
A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1185

A Generic Construction of Predicate Proxy Key

Re-encapsulation Mechanism1

Yi-Fan Tseng, Zi-Yuan Liu, Raylin Tso

Department of Computer Science, National Chengchi University, Taiwan

{yftseng, zyliu, raylin}@cs.nccu.edu.tw*

1 The extended abstract version of this work is appeared in the Proceedings of The 15th Asia Joint Conference on Information Security

(AsiaJCIS 2020) [1].
*Corresponding Author: Raylin Tso; E-mail: raylin@cs.nccu.edu.tw

DOI: 10.53106/160792642021092205020

Abstract

Proxy re-encryption (PRE), first formalized by Blaze

et al. in 1998, allows a proxy entity to delegate the

decryption right of a ciphertext from one party to another

without obtaining the information of the plaintext. In

order to achieve more flexible access control, the

predicate proxy re-encryption (PPRE) is studied further.

However, existing PPRE is restricted with the inner

product predicate function. The problem of how to realize

the PPRE of arbitrary predicate functions is still to be

solved. In this paper, we propose two secure generic

predicate proxy key re-encapsulation mechanisms

(PPKREM). By applying the key encapsulation mechanism/

data encapsulation mechanism paradigm, our PPKREM

can be converted to a PPRE. Consequently, the results

open new avenues for building more flexible and fine-

grained PPRE.

Keywords: Predicate encryption, Predicate proxy re-

encryption, Generic construction, Single-hop,

Unidirectional

1 Introduction

Proxy re-encryption (PRE), first formalized by

Blaze et al. in 1998 [2], allows a proxy entity to re-

encrypt a ciphertext that has been encrypted for Alice

and to generate a new ciphertext that can be decrypted

using Bob’s private key. The proxy entity only needs a

re-key provided by Alice, without obtaining any other

information of the plaintext or needing to access

Alice’s and Bob’s private keys. In other words, the

proxy entity can delegate the decryption right from one

party to another. With this flexible property, PRE

yields numerous real-world applications [3] such as

outsourcing cryptography, distributed file storage

systems, and law enforcement, etc. To support more

flexibility on access control, some studies focus on

supporting more complex access control mechanisms,

such as identity-based PRE [4-6] and attribute-based

PRE [7-9].

On the other hand, predicate encryption (PE),

formalized by Katz et al. in 2008 [10], is a paradigm

for public-key encryption that conceptually generalizes

public-key encryption, supporting fine-grained and

role-based access to encrypted data. More precisely, in

a PE for a predicate function ,
k

R a private key is

associated with a key attribute y, while the ciphertext is

associated with a ciphertext attribute x, where k is the

description of a predicate. A ciphertext with ciphertext

attribute x can be decrypted by a private key with key

attribute y if, and only if, (,) 1.
k

R x y = Thus, PE

captures wide classes of encryption in cryptography.

For example, identity-based encryption can be viewed

as PE supporting “equality” predicate functions, and

both ciphertext attributes and key attributes are strings.

Although many identity-based PRE and attribute-

based PRE have been studied, only a few of the studies

have researched how to construct proxy re-encryption

(PPRE) [11-13]. Unfortunately, these schemes consider

only the case where the predicate function is an inner

product predicate. At present, many flexible and fine-

grained PPRE schemes have not been implemented and

discussed. Hence, how to realize a PPRE of an

arbitrary predicate function remains an open problem.

1.1 Contributions

In this paper, we affirmatively solve this by

proposing two generic constructions that can transform

any linear predicate key encapsulation mechanism

(PKEM) or any linear PE scheme to a predicate proxy

key re-encapsulation mechanism (PPKREM).

We prove that our construction is payload hiding of

second/first-level ciphertext (i.e., original/re-encapsulation

ciphertext) secure in the standard model, if the

underlying PKEM satisfies indistinguishability under

chosen-ciphertext attacks (IND-CCA).

Then, since secure key encapsulation mechanism

(KEM) can be used as a building block to construct

public key encryption, i.e., combining with a secure

symmetric encryption scheme, we can use our

construction to obtain a secure PPRE.

1186 Journal of Internet Technology Volume 22 (2021) No.5

Besides, we adopt our proposed generic construction

for Water’s identity-based encryption [14]. More

precisely, we first obtain an identity-based KEM from

Water’s work and then obtain an identity-based proxy

key re-encapsulation mechanism using our proposed

construction. Furthermore, by applying the KEM/DEM

paradigm, anyone can easily obtain an identity-based

PRE.

Our result, compared with the previous identity-

based [4-6] and attribute-based [7-9] constructions, is

more flexible to use in various scenarios. However, our

generic construction limits the underlying building

block requirements to meet the linear property, which

does not exist in all PKEM schemes.

1.2 Comparison with the Previous Version [1]

In this paper, we formally prove that the proposed

generic construction is payload hiding of second-/first-

level ciphertext secure. In addition, the previous

version considers only how to obtain a PPKREM

scheme from linear PKEM. Here, we further propose

another generic construction that can obtain a

PPKREM scheme from any linear PE scheme.

1.3 Organization

The remainder of the work is organized as follows.

In Sections 2 and 3, we introduce the definition and the

security requirement of PE, PKEM, and PPKREM,

respectively. In Sections 4 and 5, we propose our

generic construction and provide the security proofs,

respectively. In Section 6, we give an instantiates of

identity-based proxy key re-encapsulation mechanism

from Water’s identity-based encryption. Finally, we

conclude the work in Section 7.

2 Preliminary

2.1 Notations and Abbreviations

For simplicity and convenience, we use the

following notations and abbreviations detailed in Table

1 throughout the paper.

Table 1. Notations and abbreviations

Symbols Description

λ Security parameter

� The set of positive integers

� The set of integers

p
� The set of integers module p

PE Predicate encryption

PRE Proxy re-encryption

PPRE Predicate proxy re-encryption

KEM Key encapsulation mechanism

PKEM Predicate key encapsulation mechanism

PPKREM Predicate proxy key re-encapsulation mechanism

PPT Probabilistic polynomial-time

2.2 Predicate Key Encapsulation Mechanism

(PKEM)

In this Subsection, we first recall the definition of

the predicate family in [15-16], and then recall the

definition of PKEM in [17] described by a binary

relation.

Definition 1 (Predicate Family). We consider a

predicate family { }c
k

R R= ∈� for some constant

,c∈� where a relation : {0,1}
k k k

R × →X Y is a

predicate function that maps a pair of ciphertext

attributes in a ciphertext attribute space
k

X and key

attributes in a key attribute space
k

Y to {0,1} . The

family index
1 2

(, ,)k n n= … specifies the description

of a predicate from the family.

Definition 2 (Predicate Key Encapsulation

Mechanism). Let ψ be the encapsulation ciphertext

space and K be the encapsulation key space, a PKEM

scheme PKEM for predicate family R consists of the

following four algorithms:

‧ Setup(1 ,) (,)k params mskλ
→ : Taking as input the

security parameter λ∈� and a description k∈� ,

the algorithm outputs the system parameter params,

where the description of k is implicitly included, and

the master secret key msk. Note that params will be

an implicit input for the following algorithms.

‧ Encaps() (,)
x

x CT k→ : Taking as inputs a ciphertext

attribute
k

x∈� , the algorithm outputs a ciphertext

x
CT ψ∈ and an encapsulation key k K∈ .

‧ KeyGen(,) :
y

msk y SK→ Taking as inputs the

master secret key msk and a key attribute
k

y∈� ,

the algorithm outputs a private key
y

SK associated

with y.

‧ Decaps(,) / :
x y

CT SK k→ ⊥ Taking as inputs a

ciphertext
x

CT ψ∈ for some ciphertext attribute

k
x∈X and a private key

y
SK for some key

attribute ,
k

y∈Y the algorithm outputs an

encapsulation key k K∈ if (,) 1
k

R x y = . Otherwise,

it outputs ⊥ .

Correctness. A PKEM scheme PKEM is correct if, for

all , ,kλ ∈� we have Decaps(,),
x y

k CT SK← if

(,) 1
k

R x y = ; Decaps(,),
x y

CT SK⊥← otherwise, where

(,) Encaps(),
x

CT k x← KeyGen(,),
y

SK msk y← and

(,) Setup(1 ,)params msk kλ
← .

Security. In order to describe the security of the

PKEM, we define the following IND-CCA game

between a challenger C and an adversary A.

Game IND-CCA:

‧ Setup. The challenger C runs the algorithm

Setup(1 ,)kλ to generate system parameter params

A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1187

and the master secret key msk. It then sends params

to the adversary A.

‧ Phase 1. The adversary A makes polynomial times

of queries to the following oracles.

－ Key generation oracle :
ke

O On input of a key

attribute ,
k

y∈Y the oracle returns the

corresponding private key
y

SK .

－ Decapsulation oracle :
de

O On input of a

ciphertext
x

CT ψ∈ and a key attribute
k

y∈Y ,

the oracle returns an encapsulation key k or ⊥ .

‧ Challenge. The adversary submits a target

ciphertext attribute *

k
x ∈X , where *(,) 0

k
R x y =

for all
k

y∈Y queried in Phase 1. Then the

challenger C randomly chooses a bit {0,1}b← ,

runs
*

* * *

0
(,) Encaps()

x

CT k x← , and chooses

*

1
k K← . Finally, C returns

*

* *(,)
bx

CT k to A.

‧ Phase 2. It is the same as Phase 1 except that

*

*Decaps(,)
x

CT y and KeyGen()y are not allowed if

*(,) 1
k

R x y = .

‧ Guess. The adversary A outputs a bit b′ , and wins

the game if b b′ = .

The advantage of the adversary A in winning the

game is defined as:

,

1
() | Pr[] | .

2

IND CCA

PKEM A
Adv b bλ

−

′= = −

2.3 Predicate Encryption (PE)

Definition 3 (Predicate Encryption). A predicate

encryption scheme PE for predicate family R consists

of the following four algorithms:

‧ Setup(1 ,) (,)k params mskλ
→ : Taking as input the

security parameter λ and a description k, the

algorithm outputs the system parameter params,

where the description of k is implicitly included, and

the master secret key msk. Note that params will be

an implicit input for the following algorithms.

‧ Encaps(,)
x

x M CT→ : Taking as inputs a ciphertext

attribute
k

x∈X and a message M M∈ , the

algorithm outputs a ciphertext
x

CT .

‧ KeyGen(,) :
y

msk y SK→ Taking as inputs the

master secret key msk and a key attribute
k

y∈Y ,

the algorithm outputs a private key
y

SK .

‧ Decaps(,) :
x y

CT SK M→ Taking as inputs a

ciphertext
x

CT for ciphertext attribute
k

x∈X and a

private key
y

SK for key attribute
k

y∈Y , the

algorithm outputs a message M M∈ .

Correctness. A predicate encryption scheme PE is

correct if, for all , ,kλ ∈� we have M ←

Decrypt(,)
x y

CT SK if (,) 1,
k

R x y = where
x

CT ←

Encrypt(,),x M KeyGen(,),
y

SK msk y← and (,)params msk

Setup(1 ,)kλ
← .

Security. In order to describe the security of the

predicate encryption scheme, we define the following

IND-CCA game between a challenger C and an

adversary A.

Game IND-CCA:

‧ Setup. The challenger C runs the algorithm

Setup(1 ,)kλ and sends params to the adversary A.

‧ Phase 1. The adversary A makes polynomial times

of queries to the following oracles.

－ KeyGen()
i
y : Upon inputting a key attribute

i
y ∈Y , the oracle returns the corresponding

private key
i
y

SK .

－ Decrypt(,)
i

CT y : Upon inputting a ciphertext CT

and a key attribute
i
y ∈Y , the oracle returns the

output of Decrypt(,)
i
y

CT SK .

‧ Challenge. The adversary submits two distinct

messages
0 1
,M M M∈ of the same length, and a

target ciphertext attribute *

,
K

x ∈� where *(,)
k i

R x y

0= for all
i
y queried in Phase 1. Then the

challenger C randomly chooses a bit {0,1}b← , and

returns * *Encrypt(,).
b

CT x M←

‧ Phase 2. It is the same as Phase 1 except
*Decrypt(,)

i
CT y and KeyGen()

i
y such that

*(,) 1
k i

R x y = are not allowed.

‧ Guess. The adversary A outputs a bit b′ , and wins

the game if b b′ = .

The advantage of the adversary A in winning the

game is defined as:

,

1
() | Pr[] | .

2

IND CCA

PE A
Adv b bλ

−

′= = −

Definition 4 (IND-CCA Security). We say that a PE

scheme PE for predicate family R is IND-CCA secure

if, for all PPT adversary A,
,

()IND CCA

PE A
Adv λ

− is negligible.

The model can be easily changed for CPA security

and selective security by removing the Decrypt oracle

and forcing the adversary to submit its target first,

respectively.

Linearity. We say that a correct predicate encryption

scheme (Setup, Encrypt, KeyGen, Decrypt)PE = is

linear if for all , Encrypt(,)
x

CT x Mγ ∈ ←� and
y

SK ←

KeyGen(,),msk y where (,) Setup(1 ,)params msk kλ
← ,

the following equation is satisfied: Decrypt(, ())
x y

CT SK
γ
=

Decrypt(,)
x y

CT SK
γ .

1188 Journal of Internet Technology Volume 22 (2021) No.5

Definition 5 (IND-CCA Security of PKEM). We say

that a PEKM schemePKEM for predicate family R is

IND-CCA secure if, for all PPT adversary A,

,

()IND CCA

PKEM A
Adv λ

− is negligible.

The model can be easily changed for CPA security

and selective security by removing the Decapsulation

oracle and forcing the adversary to submit its target

first, respectively.

Linearity. In this work, the whole correctness of the

proposed construction is based on the linearity of the

PKEM, defined as follows.

Definition 6 (Linearity of PKEM). We say that a

correct PKEM scheme (Setup, Encrypt,PKEM =

KeyGen, Decrypt) for predicate family R is linear if

for all , , (,) Encaps(),
x

k CT k xγ λ∈ ∈ ←� � and
y

SK ←

KeyGen(,),msk y where (,) Setup(1 ,)params msk kλ
←

and (,) 1
k

R x y = , the following equation is satisfied:

Decaps(, ()) ,
x y

CT SK k
γ γ

= where ()
y

SK
γ and k

γ

denote the component-wise exponentiation to
y

SK and

k, respectively.

3 Predicate Proxy Key Re-encapsulation

Mechanism (PPKREM)

In this Section, we introduce the definition and

security models of a single-hop unidirectional

PPKREM. More precisely, we adopt the security game

in [18]. However, the game in [18] is defined for an

identity-based cryptography scheme, thus we revise it

and provide new security games for our scheme.

Additionally, for consistency and ease of interpretation,

we use the terminologies defined in [19-20], that is, an

original ciphertext is called the second-level ciphertext

and a re-encapsulation ciphertext is called the first-

level ciphertext.

Definition 7 (Single-hop Unidirectional Predicate

Proxy Key Re-encapsulation Mechanism). Let ψ be

the encapsulation ciphertext space and K be the

encapsulation key space, a PPKREM scheme

PPKREM for predicate family R consists of seven PPT

algorithms (Setup, KeyGen, Encaps, ReKey, ReEncaps,

Decapsoct, Decapsrct):

‧ Setup(1 ,) (,)k params mskλ
→ : Taking as input the

security parameter λ∈� , and a description k∈� ,

the algorithm outputs the system parameter params,

where the description of k is implicitly included, and

the master secret key msk. Note that params will be

an implicit input for the following algorithms.

‧ KeyGen(,)
y

msk y SK→ : Taking as input the master

secret key msk and a key attribute
k

y∈Y , the

algorithm outputs a private key
y

SK .

‧ Encaps() (,) :
x x

x oct k→ Taking as input a ciphertext

attribute
k

x∈X , the algorithm outputs a second-

level ciphertext
x

oct ψ∈ and an encapsulation key

x
k K∈ .

‧
,

ReKey(,) :
y y x

SK x rk
′

′ → Taking as input a private

key
y

SK for some key attribute
k

y∈Y and a

ciphertext attribute
k

x′∈X , the algorithm outputs a

re-key
,y x

rk
′
.

‧
,

ReEncaps(,) :
x y x x

oct rk rct
′ ′
→ Taking as input a

ciphertext
x

oct ψ∈ for some ciphertext attribute

k
x∈X and a re-key

,y x
rk

′
, the algorithm outputs a

first-level ciphertext
x

rct ψ∈ which can be decaps

by the private key
y

SK
′

 for some key attribute

k
y′∈Y where (,) 1

k
R x y′ ′ = .

‧ Decaps(,) :
x y

oct SK k→ Taking as input a second-

level ciphertext
x

oct ψ∈ for some ciphertext

attribute
k

X and a private key
y

SK for key attribute

k
y∈Y , the algorithm outputs a key k K∈ if

(,) 1
k

R x y = . Otherwise, it outputs ⊥ .

‧ Decaps (,) :
rct x y

rct SK k
′ ′

→ Takeing as input a first-

level ciphertext
x

oct ψ
′
∈ for some ciphertext

attribute
k

x′∈X and a private key
y

SK for some

key attribute
k

y′∈Y , the algorithm outputs an

encapsulation key k K∈ if (,) 1
k

R x y′ ′ = . Otherwise,

it outputs ⊥ .

Correctness. A single-hop unidirectional PPKREM

scheme PPKREM is correct if, for all , ,kλ ∈�

,
k

x x′∈X , and ,
k

y y′∈Y , we have:

‧ = Decaps(,)
x y

k oct SK if (,) 1
k

R x y = ;

‧ = Decaps(,)
x y

oct SK⊥ if (,) 0
k

R x y = ;

‧ = Decaps (ReEncaps(, ReKey(,)),)
rct x y y

k oct SK x SK
′

′

if (,) 1 (,) 1
k k

R x y R x y′ ′= ∧ = ;

‧ = Decaps (ReEncaps(, ReKey(,)),)
rct x y y

oct SK x SK
′

′⊥

if (,) 0 (,) 0,
k k

R x y R x y′ ′= ∨ = where
y

SK ←

KeyGen(,),msk y KeyGen(,),
y

SK msk y
′

′← and

(,) Setup(1 ,)params msk kλ
← .

Security. Before introducing the security models, we

follow [18] to define the derivatives for single-hop

unidirectional PPKREM.

Definition 8 (Derivatives). Let , ,
k

x x x′ ′′∈X be the

ciphertext attributes, let
k

y∈Y be the key attribute,

and let , ,ct ct ct ψ′ ′′∈ be the ciphertexts. The

derivatives of (,)x ct are defined as follows:

‧ (,)x ct is a derivative of itself;

‧ If (,)x ct′ ′ is a derivative of (,)x ct and (,)x ct′′ ′′ is

also a derivative of (,),x ct′ ′ then (,)x ct′′ ′′ is a

A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1189

derivative of (,)x ct ;

‧ If an adversary A has issued a query (, ,)y x ct′ on

re-encapsulation oracle and obtained ct′ , where

(,) 1
k

R x y = , then (,)x ct′ ′ is a derivative of (,)x ct ;

‧ If an adversary A has issued a query (,)y x′ on re-

encapsulation key generation oracle, obtained
,y x

rk
′
,

then for a
,

ReEncaps(,),
y x

ct ct rk
′

′ = where (,) 1
k

R x y = ,

(,)x ct′ ′ is a derivative of (,)x ct .

In the following, we introduce two security games to

describe the security of the PPKREM between a

challenger C and an adversary A.

Game - Payload-hiding for Second-level Ciphertext:

‧ Setup. The challenger C runs the algorithm

Setup(1 ,)kλ to generate parameter params and the

master secret key msk. It then sends params to the

adversary A.

‧ Phase 1. The A may adaptively make polynomial

times of queries to the following oracles.

－ Key generation oracle :
ke

O On input of
k

y∈Y

by A, the challenger C computes
y

SK ←

KeyGen(,)msk y . It then gives
y

SK to A.

－ Re-encapsulation key generation oracle :
rk

O

On input (,)
k k

y x′∈ ∈Y X by A, the challenger C

computes
,

ReKey(,),
y x y

rk SK x
′

′← where
y

SK ←

KeyGen(,)msk y . It then gives
,y x

rk
′
 to A.

－ Re-encapsulation oracle :
re

O On input of

(,)
k k

y x ψ′∈ ∈ ∈Y X by A, the challenger C first

computes
,

ReKey(,)
y x y

rk SK x
′

′← where
y

SK ←

KeyGen(,).msk y It then computes
x

rct
′
←

,

ReEncaps(,).
x y x

oct rk
′

 Finally, it gives
x

rct
′
 to A.

－ Second-level ciphertext decapsulation oracle

:
sde

O On input of (,)
k x

x oct ψ∈ ∈X by A, the

challenger C computes Decaps (,)
oct x y

k oct SK←

where KeyGen(,)
y

SK msk y← and (,) 1
k

R x y = .

It then returns k to A.

－ First-level ciphertext decapsulation oracle

:fdeO On input of (,)
k x

x rct ψ
′

′∈ ∈X by A, the

challenger C computes Decaps (,)
rct x y

k rct SK←

where KeyGen(,)
y

SK msk y
′

′← and (,) 1
k

R x y′ ′ = .

It then returns k to A.

‧ Challenge. A outputs a ciphertext attribute *

k
x ∈X

with restriction that:

－
*(,) 0

k
R x y = for all

k
y∈Y submitted to

ke
O ;

－ for all (,)
k k

y x′∈ ∈Y X , ()
k

x′∈X submitted to

rk
O , *(,) 0

k
R x y = .

If *

x satisfies the above requirements, the challenger

C then randomly chooses a bit {0,1}b∈ , and responds

with
*

* *(,)
bx

oct k , where
*

* * *

0
(,) Encaps()

x

oct k x← and

*

1
k is randomly chosen from K.

‧ Phase 2. A can continue to issue more queries to the

oracles as follows:

－ Key generation oracle :
ke

O The oracle is the

same as Phase 1 with three additional restrictions:

‧
*(,) 0

k
R x y = ;

‧ for all
k

y′∈Y such that *(,) 1 (,) 1,
k k

R x y R x y′ = ∧ =

the tuple (,)y x′ must not have been queried to
rk

O

before:

‧ for all
k

y′∈Y , ,
k

x x′∈X , and oct ψ′ ∈ such that

(,) 1 (,) 1,
k k

R x y R x y′ ′= ∧ = and (,)x oct′ ′ is a

derivative of
*

* *(,)
x

x oct , the tuple (, ,)y x oct′ has

not been queried to
re

O before.

－ Re-encapsulation key generation oracle :
rk

O

The oracle is the same as Phase 1 with a

restriction: if *

x x= , then for all
k

y′∈Y such that

(,) 1 (,) 1,
k k

R x y R x y′ ′= ∧ = y′ must not have

been queried to
ke

O before.

－ Re-encapsulation oracle :
re

O The oracle is the

same as Phase 1 with a restriction: if (,)
x

x oct is

a derivative of
*

* *(,)
x

x oct , then for all
k

y′∈Y

such that (,) 1 (,) 1,
k k

R x y R x y y′ ′ ′= ∧ = must not

have been queried to
ke

O before.

－ Second-level ciphertext decapsulation oracle

:
sde

O The oracle is the same as Phase 1 with a

restriction: (,)
x

x oct is not a derivative of

*

* *(,)
x

x oct .

－ First-level ciphertext decapsulation oracle

:fdeO The oracle is the same as Phase 1 with a

restriction: (,)
x

x rct
′

′ is not a derivative of

*

* *(,)
x

x oct .

‧ Guess. In the end, A outputs a guess {0,1}b∈ and

wins the game if b b′= .

The advantage of the adversary A in winning the

above game is defined as:

,

1
() | Pr[] | .

2

PH SC

PPKREM A
Adv b bλ

−

′= = −

Definition 9 (Payload-hiding Security for Second-

level Ciphertext). We say that a single-hop

unidirectional PPKREM scheme PPKREM for

predicate family R is payload-hiding secure for second-

level ciphertext if, for any polynomial time adversary

A, the function
,

()PH SC

PPKREM A
Adv λ

− is negligible.

Game Payload-hiding for First-level Ciphertext:

1190 Journal of Internet Technology Volume 22 (2021) No.5

‧ Setup. The challenger C runs the algorithm

Setup(1 ,)kλ to generate parameter params and the

master secret key msk. It then sends params to the

adversary A.

‧ Phase 1. The A may adaptively make a polynomial

time of queries to the following oracles.

－ Key generation oracle :
ke

O On input of
k

y∈Y

by A, the challenger C computes
y

SK ←

KeyGen(,)msk y . It then gives
y

SK to A.

－ Re-encapsulation key generation oracle :
rk

O

On input of (,)
k k

y x′∈ ∈Y X by A, the challenger

C computes
,

ReKey(,),
y x y

rk SK x
′

′← where

KeyGen(,)
y

SK msk y← . It then gives
,y x

rk
′
 to A.

－ Re-encapsulation oracle :
re

O On input of

(, ,)
k k x

y x oct ψ′∈ ∈ ∈Y X by A, the challenger C

first computes
,

ReKey(,)
y x y

rk SK x
′

′← where

KeyGen(,).
y

SK msk y← It then computes
x

rct ←

,

ReEncaps(,).
x y x

oct rk
′

 Finally, it gives
x

rct
′
 to A.

－ Second-level ciphertext decapsulation oracle

:
sde

O On input of (,)
k x

x oct ψ∈ ∈X by A, the

challenger C computes Decaps (,)
oct x y

k oct SK←

where KeyGen(,)
y

SK msk y← and (,) 1
k

R x y = .

It then returns k to A.

－ First-level ciphertext decapsulation oracle

:fdeO On input of (,)
k x

x rct ψ
′

′∈ ∈X by A, the

challenger C computes Decaps (,)
rct x y

k rct SK
′ ′

←

where KeyGen(,)
y

SK msk y
′

′← and (,) 1
k

R x y′ ′ = .

It then returns k to A.

‧ Challenge. A outputs a ciphertext attribute *

k
x ∈X

with restriction: for all
k

y∈Y submitted to
ke

O ,

*(,) 0
k

R x y = . If *

x satisfies the above requirements,

the challenger C first computes
*

y
SK ←

*KeyGen(,)msk y where * *(,) 1
k

R x y = . Then, it

chooses a ciphertext attribute ˆ
k

x∈X , and randomly

chooses a bit {0,1}b∈ . Next, it computes:

a.
* *ˆ,

ˆReKey(,)
y x y

rk SK x← ;

b.
* *

* *
ˆ ˆ,

ReEncaps(,)
x x y x

rct oct rk← ,

where * * *

0
(,) Encaps()

x
oct k x← and *

1
k is randomly

chosen from K. Finally, it responds * *

ˆ
(,)

x b
rct k to A.

‧ Phase 2. A can continue to issue more queries to the

oracles as in Phase 1 with two additional restrictions:

－ Key generation oracle :
ke

O for all
k

y∈Y ,

ˆ(,) 0
k

R x y = .

－ First-level ciphertext decapsulation oracle

:fdeO it cannot be queried with the challenge

ciphertext *

x̂
rct as input.

‧ Guess. In the end, A outputs a guess {0,1}b∈ and

wins the game if c.

The advantage of the adversary A in winning the

above game is defined as:

,

1
() | Pr[] | .

2

PH FC

PPKREM A
Adv b bλ

−

′= = −

Definition 10 (Payload-hiding Security for First-

level Ciphertext). We say that a single-hop

unidirectional PPKREM scheme PPKREM for

predicate family R is payload-hiding secure for first-

level ciphertext if for PPT adversary A the function

,

()PH FC

PPKREM A
Adv λ

− is negligible.

4 Generic Construction of Predicate Proxy

Key Re-encapsulation Mechanism

(PPKREM)

In this Section, we first give a generic construction

that can obtain a PPKREM scheme from a secure

linear PKEM scheme, then we give a generic

PPKREM construction by using a secure linear PE

scheme. At a high level, to generate a re-encapsulation

key
,y x

rk
′
, we first encaps the ciphertext attribute x′ to

obtain a pair (,),
x

CT k ′ then compute (),h H k ′=

where ()H ⋅ is a cryptographic hash function. Next, we

let the re-encapsulation key be
,

{() , }h
y x y xrk SK CT

′ ′
= ,

where ()hySK denotes the h component-wise

exponentiation to .

y
SK Note that, due to the

complexity of the discrete-log problem, the proxy

entity is impossible to obtain h from ()hySK . In other

words, the proxy entity cannot recover
y

SK from

,y x
rk

′
. In order to generate a first-level ciphertext

x
rct

′

from the second-level ciphertext
x

oct using the re-

encapsulation key
,y x

rk
′
, we directly run:

 PKEM.Decaps(, ()).n

x y
oct SKδ ← .

With the linear property of PKEM (Definition 6), if

(,) 1
k

R x y = , δ actually equals to ()hk , where

(,) PKEM.Encaps()
x

oct k x← . Then, the first-level

ciphertext
,y x

rk
′
 is set as { , }

x
CTδ

′
. Only the proxy

receiver can decaps
x

CT
′
 using her/his private key to

obtain k ′ , and recover the value hidden in the

encapsulation key, i.e., ()h H k ′= . Finally, the proxy

receiver can obtain:

A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1191

1 1

() () .h h h
k kδ

− −

⋅

= =

Let PKEM = (Steup, KeyGen, Encaps, Decaps) be

an IND-CCA secure PKEM with linear property for

predicates family { }
k

R R= and let :H K →� be a

cryptographic hash function, we define the construction

of PPRKEM as follows:

‧ Setup(1 ,) :k
λ On input of a security parameter

λ∈� and a description k∈� , this algorithm runs

(,) .Setup(1 ,).params msk PKEM kλ
← It then

outputs the parameter params and the master secret

key msk.

‧ KeyGen(,)msk y : On input of a master secret key

msk and a key attribute
k

y∈Y , this algorithm runs

.KeyGen(,)PKEM msk y to output a private key

y
SK for key attribute y and outputs it.

‧ Encaps()x : On input of a ciphertext attribute

,
k

x∈X this algorithm runs (,) .
x

oct k PKEM←

Encaps()x . It then outputs a second-level ciphertext

x
oct and an encapsulation key k.

‧ ReKey(,)
y

SK x′ : On input of a private key
y

SK for

some key attribute
k

y∈Y and a ciphertext attribute

k
x′∈X , this algorithm runs the following steps to

generate a re-encapsulation key:

－ Computes (,) .Encaps()
x

CT k PKEM x
′

′ ′← ;

－ Computes ()h H k ′= ;

－ Outputs
,

{() , }h
y x y xrk SK CT

′ ′
= .

‧
,

ReEncaps(,)
x y x

oct k
′

: On input of a second-level

ciphertext
x

oct encapsed by ciphertext attribute

k
x∈X and a re-encapsulation key

,

{() , },h
y x y xrk SK CT

′ ′
=

to generate a first-level ciphertext
x

rct
′
 which can

be decapsed by the private key
y

SK for some key

attribute
k

y′∈Y where (,) 1,R x y′ ′ = this algorithm

runs .Decaps(, ())hx yPKEM oct SKδ ← , and outputs

{ , }
x x

rct CTδ
′ ′
= .

‧
oct

Decaps (,) :
x y

oct SK On input of a second-level

ciphertext
x

oct and a private key
y

SK for some key

attribute ,
k

y∈Y this algorithm runs .DecapsPKEM

(,)
x y

oct SK to obtains an encapsulation key k or ⊥ ,

and outputs it.

‧
rct

Decaps (,) :
x y

rct SK
′ ′

 On input of a first-level

ciphertext { , }
x x

rct CTδ
′ ′
= and a private key

y
SK

for some key attribute
k

y′∈Y , this algorithm runs

the following steps:

－ Runs .Decaps(,)
x y

PKEM oct SK
′ ′

 to obtain k ′ if

(,) 1
k

R x y′ ′ = . Otherwise, outputs ⊥ ;

－ Computes ()h H k ′= ;

－ Computes
1

()hk δ
−

= .

Lemma 1. The proposed PPKREM scheme PPKREM

described above is correct if the underlying PKEM

scheme PKEM is correct and linear.

Proof. We separate this proof into two parts: one for

the second-level ciphertext and the other for the first-

level ciphertext. For all security parameter λ∈� and

description k∈� , WLOG., we assume that the

second-level ciphertext
x

oct and the key k are

generated from .Encaps()PPKREM x for some
k

x∈X

and the first-level ciphertext { , }
x x

rct CTδ
′ ′
= is

generated from
,

.ReEncaps(,)
x y x

PPKREM oct rd
′

where
,

ReKey(,).
y x y

rk SK x
′

′← Besides,
y

SK ←

KeyGen(,)
k

msk y∈Y , KeyGen(,),y kSK msk y′← ∈Y

and (,) Setup(1 ,)params msk kλ
← .

‧ Second-level ciphertext: Since the pair of second-

level ciphertext and encapsulation key (,)
x

oct k is

actually generated from .Encaps()
k

PKEM x∈X ,

with the correctness of the underlying PKEM, it is

trivial that the same encapsulation key k can be

obtained by running .Decaps(,)
x y

PKEM oct SK if

(,) 1
k

R x y = . Thus, the encapsulation key k can be

correctly obtained.

‧ First-level ciphertext: Since the pair of (,)
x

CT k
′

′ is

generated from .Encaps(),PKEM x′ with the

correctness of the underlying PKEM, k ′ can be

obtain using private key
y

SK where (,) 1
k

R x y′ ′ = is

satisfied. On the other hand, since .PKEMδ ←

Decrypt(, ())hy yoct SK and the underlying PKEM is

linear, δ actually equals to .DecapsPKEM

((,)) ,hx yoct SK that is h
kδ = if (,) 1.

k
R x y =

Therefore, we can compute:

1 1

() .h h h
k kδ

− −

⋅

= =

In the following, we give a generic construction of a

predicate proxy key re-encapsulation mechanism

scheme from a secure linear predicate encryption

scheme. Let (Setup, KeyGen, Enc, Dec)PE = be an

IND-CCA secure predicate encryption scheme with

linear property for predicates family { }
k

R R= and let

1 2
: , :H M K H M→ →� be two cryptographic hash

functions. We define the construction of predicate

proxy key re-encapsulation mechanism as follows:

‧ Setup(1 ,)kλ : On input of a security parameter λ

and a description k, this algorithm runs (,)params msk

.Setup(1 ,).PE k
λ

← It then outputs the parameter

1192 Journal of Internet Technology Volume 22 (2021) No.5

params and the master secret key msk.

‧ Setup(1 ,)kλ : On input of a security parameter λ

and a description k, this algorithm runs (,)params msk

.Setup(1 ,)PE k
λ

← . It then outputs the parameter

params and the master secret key msk.

‧ KeyGen(,)msk y : On input of a master secret key

msk and a key attribute ,
k

y∈Y this algorithm runs

.KeyGen(,)PE msk y to output a private key
y

SK

for key attribute y and outputs it.

‧ Encaps() :x On input of a ciphertext attribute

,
k

x∈X this algorithm first randomly chooses

1
,m M∈ and then runs

1
.Encrypt(,)

x
oct PE x m← .

Finally, it outputs a second-level ciphertext
x

oct and

an encapsulation key
1 1
()k H m= .

‧ ReKey(,)
y

SK x′ : On input of a private key
y

SK for

key attribute
k

y∈Y and a ciphertext attribute

,
k

x′∈X to generate a re-encapsulation key, this

algorithm runs the following steps:

－ Randomly chooses a message
2

m M∈ , and

computes
2

.Encrypt(,)
x

CT PE x m
′

′← ;

－ Computes
2 2
()h H m= ;

－ Outputs
,

{() , }h
y x y xrk SK CT

′ ′
= .

‧
,

ReEncaps(,)
x y x

oct rk
′

: On input of a second-level

ciphertext
x

oct encapsed by ciphertext attribute

k
x∈X and a re-encapsulation key

,y x
rk

′
=

{() , },h
y xSK CT

′
 to generate a first-level ciphertext

x
rct which can be decaps by the private key

y
SK

for key attribute
k

y′∈Y where (,) 1
k

R x y′ ′ = , this

algorithm runs .Decrypt(,())hx yPE oct SKδ ← , and

outputs { , }
x x

rct CTδ
′

= .

‧ Decaps (,)
oct x y

oct SK : On input of a second-level

ciphertext
x

oct and a private key
y

SK for key

attribute ,
k

y∈Y this algorithm runs
1

.m PE←

Decrypt(,)
x y

oct SK , and outputs
1 1
()k H m= if

(,) 1
k

R x y = , outputs ⊥ , otherwise.

‧ Decrypt(,) :
x y

rct SK
′

 On input of a first-level

ciphertext { , }
x x

rct CTδ
′

= and a private key
y

SK

for key attribute
k

y′∈Y , this algorithm runs the

following steps:

－ Runs
2

.Decrypt(,)
x y

m PE oct SK
′ ′

← to obtain
2

m

if (,)
k

R x y′ ′ . Otherwise, it terminals and outputs

⊥ ;

－ Computes
2 2
()h H m= ;

－ Computes
1

()hm δ
−

′ =

－ Outputs
1
()

x
k H m

′

′= .

Lemma 2. The generic construction of PPKREM

described above is correct if the underlying PE scheme

PE is correct and linear.

Proof. We separate this proof into two parts: one for

the second-level ciphertext and the other for the first-

level ciphertext. For all security parameters λ and

descriptions k, WLOG., we assume that the second-

level ciphertext
x

oct and the key
x
k are generated

from Encaps()
k

x∈X and the first-level ciphertext

{ , }
x x

rct CTδ
′ ′
= is generated from

,

ReEncaps(,)
x y x

oct rk
′

where
,

ReKey(,).
y x y

rk SK x
′

′← Besides, KeyGen
y

SK ←

(,),
k

msk y∈Y KeyGen(,),y kSK msk y
′

′← ∈Y and

(,) Setup(1 ,)params msk kλ
← .

‧ Second-level ciphertext: Since the second-level

ciphertext
x

oct is actually generated from

1
.Encrypt(,)

k
PE x m M∈ ∈X , with the correctness

of the underlying predicate encryption scheme, it is

obvious that
1

.Decrypt(,)
x y

m PE oct SK← if

(,) 1.
k
R x y = Thus, the encapsulation key

1 1
()

x
k H m

′
=

can be correctly obtained.

‧ First-level ciphertext: Since
x

CT
′
 is generated from

2
.Encrypt(,)PE x m′ , with the correctness of the

underlying predicate encryption scheme,
2

m can be

obtain using private key
y

SK where (,) 1
k

R x y′ ′ = is

satisfied. On the other hand, since .DecryptPEδ ←

(, ()),h
x yoct SK with the linear property of the

underlying predicate encryption scheme, δ actually

equals to
1

()hm if (,) 1
k

R x y = . Therefore, we can

compute:

1 1

1
() () ,h h h

m mδ
− −

⋅

= =

and obtain the encapsulation key:

1 1
() .

x x
k H m k

′
= =

5 Security Proofs

In this Section, we provide the security proofs for

the payload-hiding security of the proposed

constructions.

Theorem 1. The first proposed construction is

payload-hiding secure for second-level ciphertext

under predicate family R if the underlying PKEM

scheme PKEM is IND-CCA secure under the same

predicate family, and the underlying hash function H is

collision-resistant.

Proof. Suppose there exists an adversary A against the

payload-hiding security for second-level ciphertext of

the proposed construction that has non-negligible

A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1193

advantage. Then, there exists another adversary B that

can use A to break the IND-CCA game of the

underlying PKEM scheme PKEM with non-negligible

advantage. B constructs a hybrid game interacting with

A as follows.

‧ Setup. B first invokes the IND-CCA game of PKEM

to obtain the system parameters params. B then

passes params to A.

‧ Phase 1. In this phase, A can adaptively make

polynomial times of queries to the following oracles.

－ Key generation oracle :
ke

O When A queries this

oracle for a key attribute
k

y∈Y , B invokes the

key generation oracle of PKEM on the same y,

and is given a private key
y

SK . B then passes

y
SK to A.

－ Re-encapsulation key generation oracle :
rk

O

When A queries to this oracle for a key attribute

k
y∈Y , and a ciphertext attribute

k
x′∈X , B first

invokes the key generation oracle of PKEM on

the same y, and is given a private key
y

SK . Then,

B runs (,) .Encaps()
x

CT k PKEM x
′

′ ′← and ().h H k′=

Finally, B returns
,

{() , }h
y x y xrk SK CT

′ ′
= to A.

－ Re-encapsulation oracle :
re

O When A queries

this oracle for a key attribute
k

y∈Y , a ciphertext

attribute
k

x′∈X , and a second-level ciphertext

x
oct ψ∈ , B first invokes the key generation

oracle of PKEM on the same y, and is given a

private key .

y
SK Then, B runs (,)

x
CT k

′

′ ←

.Encaps(),PKEM x′ computes (),h H k ′= and sets

,

{() , }.h
y x y xrk SK CT

′ ′
= Finally, B runs ReEncaps

,

(,)
x y x

oct rk
′

 as the proposed construction to

obtain a first-level ciphertext ={ , }
x x

rct CTδ
′ ′

,

and returns
x

rct to A.

－ Second-level ciphertext decapsulation oracle

:
sde

O When A queries to this oracle for a

ciphertext attribute
k

x∈X , and a second-level

ciphertext
x

oct ψ∈ , B first randomly chooses a

key attribute
k

y∈Y such that (,) 1
k

R x y = . B then

invokes the decapsulation oracle of PKEM on

(,)
x

oct y , and is given an encapsulation key

k K∈ . In the end, B returns k to A.

－ First-level ciphertext decapsulation oracle

:fdeO When A queries this oracle for a ciphertext

attribute
k

x′∈X and a first-level ciphertext

={ , }
x x

rct CTδ
′ ′

, B first randomly chooses a key

attribute
k

y′∈Y such that (,) 1
k

R x y′ ′ = . B then

invokes the decapsulation oracle of PKEM on

(,)
x

CT y
′

′ , and is given a key .k M′∈ B computes

()h H k ′= and computes
1

() .h
k δ

−

= Finally, B

returns k to A.

‧ Challenge. In this phase, A submits a target

ciphertext attribute *

k
x ∈X to B with following

restrictions:

－
*(,) 0

k
R x y = for all

k
y∈Y submitted to

ke
O ;

－ for all (,)
k k

y x′∈ ∈Y X submitted to ,
rk

O

*(,) 0
k

R x y =

After receiving *

x from A, B invokes the challenge

phase of PKEM on *

x , and is given * *(,)CT k . B then

returns * *(,)CT k to A.

‧ Phase 2. This phase is the same as Phase 1 with the

additionally restrictions described in the payload-

hiding security for second-level ciphertext game in

Section 3.

‧ Guess. Finally, After A outputs a guess b′ , B takes

b′ as its own guess.

If *

k is indeed an encapsulation key of *

,CT then
* *(,)CT k is a valid second-level ciphertext. On the

other hand, if *

k is sampled from the key space K, to

the view of A, * *(,)CT k is still a valid second-level

ciphertext. Therefore, if A can distinguish whether *

k

is an encapsulation key of the ciphertext *

CT or not

and wins the payload-hiding game for second-level

ciphertext with non-negligible advantage, then B can

follow A’s answer to win the IND-CCA security game

of the underlying PKEM scheme with the non-

negligible advantage. Thus, the proof is completed.

Theorem 2. The first proposed construction is

payload-hiding secure for the first-level ciphertext

under predicate family R if the underlying PKEM

scheme PKEM is IND-CCA secure under the same

predicate family, and the underlying hash function H is

collision-resistant.

Proof. Suppose there exists an adversary A against the

payload-hiding security for the first-level ciphertext of

the proposed construction that has non-negligible

advantage. Then, there exists another adversary B that

can use A to break the IND-CCA game of the

underlying PKEM scheme PKEM with non-negligible

advantage. B constructs a hybrid game interacting with

A as follows.

‧ Setup. B first invokes the IND-CCA game of PKEM

to obtain the system parameter params. B then

passes params to A.

‧ Phase 1. In this phase, A can adaptively make

polynomial times of queries to the following oracles.

－ Key generation oracle :
ke

O When A queries this

oracle for a key attribute
k

y∈Y , B invokes the

key generation oracle of PKEM on the same y,

and is given a private key .

y
SK B then passes

1194 Journal of Internet Technology Volume 22 (2021) No.5

y
SK to A.

－ Re-encapsulation key generation oracle :
rk

O

When A queries this oracle for a key attribute

k
y∈Y , and a ciphertext attribute

k
x′∈X , B first

invokes the key generation oracle of PKEM on

the same y, and is given a private key
y

SK . Then,

B runs (,) .Encaps()
x

CT k PKEM x
′

′ ′← and computes

().h H k ′= Finally, B returns
,

{() , }h
y x y xrk SK CT

′ ′
=

to A.

－ Re-encapsulation oracle :
re

O When A queries

this oracle for a key attribute
k

y∈Y , a ciphertext

attribute
k

x′∈X , and a second-level ciphertext

x
oct ψ∈ , B invokes the key generation oracle of

PKEM on the same , and is given a private key

.

y
SK Then, B runs (,) .Encaps(),

x
CT k PKEM x

′

′ ′←

computes (),h H k ′= and sets
,

{() , }.h
y x y xrk SK CT

′ ′
=

Finally, B runs
,

ReEncaps(,)
x y x

oct rk
′

 as the

proposed construction to obtain a first-level

ciphertext ={ , }
x x

rct CTδ
′ ′

, and returns
x

rct
′
 to A.

－ Second-level ciphertext decapsulation oracle

sde
O : When A queries this oracle for a ciphertext

attribute
k

x∈X , and a second-level ciphertext

x
oct ψ∈ , B first randomly chooses a key attribute

k
y∈Y such that (,) 1

k
R x y = . B then invokes the

decapsulation oracle of PKEM on (,)
x

oct y , and

is given an encapsulation key k K∈ . In the end,

B returns k to A.

－First-level ciphertext decapsulation oracle fdeO :

When A queries this oracle for a ciphertext

attribute x′ and a first-level ciphertext

={ , }
x x

rct CTδ
′ ′

, B first randomly chooses a key

attribute
k

y′∈Y such that (,) 1
k

R x y′ ′ = . B then

invokes the decapsulation oracle of PKEM on

(,),
x

CT y
′

′ and is given a key k M′∈ . B

computes ()h H k ′= and computes
1

() .h
k δ

−

=

Finally, B returns k to A.

‧ Challenge. In this phase, A submits a target

ciphertext attribute *

k
x ∈X to B with the restriction:

*(,) 0
k

R x y = for all
k

y∈Y submitted to
ke

O . After

receiving *

x from A, B invokes the challenge phase

of PKEM on *

,x and is given * *(,)CT x . B then

randomly chooses
k

x←� X and computes (,)
x

CT k ←
�

�

.Encaps().PKEM x� Next, B returns * (){() , }H k

x x
rct k CT=

�

�

to A.

‧ Phase 2. This phase is the same as Phase 1, with the

additional restrictions described in the payload-

hiding security for the first-level ciphertext game in

Section 3.

‧ Guess. Finally, After A outputs a guess b′ , B takes

b′ as its own guess.

We first analyze the distribution of the first-level

ciphertext
*

* (){() , }.H k

xx
rct k CT=

�

�

 First, the distribution

of
x

CT
�

 is trivially the same as
x

CT
′
 returned from

re
O .

Second, δ in
re

O is equal to h
k if the linear property

is hold, where k is the encapsulation key of the second-

level ciphertext and h∈� . That is, the distribution of
* ()()H k

k
�

 is the same as δ returned from .

re
O

Therefore, the distribution of
x

rct and the first-level

ciphertext queried from
re

O are the same to A.

In the following, we discuss the advantage of B that

wins the game. If A wins the payload-hiding security

game for first-level ciphertext of PPKREM scheme

with non-negligible advantage, it implies that A has the

ability to distinguish whether *

k is an encapsulation

key of the *

CT . B can follow A’s answer to win the

IND-CCA security game of the underlying PKEM

scheme with non-negligible advantage. Therefore, the

proof is completed.

Theorem 3. The second proposed construction is

payload-hiding secure for the second-level ciphertext

and first-level ciphertext under predicate family R, if

the underlying PE scheme PE is IND-CCA secure

under the same predicate family, and the underlying

hash function H is collision-resistant.

Proof. The proof is intuitive and similar to Theorem 1

and Theorem 2, except that the oracles invoked by B.

More concretely, as the underlying building block is

PE, B can only invoke the key generation oracle and

decrypte oracle. In addition, in the Challenge phase, B

is given a challenge ciphertext attribute *

k
x ∈X . Then,

it randomly chooses two messages
1 2
,m m with the

same length and sends *

1 2
(, ,)x m m as the challenge

for IND-CCA game of the underlying PE scheme.

After receiving the challege ciphertext *

,CT B

randomly chooses a message , {0,1},
b

m b∈ and

submits * *((,) ())
b

CT k H m= to A. Then, if A can

distinguish whether *

k is an encapsulation key of the
*

CT , B can follow A’s answer to win the IND-CCA

security game of the underlying PE scheme with non-

negligible advantage. Therefore, the proof is completed.

6 Concrete Instantiation

In this Section, we propose a (single-hop,

unidirectional) identity-based proxy key re-

encapsulation scheme from Water’s identity-based

encryption [14]. More precisely, we first obtain an

identity-based KEM from [14]. Then, since the scheme

satisfies the linear property, we can adopt our proposed

A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1195

generic construction to obtain an identity-based

PKREM. Here, we note that identity-based KEM is

actually a kind of PKEM over the predicate function

k
R such that (,) 1

k
R x y = if ;x y= (,) 0,

k
R x y =

otherwise.

6.1 Identity-based Key Encapsulation Mechanism

Let
1

,G G be two groups with the same order p. Let

g∈G be the generator of G and
1

:e × →G G G be a

bilinear mapping that maps two elements of G to

group
1
.G The identity-based key encapsulation

mechanism is presented as follows:

‧ Setup(1 ,)kλ : On input of the security parameter

λ∈� , this algorithm runs the following steps to

generate system parameter params and master secret

key msk:

－ Randomly chooses
p

a∈� ;

－ Randomly chooses a generator g∈G ;

－ Sets
1

a

g g= , and randomly chooses
2

g ∈G ;

－ Chooses an encode function *:{0,1}F →G that

maps an arbitrary length string to a group element

of G ;

－ Finally outputs system parameter params =

1 2
{ , , , }g g g F and master secret key

2

amsk g= .

Here, we note that the system parameter params will

be implicit input for the following algorithms:

‧ Encaps()id : On input of an identity *{0,1}id∈ , this

algorithm first randomly selects
p

t∈� and then

computes
1

t
c g= and

2

t
c eid= . Finally, it outputs a

ciphertext
1 2

{ , }CT c c= and an encapsulation key

1 2
(,)tk e g g= .

‧ KeyGen(,)msk id : On input of a master secret key

2

amsk g= and an identity *{0,1}id∈ , this algorithm

first encodes user’s identity to a group element, that

is ()eid F id= . Then, it randomly selects
p

r∈� and

computes
1 2

a rd g eid= ⋅ and
2

rd g= . Finally, it sets

the private key
1 2

{ , }
id

SK d d= for the identity id,

and output
id

SK .

‧ Decaps(,) :
id

CT SK On input of a ciphertext

1 2
{ , }CT c c= and a private key

1 2
{ , }

id
SK d d= , this

algorithm decrypts the ciphertext by computing:

 1 1

1 2

2 2

(,)
(,) .

(,)

t
e d c

k e g g
e d c

= =

Finally, it outputs an encapsulation key
1

k∈G .

6.2 Identity-based Proxy Key Re-

encapsulation Mechanism

In the following, we obtain an identity-based proxy

key re-encapsulation mechanism scheme from the

above scheme. Here we use the same notation setting

as Section 6.1.

‧ Setup(1 ,) :k
λ On input of the security parameter

λ∈� , this algorithm runs the following steps to

generate system parameter params and master secret

key msk:

－ Randomly chooses
p

a∈� ;

－ Randomly chooses a generator g∈G ;

－ Sets
1

a

g g= , and randomly chooses
2

g ∈G ;.

－ Randomly chooses u∈G ;

－ Chooses an encode function *:{0,1}F →G that

maps an arbitrary length string to a group element

of G ;

－Chooses a cryptographic hash function
1

:
p

H →�G ;

－ Finally, outputs system parameter params =

1 2
{ , , , , }g g g F H and master secret key

2

amsk g= .

Here, we note that the system parameter params

will be implicit input for the following algorithms.

‧ Encaps() :id On input of an identity *{0,1}id∈ , this

algorithm first randomly selects
p

t∈� and then

computes
1

,

t
c g=

2
.

t
c edi= Finally, it outputs a

second-level ciphertext
1 2

{ , }CT c c= and an

encapsulation key
1 2

(,)tk e g g= .

‧ KeyGen(,) :msk id On input of a master secret key

2

amsk g= and an identity *{0,1}id∈ , this algorithm

first encodes user’s identity to a group element, that

is ()eid F id= . Then, it randomly selects
p

r∈�

and computes
1 2

() ,a rd g eid= ⋅
2

.

rd g= Finally, it

sets the private key
1 2

{ , }
id

SK d d= for the identity

id, and output
id

SK .

‧ ReKey(,) :
id

SK id ′ On input of an identity’s private

key
1 2

{ , }
id

SK d d= and a target identity id ′ , this

algorithm first randomly chooses
p

t′∈� . Then, it

encodes the identity, that is ()eid F id′ ′= . Next, it

computes
1

,

t
r g

′

=
2

,

t
r edi

′

′= and sets
1 2

{ , }
id

CT r r
′
= .

It also computes
1 2

((,)).th H e g g
′

= Finally, it

outputs a re-encryption key:

 , 1 2 1 2{ { , }, { , }}.h h h

id id id id
rk SK d d CT r r

′ ′
= = =

‧
, ,

ReEncaps() :
id id id

oct RK
′

 On input of a first-level

ciphertext
1 2

{ , }
id

oct c c= and a re-encryption key

, 1 2 1 2{ { , }, { , }},h h h

id id id id
rk SK d d CT r r

′ ′
= = =

this algorithm computes:

 1 1

1 2

2 2

(,)
((,)) .

(,)

h

t h

h

e d c
e g g

e d c
δ = =

1196 Journal of Internet Technology Volume 22 (2021) No.5

‧
,

Decaps () :
oct id id

oct SK On input of a second-level

ciphertext
1 2

{ , }
id

oct c c= and a private key
id

SK =

1 2
{ , },d d this algorithm decrypts the ciphertext by

computing 1 1

1 2

2 2

(,)
(,) .

(,)

t
e d c

k e g g
e d c

= =

‧
,

Decaps () :
rct id id

rct SK
′

 On input of a first-level

ciphertext
1 2 1 2

{ ((,)) , { , }}t h

id id
rct e g g CT r rδ

′ ′
= = =

and a private key
1 2

{ , }
id

SK d d′ ′= , this algorithm

first computes:

 1 1

2 2

(,)

(,)

e d r
H

e d r

′⎛ ⎞
⎜ ⎟′⎝ ⎠

 2
(,)

(,)

a r t

r t

e g eid g
H

e g eid

′ ′

′ ′

⎛ ⎞′⋅
= ⎜ ⎟

′⎝ ⎠

 1 2
(,) , (,)

(,)

t t r

r t

e g g e eid g
H

e g eid

′ ′ ′

′ ′

⎛ ⎞′
= ⎜ ⎟

′⎝ ⎠

1 2

((,))tH e g g
′

=

 .h=

Finally, it outputs an encapsulation key:

1 1

1 2 1 2
() ((,)) (,) .h th h tk e g g e g gδ

− −

= = =

Note that we use
p

r′∈� to represent the random

number used in the key generation algorithm for

identity id ′ .

7 Conclusions and Future Work

In this paper, we present two novel generic

constructions that can obtain a (single-hop,

unidirectional) PPKREM from a linear PKEM or from

a linear PE. By combining with a secure symmetric

encryption, a (single-hop, unidirectional) PPRE is also

obtained. Hence, the result provides a new solution for

constructing a PPRE that supports any predicate

function and solves the problem that the current PPRE

only supports the inner product predicate function. In

further work, we will expand the single-hop setting to

multi-hop setting to support more complex scenarios,

while considering a bidirectional setting.

Acknowledgments

This research was supported by the Ministry of

Science and Technology, Taiwan (ROC), under Project

Numbers MOST 108-2218-E-004-002-MY2, MOST

109-2221-E-004-011-MY3, MOST 109-3111-8-004-

001-, MOST 110-2218-E-004-001-MBK, MOST 110-

2221-E-004-003-.

References

[1] Y.-F. Tseng, Z.-Y. Liu, R. Tso, A Generic Construction of

Predicate Proxy Key Re-encapsulation Mechanism, Asia Joint

Conference on Information Security, Taipei, Taiwan, 2020,

pp. 1-8.

[2] M. Blaze, G. Bleumer, M. Strauss, Divertible Protocols and

Atomic Proxy Cryptography, International Conference on the

Theory and Application of Cryptographic Techniques, Espoo,

Finland, 1998, pp. 127-144.

[3] S. S. Chow, J. Weng, Y. Yang, R. H. Deng, Efficient

Unidirectional Proxy Re-encryption, International Conference

on Cryptology in Africa, Stellenbosch, South Africa, 2010, pp.

316-332.

[4] C.-K. Chu, W.-G. Tzeng, Identity-based Proxy Re-encryption

without Random Oracles, Information Security Conference,

Valparaíso, Chile, 2007, pp. 189-202.

[5] M. Green, G. Ateniese, Identity-based Proxy Re-encryption,

International Conference on Applied Cryptography and

Network Security, Zhuhai, China, 2007, pp. 288-306.

[6] L. Wang, L. Wang, M. Mambo, E. Okamoto, New Identity-

based Proxy Re-encryption Schemes to Prevent Collusion

Attacks, Pairing-Based Cryptography, Yamanaka Hot Spring,

Japan, 2010, pp. 327-346.

[7] K. Liang, L. Fang, W. Susilo, D. S. Wong, A Ciphertext-

policy Attribute-based Proxy Re-encryption with Chosen-

ciphertext Security, International Conference on Intelligent

Networking and Collaborative Systems, Shaanxi Province,

China, 2013, pp. 552-559.

[8] X. Liang, Z. Cao, H. Lin, J. Shao, Attribute based Proxy Re-

encryption with Delegating Capabilities, ACM Symposium on

Information, Computer and Communications Security,

Sydney, Australia, 2009, pp. 276-286.

[9] S. Luo, J. Hu, Z. Chen, Ciphertext Policy Attribute-based

Proxy Re-encryption, International Conference on

Information and Communications Security, Barcelona, Spain,

2010, pp. 401-415.

[10] J. Katz, A. Sahai, B. Waters, Predicate Encryption Supporting

Disjunctions, Polynomial Equations, and Inner Products,

International Conference on the Theory and Applications of

Cryptographic Techniques, Istanbul, Turkey, 2008, pp. 146-

162.

[11] M. Backes, M. Gagné, S. A. K. Thyagarajan, Fully Secure

Inner-product Proxy Re-encryption with Constant Size

Ciphertext, International Workshop on Security in Cloud

Computing, Singapore, Singapore, 2015, pp. 31-40.

[12] M. Sepehri, A. Trombetta, M. Sepehri, Secure Data Sharing

in Cloud using an Efficient Inner-Product Proxy Re-

Encryption Scheme, Journal of Cyber Security and Mobility,

Vol. 6, No. 3, pp. 339-378, July, 2017.

[13] M. Sepehri, A. Trombetta, M. Sepehri, E. Damiani, An

Efficient Cryptography-Based Access Control using Inner-

Product Proxy Re-Encryption Scheme, International

Conference on Availability, Reliability and Security, Hamburg,

Germany, 2018, pp. 1-10.

[14] B. Waters, Efficient Identity-based Encryption without

A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism 1197

Random Oracles, International Conference on the Theory and

Applications of Cryptographic Techniques, Aarhus, Denmark,

2005, pp. 114-127.

[15] S. Agrawal, M. Chase, A Study of Pair Encodings: Predicate

Encryption in Prime Order Groups, Theory of Cryptography,

Tel Aviv, Israel, 2016, pp. 259-288.

[16] N. Attrapadung, Dual System Encryption via Doubly

Selective Security: Framework, Fully Secure Functional

Encryption for Regular Languages, and More, International

Conference on the Theory and Applications of Cryptographic

Techniques, Copenhagen, Denmark, 2014, pp. 557-577.

[17] H. Feng, J. Liu, Q. Wu, W. Liu, Predicate Fully

Homomorphic Encryption: Achieving Fine-Grained Access

Control over Manipulable Ciphertext, Conference on

Information Security and Cryptology, Xi’an, China, 2017, pp.

278-298.

[18] R. Canetti, S. Hohenberger, Chosen-ciphertext Secure Proxy

Re-encryption, ACM Conference on Computer and

Communications Security, Alexandria, Virginia, USA, 2007,

pp. 185-194.

[19] R. H. Deng, J. Weng, S. Liu, K. Chen, Chosen-ciphertext

Secure Proxy Re-encryption without Pairings, Cryptology

and Network Security, Hong-Kong, China, 2008, pp. 1-17.

[20] B. Libert, D. Vergnaud, Unidirectional Chosen-ciphertext

Secure Proxy Re-encryption, International Conference on

Practice and Theory in Public Key Cryptography, Barcelona,

Spain, 2008, pp. 360-379.

Biographies

Yi-Fan Tseng was born in Kaohsiung,

Taiwan. He received the Ph.D. degree

and MS degree in computer science

and engineering from National Sun

Yat-sen University, Taiwan, in 2014

and 2018, respectively. In 2019, he

has joined the faculty of the Department of Computer

Science, National Chengchi University, Taipei, Taiwan.

Zi-Yuan Liu received the B.E. degree

in computer science from National

Tseng Hua University, Taiwan in

2016 and the M.E. degree in computer

science from National Chengchi

University, Taiwan in 2018. He is

currently pursuing the Ph.D. degree in computer

science at National Chengchi University, Taiwan.

Raylin Tso is currently a professor in

the Department of Computer Science,

National Chengchi University, Taiwan.

He has authored or coauthored over

60 papers in referred journals and

conferences in the area of information

security. His research interests are mainly in the areas

of cryptography, IoT security, and blockchain

technology.

1198 Journal of Internet Technology Volume 22 (2021) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

