
PAGS: PUF-based Anonymous Group Signature for Node Authentication in Edge Computing 1229

PAGS: PUF-based Anonymous Group Signature for

Node Authentication in Edge Computing

Junqing Lu1, Jian Shen1,2,3, Chin-Feng Lai4, Fei Gao2

1 School of Computer and Software, Nanjing University of Information Science & Technology, China
2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, China
3 Cyberspace Security Research Center, Peng Cheng Laboratory, China

4 Engineering Science, National Cheng Kung University, Taiwan

ljq_nuist@126.com, s_shenjian@126.com, cinfon@ieee.org, gaof@bupt.edu.cn*

*Corresponding Author: Jian Shen; E-mail: s_shenjian@126.com

DOI: 10.53106/160792642021112206003

Abstract

With the development of 5G communication

technology and the Internet of Things (IoT) technology,

edge computing faces big challenges and opportunities.

In an edge computing system, edge servers deployed at

the edge of the network, between the cloud server and

terminal nodes, avoid long-distance data transmission.

Nowadays, the quantity of terminal nodes increases

rapidly due to the wide application of edge computing

technology. Furthermore, the data transmitted by terminal

nodes usually involves people’s private information.

Therefore, a privacy-preserving group authentication

scheme to ensure data security and privacy is urgent to be

designed. And terminal nodes are vulnerable to be

compromised and then brings the leakage of secret keys.

To enhance the security of nodes, we introduce physical

unclonable functions (PUFs) into the group signature

scheme to realize privacy-preserving group authentication

for edge computing systems in this paper. Besides, the

formal security models and security proofs are provided

to prove the security of the proposed scheme. Finally,

experiments are done not only on the raspberry pi 4 but

also on the desktop. The results demonstrate that the

proposed scheme is suitable for terminal nodes.

Keywords: Edge computing, Terminal nodes, Privacy-

preserving, Authentication, Group signature

1 Introduction

Edge computing, the extension of cloud computing,

makes up for some shortcomings of cloud computing.

Cloud computing requires terminal nodes to upload

data to cloud servers. The cloud server can provide

high-performance computing for resource-constrained

devices. However, with the rapid development of 5G

communication technology, big data technology, and

the Internet of Things technology, the era of the

Internet of Everything is coming. The dramatic

increase of network data brings a big challenge to

cloud computing. Besides, most terminal nodes are far

away from the cloud server. Long-distance data

transmission between them brings a lot of usability and

security issues. For example, the communication

between terminal nodes and the cloud server will be

delayed or even interrupted when the network is

congested. This causes the cloud server to fail

to provide real-time services for terminal nodes. In

addition, uploading data to the cloud brings the leakage

of privacy. The concept of edge computing is proposed

[1-2] to deal with the above issues. In edge computing,

edge servers are deployed at the edge of the network.

The distance between nodes and servers is greatly

shortened. Terminal nodes nearby upload data to an

edge server instead of the cloud server to obtain

computing results. Part of work of the cloud server is

shouldered by the edge server. This reduces the burden

of the cloud server, avoids long-distance data

transmission and ensures that terminal nodes can

obtain real-time service. Furthermore, this mechanism

prevents the leakage of user’s privacy information.

Although the emergence of edge computing solves

many problems and makes up several deficiencies,

there are still many issues that remained to be deal with.

The increasing application of edge computing

technology leads to exponential growth in the number

of terminal nodes. It puts forward the demand for

group management of nodes. More than that, terminal

nodes are generally deployed in industries, commerce,

medical, automotive, and so on, involving billions of

people. The security of the edge computing system is

closely related to the security of human life and

property. Therefore, the anonymous group

authentication schemes for edge computing are urgent

to be designed. In recent years, several authentication

schemes for edge computing have been proposed.

However, there are several shortcomings in these

1230 Journal of Internet Technology Volume 22 (2021) No.6

existing schemes. Several schemes require terminal

nodes to register with the remote trusted server.

Several schemes are unable to against key leakage

attacks and so on.

1.1 Motivation

As is stated above, the rapid growth of the number

of terminal nodes puts forward demands for group

authentication schemes. Anonymity needs to be

realized to ensure the privacy-preserving of terminal

nodes. Furthermore, we consider that those terminal

nodes are vulnerable to be corrupted which usually

brings the leakage of secret keys. Thus, we employ

physical unclonable functions (PUFs) to construct a

novel group signature scheme called PAGS to

implement anonymous group authentication for edge

computing.

1.2 Contributions

In this paper, we propose a PUF-based anonymous

group signature (PAGS) scheme. Then, we provide

formal security models and proofs. Besides, the

experiments are performed to demonstrate the

practicability of the PAGS scheme. And the details are

as follows.

‧ A PUF-based group signature scheme called

PAGS is proposed. Terminal nodes are vulnerable

to be attacked because they are usually deployed at

the edge of the network. Those attacks will bring the

leakage of secret keys. Therefore, we introduce

PUFs into the group signature scheme and embed

the PUF instance into the terminal nodes to increase

its ability to resist partial attacks.

‧ The hiding of challenge-response pairs for PUF

instances is implemented. When employing PUF

instances to realize authentication, the server needs

to store many raw challenge-response pairs (CRPs)

of PUF instances during the registration phase. Once

several CRPs leak, the adversary can adopt machine

learning to attack PUF instances. In this scheme, the

zero-knowledge proofs are utilized to hide CRPs.

‧ The formal security proofs and experimental

analysis are provided. We set up the formal

security model for the PAGS scheme, and then we

provide formal security proofs and analysis to prove

that the PAGS scheme satisfies anonymity,

traceability, and non-frameability. Finally, we test

the time cost of the PAGS scheme on a raspberry pi

4 test board and a desktop.

1.3 Related Work

Group signature. The concept of group signature was

originally proposed by Chaum et al. [3] in 1991. Since

the suggestion of group signature, many protocols have

been designed in the static model. The group

membership in those protocols is fixed after the group

registration phase. Then, the concept of partial

dynamic group signature was proposed by Kiayias et al.

[4-5]. It allows users to join the group at any time (i.e.

partial dynamic group membership). Hwang et al. [6]

and Emura et al. [7] proposed fully dynamic group

signature schemes that support users to join or leave at

any time. Besides, various group signature scheme

variants were proposed. Such as ring signature [8],

attribute-based group signature [9], certificateless

group signature [10], linkable group signature [11] and

so on. Dynamic group signature schemes are usually

used to construct cryptography protocols for various

scenarios due to their anonymity, non-frameability,

traceability, etc. Such as VANETs [12], E-cash

schemes [13], cloud auditing protocols [14], etc. At

present, the research of group signature mainly focuses

on implementing member revocation efficiently [15],

adding practical functions [16], constructing lattice-

based schemes [17] and so on.

Authentication in Edge Computing Environment.

Cui et al. [18] designed a message authentication

scheme based on edge computing for VANETs. Jia et

al. [19] proposed an ID-based anonymous mutual

authentication scheme for mobile edge computing.

Wang et al. [20] utilized blockchain to construct a

mutual authentication scheme for smart grid edge

computing infrastructure. Jangirala et al. [21] put

forward an RFID-based authentication scheme for

mobile edge computing. Li et al. [22] constructed a

new authentication architecture for mobile edge

computing and proposed a lightweight authentication

scheme based on this architecture. These schemes [19-

22] are not suitable for the group management of

terminal nodes. Gao et al. [23] suggested an ID-based

short group signature scheme to implement access

authentication. Zhang et al. [24] proposed a group

signature scheme for blockchain-based mobile edge

computing. Although [23-24] realize group

authentication, they are infeasible to ensure security

under key leakage attacks.

1.4 Organization

The organization of this paper is as follows. Section

2 provides preliminaries used throughout the whole

paper. Section 3 provides the system model, security

requirements and the formal security model for

anonymity. Section 4 provides the concrete

construction of the PAGS scheme. Section 5 provides

the formal security proofs and analysis to prove the

security of the scheme. Section 6 provides the

experimental results of the PAGS scheme. Finally, the

conclusion of this paper is shown in Section 7.

2 Preliminaries

In this section, the problems and assumptions used

in this paper are introduced firstly. Then, the concept

of the physically unclonable function and its

PAGS: PUF-based Anonymous Group Signature for Node Authentication in Edge Computing 1231

applications are described. Finally, we give the syntax

of the dynamic group signature scheme to show the

basic idea of the PAGS scheme.

2.1 Problems and Assumptions

2.1.1 The Decision Diffie-Hellman Problem

The decision Diffie-Hellman problem (DDHP) in

1
G can be described as follows. Let

1
g stand for its

generator. Pick random values a , b from *

p
Z . Given

1 1
,

a b
g g

1
∈G and a random value

1
Z∈G , the algorithm

A outputs whether
?

1

ab
Z g= . When the algorithm A

satisfies the following formula, we can say that A has

advantage ε in solving DDHP.

()()

()

1 1 1 1

1 1 1 1 1

,

(,)

, , 1

, , 1

a b

ab a b

Pr A Z g g g

Pr A g g g g

⎡ ⎤→
⎢ ⎥⎣ ⎦ ≥
⎡ ⎤− →
⎣ ⎦

G

G

ε

Definition 1: If there is no probabilistic polynomial

time (PPT) algorithm A solving the DDHP in t time

with non-negligible advantage ε , we can say that the

(,)t ε -DDH assumption holds.

2.1.2 The Computational Diffie-Hellman Problem

The computational Diffie-Hellman problem (CDHP)

in
2

G can be described as follows. Let
2

g stand for

the generator of
2

G . Pick random value ,a b from
*

p
Z . Given

2 2
,

a b
g g

2
∈G , the algorithm A outputs

2

ab
g .

When the algorithm A satisfies the following formula,

we can say that A has advantage ε in solving CDHP.

 ()2 2 2 2 2
, , ,

a b ab
Pr A g g g g⎡ ⎤→ ≥⎣ ⎦G ε

Definition 2: If there is no PPT algorithm A solving

the CDHP in t time with non-negligible advantage ε ,

we can say that the (,)t ε -CDH assumption holds.

2.1.3 The Decision Bilinear Diffie-Hellman

Problem

The decision bilinear Diffie-Hellman problem

(DBDHP) in
1

(G ,
2

G ,)
T

G can be described as

follows. Let
1 2 1 2
, , (,)

T
g g g e g g= stand for the

generators of
1 2
,G G and

T
G respectively. Pick

random values , ,a b c from *

.

p
Z Given

1 1
,

a b
g g

1 2 2
,

c

g∈ ∈G G and a random value ,
T

Z ∈G the

algorithm A outputs whether
1 2

(,=)abcZ e g g
？

. When

the algorithm A satisfies the following formula, we

can say that A has advantage ε in solving DBDHP.

()

()

1 1 2

1 2 1 1 2

(, ,) 1

(,) (, ,) 1

a b c

abc a b c

Pr A Z g g g

Pr A e g g g g g

⎡ ⎤→
⎣ ⎦

≥
⎡ ⎤→
⎣ ⎦

ε

Definition 3: If there is no PPT algorithm A solving

the DBDHP in t time with non-negligible advantage ε ,

we can say that the (,)t ε -DBDH assumption holds.

2.2 Dynamic Group Signature (Basic Idea)

Setup: System parameters are generated by this

algorithm. It inputs the security parameter λ and

outputs system parameters param.

KGen: The group manager (GM) and terminal nodes

can obtain their public-private key pairs via this

algorithm. It inputs system parameters param and

outputs public-private key pairs for different entities.

Join/Issue: A terminal node can become a valid

member of a group via this algorithm. It inputs the

node’s public keys, zero-knowledge proofs, group

manager’s secret keys, several system parameters and

outputs the node’s group certificate.

Revoke: The GM can revoke the terminal node’s right

to generate a valid group signature via this algorithm.

It inputs revocation pattern, the node’s identity that to

be revoked, group manager’s secret keys and outputs

the updated revocation lists: C-RL and G-RL.

Sign: A terminal node can generate a valid group

signature via this algorithm. It inputs the node’s secret

key, the node’s group certificate, several system

parameters and outputs a group signature.

Verify: The public can verify whether a group

signature is valid. In the revocation check phase, the

algorithm inputs group signature, the C-RL list, the G-

RL list and outputs “abort” or “continue”. In the

signature check phase, the algorithm inputs group

signature, group manager’s public keys, several system

parameters and outputs “valid” or “invalid”.

Trace: The GM can obtain the node’s identity via this

algorithm. It inputs a group signature, group manager’s

secret key and outputs the identity of the terminal node,

along with a zero-knowledge proof that proves the

correctness of the Trace algorithm.

Judge: The public can verify whether the result of the

Trace algorithm is right via this algorithm. It inputs

group signature, a zero-knowledge proof, the node’s

public key and outputs “right” or “wrong”.

3 System and Security

In this section, system model and security

requirements including anonymity, traceability and

non-frameability for the proposed PAGS scheme are

provided, along with the corresponding security

models

1232 Journal of Internet Technology Volume 22 (2021) No.6

3.1 System Model

There are three entities in our system, namely

terminal node, group manager (GM) and edge server.

The system model is shown in Figure 1.

Figure 1. System Model

(1) Terminal node: The terminal node, a resource-

constrained device, is deployed outside. And it plays

the role of the signer in our scheme.

(2) GM: The group manager is the authority of a

group that contained a large number of terminal nodes.

A terminal node can register with the GM to become a

valid group member.

(3) Edge server: The edge server, a server that is

deployed at the edge of the network, plays the role of

the verifier in our scheme.

3.2 Security Requirements

The proposed PAGS scheme should satisfy the

following security requirements.

‧ Anonymity: Anonymity represents that it is

infeasible for the PPT adversary A to obtain the

identity of the terminal node just by a group

signature and system parameters, even he conspires

with several group members.

‧ Traceability: Traceability requires that it is

infeasible for the PPT adversary A to generate a

valid group signature *

σ that can be traced to an

invalid node, even he conspires with several group

members. The invalid node means that it has never

joined the group or has been revoked by the group

manager.

‧ Non-frameability: Non-frameability indicates that

it is infeasible for the PPT adversary A , who

conspires with several group members, to generate a

valid group signature *

σ that can be traced to a

valid node, even the group manager has been

corrupted.

3.3 Security Models

In this section, the security model for anonymity is

provided. We mainly follow the security models,

which are designed for a single authority scheme, that

was proposed by Bootle et al. [25]. We have made

adaptive modifications to the original models. The

details are as follows.

‧ Anonymity: Bootle et al. [25] set six oracles for the

anonymity game, namely AddHU, ReadReg, Update,

SendToM, Chalb and Open. We add four oracles,

namely Hash, CorruptNode, LeakInfo. And we

replace the SendToM oracle with a Sign oracle.

Details of all oracles are shown in Figure 2.

Modifications are marked with dashed. The security

experiment for anonymity are defined as follows:

ˆ

Hash,CorruptNode,LeakInfo,

ReadReg,Revoke,AddHN

Sign,Chal ,Ope* n

,Exp () :

() . ()

, , , , , ,

(,) . ()

ˆ {0,1}

ˆ (,)

ˆ ˆ=return

b

Anonymity

PAGS

param PAGS Setup

GR HN CN RN HList CS

gpk gsk PAGS KGen param

b

b gpk param

b

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

←

=∅

←

←

←

，

：

A

A

*b

PAGS: PUF-based Anonymous Group Signature for Node Authentication in Edge Computing 1233

Figure 2. Oracles for Anonymity Games

4 Construction

In this section, we provide the concrete construction

of the proposed PUF-based group signature scheme.

And the PAGS scheme is made up of eight PPT

algorithms.

PAGS.Setup (λ): It chooses two multiplicative cyclic

group with order p and their generators, namely

21
, G G and their generator , ϕ ψ firstly. Then, it sets a

bilinear pairing
1 2

: (,)
T

e →G G G and gets ’
T
sG

generator
T

g = (,)e ϕ ψ . Third, it picks ˆ, , g g w from

1
G . Finally, it sets hash function * *:{0,1}

p
H →Z and

outputs
1 2

ˆ(, , , , , , , , ,)
T

param g g w e Hϕ ψ= G G G .

PAGS.KGen (param): The GM chooses random

values ˆ, ,
t

s s r from *

p
Z as its gsk. Then, it computes

,
t
ssmpk h wψ= = and

ˆ

ˆ
r

R ψ= as its gpk. The key

generation phase for nodes is completed before they

are deployed. The GM sets a fixed value k (2k ≥). For

1 ,i k≤ ≤ the node picks PUF challenges
1 2
,

i i
c c from

*

,
p

Z computes
1i
r =

1
()

i
PUF c and

2 2
()

i i
r PUF c= as

PUF responses, and sets secret key
1 2

(||),
i i i
x H r r=

public key
1 2

: (,).i i

i

x x

ID i i
pk npk npkϕ ψ= = Then, it

picks random value
i
v from *

,
p

Z computes comment

(,),i i
v v

i
C ϕ ψ= challenge

1 2
(|| || || ||),

i
i ID i i i
F H ID pk C c c=

response ,
i i i i

R v F x= − ⋅ sets (, ,)
i i i i
P C F R= and

sends ID, ,

i
ID

pk ,
i
P

1
,

i
c

2i
c to the GM. The GM

checks if
?

1 2
(|| || || ||),

i
i ID i i i

F H ID pk C c c= computes

*

1 2
(,),i i i i

R F R F

i i i
C npk npkϕ ψ=

* *

1 2
(| || || ||)

i
i ID i i i
F H ID pk C c c=

and checks whether
?

*
.

i i
F F= If yes, it stores NPK[ID,

i]=(
1
,

i
c

2
,

i
c).

i
ID

pk Otherwise, it aborts.

PAGS.Join/Issue (gpk, gsk, ID,
ID

pk , P,
1
,c

2
,c

param): The node sends its ID to the GM. The GM

randomly chooses
1
c and

2
c from NPK[ID,*] and

sends them to the node. The node computes

1 1
(),r PUF c=

2 2
()r PUF c= and

1 2
(||)x H r r= . Then,

it picks random value v from *

p
Z , computes comment

=(,)v v

C ϕ ψ , challenge F =
1 2

(|| || || ||),
ID

H ID pk C c c

response ,R v F x= − ⋅ sets (, ,)P C F R= and sends

ID, ,
ID

pk ,P
1
,c

2
c to the GM. The GM checks

whether
?

1 2
(|| || || ||)

ID
F H ID pk C c c= and whether (

1
,c

2
,c)

ID
pk is in NPK[ID,*]. Then, it computes *

C =

1 2
(,),R F R Fnpk npkϕ ψ * *

1 2
(|| || || ||)

ID
F H ID pk C c c= and

checks whether
?

*
.F F= Until now, the identification

of the node has been completed. The GM picks random

values ,
ID ID
z y from *

p
Z and computes

ID
cert =

1 ()ˆ()ID ID
z y sx

gg ϕ
+

. It computes the session key
2

xK npk= ,

encrypts , ,
ID ID ID
z y cert by K to obtain ciphertext

ID
CT and sends it to the node. Finally, it stores

1 2
[] (, ,).

ID
GR ID npk npk CT= The node computes

1
r =

1
()PUF c ,

2 2
()r PUF c= and

1 2
(||)x H r r= , computes

session key xK mpk= and use it to decrypt ciphertext

ID
CT to obtain , , .

ID ID ID
z y cert Then, it checks whether

?

ˆ(,) (,).ID ID
y z x

ID
e cert mpk e ggψ ϕ ψ= If the equation is

true, the node stores
ID

CT locally. Note that, only PUF

1234 Journal of Internet Technology Volume 22 (2021) No.6

challenge
21

, c c and ciphertext
ID

CT are stored on the

node after the algorithm.

PAGS.Revoke (ID, style, gsk, GR, param): The PAGS

scheme adopts flexible revocation patterns according

to different scenarios.

‧ Group Certificate Revocation: When the node’s

group certificate leaks, this method is employed to

temporarily revoke the node. Until the GM issues a

new group certificate for the node, it can sign again.

For each node
ID

N that to be revoked, the GM adds

its group certificate
ID

cert into the list C-RL.

‧ Public Key Revocation: For each node
ID

N that to

be revoked, the GM finds its public key
2
,npk

computes
ˆ

2

ˆ
r

ID
D npk= and stores in the list G-RL.

PAGS.Sign
21

, , ,) :(gpk paramc c First, the node computes

1 1
(),r PUF c=

2
r =

2
()PUF c and

1 2
(||).x H r r= It

computes xK mpk= and decrypts
ID

CT to obtain

, ,
ID ID ID
z y cert . Second, the node picks random values

d , u from *

,
p

Z computes
1

,

d
wΘ =

2
,

d
ψΘ =

3
Θ =

d

ID
h cert ,

4
Θ =

1

ˆ(, ,)ue npk R
5

u
ϕΘ = and sets dyβ = ,

xuγ = . Third, it picks random values
x

η ,
z

η ,
y

η ,
d

η ,

,
u

η ,βη
γ

η from *

.

p
Z Then, it computes

1
,

dA w
η

=

2
,

dA
η

ψ=
3

ˆ(,) (,) (,) (,)d xzA e h mpk e g e e h βηη ηη
ψ ϕ ψ ψ=

3
() ,, y

e
η

ψ
−

Θ
4

ˆ(,) ,A e R
γ

η

ϕ=
5

.

uA
η

ϕ= Finally, it

computes c =
1 5 1 5

(|| ||),H A A MΘ Θ� � computes

,
x x

cxθ η= + ,
z z

czθ η= + ,
y y

cyθ η= + ,
d d

cdθ η= +

,
u u

cuθ η= + ,cβ βθ η β= + c
γ γ

θ η γ= + and outputs

1 5
(, ,cσ = Θ Θ� ,)

x
M

γ
θ θ� as a group signature.

PAGS.Verify (gpk, param, σ):

‧ Revocation Check: For each element in C-RL list,

the verifier checks whether
?

3 2
(,) (,).e cert e hψΘ = Θ

If the above equation stands, the verifier outputs

“revoked” and aborts. For each element in G-RL list,

the verifier checks whether
4 5

ˆ(,=).
ID

e DΘ Θ

？

 If it

stands, the verifier outputs “revoked” and aborts.

‧ Signature Check: The verifier computes
1

ˆA =

1
,

d c

w
θ −

Θ
2 2

ˆ ,d c

A
θ

ψ
−

= Θ
3

ˆ (,) dA e h mpk
θ

= ˆ(,) ze g
θ

ψ

3 3
(,) (,) (,) (,)yx

ce e h e e mpkβ θθθ
ϕ ψ ψ ψ

−

−

Θ Θ () ,, c

e g ψ

4 4

ˆ ˆ() ,, c

A e R
γ

θ

ϕ
−

= Θ
5 5

ˆ u
c

A
θ

ϕ
−

= Θ and
1

ˆ (c H= Θ �

5 1 5

ˆ ˆ|| ||)A A MΘ � . Then it checks whether ĉ c= . If

the above equation stands, the verifier outputs

“valid”. Otherwise, it outputs “invalid”.

PAGS.Trace (gpk, gsk, param, σ): First, the GM

checks whether the group signature σ is valid. If the

above equation does not hold, then it aborts. Otherwise,

it computes
* 3 1

t
s

ID
cert = Θ Θ and obtains the signer’s

public key by searching the GR list (criteria:
*

ID
cert =

[].).
ID

GR ID cert Second, the GM generates a zero-

knowledge proof π as follows to prove that the result

of the PAGS.Trace algorithm is right: It picks a

random value ˆd from *

p
Z and sets

ID
T cert
π
= ⋅

ˆ ()
ID

d s y
g

+ . It needs to generate a zero-knowledge proof

π to prove that
* *

ˆ(1) ˆ(,)= (,)ID ID
y zd xe T mpk e g g

π
ψ ϕ ψ

+

holds. It picks random values
ˆd
j ,

z
j , yj from *

p
Z and

computes ˆ ˆ(,) (,) ,) (, yd z
j jj

A e g e g e T
π π

ψ ψ ψ
−

= c
π
=

(||),H T A
π π

ˆ ˆ

ˆ,
d d

J j c d
π

= + × ,
z z

J j c z
π

= + ×
y

J =

y
j c y

π
+ × . It outputs

ˆ

(, , , ,).z yd
c T J J J
π π

π = Finally,

it outputs
ID

N ’s public key
1

npk and proof π .

PAGS.Judge (gpk,
1
,npk param, ,σ) :π First, the

verifier checks whether the group signature σ is valid.

Then, it judges whether the GM has tracked to the

correct signer by verifying whether the zero-

knowledge proof π is valid. It computes ˆA
π
=

ˆ ˆ(,) (,) (,) yd z
J JJ

e g e g e T
π

ψ ψ ψ
−

⋅

1
(,) (,)

c c

e T mpk e npkπ π

π
ψ

−

(,)
c

e g πψ and ˆˆ (||)c H T A
π π π
= . If ˆ = ,c c

π π

？

 it outputs

“right”. Otherwise, it outputs “wrong”.

5 Security Proof and Analysis

In this section, the formal security proofs for

anonymity and the security analysis for traceability and

non-frameability are provided to prove the anonymity,

traceability and non-frameability of the PAGS scheme.

5.1 Formal Security Proof

Theorem 1: When the DDH, CDH and DBDH

assumption hold, the PAGS scheme satisfies

anonymity.

Lemma 1: If there is a PPT adversary A that can

break the anonymity of the PAGS scheme with the

advantage ε , then we can construct an algorithm
DDH

B

that can solve the DDH problem with advantage

2(2)
N s h s

q q q p n q− −ε , or an algorithm
CDH

B that

can solve the CDH problem with advantage 2ε , or an

algorithm
DBDH

B that can solve the DBDH problem

with advantage 2(2 (1))
N s h

q q q p+ −ε .

Proof: The group signature in our PAGS scheme is

made up of
1 2 3 4 5

, , , , , , , ,, , ,x z y d uc θ θ θ θ θΘ Θ Θ Θ Θ

, .β γθ θ First, the hash value c is random and A can’t

obtain any information about the signer’s identity.

Second, , , , , , ,x z y d u β γθ θ θ θ θ θ θ are calculated from

random values and A can’t obtain the signer’s identity

too. Therefore, we only need to consider whether

1 2 3 4 5
, , , ,Θ Θ Θ Θ Θ will reveal the identity of the signer.

PAGS: PUF-based Anonymous Group Signature for Node Authentication in Edge Computing 1235

We consider three kinds of adversaries. Details are as

follows.

Type I adversary
1

A : The target of
1

A is (
1 3
,Θ Θ).

The proofs will be reduced to the DDH assumption.

We construct an algorithm
DDH

B to solve the DDH

problem. The input of B is ,), ,(a b
w w w Z where

*

,
p

a b∈Z and Z is
1

(1)ab
w p = or a random value

from
1 1
(0)p =G .

KGen: B picks ,s� r� from *

,
p

Z sets ,
t
s a= gsk =

(, ,)s r a� � and (, ,).s argpk wψ ψ=

��

 B guesses ’sA

target *

ID .

Query Phase:
DDH

B is able to respond
1
’sA queries

except Open oracle because he has group secret keys

(,)s r� � , but not
t
s .

‧ Sign query phase: if *

,ID ID≠
DDH

B responds as

usual. Otherwise,
DDH

B sets ,d b=
1

,

b
wΘ =

3
Θ =

*

ID
Z cert⋅ and picks

$

2 2
,Θ ←G

$

4
,

T
Θ ←G

$

5 1
Θ ←G .

Then,
DDH

B employs the simulation of signature

proof of knowledge to generate *

.σ When the

simulation fails (hash function collision happens),

DDH
B aborts. Besides,

DDH
B records the number of

the Sign queries for *

ID and denotes it by n .

‧ Open query phase:
DDH

B can’t respond Open

queries as usual because he doesn’t have
t
s .

DDH
B

can respond
1
’sA Open queries as follows: When

1
A makes an Open query,

DDH
B obtains all nodes’

ID
cert from GR list and checks whether

3
(,

ID
e certΘ

?

2
) (,).e hψ = Θ Once the above equation holds, B

outputs ID as the response. It is worth noting that,

if the adversary
1

A make Open queries on the

signature that is signed by
*
,

ID
N

DDH
B aborts

because he can’t response.

Challenge Phase: The adversary
1

A inputs ,M
0
,ID

1
ID . B picks ˆ {0,1}b∈ . If *

,
b

ID ID≠
DDH

B aborts.

Otherwise, it generates
b

σ by following the steps in

the Sign query phase.

Test:
1

A outputs its guess *
ˆb . If *ˆ ˆb b= ,

DDH
B outputs

*

1
(.1)ab

Z w p= = Otherwise, it outputs
$

*

1 1
)0(.Z p← =G

Now, we consider the advantage of
DDH

B (i.e.
*

1 1
[] 1 2).Pr p p= − We assume that []

ab
Pr Z w= =

$

1
[] 1 2.Pr Z← =G E stands for the event that

DDH
B

aborts. If the game aborts,
DDH

B will not be able to

answer based on the adversary A’s answer. Thus, we

can obtain that *

1 1
[|] 1 2Pr p p E= = . When the game

doesn’t abort and Z is an random value (i.e.
1

0)p = ,

the challenged signature has nothing to do with node

b
ID , so the probability of the adversary

1
A correctly

guessing ˆb is 1 2 (i.e. *

1 1
[0 | 0] 1 2)Pr p E p= ¬ ∧ = = .

When the game doesn’t abort and ab
Z w= (i.e.

1
1)p = ,

the algorithm
DDH

B executes the experiment perfectly

and the probability of the adversary
1

A correctly

guessing ˆb is 1 2 + ε (i.e. *

1 1
[1| 1]Pr p E p= ¬ ∧ = =

1 2 + ε).

*

1 1

* *

1 1 1 1

1
[]

2

1
 [|] [] [|] []

2

1 1 1 1 1 1 1
 [] [](())

2 2 2 2 2 2 2

 []
2

Adv Pr p p

Pr p p E Pr E Pr p p E Pr E

Pr E Pr E

Pr E

= = −

= = + = ¬ ¬ −

= − ¬ + ¬ × + + × −

= ¬

ε

ε

Then, we talk about the probability of the event E¬

happening. The event E¬ will occur only if all of the

following conditions hold.

(1)
1

A chooses the node
*

ID
N as its target. The

probability is 2
N

q where
N

q is the number of

AddHN queries (i.e. the number of honest nodes).

(2) No termination occurs during the simulation of

signature proof of knowledge. The simulation fails

when a hash collision occurs. The probability of

termination is
s h

q q p where
s

q is the number of the

Sign queries and
h
q is the number of the Hash queries.

(3) No termination occurs in Open queries. The

probability of termination is
s

n q .

Therefore, we can obtain that [] 2
N

Pr E q¬ = −

s h
q q p −

s
n q and 2(2)

DDH
N s h s

Adv q q q p n q= − −
B

ε .

Type II adversary
2

A : The target of
2

A is
2 3

(), .Θ Θ

The proofs will be reduced to the CDH assumption.

2
A can break the anonymity of the PAGS scheme by

executing following steps:

(1)
2

A chooses
0

ID
N and

1
ID

N as his targets.

(2)
2

A tries to obtain
0

’
ID

N s
0

ID
cert or

1
ID
’N s

1
ID

cert .

(3) For the
b

σ that was output by
CDH

B ,
2

A checks

whether
?

3 2
(,) (,)e cert e hψΘ = Θ to output ˆb .

2
A can obtain

i

’
ID

cert s ciphertext ({0,1})i∈ via

LeakInfo queries and ReadReg queries.
2

A can obtain

i
ID

cert from ciphertexts only if he breaks PUFs to

obtain ’

i
ID

N s secret keys or solves CDH problem (i.e.

computes xs

ψ according to s

ψ and x

ψ). Therefore,

we can get that ε =
2

2
CDH

PUFs
Adv Adv+ ×

A B
 and

CDH

Adv
B

= 2ε because
2

PUFs
Adv

A
 is negligible.

1236 Journal of Internet Technology Volume 22 (2021) No.6

Type III adversary
3

A : The target of
3

A is (
4 5
,Θ Θ).

The proofs will be reduced to the DBDH assumption.

First, we construct an algorithm
DBDH

B to solve the

DBDH problem. The input of
DBDH

B is (,ϕ ,ψ ,

a

ϕ b
ϕ ,

,

c

ψ Z) where *{ , , } ,
p

a b c ∈Z { , }a b
ϕ ϕ

1
,∈G

2

c

ψ ∈G

and Z is (,)abce ϕ ψ
1

(1)p = or a random value from

T
G (

1
0p =).

KGen: B picks ,s�
t
s� from *

,
p

Z sets ˆ ,r c= gsk =

(, ,)
t

s s c� � and (, ,).t
ss cgpk wψ ψ=

��

 B guesses ’sA

target *

ID .

Query Phase:
DDH

B is able to respond
1
’sA queries

except Revoke queries because he has group secret

keys (,)
t

s s� � , but not r̂ .

‧ AddHN query phase:
DBDH

B can’t response Revoke

queries, because he doesn’t possess secret key r̂ (i.e.

c). Thus, an additional value
ˆ

()r x

ψ for each node

needs to be generated in AddHN queries. Besides,

DBDH
B inserts a node *

ID into the HN list and sets

its secret key x a= , public key a

ϕ .

‧ Sign query phase: If *

,ID ID≠
DBDH

B responds as

usual. Otherwise,
DBDH

B sets ,u b=
4

,ZΘ =

5

b
ϕΘ = and picks

$

1 1
,Θ ←G

$

2 2
,Θ ←G

$

3 1
.Θ ←G

Then,
DBDH

B employs the simulation to generate *

σ .

When the simulation fails (hash function collision

happens),
DBDH

B aborts.

‧ Revoke query phase:
DBDH

B can response
3
’sA

queries, because all node’s
ˆ

()r x

ψ are generated in

AddHN queries and he can obtain all node’s cert.

Challenge Phase: The adversary
3

A inputs ,M
0
,ID

1
ID . B picks ˆ {0,1}.b∈ If *

,
b

ID ID≠
DBDH

B aborts.

Otherwise, it generates
b

σ by following the steps in

the Sign query phase.

Test:
3

A outputs its guess *ˆ .b If *ˆ ,ˆb b=
DBDH

B

outputs (,)abcZ e ϕ ψ=

*

1
(1)p = . Otherwise, it outputs

$

T
Z←G

*

1
(0)p = .

Now, we consider the advantage of
DBDH

B (i.e.
*

1 1
[] 1 2Pr p p= −). We assume that [(,)]abc

Pr Z e ϕ ψ=
$

[] 1 2.
T

Pr Z= ← =G E stands for the event that
DBDH

B

aborts. It is easy to conclude that
DBDH

Adv =
B

[] 2Pr E¬ ×ε . The derivation is the same as above.

Then, we talk about the probability of the event E¬

happening. The event E¬ will occur only if all of the

following conditions hold.

(1)
3

A chooses the node
*

ID
N as its target. The

probability is 2 (1)
N

q + where
N

q is the number of

AddHN queries.

(2) No termination occurs during the simulation of

signature proof of knowledge. The simulation fails

when a hash collision occurs. The probability of

termination is
s h

q q p where
s

q is the number of the

Sign queries and
h
q is the number of the Hash queries.

Therefore, [] 2 (1)
N s h

Pr E q q q p¬ = + − and
DBDH

Adv =
B

2(2 (1))
N s h

q q q p+ −ε .

5.2 Security Analysis

Traceability: The adversary ’sA attack on the

traceability of the PAGS scheme is essentially the

forgery of the group certificate. If A can forge a group

membership certificate for an invalid node, then A

can control the invalid node to generate a valid group

signature which can be traced to an invalid node. In the

PAGS scheme, the GM generates a BBS+ signature as

the node’s certificate. And BBS+ signature is

unforgeable if the q-SDH assumption holds [26].

Non-frameability: Only the adversary A generates a

valid signature proof of knowledge without a valid

node’s private keys, can he break the non-frameability

of the PAGS scheme. And the signature proof of

knowledge is unforgeable in the random oracle [27].

Therefore, if A can break the non-frameability of the

PAGS scheme, then he can break the signature proof of

knowledge.

6 Performance

In this section, we perform experiments of the

PAGS scheme with the PBC library on the type d159

curve. The experiments are done on two platforms,

namely a raspberry pi 4 and a desktop. According to

the practical scenarios and system model, we test the

running time of terminal nodes on the raspberry pi 4

and test the running time of verifiers on the desktop.

Hardware environment:

‧ Raspberry Pi 4 Model B with 2G RAM and 32G

storage.

‧ A desktop with Intel(R) Core(TM) i5-9500 CPU @

3.00GHz, 6G RAM and 20G storage. It’s worth

noting that we perform experiments on a virtual

machine. So only four of the CPU’s six cores are

used.

Software environment: Ubuntu 18.04.1 with gcc 7.5.0,

gmp 6.2.0 and pbc 0.5.14.

We test the benchmark of each operation on two

platforms. And the symbols used in this section are

described as follows:
i

E stands for the exponential

operation on group
i

G , Pair stands for the bilinear

pairing operation, Hash stands for the hash function

operation, Enc stands for the symmetric encryption

operation and Dec stands for the symmetric decryption

operation. Note that, we ignore the time cost of PUFs,

PAGS: PUF-based Anonymous Group Signature for Node Authentication in Edge Computing 1237

hash function, symmetric encryption and decryption

because they are very small. In our experiment, the

time cost of GM and terminal nodes are tested on the

raspberry pi 4, the time cost of the verifier is tested on

the desktop. The amount of each operation in each

phase is given in Table 1. The experiment results are

shown in Table 2. These results demonstrate that the

proposed PAGS scheme is suitable for terminal nodes.

Table 1. The amount of each operation in each phase

Operation
Algorithm

Group Manager Terminal Node

Join 2
1

E +2
2

E +2Hash
1

E +
2

E +2Hash

Issue 3
1

E +
2

E +Enc
2

2
E +2

T
E +Hash+

Pair + Dec

Revoke
2

R E× N/A

Sign N/A
4

1
E +3

2
E +7

T
E +

Pair + Hash

Trace
2

1
E +3

T
E +Pair +

Hash
N/A

 Verifier

Verify 4
1

E +2
2

E +7
T

E +(2+2
C
n +

G
n)Pair + Hash

Judge 6
T

E + 3Pair + Hash

Note. R is the number of terminal nodes that is about to be

revoked via public key revocation.
C
n (

G
n) is the length of

list C-RL(G-RL).

Table 2. Experiment Results on Raspberry Pi 4 and

Desktop

Time Cost (ms)
Algorithm Group Manager

(Raspberry Pi 4)

Terminal Node

(Raspberry Pi 4)

Join 22.41 11.20

Issue 13.54 33.31

Revoke 10.03 R N/A

Sign N/A 60.57

Trace 18.10 N/A

 Verifier

Verify 15.35+3.20
revoke
n

Judge 10.18

Note.
revoke
n is the number of the revoked terminal nodes. In

this experiment, we set
2

revoke

C G

n

n n= = .

7 Conclusion

In this paper, we design a PUF-based anonymous

group signature (PAGS) for edge computing. Then, we

provide the formal security model and proofs to prove

that the PAGS scheme satisfies anonymity.

Furthermore, the security analysis is given to discuss

the traceability and non-frameability of the PAGS

scheme. Finally, the experiments are performed on a

Raspberry Pi 4 and a desktop. The results demonstrate

that the PAGS scheme can be used in resource-

constrained devices.

Acknowledgments

This work is supported by the National Natural

Science Foundation of China under Grants No.

U1836115, No. 61672295, No. 61922045, No.

61672290, No. 61877034, the Natural Science

Foundation of Jiangsu Province under Grant No.

BK20181408, the State key Laboratory of Networking

and Switching Technology, Beijing University of Posts

and Telecommunications under Grant SKLNST-2019-

2-02, the Peng Cheng Laboratory Project of

Guangdong Province PCL2018KP004, the CICAEET

fund, and the PAPD fund.

References

[1] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing

and Its Role in the Internet of Things, Proceedings of the

First Edition of the MCC Workshop on Mobile Cloud

Computing, Helsinki, Finland, 2012, pp. 13-16.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge Computing:

Vision and Challenges, IEEE Internet of Things Journal, Vol.

3, No. 5, pp. 637-646, October, 2016.

[3] D. Chaum, E. Van Heyst, Group Signatures, Workshop on the

Theory and Application of Cryptographic Techniques,

Brighton, United Kingdom, 1991, pp. 257-265.

[4] A. Kiayias, M. Yung, Group Signatures with Efficient

Concurrent Join, Annual International Conference on the

Theory and Applications of Cryptographic Techniques,

Aarhus, Denmark, 2005, pp. 198-214.

[5] A. Kiayias, M. Yung, Secure Scalable Group Signature with

Dynamic Joins and Separable Authorities, International

Journal of Security and Networks, Vol. 1, No. 1-2, pp. 24-45,

September, 2016.

[6] J. Y. Hwang, L. Chen, H. S. Cho, D. Nyang, Short Dynamic

Group Signature Scheme Supporting Controllable Linkability,

IEEE Transactions on Information Forensics and Security,

Vol. 10, No. 6, pp. 1109-1124, June, 2015.

[7] K. Emura, T. Hayashi, A Light-weight Group Signature

Scheme with Time-token Dependent Linking, Lightweight

Cryptography for Security and Privacy, Bochum, Germany,

2015, pp. 37-57.

[8] F. Zhang, K. Kim, ID-based Blind Signature and Ring

Signature from Pairings, International Conference on the

Theory and Application of Cryptology and Information

Security, Queenstown, New Zealand, 2002, pp. 533-547.

[9] D. Khader, Attribute based Group Signatures, IACR

Cryptology ePrint Archive, Vol. 2007, pp. 159, 2007.

[10] C. Ma, J. Ao, Certificateless Group Oriented Signature

Secure Against Key Replacement Attack, International

Journal of Network Security, Vol. 12, No. 1, pp. 1-6, January,

2011.

[11] J. Y. Hwang, S. Lee, B. H. Chung, H. S. Cho, D. Nyang,

1238 Journal of Internet Technology Volume 22 (2021) No.6

Short Group Signatures with Controllable Linkability, 2011

Workshop on Lightweight Security & Privacy: Devices,

Protocols, and Applications, Istanbul, Turkey, 2011, pp. 44-

52.

[12] Y. Hao, Y. Cheng, K. Ren, Distributed Key Management

with Protection against RSU Compromise in Group Signature

based VANETs, IEEE GLOBECOM 2008-2008 IEEE Global

Telecommunications Conference, New Orleans, LA, USA,

2008, pp. 1-5.

[13] H. Feng, J. Liu, Q. Wu, T. Xu, Two-Layer Group Signature

and Application to E-Cash, 2019 IEEE Intl Conf on

Dependable, Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on Cloud

and Big Data Computing, Intl Conf on Cyber Science and

Technology Congress (DASC/PiCom/CBDCom/CyberSci

Tech), Fukuoka, Japan, 2019, pp. 193-200.

[14] H. Tian, F. Nan, H. Jiang, C. C. Chang, J. Ning, Y. Huang,

Public Auditing for Shared Cloud Data with Efficient and

Secure Group Management, Information Sciences, Vol. 472,

pp. 107-125, January, 2019.

[15] V. Kumar, H. Li, J. M. Park, K. Bian, Y. Yang, Group

Signatures with Probabilistic Revocation: A Computationally-

scalable Approach for Providing Privacy-preserving

Authentication, Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security,

Denver, Colorado, USA, 2015, pp. 1334-1345.

[16] M. Backes, L. Hanzlik, J. Schneider-Bensch, Membership

Privacy for Fully Dynamic Group Signatures, Proceedings of

the 2019 ACM SIGSAC Conference on Computer and

Communications Security, London, United Kingdom, 2019,

pp. 2181-2198.

[17] S. Canard, A. Georgescu, G. Kaim, A. Roux-Langlois, J.

Traoré, Constant-Size Lattice-Based Group Signature with

Forward Security in the Standard Model, International

Conference on Provable Security, Singapore, 2020, pp. 24-44.

[18] J. Cui, L. Wei, J. Zhang, Y. Xu, H. Zhong, An Efficient

Message-authentication Scheme based on Edge Computing

for Vehicular Ad Hoc Networks, IEEE Transactions on

Intelligent Transportation Systems, Vol. 20, No. 5, pp. 1621-

1632, May, 2019.

[19] X. Jia, D. He, N. Kumar, K. K. R. Choo, A Provably Secure

and Efficient Identity-based Anonymous Authentication

Scheme for Mobile Edge Computing, IEEE Systems Journal,

Vol. 14, No. 1, pp. 560-571, March, 2020.

[20] J. Wang, L. Wu, K. K. R. Choo, D. He, Blockchain-based

Anonymous Authentication with Key Management for Smart

Grid Edge Computing Infrastructure, IEEE Transactions on

Industrial Informatics, Vol. 16, No. 3, pp. 1984-1992, March,

2020.

[21] S. Jangirala, A. K. Das, A. V. Vasilakos, Designing Secure

Lightweight Blockchain-enabled RFID-based Authentication

Protocol for Supply Chains in 5G Mobile Edge Computing

Environment, IEEE Transactions on Industrial Informatics,

Vol. 16, No. 11, pp. 7081-7093, November, 2020.

[22] Y. Li, Q. Cheng, X. Liu, X. Li, A Secure Anonymous

Identity-Based Scheme in New Authentication Architecture

for Mobile Edge Computing, IEEE Systems Journal, Vol. 15,

No. 1, pp. 935-946, March, 2021.

[23] T. Gao, Y. Li, N. Guo, I. You, An Anonymous Access

Authentication Scheme for Vehicular Ad Hoc Networks

under Edge Computing, International Journal of Distributed

Sensor Networks, Vol. 14, No. 2, pp. 1-15, February, 2018.

[24] S. Zhang, J. H. Lee, A Group Signature and Authentication

Scheme for Blockchain-Based Mobile-Edge Computing,

IEEE Internet of Things Journal, Vol. 7, No. 5, pp. 4557-

4565, May, 2020.

[25] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth,

Foundations of Fully Dynamic Group Signatures,

International Conference on Applied Cryptography and

Network Security, London, United Kingdom, 2016, pp. 117-

136.

[26] M. H. Au, W. Susilo, Y. Mu, Constant-size Dynamic k-TAA,

International Conference on Security and Cryptography for

Networks, Maiori, Italy, 2006, pp. 111-125.

[27] M. H. Au, W. Susilo, Y. Mu, and S. S. Chow, Constant-size

Dynamic K-times Anonymous Authentication, IEEE Systems

Journal, Vol. 7, No. 2, pp. 249-261, June, 2013.

Biographies

Junqing Lu received the B.E. degree

in software engineer from Nanjing

University of Information Technology,

China, in 2019. Since 2019, he has

been studying for the M.E. degree at

Nanjing University of Information

Technology. His research interests

include group signature, authentication, and

authenticated key exchange.

Jian Shen received the M.E. and

Ph.D. degrees in computer science

from Chosun University, South Korea,

in 2009 and 2012, respectively. Since

2012, he has been a Professor in the

School of Computer and Software at

Nanjing University of Information

Science and Technology, Nanjing, China. His research

interests include public cryptography, cloud computing

and security, data auditing and sharing, and

information security systems.

Chin-Feng Lai received the Ph.D.

degree in engineering science from

National Cheng Kung University,

Tainan,Taiwan, in 2008. Since 2016,

he has been an Associate Professor of

Engineering Science, National Cheng

Kung University, Tainan. His research

focuses on Internet of Things, body

sensor networks, e-healthcare, mobile cloud computing,

etc.

PAGS: PUF-based Anonymous Group Signature for Node Authentication in Edge Computing 1239

Fei Gao received Ph.D. degree in

cryptography from Beijing University

of Posts and Telecommunications

(BUPT) in 2007. Now, he is a

professor in Institute of Network

Technology, BUPT. His research

interests include cryptography,

information security, and quantum algorithm. Prof.

Gao is a member of the Chinese Association for

Cryptologic Research.

1240 Journal of Internet Technology Volume 22 (2021) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

