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Abstract 

With the development of 5G communication 

technology and the Internet of Things (IoT) technology, 

edge computing faces big challenges and opportunities. 

In an edge computing system, edge servers deployed at 

the edge of the network, between the cloud server and 

terminal nodes, avoid long-distance data transmission. 

Nowadays, the quantity of terminal nodes increases 

rapidly due to the wide application of edge computing 

technology. Furthermore, the data transmitted by terminal 

nodes usually involves people’s private information. 

Therefore, a privacy-preserving group authentication 

scheme to ensure data security and privacy is urgent to be 

designed. And terminal nodes are vulnerable to be 

compromised and then brings the leakage of secret keys. 

To enhance the security of nodes, we introduce physical 

unclonable functions (PUFs) into the group signature 

scheme to realize privacy-preserving group authentication 

for edge computing systems in this paper. Besides, the 

formal security models and security proofs are provided 

to prove the security of the proposed scheme. Finally, 

experiments are done not only on the raspberry pi 4 but 

also on the desktop. The results demonstrate that the 

proposed scheme is suitable for terminal nodes. 

Keywords: Edge computing, Terminal nodes, Privacy-

preserving, Authentication, Group signature 

1 Introduction 

Edge computing, the extension of cloud computing, 

makes up for some shortcomings of cloud computing. 

Cloud computing requires terminal nodes to upload 

data to cloud servers. The cloud server can provide 

high-performance computing for resource-constrained 

devices. However, with the rapid development of 5G 

communication technology, big data technology, and 

the Internet of Things technology, the era of the 

Internet of Everything is coming. The dramatic 

increase of network data brings a big challenge to 

cloud computing. Besides, most terminal nodes are far 

away from the cloud server. Long-distance data 

transmission between them brings a lot of usability and 

security issues. For example, the communication 

between terminal nodes and the cloud server will be 

delayed or even interrupted when the network is 

congested. This causes the cloud server to fail  

to provide real-time services for terminal nodes. In 

addition, uploading data to the cloud brings the leakage 

of privacy. The concept of edge computing is proposed 

[1-2] to deal with the above issues. In edge computing, 

edge servers are deployed at the edge of the network. 

The distance between nodes and servers is greatly 

shortened. Terminal nodes nearby upload data to an 

edge server instead of the cloud server to obtain 

computing results. Part of work of the cloud server is 

shouldered by the edge server. This reduces the burden 

of the cloud server, avoids long-distance data 

transmission and ensures that terminal nodes can 

obtain real-time service. Furthermore, this mechanism 

prevents the leakage of user’s privacy information. 

Although the emergence of edge computing solves 

many problems and makes up several deficiencies, 

there are still many issues that remained to be deal with. 

The increasing application of edge computing 

technology leads to exponential growth in the number 

of terminal nodes. It puts forward the demand for 

group management of nodes. More than that, terminal 

nodes are generally deployed in industries, commerce, 

medical, automotive, and so on, involving billions of 

people. The security of the edge computing system is 

closely related to the security of human life and 

property. Therefore, the anonymous group 

authentication schemes for edge computing are urgent 

to be designed. In recent years, several authentication 

schemes for edge computing have been proposed. 

However, there are several shortcomings in these 
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existing schemes. Several schemes require terminal 

nodes to register with the remote trusted server. 

Several schemes are unable to against key leakage 

attacks and so on. 

1.1 Motivation 

As is stated above, the rapid growth of the number 

of terminal nodes puts forward demands for group 

authentication schemes. Anonymity needs to be 

realized to ensure the privacy-preserving of terminal 

nodes. Furthermore, we consider that those terminal 

nodes are vulnerable to be corrupted which usually 

brings the leakage of secret keys. Thus, we employ 

physical unclonable functions (PUFs) to construct a 

novel group signature scheme called PAGS to 

implement anonymous group authentication for edge 

computing. 

1.2 Contributions 

In this paper, we propose a PUF-based anonymous 

group signature (PAGS) scheme. Then, we provide 

formal security models and proofs. Besides, the 

experiments are performed to demonstrate the 

practicability of the PAGS scheme. And the details are 

as follows. 

‧ A PUF-based group signature scheme called 

PAGS is proposed. Terminal nodes are vulnerable 

to be attacked because they are usually deployed at 

the edge of the network. Those attacks will bring the 

leakage of secret keys. Therefore, we introduce 

PUFs into the group signature scheme and embed 

the PUF instance into the terminal nodes to increase 

its ability to resist partial attacks.  

‧ The hiding of challenge-response pairs for PUF 

instances is implemented. When employing PUF 

instances to realize authentication, the server needs 

to store many raw challenge-response pairs (CRPs) 

of PUF instances during the registration phase. Once 

several CRPs leak, the adversary can adopt machine 

learning to attack PUF instances. In this scheme, the 

zero-knowledge proofs are utilized to hide CRPs. 

‧ The formal security proofs and experimental 

analysis are provided. We set up the formal 

security model for the PAGS scheme, and then we 

provide formal security proofs and analysis to prove 

that the PAGS scheme satisfies anonymity, 

traceability, and non-frameability. Finally, we test 

the time cost of the PAGS scheme on a raspberry pi 

4 test board and a desktop. 

1.3 Related Work 

Group signature. The concept of group signature was 

originally proposed by Chaum et al. [3] in 1991. Since 

the suggestion of group signature, many protocols have 

been designed in the static model. The group 

membership in those protocols is fixed after the group 

registration phase. Then, the concept of partial 

dynamic group signature was proposed by Kiayias et al. 

[4-5]. It allows users to join the group at any time (i.e. 

partial dynamic group membership). Hwang et al. [6] 

and Emura et al. [7] proposed fully dynamic group 

signature schemes that support users to join or leave at 

any time. Besides, various group signature scheme 

variants were proposed. Such as ring signature [8], 

attribute-based group signature [9], certificateless 

group signature [10], linkable group signature [11] and 

so on. Dynamic group signature schemes are usually 

used to construct cryptography protocols for various 

scenarios due to their anonymity, non-frameability, 

traceability, etc. Such as VANETs [12], E-cash 

schemes [13], cloud auditing protocols [14], etc. At 

present, the research of group signature mainly focuses 

on implementing member revocation efficiently [15], 

adding practical functions [16], constructing lattice-

based schemes [17] and so on. 

Authentication in Edge Computing Environment. 

Cui et al. [18] designed a message authentication 

scheme based on edge computing for VANETs. Jia et 

al. [19] proposed an ID-based anonymous mutual 

authentication scheme for mobile edge computing. 

Wang et al. [20] utilized blockchain to construct a 

mutual authentication scheme for smart grid edge 

computing infrastructure. Jangirala et al. [21] put 

forward an RFID-based authentication scheme for 

mobile edge computing. Li et al. [22] constructed a 

new authentication architecture for mobile edge 

computing and proposed a lightweight authentication 

scheme based on this architecture. These schemes [19-

22] are not suitable for the group management of 

terminal nodes. Gao et al. [23] suggested an ID-based 

short group signature scheme to implement access 

authentication. Zhang et al. [24] proposed a group 

signature scheme for blockchain-based mobile edge 

computing. Although [23-24] realize group 

authentication, they are infeasible to ensure security 

under key leakage attacks. 

1.4 Organization 

The organization of this paper is as follows. Section 

2 provides preliminaries used throughout the whole 

paper. Section 3 provides the system model, security 

requirements and the formal security model for 

anonymity. Section 4 provides the concrete 

construction of the PAGS scheme. Section 5 provides 

the formal security proofs and analysis to prove the 

security of the scheme. Section 6 provides the 

experimental results of the PAGS scheme. Finally, the 

conclusion of this paper is shown in Section 7. 

2 Preliminaries 

In this section, the problems and assumptions used 

in this paper are introduced firstly. Then, the concept 

of the physically unclonable function and its 
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applications are described. Finally, we give the syntax 

of the dynamic group signature scheme to show the 

basic idea of the PAGS scheme. 

2.1 Problems and Assumptions 

2.1.1 The Decision Diffie-Hellman Problem 

The decision Diffie-Hellman problem (DDHP) in 

1
G  can be described as follows. Let 

1
g  stand for its 

generator. Pick random values a , b  from *

p
Z . Given 

1 1
,

a b
g g

1
∈G  and a random value 

1
Z∈G , the algorithm 

A  outputs whether 
?

1

ab
Z g= . When the algorithm A  

satisfies the following formula, we can say that A  has 

advantage ε  in solving DDHP. 

 
( )( )

( )

1 1 1 1

1 1 1 1 1

,

( , )

, , 1

, , 1

a b

ab a b

Pr A Z g g g

Pr A g g g g

⎡ ⎤→
⎢ ⎥⎣ ⎦ ≥
⎡ ⎤− →
⎣ ⎦

G

G

ε  

Definition 1: If there is no probabilistic polynomial 

time (PPT) algorithm A  solving the DDHP in t time 

with non-negligible advantage ε , we can say that the 

( , )t ε -DDH assumption holds. 

2.1.2 The Computational Diffie-Hellman Problem 

The computational Diffie-Hellman problem (CDHP) 

in 
2

G  can be described as follows. Let 
2

g  stand for 

the generator of 
2

G . Pick random value ,a  b  from 
*

p
Z . Given 

2 2
,

a b
g g

2
∈G , the algorithm A  outputs 

2

ab
g . 

When the algorithm A  satisfies the following formula, 

we can say that A  has advantage ε  in solving CDHP. 

 ( )2 2 2 2 2
, , ,

a b ab
Pr A g g g g⎡ ⎤→ ≥⎣ ⎦G ε  

Definition 2: If there is no PPT algorithm A  solving 

the CDHP in t time with non-negligible advantage ε , 

we can say that the ( , )t ε -CDH assumption holds. 

2.1.3 The Decision Bilinear Diffie-Hellman 

Problem 

The decision bilinear Diffie-Hellman problem 

(DBDHP) in 
1

(G , 
2

G , )
T

G  can be described as 

follows. Let 
1 2 1 2
, , ( , )

T
g g g e g g=  stand for the 

generators of 
1 2
,G G  and 

T
G  respectively. Pick 

random values , ,a b c  from *

.

p
Z  Given 

1 1
,

a b
g g  

1 2 2
,

c

g∈ ∈G G  and a random value ,
T

Z ∈G  the 

algorithm A  outputs whether 
1 2

( ,= )abcZ e g g
？

. When 

the algorithm A  satisfies the following formula, we 

can say that A  has advantage ε  in solving DBDHP. 

 

( )

( )

1 1 2

1 2 1 1 2

( , , ) 1

( , ) ( , , ) 1

a b c

abc a b c

Pr A Z g g g

Pr A e g g g g g

⎡ ⎤→
⎣ ⎦

≥
⎡ ⎤→
⎣ ⎦

ε

 

Definition 3: If there is no PPT algorithm A  solving 

the DBDHP in t time with non-negligible advantage ε , 

we can say that the ( , )t ε -DBDH assumption holds. 

2.2 Dynamic Group Signature (Basic Idea) 

Setup: System parameters are generated by this 

algorithm. It inputs the security parameter λ  and 

outputs system parameters param. 

KGen: The group manager (GM) and terminal nodes 

can obtain their public-private key pairs via this 

algorithm. It inputs system parameters param and 

outputs public-private key pairs for different entities. 

Join/Issue: A terminal node can become a valid 

member of a group via this algorithm. It inputs the 

node’s public keys, zero-knowledge proofs, group 

manager’s secret keys, several system parameters and 

outputs the node’s group certificate. 

Revoke: The GM can revoke the terminal node’s right 

to generate a valid group signature via this algorithm. 

It inputs revocation pattern, the node’s identity that to 

be revoked, group manager’s secret keys and outputs 

the updated revocation lists: C-RL and G-RL. 

Sign: A terminal node can generate a valid group 

signature via this algorithm. It inputs the node’s secret 

key, the node’s group certificate, several system 

parameters and outputs a group signature. 

Verify: The public can verify whether a group 

signature is valid. In the revocation check phase, the 

algorithm inputs group signature, the C-RL list, the G-

RL list and outputs “abort” or “continue”. In the 

signature check phase, the algorithm inputs group 

signature, group manager’s public keys, several system 

parameters and outputs “valid” or “invalid”. 

Trace: The GM can obtain the node’s identity via this 

algorithm. It inputs a group signature, group manager’s 

secret key and outputs the identity of the terminal node, 

along with a zero-knowledge proof that proves the 

correctness of the Trace algorithm. 

Judge: The public can verify whether the result of the 

Trace algorithm is right via this algorithm. It inputs 

group signature, a zero-knowledge proof, the node’s 

public key and outputs “right” or “wrong”. 

3 System and Security 

In this section, system model and security 

requirements including anonymity, traceability and 

non-frameability for the proposed PAGS scheme are 

provided, along with the corresponding security 

models 
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3.1 System Model 

There are three entities in our system, namely 

terminal node, group manager (GM) and edge server. 

The system model is shown in Figure 1. 

 

Figure 1. System Model

(1) Terminal node: The terminal node, a resource-

constrained device, is deployed outside. And it plays 

the role of the signer in our scheme. 

(2) GM: The group manager is the authority of a 

group that contained a large number of terminal nodes. 

A terminal node can register with the GM to become a 

valid group member.  

(3) Edge server: The edge server, a server that is 

deployed at the edge of the network, plays the role of 

the verifier in our scheme. 

3.2 Security Requirements 

The proposed PAGS scheme should satisfy the 

following security requirements. 

‧ Anonymity: Anonymity represents that it is 

infeasible for the PPT adversary A to obtain the 

identity of the terminal node just by a group 

signature and system parameters, even he conspires 

with several group members.  

‧ Traceability: Traceability requires that it is 

infeasible for the PPT adversary A  to generate a 

valid group signature *

σ  that can be traced to an 

invalid node, even he conspires with several group 

members. The invalid node means that it has never 

joined the group or has been revoked by the group 

manager. 

‧ Non-frameability: Non-frameability indicates that 

it is infeasible for the PPT adversary A , who 

conspires with several group members, to generate a 

valid group signature *

σ  that can be traced to a 

valid node, even the group manager has been 

corrupted. 

3.3 Security Models 

In this section, the security model for anonymity is 

provided. We mainly follow the security models, 

which are designed for a single authority scheme, that 

was proposed by Bootle et al. [25]. We have made 

adaptive modifications to the original models. The 

details are as follows. 

‧ Anonymity: Bootle et al. [25] set six oracles for the 

anonymity game, namely AddHU, ReadReg, Update, 

SendToM, Chalb and Open. We add four oracles, 

namely Hash, CorruptNode, LeakInfo. And we 

replace the SendToM oracle with a Sign oracle. 

Details of all oracles are shown in Figure 2. 

Modifications are marked with dashed. The security 

experiment for anonymity are defined as follows: 

 

ˆ

Hash,CorruptNode,LeakInfo,

ReadReg,Revoke,AddHN

Sign,Chal ,Ope* n

,Exp ( ) :

( ) . ( )

, , , , , ,

( , ) . ( )

ˆ {0,1}

ˆ ( , )

ˆ ˆ=return

b

Anonymity

PAGS

param PAGS Setup

GR HN CN RN HList CS

gpk gsk PAGS KGen param

b

b gpk param

b

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

←

=∅

←

←

←

，

：

A

A
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Figure 2. Oracles for Anonymity Games

4 Construction 

In this section, we provide the concrete construction 

of the proposed PUF-based group signature scheme. 

And the PAGS scheme is made up of eight PPT 

algorithms. 

PAGS.Setup (λ ): It chooses two multiplicative cyclic 

group with order p  and their generators, namely 

21
, G G  and their generator , ϕ ψ  firstly. Then, it sets a 

bilinear pairing 
1 2

: ( , )
T

e →G G G  and gets ’
T
sG  

generator
T

g = ( , )e ϕ ψ . Third, it picks ˆ, , g g w  from 

1
G . Finally, it sets hash function * *:{0,1}

p
H →Z  and 

outputs 
1 2

ˆ( , , , , , , , , , )
T

param g g w e Hϕ ψ= G G G . 

PAGS.KGen (param): The GM chooses random 

values ˆ, , 
t

s s r  from *

p
Z  as its gsk. Then, it computes 

,
t
ssmpk h wψ= =  and 

ˆ

ˆ
r

R ψ=  as its gpk. The key 

generation phase for nodes is completed before they 

are deployed. The GM sets a fixed value k ( 2k ≥ ). For 

1 ,i k≤ ≤  the node picks PUF challenges 
1 2
,

i i
c c  from 

*

,
p

Z  computes 
1i
r =

1
( )

i
PUF c  and 

2 2
( )

i i
r PUF c=  as 

PUF responses, and sets secret key 
1 2

( || ),
i i i
x H r r=  

public key 
1 2

: ( , ).i i

i

x x

ID i i
pk npk npkϕ ψ= =  Then, it 

picks random value 
i
v  from *

,
p

Z  computes comment 

( , ),i i
v v

i
C ϕ ψ=  challenge 

1 2
( || || || || ),

i
i ID i i i
F H ID pk C c c=  

response ,
i i i i

R v F x= − ⋅  sets ( , , )
i i i i
P C F R=  and 

sends ID, ,

i
ID

pk  ,
i
P  

1
,

i
c  

2i
c  to the GM. The GM 

checks if 
?

1 2
( || || || || ),

i
i ID i i i

F H ID pk C c c=  computes 

*

1 2
( , ),i i i i

R F R F

i i i
C npk npkϕ ψ=  

* *

1 2
( | || || || )

i
i ID i i i
F H ID pk C c c=  

and checks whether 
?

*
.

i i
F F=  If yes, it stores NPK[ID, 

i ]=( 
1
,

i
c  

2
,

i
c  ).

i
ID

pk  Otherwise, it aborts. 

PAGS.Join/Issue (gpk, gsk, ID, 
ID

pk , P, 
1
,c  

2
,c  

param): The node sends its ID to the GM. The GM 

randomly chooses 
1
c  and 

2
c  from NPK[ID,*] and 

sends them to the node. The node computes 

1 1
( ),r PUF c=  

2 2
( )r PUF c=  and 

1 2
( || )x H r r= . Then, 

it picks random value v  from *

p
Z , computes comment 

=( , )v v

C ϕ ψ , challenge F =
1 2

( || || || || ),
ID

H ID pk C c c  

response ,R v F x= − ⋅  sets ( , , )P C F R=  and sends 

ID, ,
ID

pk  ,P  
1
,c  

2
c  to the GM. The GM checks 

whether 
?

1 2
( || || || || )

ID
F H ID pk C c c=  and whether (

1
,c  

2
,c  )

ID
pk  is in NPK[ID,*]. Then, it computes *

C =  

1 2
( , ),R F R Fnpk npkϕ ψ  * *

1 2
( || || || || )

ID
F H ID pk C c c=  and 

checks whether 
?

*
.F F=  Until now, the identification 

of the node has been completed. The GM picks random 

values , 
ID ID
z y  from *

p
Z  and computes 

ID
cert =  

1 ( )ˆ( )ID ID
z y sx

gg ϕ
+

. It computes the session key 
2

xK npk= , 

encrypts , , 
ID ID ID
z y cert  by K  to obtain ciphertext 

ID
CT  and sends it to the node. Finally, it stores 

1 2
[ ] ( , , ).

ID
GR ID npk npk CT=  The node computes 

1
r =  

1
( )PUF c , 

2 2
( )r PUF c=  and 

1 2
( || )x H r r= , computes 

session key xK mpk=  and use it to decrypt ciphertext 

ID
CT  to obtain , , .

ID ID ID
z y cert  Then, it checks whether 

?

ˆ( , ) ( , ).ID ID
y z x

ID
e cert mpk e ggψ ϕ ψ=  If the equation is 

true, the node stores 
ID

CT  locally. Note that, only PUF 
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challenge 
21

, c c  and ciphertext 
ID

CT  are stored on the 

node after the algorithm. 

PAGS.Revoke (ID, style, gsk, GR, param): The PAGS 

scheme adopts flexible revocation patterns according 

to different scenarios. 

‧ Group Certificate Revocation: When the node’s 

group certificate leaks, this method is employed to 

temporarily revoke the node. Until the GM issues a 

new group certificate for the node, it can sign again. 

For each node 
ID

N  that to be revoked, the GM adds 

its group certificate 
ID

cert  into the list C-RL. 

‧ Public Key Revocation: For each node 
ID

N  that to 

be revoked, the GM finds its public key 
2
,npk  

computes 
ˆ

2

ˆ
r

ID
D npk=  and stores in the list G-RL. 

PAGS.Sign
21

, , , ) :( gpk paramc c  First, the node computes 

1 1
( ),r PUF c=  

2
r =

2
( )PUF c  and 

1 2
( || ).x H r r=  It 

computes xK mpk=  and decrypts 
ID

CT  to obtain 

, , 
ID ID ID
z y cert . Second, the node picks random values 

d , u  from *

,
p

Z  computes 
1

,

d
wΘ =  

2
,

d
ψΘ =  

3
Θ =  

d

ID
h cert , 

4
Θ =

1

ˆ( , ,)ue npk R  
5

u
ϕΘ =  and sets dyβ = , 

xuγ = . Third, it picks random values 
x

η , 
z

η , 
y

η , 
d

η , 

,
u

η  ,βη  
γ

η  from *

.

p
Z  Then, it computes 

1
,

dA w
η

=  

2
,

dA
η

ψ=  
3

ˆ( , ) ( , ) ( , ) ( , )d xzA e h mpk e g e e h βηη ηη
ψ ϕ ψ ψ=  

3
( ) ,, y

e
η

ψ
−

Θ  
4

ˆ( , ) ,A e R
γ

η

ϕ=  
5

.

uA
η

ϕ=  Finally, it 

computes c =  
1 5 1 5

( || || ),H A A MΘ Θ� �  computes 

,
x x

cxθ η= +  ,
z z

czθ η= +  ,
y y

cyθ η= +  ,
d d

cdθ η= +  

,
u u

cuθ η= +  ,cβ βθ η β= +  c
γ γ

θ η γ= +  and outputs 

1 5
( , ,cσ = Θ Θ�  , )

x
M

γ
θ θ�  as a group signature. 

PAGS.Verify (gpk, param, σ ): 

‧ Revocation Check: For each element in C-RL list, 

the verifier checks whether 
?

3 2
( , ) ( , ).e cert e hψΘ = Θ  

If the above equation stands, the verifier outputs 

“revoked” and aborts. For each element in G-RL list, 

the verifier checks whether 
4 5

ˆ( ,= ).
ID

e DΘ Θ

？

 If it 

stands, the verifier outputs “revoked” and aborts. 

‧ Signature Check: The verifier computes 
1

ˆA =  

1
,

d c

w
θ −

Θ  
2 2

ˆ ,d c

A
θ

ψ
−

= Θ  
3

ˆ ( , ) dA e h mpk
θ

=  ˆ( , ) ze g
θ

ψ  

3 3
( , ) ( , ) ( , ) ( , )yx

ce e h e e mpkβ θθθ
ϕ ψ ψ ψ

−

−

Θ Θ ( ) ,, c

e g ψ  

4 4

ˆ ˆ( ) ,, c

A e R
γ

θ

ϕ
−

= Θ  
5 5

ˆ u
c

A
θ

ϕ
−

= Θ  and 
1

ˆ (c H= Θ �  

5 1 5

ˆ ˆ|| || )A A MΘ � . Then it checks whether ĉ c= . If 

the above equation stands, the verifier outputs 

“valid”. Otherwise, it outputs “invalid”. 

PAGS.Trace (gpk, gsk, param, σ ): First, the GM 

checks whether the group signature σ  is valid. If the 

above equation does not hold, then it aborts. Otherwise, 

it computes 
* 3 1

t
s

ID
cert = Θ Θ  and obtains the signer’s 

public key by searching the GR list (criteria: 
*

ID
cert =  

[ ]. ).
ID

GR ID cert  Second, the GM generates a zero-

knowledge proof π  as follows to prove that the result 

of the PAGS.Trace algorithm is right: It picks a 

random value ˆd  from *

p
Z  and sets 

ID
T cert
π
= ⋅  

ˆ ( )
ID

d s y
g

+ . It needs to generate a zero-knowledge proof 

π  to prove that 
* *

ˆ(1 ) ˆ( , )= ( , )ID ID
y zd xe T mpk e g g

π
ψ ϕ ψ

+  

holds. It picks random values 
ˆd
j , 

z
j , yj  from *

p
Z  and 

computes ˆ ˆ( , ) ( , ) ,) ( , yd z
j jj

A e g e g e T
π π

ψ ψ ψ
−

=  c
π
=  

( || ),H T A
π π

 
ˆ ˆ

ˆ,
d d

J j c d
π

= + ×  ,
z z

J j c z
π

= + ×  
y

J =  

y
j c y

π
+ × . It outputs 

ˆ

( , , , , ).z yd
c T J J J
π π

π =  Finally, 

it outputs 
ID

N ’s public key 
1

npk  and proof π . 

PAGS.Judge (gpk, 
1
,npk  param, ,σ  ) :π  First, the 

verifier checks whether the group signature σ  is valid. 

Then, it judges whether the GM has tracked to the 

correct signer by verifying whether the zero-

knowledge proof π  is valid. It computes ˆA
π
=  

ˆ ˆ( , ) ( , ) ( , ) yd z
J JJ

e g e g e T
π

ψ ψ ψ
−

⋅

1
( , ) ( , )

c c

e T mpk e npkπ π

π
ψ

−

 

( , )
c

e g πψ  and ˆˆ ( || )c H T A
π π π
= . If ˆ = ,c c

π π

？

 it outputs 

“right”. Otherwise, it outputs “wrong”. 

5 Security Proof and Analysis 

In this section, the formal security proofs for 

anonymity and the security analysis for traceability and 

non-frameability are provided to prove the anonymity, 

traceability and non-frameability of the PAGS scheme. 

5.1 Formal Security Proof 

Theorem 1: When the DDH, CDH and DBDH 

assumption hold, the PAGS scheme satisfies 

anonymity. 

Lemma 1: If there is a PPT adversary A  that can 

break the anonymity of the PAGS scheme with the 

advantage ε , then we can construct an algorithm 
DDH

B  

that can solve the DDH problem with advantage 

2(2 )
N s h s

q q q p n q− −ε , or an algorithm 
CDH

B  that 

can solve the CDH problem with advantage 2ε , or an 

algorithm 
DBDH

B  that can solve the DBDH problem 

with advantage 2(2 ( 1) )
N s h

q q q p+ −ε . 

Proof: The group signature in our PAGS scheme is 

made up of 
1 2 3 4 5

, , , , , , , ,, , ,x z y d uc θ θ θ θ θΘ Θ Θ Θ Θ  

, .β γθ θ  First, the hash value c  is random and A  can’t 

obtain any information about the signer’s identity. 

Second, , , , , , ,x z y d u β γθ θ θ θ θ θ θ  are calculated from 

random values and A  can’t obtain the signer’s identity 

too. Therefore, we only need to consider whether 

1 2 3 4 5
, , , ,Θ Θ Θ Θ Θ  will reveal the identity of the signer. 
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We consider three kinds of adversaries. Details are as 

follows. 

Type I adversary 
1

A : The target of 
1

A  is (
1 3
,Θ Θ ). 

The proofs will be reduced to the DDH assumption. 

We construct an algorithm 
DDH

B  to solve the DDH 

problem. The input of B  is , ), ,( a b
w w w Z  where 

*

,
p

a b∈Z  and Z  is 
1

( 1)ab
w p =  or a random value 

from 
1 1
( 0)p =G .  

KGen: B  picks ,s�  r�  from *

,
p

Z  sets ,
t
s a=  gsk =  

( , , )s r a� �  and ( , , ).s argpk wψ ψ=

��

 B  guesses ’sA  

target *

ID . 

Query Phase: 
DDH

B  is able to respond 
1
’sA  queries 

except Open oracle because he has group secret keys 

( , )s r� � , but not 
t
s . 

‧ Sign query phase: if *

,ID ID≠  
DDH

B  responds as 

usual. Otherwise, 
DDH

B  sets ,d b=  
1

,

b
wΘ =  

3
Θ =  

*

ID
Z cert⋅  and picks 

$

2 2
,Θ ←G  

$

4
,

T
Θ ←G  

$

5 1
Θ ←G . 

Then, 
DDH

B  employs the simulation of signature 

proof of knowledge to generate *

.σ  When the 

simulation fails (hash function collision happens), 

DDH
B  aborts. Besides, 

DDH
B  records the number of 

the Sign queries for *

ID  and denotes it by n . 

‧ Open query phase: 
DDH

B  can’t respond Open 

queries as usual because he doesn’t have 
t
s . 

DDH
B  

can respond 
1
’sA  Open queries as follows: When 

1
A  makes an Open query, 

DDH
B  obtains all nodes’ 

ID
cert  from GR list and checks whether 

3
( ,

ID
e certΘ  

?

2
) ( , ).e hψ = Θ  Once the above equation holds, B  

outputs ID  as the response. It is worth noting that, 

if the adversary 
1

A  make Open queries on the 

signature that is signed by 
*
,

ID
N  

DDH
B  aborts 

because he can’t response. 

Challenge Phase: The adversary 
1

A  inputs ,M  
0
,ID  

1
ID . B  picks ˆ {0,1}b∈ . If *

,
b

ID ID≠  
DDH

B  aborts. 

Otherwise, it generates 
b

σ  by following the steps in 

the Sign query phase. 

Test: 
1

A  outputs its guess *
ˆb . If *ˆ ˆb b= , 

DDH
B  outputs 

*

1
( .1)ab

Z w p= =  Otherwise, it outputs 
$

*

1 1
)0( .Z p← =G   

Now, we consider the advantage of 
DDH

B  (i.e. 
*

1 1
[ ] 1 2).Pr p p= −  We assume that [ ]

ab
Pr Z w= =  

$

1
[ ] 1 2.Pr Z← =G  E  stands for the event that 

DDH
B  

aborts. If the game aborts, 
DDH

B  will not be able to 

answer based on the adversary A’s answer. Thus, we 

can obtain that *

1 1
[ | ] 1 2Pr p p E= = . When the game 

doesn’t abort and Z is an random value (i.e. 
1

0)p = , 

the challenged signature has nothing to do with node 

b
ID , so the probability of the adversary 

1
A  correctly 

guessing ˆb  is 1 2  (i.e. *

1 1
[ 0 | 0] 1 2)Pr p E p= ¬ ∧ = = . 

When the game doesn’t abort and ab
Z w=  (i.e. 

1
1)p = , 

the algorithm 
DDH

B  executes the experiment perfectly 

and the probability of the adversary 
1

A  correctly 

guessing ˆb  is 1 2 + ε  (i.e. *

1 1
[ 1| 1]Pr p E p= ¬ ∧ = =  

1 2 + ε ). 

*

1 1

* *

1 1 1 1

1
[ ]  

2

1
       [ | ] [ ] [ | ] [ ]

2

1 1 1 1 1 1 1
       [ ] [ ]( ( ) )

2 2 2 2 2 2 2

       [ ]
2

Adv Pr p p

Pr p p E Pr E Pr p p E Pr E

Pr E Pr E

Pr E

= = −

= = + = ¬ ¬ −

= − ¬ + ¬ × + + × −

= ¬

ε

ε

 

Then, we talk about the probability of the event E¬  

happening. The event E¬  will occur only if all of the 

following conditions hold.  

(1) 
1

A  chooses the node 
*

ID
N  as its target. The 

probability is 2
N

q  where 
N

q  is the number of 

AddHN queries (i.e. the number of honest nodes). 

(2) No termination occurs during the simulation of 

signature proof of knowledge. The simulation fails 

when a hash collision occurs. The probability of 

termination is 
s h

q q p  where 
s

q  is the number of the 

Sign queries and 
h
q  is the number of the Hash queries. 

(3) No termination occurs in Open queries. The 

probability of termination is 
s

n q . 

Therefore, we can obtain that [ ] 2
N

Pr E q¬ = −  

s h
q q p −

s
n q  and 2(2 )

DDH
N s h s

Adv q q q p n q= − −
B

ε . 

Type II adversary 
2

A : The target of 
2

A  is 
2 3

( ), .Θ Θ  

The proofs will be reduced to the CDH assumption. 

2
A  can break the anonymity of the PAGS scheme by 

executing following steps:  

(1) 
2

A  chooses 
0

ID
N  and 

1
ID

N  as his targets. 

(2) 
2

A  tries to obtain 
0

’
ID

N s  
0

ID
cert  or 

1
ID
’N s  

1
ID

cert . 

(3) For the 
b

σ  that was output by 
CDH

B , 
2

A  checks 

whether 
?

3 2
( , ) ( , )e cert e hψΘ = Θ  to output ˆb . 

2
A  can obtain 

i

’
ID

cert s  ciphertext ( {0,1})i∈ via 

LeakInfo queries and ReadReg queries. 
2

A  can obtain 

i
ID

cert  from ciphertexts only if he breaks PUFs to 

obtain ’

i
ID

N s  secret keys or solves CDH problem (i.e. 

computes xs

ψ  according to s

ψ  and x

ψ ). Therefore, 

we can get that ε  = 
2

2
CDH

PUFs
Adv Adv+ ×

A B
 and 

CDH

Adv
B

 

= 2ε  because 
2

PUFs
Adv

A
 is negligible. 
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Type III adversary 
3

A : The target of 
3

A  is (
4 5
,Θ Θ ). 

The proofs will be reduced to the DBDH assumption. 

First, we construct an algorithm 
DBDH

B  to solve the 

DBDH problem. The input of 
DBDH

B  is ( ,ϕ ,ψ  ,

a

ϕ  b
ϕ , 

,

c

ψ  Z ) where *{ , , } ,
p

a b c ∈Z  { , }a b
ϕ ϕ

1
,∈G  

2

c

ψ ∈G  

and Z  is ( , )abce ϕ ψ
1

( 1)p =  or a random value from 

T
G (

1
0p = ).  

KGen: B  picks ,s�  
t
s�  from *

,
p

Z  sets ˆ ,r c=  gsk =  

( , , )
t

s s c� �  and ( , , ).t
ss cgpk wψ ψ=

��

 B  guesses ’sA  

target *

ID . 

Query Phase: 
DDH

B  is able to respond 
1
’sA  queries 

except Revoke queries because he has group secret 

keys ( , )
t

s s� � , but not r̂ . 

‧ AddHN query phase: 
DBDH

B  can’t response Revoke 

queries, because he doesn’t possess secret key r̂  (i.e. 

c ). Thus, an additional value 
ˆ

( )r x

ψ  for each node 

needs to be generated in AddHN queries. Besides, 

DBDH
B  inserts a node *

ID  into the HN list and sets 

its secret key x a= , public key a

ϕ . 

‧ Sign query phase: If *

,ID ID≠  
DBDH

B  responds as 

usual. Otherwise, 
DBDH

B  sets ,u b=  
4

,ZΘ =  

5

b
ϕΘ =  and picks 

$

1 1
,Θ ←G  

$

2 2
,Θ ←G  

$

3 1
.Θ ←G  

Then, 
DBDH

B  employs the simulation to generate *

σ . 

When the simulation fails (hash function collision 

happens), 
DBDH

B  aborts. 

‧ Revoke query phase: 
DBDH

B  can response 
3
’sA  

queries, because all node’s 
ˆ

( )r x

ψ  are generated in 

AddHN queries and he can obtain all node’s cert. 

Challenge Phase: The adversary 
3

A  inputs ,M  
0
,ID  

1
ID . B  picks ˆ {0,1}.b∈  If *

,
b

ID ID≠  
DBDH

B  aborts. 

Otherwise, it generates 
b

σ  by following the steps in 

the Sign query phase. 

Test: 
3

A  outputs its guess *ˆ .b  If *ˆ ,ˆb b=  
DBDH

B  

outputs ( , )abcZ e ϕ ψ=

*

1
( 1)p = . Otherwise, it outputs 

$

T
Z←G

*

1
( 0)p = . 

Now, we consider the advantage of 
DBDH

B  (i.e. 
*

1 1
[ ] 1 2Pr p p= − ). We assume that [ ( , ) ]abc

Pr Z e ϕ ψ=  
$

[ ] 1 2.
T

Pr Z= ← =G  E  stands for the event that 
DBDH

B  

aborts. It is easy to conclude that 
DBDH

Adv =
B

 

[ ] 2Pr E¬ ×ε . The derivation is the same as above. 

Then, we talk about the probability of the event E¬  

happening. The event E¬  will occur only if all of the 

following conditions hold.  

(1) 
3

A  chooses the node 
*

ID
N  as its target. The 

probability is 2 ( 1)
N

q +  where 
N

q  is the number of 

AddHN queries. 

(2) No termination occurs during the simulation of 

signature proof of knowledge. The simulation fails 

when a hash collision occurs. The probability of 

termination is 
s h

q q p  where 
s

q  is the number of the 

Sign queries and 
h
q  is the number of the Hash queries. 

Therefore, [ ] 2 ( 1)
N s h

Pr E q q q p¬ = + −  and 
DBDH

Adv =
B

 

2(2 ( 1) )
N s h

q q q p+ −ε . 

5.2 Security Analysis 

Traceability: The adversary ’sA  attack on the 

traceability of the PAGS scheme is essentially the 

forgery of the group certificate. If A  can forge a group 

membership certificate for an invalid node, then A  

can control the invalid node to generate a valid group 

signature which can be traced to an invalid node. In the 

PAGS scheme, the GM generates a BBS+ signature as 

the node’s certificate. And BBS+ signature is 

unforgeable if the q-SDH assumption holds [26].  

Non-frameability: Only the adversary A  generates a 

valid signature proof of knowledge without a valid 

node’s private keys, can he break the non-frameability 

of the PAGS scheme. And the signature proof of 

knowledge is unforgeable in the random oracle [27]. 

Therefore, if A  can break the non-frameability of the 

PAGS scheme, then he can break the signature proof of 

knowledge.  

6 Performance 

In this section, we perform experiments of the 

PAGS scheme with the PBC library on the type d159 

curve. The experiments are done on two platforms, 

namely a raspberry pi 4 and a desktop. According to 

the practical scenarios and system model, we test the 

running time of terminal nodes on the raspberry pi 4 

and test the running time of verifiers on the desktop. 

Hardware environment: 

‧ Raspberry Pi 4 Model B with 2G RAM and 32G 

storage. 

‧ A desktop with Intel(R) Core(TM) i5-9500 CPU @ 

3.00GHz, 6G RAM and 20G storage. It’s worth 

noting that we perform experiments on a virtual 

machine. So only four of the CPU’s six cores are 

used. 

Software environment: Ubuntu 18.04.1 with gcc 7.5.0, 

gmp 6.2.0 and pbc 0.5.14. 

We test the benchmark of each operation on two 

platforms. And the symbols used in this section are 

described as follows: 
i

E  stands for the exponential 

operation on group 
i

G , Pair stands for the bilinear 

pairing operation, Hash stands for the hash function 

operation, Enc stands for the symmetric encryption 

operation and Dec stands for the symmetric decryption 

operation. Note that, we ignore the time cost of PUFs, 
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hash function, symmetric encryption and decryption 

because they are very small. In our experiment, the 

time cost of GM and terminal nodes are tested on the 

raspberry pi 4, the time cost of the verifier is tested on 

the desktop. The amount of each operation in each 

phase is given in Table 1. The experiment results are 

shown in Table 2. These results demonstrate that the 

proposed PAGS scheme is suitable for terminal nodes. 

Table 1. The amount of each operation in each phase 

Operation 
Algorithm 

Group Manager Terminal Node 

Join 2
1

E +2
2

E +2Hash 
1

E +
2

E +2Hash 

Issue 3
1

E +
2

E +Enc 
2

2
E +2

T
E +Hash+ 

Pair + Dec 

Revoke 
2

R E×  N/A 

Sign N/A 
4

1
E +3

2
E +7

T
E + 

Pair + Hash 

Trace 
2

1
E +3

T
E +Pair + 

Hash 
N/A 

 Verifier 

Verify 4
1

E +2
2

E +7
T

E +(2+2
C
n +

G
n )Pair + Hash 

Judge 6
T

E + 3Pair + Hash 

Note. R is the number of terminal nodes that is about to be 

revoked via public key revocation.
C
n (

G
n ) is the length of 

list C-RL(G-RL). 

Table 2. Experiment Results on Raspberry Pi 4 and 

Desktop 

Time Cost (ms) 
Algorithm Group Manager 

(Raspberry Pi 4) 

Terminal Node 

(Raspberry Pi 4) 

Join 22.41 11.20 

Issue 13.54 33.31 

Revoke 10.03 R  N/A 

Sign N/A 60.57 

Trace 18.10 N/A 

 Verifier 

Verify 15.35+3.20
revoke
n  

Judge 10.18 

Note. 
revoke
n  is the number of the revoked terminal nodes. In 

this experiment, we set 
2

revoke

C G

n

n n= = . 

7 Conclusion 

In this paper, we design a PUF-based anonymous 

group signature (PAGS) for edge computing. Then, we 

provide the formal security model and proofs to prove 

that the PAGS scheme satisfies anonymity. 

Furthermore, the security analysis is given to discuss 

the traceability and non-frameability of the PAGS 

scheme. Finally, the experiments are performed on a 

Raspberry Pi 4 and a desktop. The results demonstrate 

that the PAGS scheme can be used in resource-

constrained devices. 
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