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Abstract 

This research used the PageRank algorithm to predict 

and prevent congestion. Both the traffic volume and the 

importance of switches are considered. The most popular 

switch can to determined according to the ranking. After 

the most popular switch is determined, the weights can be 

adjusted to prevent congestion. To prevent congestion 

efficiently, the values of weight are also determined 

according to the value of ranking. Simulation results 

show that this method can evenly distribute loads and 

reduce response time. 

Keywords: PageRank, Software defined Networking, 

Congestion 

1 Introduction 

In a traditional network, the routing protocol uses 

metrics to determine the best path. Metrics vary 

according to different routing protocols. For example, 

the metric for RIP (Routing Information Protocol) is 

hop count; the metric for OSPF (Open Shortest Path 

First) is the cost, which depends on bandwidth; the 

default metric for EIGRP (Enhanced Interior Gateway 

Routing Protocol) is bandwidth and delay, which also 

depends on bandwidth. Although these metrics are 

different, all metrics are static. Being static means that 

once the values of the metric are defined or calculated, 

these metrics become fixed values. When network 

traffic is generated by hosts, the loads on switches or 

links increases. In this situation, the metric should be 

adjusted to satisfy the current network environment 

needs. But these routing protocols do not capture the 

loading information, so cannot adjust the metrics 

immediately. 

In SDN (Software Defined Networking), the Control 

Plane and Data Plane are separated from switches. 

Control Plane is a central controller which captures 

information from switches. Based on that information, 

the controller can determine the best path from source 

to destination. Once the best path is determined, the 

controller then adds flow entries to every switch along 

this path. Each switch has been added to an entry that 

instructs how traffic is to be processed or forwarded. In 

traditional networks, every router has its own routing 

table. The routing entries in the routing table are 

generated by the router itself according to specific 

routing protocols such as RIP, OSPF, or EIGRP. The 

traditional routing protocols use their own algorithms 

to find the best path, for example, RIP uses the 

Bellman-Ford algorithm; OSPF uses the Shortest Path 

First algorithm, and EIGRP uses the Diffusion Update 

Algorithm. In the SDN environment, the functions of a 

traditional router and switch are combined into a new 

device, called “SDN switch”. In the SDN switch, the 

table for instructing how traffic is to be processed or 

forwarded is called a “flow table”. Each entry in the 

flow table is called a “flow entry”. The flow entry 

content is added by the controller, not the switch itself. 

Hence, the main responsibility of the SDN switch is to 

forward the packet according to the flow table. The 

hardware design for the SDN switch focuses on fast 

switching only. All other software tasks are transferred 

to the controller, meaning that the switch is a Data 

Plane. 

The controller can obtain real-time network loads so 

that it can re-calculate the metric to achieve a new best 

path instead of plying an old path. Then the new path is 

added to the switches by the controller. Therefore, we 

can dynamically adjust the metric according to current 

network loads. [1] 

Once the controller collects the loading information, 

how to appropriately change to the best path is another 

challenge. On the topic of congestion prediction or 

congestion prevention, many researchers have used 

different methodologies to solve these problems. Some 

researchers have used statistical methods that can 

prevent congestion according to past or current traffic. 

[2-3] Some researchers have employed artificial 

intelligence methods which build a training model, 

then this training model predicts congestion. [4-5] But 

there are few researchers who have used some kinds of 

page ranking algorithms to solve these problems. Page 

ranking algorithm is used to rank the importance of a 

web page. The importance of a web page not only 

takes into consideration the number of ingress links but 
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also considers the importance of the web page which 

creates this link. The main concept of this paper is to 

predict which switch is the most popular switch. The 

most popular switch is determined not only by 

considering the incoming traffic but also needs to 

consider the popularity of the switch which generates 

this traffic. This concept is rarely proposed in the 

literature. Most studies consider only the number of 

links, not the importance of nodes. When using the 

page ranking algorithm to predict and prevent 

congestion, both the traffic volume and the importance 

of switches are considered to achieve higher 

performance. 

In this study, the researchers want to predict which 

switch is the most likely to be congested, which is 

referred to as a “popular” switch. If the most popular 

switch can be identified in advance, the controller can 

determine the new best path, so that future traffic will 

avoid going through this switch. Consequently, 

network congestion can be prevented and traffic can be 

evenly distributed. In order to implement this kind of 

prediction, the PageRank algorithm is used as the 

prediction method in this paper. [6-7] 

PageRank algorithm was proposed by Larry Page in 

1998. [8] The original design for the PageRank 

algorithm was to analyze the importance of web pages. 

PageRank algorithm gives one PageRank value, 

denoted as PR value, for each web page. The web page 

with the highest PR value is considered the most 

popular web page. In the original version of the 

PageRank algorithm, there are no weights, that is, each 

hyperlink is counted as one. Some researchers 

proposed a weighted PageRank algorithm that can add 

weights to each hyperlink. [9] 

Some researchers use the PageRank algorithm to 

solve problems other than those associated with web 

pages [10-11]. Other researchers have improved the 

efficiency of the PageRank algorithm [12-13]. In this 

paper, the weighted PageRank algorithm is used to 

identify the popular switch, which will likely be 

congested. When the network traffic is generated from 

source host to destination host, the traffic will go 

through a path from source to destination and pass 

from switch to switch. In the mechanism proposed in 

this paper, the switch acts as a web page; the network 

traffic acts as the hyperlink. After the controller 

captures the network traffic, the controller can use 

these switches and traffic to generate a directional 

graph. The weights of each link are the volume of 

network traffic requested. Based on this directional 

graph, a weighted PageRank algorithm can be adapted 

to calculate the PR value for each switch. The switch 

with the highest PR value is defined as the most 

popular switch, which is predicted as likely to be 

congested. The controller can re-calculate a new best 

path which avoids going through this switch if at all 

possible. Thus, the network traffic can be redistributed 

to other switches, and congestion will be prevented. 

This paper is organized as follows. Section 2 

describes some related background information. 

Section 3 presents the proposed mechanism. Section 4 

shows the simulation results. Section 5 comprises the 

conclusions from this research. 

2 Related Background Information 

In this section, some background information is 

introduced, including shortest path first algorithms and 

web ranking algorithms. Then the PageRank algorithm 

and the weighted PageRank algorithm are introduced. 

2.1 Shortest Path First Algorithms 

In order to find the shortest path in a given graph, 

Edsger Dijkstra proposed the Dijkstra algorithm in 

1959. This algorithm can find the shortest paths 

between nodes in a graph. The basic operation is 

described as: In a given source node, when finding the 

shortest path to destination nodes, the distance from 

this source node to all neighbor nodes is updated with 

the minimum distance. After some iterations, the 

shortest path from the source node to all other nodes in 

the graph can be found. [14] 

Dijkstra algorithm can find the shortest path, but it is 

a kind of Breadth-First Search algorithm. Peter Hart, 

Nils Nilsson, and Bertram Raphael proposed the A* 

algorithm in 1968 which is a kind of Depth-First-

Search algorithm. A* algorithm can achieve better 

performance by using a heuristic function to reduce the 

search time. [15-16] In the A* algorithm, if g(n) 

represents the actual distances from the source node to 

any node n; h(n) represents the estimated distances 

from any node n to the target node. Then the formula 

for the A* algorithm is defined in Eq. (1). 

 ( ) ( ) ( )f n g n h n= +  (1) 

This formula follows some performance characteristics. 

First, if g(n) equal to zero, the algorithm only needs to 

calculate the heuristic function h(n). In this case, this 

algorithm is a Best-First-Search algorithm consuming 

less execution time but it may not find the best solution. 

Second, if h(n) is not larger than the actual distance 

from node n to the target node, the best solution can be 

found. In the case of being less than h(n), the more 

nodes need to be calculated which will decrease 

performance. Third, if h(n) is equal to zero, the 

algorithm only needs to calculate g(n) without a 

heuristic function. In this case, the A* algorithm 

becomes a single source Dijkstra algorithm. 

2.2 Web Ranking Algorithms 

In this section, some web ranking algorithms are 

introduced. The first web ranking algorithm is the 

PageRank algorithm which was proposed by Larry 

Page in 1998. It is the kind of ranking algorithm used 

in the Google search engine. The concept of the 
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PageRank algorithm is to consider the quantity and 

quality of relationships between web pages. Hence, a 

higher ranking page means that it has a large number 

of hyperlinks with higher popularity directed to it. 

Hyperlink-Induced Topic Search (HITS) algorithm 

is a kind of web link analysis algorithm that was 

proposed by Jon Kleinberg in 1999. [17] In this 

algorithm, two kinds of web pages are defined, 

including the Authority page and the Hub page. 

Authority page is a page with many incoming links 

from other web pages; Hub page is a page that has 

many links out to other important web pages. In this 

algorithm, both the Authority score and Hub score can 

be computed to rank the importance of Authority pages 

and Hub pages. Authority score is calculated by the 

summation of the total Hub scores that are pointed to 

this page; Hub score is calculated by the summation of 

the total Authority values that this page points to.  

TF-IDF (Term Frequency - Inverse Document 

Frequency) is a kind of text-mining technology that 

can rank the keyword of any document. [18] The 

importance of a keyword will increase according to the 

number of times this keyword appears in a document, 

and it will decrease according to the number of times 

this keyword appears in the set of documents. Some 

variations of TF-IDF algorithms can rank the keywords 

in search engines. 

Due to the increase of blogs, the EigenRumor 

algorithm was proposed by K. Fujimura, T. Inoue, and 

M. Sugisaki in 2005. [19] The focus of this algorithm 

is to find the most appropriate blogs in the search 

environment. EigenRumore algorithm scores each blog 

page according to the weights of hub and authority 

values based on eigenvector calculations. Then the 

rank scores of blogs can be obtained.  

The comparison between these ranking algorithms is 

shown in Table 1. [20] From this table, it can be seen 

that only the PageRank algorithm deals with web 

structure without considering web contents. The aim of 

this research is to predict and prevent congestion based 

on traffic flow, which is only concerned with network 

topology (web structure), not requested content (web 

content). Therefore, PageRank is selected for the 

proposed method, and the operational details are 

described in later sections. 

Table 1. Comparison of ranking algorithms  

Algorithm PageRank HITS TF-IDF EigenRumor 

Author Larry Page Jon Kleinberg K. Spärck Jones K. Fujimura, et.al 

Year 1998 1998 1972 2005 

Web Structure Yes Yes No No 

Web Content No Yes Yes Yes 

 

2.3 PageRank Algorithm 

In 1998, Larry Page stated the main purpose of the 

PageRank algorithm is to analyze the relationship and 

importance of web pages. Each web page has its own 

PageRank value (PR value) which represents the 

importance of this web page. There are two key 

concepts for the PageRank algorithm. First, if a web 

page is linked by another important web page, then this 

web page is more important and its PR value should be 

increased. Second, if a web page with a high PR value 

links to another web page, then the linked web page 

should have increased PR value because it is linked by 

an important web page. 

The PR value is calculated according to the quantity 

and quality of links. PageRank algorithm is based on a 

probability operation. The formula for PR value is 

shown in Eq. (2) and is described as follows. 

1 ( ) ( ) ( )
( )

( ) ( ) ( )

d PR B PR C PR D
PR A d

N L B L C L D

− ⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠
�  (2) 

If there are three web pages (B, C, and D) linked to 

web page A, PR(A) denotes the PR value of web page 

A. L(B) denotes the sum of links which are egress links 

by web page B. PR(A) is the sum of these three web 

pages’ PR values divided by the sum of its egress links. 

N is the total number of web pages in this network 

topology and d is the damping factor which always is 

0.85 in order to avoid the black hole page which has no 

egress link to other web pages. In the PageRank 

algorithm, the sum of all PR values of these web pages 

is 1, and the web page with highest the PR value is the 

most important web page in the network topology. 

2.4 Weighted PageRank Algorithm 

In the original design of the PageRank algorithm, 

the weight for each link is the same, that is, there is no 

concept of weights in the links. This means that the 

probability of each link to another web page is the 

same. Some researchers proposed an improvement of 

the PageRank algorithm with weights in each link. If 

the relationship between the two web pages is more 

significant, a higher weight is assigned to this link. 

Otherwise, the link is assigned with a lower weight. 

The formula for weighted PR value is shown in Eq. (3) 

and is described as follows 
 (3) 

( )( ) ( )1
( )

( ) ( ) ( )

CABA DA
W PR CW PR B W PR Cd

PR A d
N WL B WL C WL C

− ⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
�  (3) 

In Eq. (3), WBA is the weight of the link which is 

from page B to page A. WL(B) is the total weights of all 
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egress links from page B.  

3 Proposed Method 

In this section, the proposed method is introduced, 

including how to find the popular switch, and how to 

adjust the weights. 

3.1 Find the Popular Switch 

An example network topology is used to describe 

the proposed method, as shown in Figure 1. In this 

topology, the topology graph G = (V, E) contains six 

switches, and the bandwidth for each link is assumed 

the same so that the initial weight can be defined as 1. 

This topology is described below. 

S1

S2

S3

S4

S5

S6

1

1

1

1

1

1

1

1

 

Figure 1. Original graph of network topology 

G = (V, E) 

V = {S1, S2, S3, S4, S5, S6} 

E = {(S1, S2), (S1, S3), (S2, S4),(S2, S5), (S3, S4),  

(S3, S5), (S4, S6), (S5, S6)} 

W[i][j]=1 for (Si, Sj) ∈ E 

where G is the topology; V is the set of switches; E is 

the set of links; W is the weight of links. 

When the traffic is generated, the controller captures 

the traffic for each link. In an SDN environment, the 

controller can use PortStats and FlowStats events to 

obtain the amount of traffic easily. After a specific time 

period, the controller uses this traffic volume to 

generate a directional graph, G'(V', E'). The generation 

process of G' is described below. 

Firstly, there is no traffic, so that V' = {} and E' = {}. 

When the first traffic was generated, it is assumed that 

the traffic is sourced from S1 to S6, based on the 

shortest path first algorithm, the traffic will go through 

S1->S2->S4->S6, so that V' = {S1, S2, S4, S6} and E' = 

{<S1, S2>, <S2, S4>, <S4, S6>}. The weights w[1][2] = 

w[2][4] = w[4][6] = 1. When the second traffic was 

generated, it is assumed that the second traffic is 

sourced from S1 to S5, based on the shortest path first 

algorithm, the traffic will go through S1->S2->S5, so at 

this time, V' = {S1, S2, S4, S6, S5} and E' = {<S1, S2>, 

<S2, S4>, <S4, S6>, <S2, S5>}. The weights w[1][2] = 

2, w[2][4] = w[4][6] = w[2][5] = 1. After a period of 

time, the final directional graph will be generated. 

 

 

In this directional graph, the PageRank algorithm 

can be adopted to find the switch with the highest PR 

value. A switch with the highest PR value means that 

some important switches have a higher amount of 

traffic going to this one switch, and this switch is the 

most popular switch. This popular switch is predicted 

to have more and more traffic and soon be 

overwhelmed. Hence, the original weights are adjusted, 

the SPF algorithm is executed again, and new flow 

entries are added to switches. Then the congestion of 

this popular switch will be prevented. 

An example can illustrate how to generate the 

directional graph and how to use the weighted 

PageRank algorithm. Assuming that after a period of 

time, the controller captures traffic, a directional graph 

is generated, as shown in Figure 2. In this graph, for 

example, assume that S1 sends 5 requests to S3 and S3 

sends 8 requests to S1. The weights in the directional 

graph between S1 and S3 are 5 and 8. 

 

Figure 2. Directional graph generated by traffic 

In this example, the ingress traffic can easily be 

counted to find out which one is the highest traffic 

switch. The ingress traffic count is shown in Table 2, 

and S1 is the highest volume traffic switch. 

Table 2. Ingress traffic for each switch 

 Traffic Count 

 S1 17 

S2 15 

S3 14 

S4 14 

S5 15 

S6 15 

 

In this proposed method, the highest traffic switch 

may not be the popular switch. In the weighted 

directional graph, the weighted PageRank algorithm is 

used to obtain the PR values for each switch. In this 

example, there are six switches so that the initial PR 

values for each switch is 1/6, that is, PR(S1) = PR(S2) 

= PR(S3) = PR(S4) = PR(S5) = PR(S6)=1/6. After 

several iterations of the weighted PageRank algorithm, 

the final converged PR values are shown in Table 3. 
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Table 3. Converged PR values  

 PR value 

PR(S1) 0.1697 

PR(S2) 0.1525 

PR(S3) 0.2116 

PR(S4) 0.1659 

PR(S5) 0.1644 

PR(S6) 0.1359 

 

In Table 3, one can see that the switch with the 

highest PR value is S3. But based on Table 2, the 

highest traffic switch is S1, showing that the highest 

traffic switch is not the most popular switch. In the 

example, switch S3 is the most popular switch, which 

will be overwhelmed. In order to prevent congestion in 

S3, the initial weights are adjusted for some links. After 

the SPF algorithm is re-executed, the traffic will be 

prevented going through S3 as much as possible, and 

the traffic can be evenly distributed to all other 

switches. 

3.2 Adjust the Weights 

Using the PageRank algorithm with the amount of 

traffic, one can predict which switch will be congested. 

The goal is to prevent this switch from being congested. 

In the proposed mechanism, SPF algorithm is used to 

find the best path, so one only needs to adjust the 

initial weights and execute the SPF algorithm again to 

obtain a new path, and then add these flow entries to 

the switches. Two methods are proposed to adjust the 

weights. The first is to add a fixed value to the weights; 

the second is to add a value that is dependent on the PR 

value. 

In the first method, based on the previous section, 

the switch with the highest PR value is S3, so the 

weights for all links connected to S3 must be adjusted. 

In this example, 1 is added to each link so that the 

weights for S1 to S3, S4 to S3, and S5 to S3 are changed 

to 2, as shown in Figure 3. 

 

Figure 3. Adjust weights with a fixed value 

In the second method, a specific value is added to 

the weight of each link. The value added is the 

maximum PR values for its adjacent switches, that is, 

max(PR(i), PR(j)), where i, j are the two adjacent 

switches connected by this link. When the weight of 

each link is adjusted, a new weighted graph is 

generated as shown in Figure 4. For example, the 

weight is 1.1659 for the link between S2 and S4, 

because PR(S2) is 0.1525 and PR(S4) is 0.1659, 

max(PR(S2), PR(S4)) is 0.1659, so the weight for S2 and 

S4 is adjusted to 1.1659. 

 

Figure 4. Adjust weight with PR values 

For adoption of both method 1 and method 2, the 

SPF algorithm was executed in this new weighted 

graph. The new path was added to these switches by 

the SDN controller. The pseudo-code for the proposed 

method is shown below. 
 

G is the network topology with node V, edge E, and weighted matrix W 

G' is the directional graph with node V', edge E', and weighted matrix W'  

 

initialize the network topology G(V, E) with weighted matrix W 

while loop  

    find the shortest path for each node in G 

    add flow entries to each node 

    for every generated traffic 

       find the shortest path from source to destination 

       for every node in this path 

          if node is not in V' 

             add this node to V' 

       for every link in this path 

          if link is not in E' 

             add this link to E' and update W' 

          else  

             update W' 

    execute the weighted PageRank algorithm with G' and W' 

    update W for all links connected to the node with maximum PageRank 
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4 Simulation Results 

In the experimental simulation, a scale-free topology 

was used. A scale-free topology is one type of complex 

topology with some specific features. The most 

important feature is that most of the nodes connect to 

little nodes, and little nodes connect to most of the 

nodes. These key nodes are called “hubs”, and the hub 

nodes can support the failure of network nodes. 

Internet topology is a kind of scale-free topology so 

scale-free topology was adopted for simulation 

topology in this study. In this simulation, a scale-free 

topology with 100 nodes was used.  

The purpose of the simulation is to predict which 

switch will be overwhelmed and to prevent congestion. 

If the loads can be evenly distributed to all switches, 

then congestion will not occur. Therefore, the 

percentage of loads and standard deviation for each 

link will be calculated. If the standard deviation is low, 

it means that the loads are distributed evenly to all 

switches.  

Some methods are compared with the proposed 

model. The first just uses the SPF algorithm with 

original weights, denoted as “Dijkstra/A*”. In this 

method, in spite of the loads added in this topology, the 

initial weights still remain the same; that is, this 

method does not consider current loads. The second 

method is choosing the largest amount of traffic as the 

popular switch; that is, this method counts all the 

traffic and finds the switch with the highest traffic, 

denoted as “Highest Traffic”. This method only 

considers the amount of traffic, rather than the 

relationship of traffic loads. The third method is using 

the proposed PageRank algorithm to find the most 

popular switch, denoted as “PageRank_fix”. When the 

most popular switch is identified, the weights have a 

fixed value added for all links connected to this switch. 

The fourth method is also the PageRank algorithm, 

denoted as “PageRank_PR”. But, different from the 

third method, this method adds the PR values to each 

link to adjust the weights. 

When the controller gathers the topology, it uses the 

SPF algorithm to find the shortest path and add flow 

entries to switches. Then traffic is randomly generated 

in this topology. To get the loads and to calculate the 

percentage for each link, multimedia requests are 

added to generate streaming contents in the topology. 

The number of requests was increased from 50 to 500; 

and this traffic was used to find the largest volume of 

traffic and PR values. Then weights were adjusted and 

the standard deviation calculated, as shown in Figure 5. 

It can be seen that “PageRank_fix” and 

“PageRank_PR” can achieve lower standard deviations 

than “Dijkstra/A*” and “Highest Traffic”. Moreover, 

“PageRank_PR” has a lower standard deviation than 

“PageRank_fix” because the weights for all links were 

adjusted to improve the distribution of loads. 

Although standard deviation can prove that the loads 

are evenly distributed, the aim is to know whether the 

response time will be decreased when the proposed 

methods are adopted. Using the same experimental 

environment, the number of requests was increased 

from 50 to 500. When requests increase, the response 

time increases. In Figure 6, it can be seen that 

“PageRank_fix” and “PageRank_PR” can achieve 

better response times than the other two methods. 

 

Figure 5. Comparison of standard deviations 

 

Figure 6. Comparison of response time 

5 Conclusion 

This paper proposed a congestion prediction and 

prevention method using the PageRank algorithm. 

PageRank algorithm can consider both the traffic 

volume and the importance of switches. The simulation 

results illustrate that this proposed method can evenly 

distribute the loads to every switch and reduce 

response time better than other methods. However, in 

order to use the PageRank algorithm, the controller 

must collect all the traffic in the topology, that is, there 

must be a high volume of Packet-in / Packet-out traffic 

from switches to controller. In a heavy loading 

environment, the channels between the controller and 

switches will be the bottleneck. In addition, the 

computing resources of the controller must also be 

considered. In future studies, the researchers will use 

out-of-band channels and multi-controllers to solve 

these issues. 
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