’s Shortest Path Algorithm for Software Defined

Networking, 16th Asia-Pacific Network Operations and

Management Symposium, Hsinchu, Taiwan, 2014, pp. 1-4.

[17] J. M. Kleinberg, Authoritative Sources in a Hyperlinked

Environment, Journal of the ACM, Vol. 46, No. 5, pp. 604-

632, September, 1999.

[18] G. Salton, C. Buckley, Term-weighting Approaches in

Automatic Text Retrieval, Information Processing and

Management, Vol. 24, No. 5, pp. 513-523, 1988.

[19] K. Fujimura, T. Inoue, M. Sugisaki, The EigenRumor

Algorithm for Ranking blogs, 2nd Annual Workshop on the

Weblogging Ecosystem: Aggregation, Analysis and Dynamics

on World Wide Web, Chiba, Japan, 2005, pp. 1-6.

[20] D. K. Sharma, A. K. Sharma, A Comparative Analysis of

Web Page Ranking Algorithms, International Journal on

Computer Science and Engineering, Vol. 2, No. 8, pp. 2670-

2676, 2010.

Biographies

Jian-Bo Chen received the Ph.D.

degree in the department of computer

science and engineering in Tatung

University, Taipei, Taiwan in 2008.

He is currently an assistant professor

in the department of information and

telecommunications engineering in

Ming Chuan University, Taoyuan, Taiwan. His

research interests include software-defined networking

and load balance.

Wei-Kang Cheng received the B.S.

and M.S. degrees in Information and

Telecommunications Engineering

from Ming Chuan University, Taiwan,

R.O.C., in 2018 and 2019,

respectively. His research interests

include computer networking.

1272 Journal of Internet Technology Volume 22 (2021) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

