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Abstract 

Proxy re-encryption (PRE), first formalized by Blaze 

et al. in 1998, allows a proxy entity to delegate the 

decryption right of a ciphertext from one party to another 

without obtaining the information of the plaintext. In 

order to achieve more flexible access control, the 

predicate proxy re-encryption (PPRE) is studied further. 

However, existing PPRE is restricted with the inner 

product predicate function. The problem of how to realize 

the PPRE of arbitrary predicate functions is still to be 

solved. In this paper, we propose two secure generic 

predicate proxy key re-encapsulation mechanisms 

(PPKREM). By applying the key encapsulation mechanism/ 

data encapsulation mechanism paradigm, our PPKREM 

can be converted to a PPRE. Consequently, the results 

open new avenues for building more flexible and fine-

grained PPRE. 

Keywords: Predicate encryption, Predicate proxy re-

encryption, Generic construction, Single-hop, 

Unidirectional 

1 Introduction 

Proxy re-encryption (PRE), first formalized by 

Blaze et al. in 1998 [2], allows a proxy entity to re-

encrypt a ciphertext that has been encrypted for Alice 

and to generate a new ciphertext that can be decrypted 

using Bob’s private key. The proxy entity only needs a 

re-key provided by Alice, without obtaining any other 

information of the plaintext or needing to access 

Alice’s and Bob’s private keys. In other words, the 

proxy entity can delegate the decryption right from one 

party to another. With this flexible property, PRE 

yields numerous real-world applications [3] such as 

outsourcing cryptography, distributed file storage 

systems, and law enforcement, etc. To support more 

flexibility on access control, some studies focus on 

supporting more complex access control mechanisms, 

such as identity-based PRE [4-6] and attribute-based 

PRE [7-9]. 

On the other hand, predicate encryption (PE), 

formalized by Katz et al. in 2008 [10], is a paradigm 

for public-key encryption that conceptually generalizes 

public-key encryption, supporting fine-grained and 

role-based access to encrypted data. More precisely, in 

a PE for a predicate function ,
k

R  a private key is 

associated with a key attribute y, while the ciphertext is 

associated with a ciphertext attribute x, where k is the 

description of a predicate. A ciphertext with ciphertext 

attribute x can be decrypted by a private key with key 

attribute y if, and only if, ( , ) 1.
k

R x y =  Thus, PE 

captures wide classes of encryption in cryptography. 

For example, identity-based encryption can be viewed 

as PE supporting “equality” predicate functions, and 

both ciphertext attributes and key attributes are strings. 

Although many identity-based PRE and attribute-

based PRE have been studied, only a few of the studies 

have researched how to construct proxy re-encryption 

(PPRE) [11-13]. Unfortunately, these schemes consider 

only the case where the predicate function is an inner 

product predicate. At present, many flexible and fine-

grained PPRE schemes have not been implemented and 

discussed. Hence, how to realize a PPRE of an 

arbitrary predicate function remains an open problem. 

1.1 Contributions 

In this paper, we affirmatively solve this by 

proposing two generic constructions that can transform 

any linear predicate key encapsulation mechanism 

(PKEM) or any linear PE scheme to a predicate proxy 

key re-encapsulation mechanism (PPKREM).  

We prove that our construction is payload hiding of 

second/first-level ciphertext (i.e., original/re-encapsulation 

ciphertext) secure in the standard model, if the 

underlying PKEM satisfies indistinguishability under 

chosen-ciphertext attacks (IND-CCA).  

Then, since secure key encapsulation mechanism 

(KEM) can be used as a building block to construct 

public key encryption, i.e., combining with a secure 

symmetric encryption scheme, we can use our 

construction to obtain a secure PPRE. 



1186 Journal of Internet Technology Volume 22 (2021) No.5 

 

Besides, we adopt our proposed generic construction 

for Water’s identity-based encryption [14]. More 

precisely, we first obtain an identity-based KEM from 

Water’s work and then obtain an identity-based proxy 

key re-encapsulation mechanism using our proposed 

construction. Furthermore, by applying the KEM/DEM 

paradigm, anyone can easily obtain an identity-based 

PRE. 

Our result, compared with the previous identity-

based [4-6] and attribute-based [7-9] constructions, is 

more flexible to use in various scenarios. However, our 

generic construction limits the underlying building 

block requirements to meet the linear property, which 

does not exist in all PKEM schemes. 

1.2 Comparison with the Previous Version [1] 

In this paper, we formally prove that the proposed 

generic construction is payload hiding of second-/first-

level ciphertext secure. In addition, the previous 

version  considers only how to obtain a PPKREM 

scheme from linear PKEM. Here, we further propose 

another generic construction that can obtain a 

PPKREM scheme from any linear PE scheme. 

1.3 Organization 

The remainder of the work is organized as follows. 

In Sections 2 and 3, we introduce the definition and the 

security requirement of PE, PKEM, and PPKREM, 

respectively. In Sections 4 and 5, we propose our 

generic construction and provide the security proofs, 

respectively. In Section 6, we give an instantiates of 

identity-based proxy key re-encapsulation mechanism 

from Water’s identity-based encryption. Finally, we 

conclude the work in Section 7. 

2 Preliminary 

2.1 Notations and Abbreviations 

For simplicity and convenience, we use the 

following notations and abbreviations detailed in Table 

1 throughout the paper. 

Table 1. Notations and abbreviations 

Symbols Description 

λ  Security parameter 

�  The set of positive integers 

�  The set of integers 

p
�  The set of integers module p  

PE Predicate encryption 

PRE Proxy re-encryption 

PPRE Predicate proxy re-encryption 

KEM Key encapsulation mechanism 

PKEM Predicate key encapsulation mechanism 

PPKREM Predicate proxy key re-encapsulation mechanism 

PPT Probabilistic polynomial-time 

 

2.2 Predicate Key Encapsulation Mechanism 

(PKEM) 

In this Subsection, we first recall the definition of 

the predicate family in [15-16], and then recall the 

definition of PKEM in [17] described by a binary 

relation. 

Definition 1 (Predicate Family). We consider a 

predicate family { }c
k

R R= ∈�  for some constant 

,c∈�  where a relation : {0,1}
k k k

R × →X Y  is a 

predicate function that maps a pair of ciphertext 

attributes in a ciphertext attribute space 
k

X  and key 

attributes in a key attribute space 
k

Y  to {0,1} . The 

family index 
1 2

( , , )k n n= …  specifies the description 

of a predicate from the family. 

Definition 2 (Predicate Key Encapsulation 

Mechanism). Let ψ  be the encapsulation ciphertext 

space and K be the encapsulation key space, a PKEM 

scheme PKEM for predicate family R consists of the 

following four algorithms: 

‧ Setup(1 , ) ( , )k params mskλ
→ : Taking as input the 

security parameter λ∈�  and a description k∈� , 

the algorithm outputs the system parameter params, 

where the description of k is implicitly included, and 

the master secret key msk. Note that params will be 

an implicit input for the following algorithms. 

‧ Encaps( ) ( , )
x

x CT k→ : Taking as inputs a ciphertext 

attribute
k

x∈� , the algorithm outputs a ciphertext 

x
CT ψ∈  and an encapsulation key k K∈ . 

‧ KeyGen( , ) :
y

msk y SK→  Taking as inputs the 

master secret key msk and a key attribute 
k

y∈� , 

the algorithm outputs a private key 
y

SK  associated 

with y. 

‧ Decaps( , ) / :
x y

CT SK k→ ⊥  Taking as inputs a 

ciphertext 
x

CT ψ∈  for some ciphertext attribute 

k
x∈X  and a private key 

y
SK  for some key 

attribute ,
k

y∈Y  the algorithm outputs an 

encapsulation key k K∈  if ( , ) 1
k

R x y = . Otherwise, 

it outputs ⊥ . 

Correctness. A PKEM scheme PKEM is correct if, for 

all , ,kλ ∈�  we have Decaps( , ),
x y

k CT SK←  if 

( , ) 1
k

R x y = ; Decaps( , ),
x y

CT SK⊥←  otherwise, where 

( , ) Encaps( ),
x

CT k x←  KeyGen( , ),
y

SK msk y←  and 

( , ) Setup(1 , )params msk kλ
← . 

Security. In order to describe the security of the 

PKEM, we define the following IND-CCA game 

between a challenger C and an adversary A. 

Game  IND-CCA: 

‧ Setup. The challenger C runs the algorithm 

Setup(1 , )kλ  to generate system parameter params 
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and the master secret key msk. It then sends params 

to the adversary A. 

‧ Phase 1. The adversary A makes polynomial times 

of queries to the following oracles. 

－ Key generation oracle :
ke

O  On input of a key 

attribute ,
k

y∈Y  the oracle returns the 

corresponding private key 
y

SK . 

－ Decapsulation oracle :
de

O  On input of a 

ciphertext 
x

CT ψ∈  and a key attribute 
k

y∈Y , 

the oracle returns an encapsulation key k or ⊥ . 

‧ Challenge. The adversary submits a target 

ciphertext attribute *

k
x ∈X , where *( , ) 0

k
R x y =  

for all 
k

y∈Y  queried in Phase 1. Then the 

challenger C randomly chooses a bit {0,1}b← , 

runs 
*

* * *

0
( , ) Encaps( )

x

CT k x← , and chooses 

*

1
k K← . Finally, C returns 

*

* *( , )
bx

CT k  to A. 

‧ Phase 2. It is the same as Phase 1 except that 

*

*Decaps( , )
x

CT y  and KeyGen( )y  are not allowed if 

*( , ) 1
k

R x y = . 

‧ Guess. The adversary A outputs a bit b′ , and wins 

the game if b b′ = . 

The advantage of the adversary A in winning the 

game is defined as: 

 
,

1
( ) | Pr[ ] | .

2

IND CCA

PKEM A
Adv b bλ

−

′= = −  

2.3 Predicate Encryption (PE) 

Definition 3 (Predicate Encryption). A predicate 

encryption scheme PE for predicate family R consists 

of the following four algorithms: 

‧ Setup(1 , ) ( , )k params mskλ
→ : Taking as input the 

security parameter λ  and a description k, the 

algorithm outputs the system parameter params, 

where the description of k is implicitly included, and 

the master secret key msk. Note that params will be 

an implicit input for the following algorithms. 

‧ Encaps( , )
x

x M CT→ : Taking as inputs a ciphertext 

attribute 
k

x∈X  and a message M M∈ , the 

algorithm outputs a ciphertext 
x

CT . 

‧ KeyGen( , ) :
y

msk y SK→  Taking as inputs the 

master secret key msk and a key attribute 
k

y∈Y , 

the algorithm outputs a private key 
y

SK . 

‧ Decaps( , ) :
x y

CT SK M→  Taking as inputs a 

ciphertext 
x

CT  for ciphertext attribute 
k

x∈X  and a 

private key 
y

SK  for key attribute 
k

y∈Y , the 

algorithm outputs a message M M∈ . 

Correctness. A predicate encryption scheme PE is 

correct if, for all , ,kλ ∈�  we have M ←  

Decrypt( , )
x y

CT SK  if ( , ) 1,
k

R x y =  where 
x

CT ←  

Encrypt( , ),x M KeyGen( , ),
y

SK msk y← and ( , )params msk  

Setup(1 , )kλ
← . 

Security. In order to describe the security of the 

predicate encryption scheme, we define the following 

IND-CCA game between a challenger C and an 

adversary A. 

Game IND-CCA: 

‧ Setup. The challenger C runs the algorithm 

Setup(1 , )kλ  and sends params to the adversary A. 

‧ Phase 1. The adversary A makes polynomial times 

of queries to the following oracles. 

－ KeyGen( )
i
y : Upon inputting a key attribute 

i
y ∈Y , the oracle returns the corresponding 

private key 
i
y

SK . 

－ Decrypt( , )
i

CT y : Upon inputting a ciphertext CT 

and a key attribute 
i
y ∈Y , the oracle returns the 

output of Decrypt( , )
i
y

CT SK . 

‧ Challenge. The adversary submits two distinct 

messages 
0 1
,M M M∈  of the same length, and a 

target ciphertext attribute *

,
K

x ∈�  where *( , )
k i

R x y  

0=  for all 
i
y  queried in Phase 1. Then the 

challenger C randomly chooses a bit {0,1}b← , and 

returns * *Encrypt( , ).
b

CT x M←  

‧ Phase 2. It is the same as Phase 1 except 
*Decrypt( , )

i
CT y  and KeyGen( )

i
y  such that 

*( , ) 1
k i

R x y =  are not allowed. 

‧ Guess. The adversary A outputs a bit b′ , and wins 

the game if b b′ = . 

The advantage of the adversary A in winning the 

game is defined as: 

 
,

1
( ) | Pr[ ] | .

2

IND CCA

PE A
Adv b bλ

−

′= = −  

Definition 4 (IND-CCA Security). We say that a PE 

scheme PE for predicate family R is IND-CCA secure 

if, for all PPT adversary A,
,

( )IND CCA

PE A
Adv λ

−  is negligible. 

The model can be easily changed for CPA security 

and selective security by removing the Decrypt oracle 

and forcing the adversary to submit its target first, 

respectively. 

Linearity. We say that a correct predicate encryption 

scheme (Setup, Encrypt, KeyGen, Decrypt)PE =  is 

linear if for all , Encrypt( , )
x

CT x Mγ ∈ ←�  and 
y

SK ←  

KeyGen( , ),msk y  where ( , ) Setup(1 , )params msk kλ
← , 

the following equation is satisfied: Decrypt( , ( ) )
x y

CT SK
γ
=  

Decrypt( , )
x y

CT SK
γ . 
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Definition 5 (IND-CCA Security of PKEM). We say 

that a PEKM schemePKEM for predicate family R is 

IND-CCA secure if, for all PPT adversary A, 

,

( )IND CCA

PKEM A
Adv λ

−  is negligible. 

The model can be easily changed for CPA security 

and selective security by removing the Decapsulation 

oracle and forcing the adversary to submit its target 

first, respectively. 

Linearity. In this work, the whole correctness of the 

proposed construction is based on the linearity of the 

PKEM, defined as follows. 

Definition 6 (Linearity of PKEM). We say that a 

correct PKEM scheme (Setup, Encrypt,PKEM =  

KeyGen, Decrypt)  for predicate family R is linear if 

for all , , ( , ) Encaps( ),
x

k CT k xγ λ∈ ∈ ←� �  and 
y

SK ←  

KeyGen( , ),msk y  where ( , ) Setup(1 , )params msk kλ
←  

and ( , ) 1
k

R x y = , the following equation is satisfied: 

Decaps( , ( ) ) ,
x y

CT SK k
γ γ

=  where ( )
y

SK
γ  and k

γ  

denote the component-wise exponentiation to 
y

SK  and 

k, respectively. 

3 Predicate Proxy Key Re-encapsulation 

Mechanism (PPKREM) 

In this Section, we introduce the definition and 

security models of a single-hop unidirectional 

PPKREM. More precisely, we adopt the security game 

in [18]. However, the game in [18] is defined for an 

identity-based cryptography scheme, thus we revise it 

and provide new security games for our scheme. 

Additionally, for consistency and ease of interpretation, 

we use the terminologies defined in [19-20], that is, an 

original ciphertext is called the second-level ciphertext 

and a re-encapsulation ciphertext is called the first-

level ciphertext. 

Definition 7 (Single-hop Unidirectional Predicate 

Proxy Key Re-encapsulation Mechanism). Let ψ  be 

the encapsulation ciphertext space and K be the 

encapsulation key space, a PPKREM scheme 

PPKREM for predicate family R consists of seven PPT 

algorithms (Setup, KeyGen, Encaps, ReKey, ReEncaps, 

Decapsoct, Decapsrct): 

‧ Setup(1 , ) ( , )k params mskλ
→ : Taking as input the 

security parameter λ∈� , and a description k∈� , 

the algorithm outputs the system parameter params, 

where the description of k is implicitly included, and 

the master secret key msk. Note that params will be 

an implicit input for the following algorithms. 

‧ KeyGen( , )
y

msk y SK→ : Taking as input the master 

secret key msk and a key attribute 
k

y∈Y , the 

algorithm outputs a private key 
y

SK . 

‧ Encaps( ) ( , ) :
x x

x oct k→  Taking as input a ciphertext 

attribute 
k

x∈X , the algorithm outputs a second-

level ciphertext 
x

oct ψ∈  and an encapsulation key 

x
k K∈ . 

‧ 
,

ReKey( , ) :
y y x

SK x rk
′

′ →  Taking as input a private 

key 
y

SK  for some key attribute
k

y∈Y  and a 

ciphertext attribute 
k

x′∈X , the algorithm outputs a 

re-key 
,y x

rk
′
. 

‧ 
,

ReEncaps( , ) :
x y x x

oct rk rct
′ ′
→  Taking as input a 

ciphertext 
x

oct ψ∈  for some ciphertext attribute 

k
x∈X  and a re-key 

,y x
rk

′
, the algorithm outputs a 

first-level ciphertext 
x

rct ψ∈  which can be decaps 

by the private key 
y

SK
′

 for some key attribute 

k
y′∈Y  where ( , ) 1

k
R x y′ ′ = . 

‧ Decaps( , ) :
x y

oct SK k→  Taking as input a second-

level ciphertext 
x

oct ψ∈  for some ciphertext 

attribute
k

X  and a private key 
y

SK  for key attribute 

k
y∈Y , the algorithm outputs a key k K∈  if 

( , ) 1
k

R x y = . Otherwise, it outputs ⊥ . 

‧ Decaps ( , ) :
rct x y

rct SK k
′ ′

→  Takeing as input a first-

level ciphertext 
x

oct ψ
′
∈  for some ciphertext 

attribute 
k

x′∈X  and a private key 
y

SK  for some 

key attribute 
k

y′∈Y , the algorithm outputs an 

encapsulation key k K∈  if ( , ) 1
k

R x y′ ′ = . Otherwise, 

it outputs ⊥ . 

Correctness. A single-hop unidirectional PPKREM 

scheme PPKREM is correct if, for all , ,kλ ∈�  

,
k

x x′∈X , and ,
k

y y′∈Y , we have: 

‧ = Decaps( , )
x y

k oct SK  if ( , ) 1
k

R x y = ; 

‧ = Decaps( , )
x y

oct SK⊥  if ( , ) 0
k

R x y = ; 

‧ = Decaps (ReEncaps( , ReKey( , )), )
rct x y y

k oct SK x SK
′

′  

if ( , ) 1 ( , ) 1
k k

R x y R x y′ ′= ∧ = ; 

‧ = Decaps (ReEncaps( , ReKey( , )), )
rct x y y

oct SK x SK
′

′⊥  

if ( , ) 0 ( , ) 0,
k k

R x y R x y′ ′= ∨ =  where 
y

SK ←  

KeyGen( , ),msk y  KeyGen( , ),
y

SK msk y
′

′←  and 

( , ) Setup(1 , )params msk kλ
← . 

Security. Before introducing the security models, we 

follow [18] to define the derivatives for single-hop 

unidirectional PPKREM. 

Definition 8 (Derivatives). Let , ,
k

x x x′ ′′∈X  be the 

ciphertext attributes, let 
k

y∈Y  be the key attribute, 

and let , ,ct ct ct ψ′ ′′∈  be the ciphertexts. The 

derivatives of ( , )x ct  are defined as follows: 

‧ ( , )x ct  is a derivative of itself; 

‧ If ( , )x ct′ ′  is a derivative of ( , )x ct  and ( , )x ct′′ ′′  is 

also a derivative of ( , ),x ct′ ′  then ( , )x ct′′ ′′  is a 
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derivative of ( , )x ct ; 

‧ If an adversary A has issued a query ( , , )y x ct′  on 

re-encapsulation oracle and obtained ct′ , where 

( , ) 1
k

R x y = , then ( , )x ct′ ′  is a derivative of ( , )x ct ; 

‧ If an adversary A has issued a query ( , )y x′  on re-

encapsulation key generation oracle, obtained 
,y x

rk
′
, 

then for a 
,

ReEncaps( , ),
y x

ct ct rk
′

′ =  where ( , ) 1
k

R x y = , 

( , )x ct′ ′  is a derivative of ( , )x ct . 

In the following, we introduce two security games to 

describe the security of the PPKREM between a 

challenger C and an adversary A. 

Game - Payload-hiding for Second-level Ciphertext: 

‧ Setup. The challenger C runs the algorithm 

Setup(1 , )kλ  to generate parameter params and the 

master secret key msk. It then sends params to the 

adversary A. 

‧ Phase 1. The A may adaptively make polynomial 

times of queries to the following oracles. 

－ Key generation oracle :
ke

O  On input of 
k

y∈Y  

by A, the challenger C computes 
y

SK ←  

KeyGen( , )msk y . It then gives 
y

SK  to A. 

－ Re-encapsulation key generation oracle :
rk

O  

On input ( , )
k k

y x′∈ ∈Y X  by A, the challenger C  

computes 
,

ReKey( , ),
y x y

rk SK x
′

′←  where 
y

SK ←  

KeyGen( , )msk y . It then gives 
,y x

rk
′
 to A. 

－ Re-encapsulation oracle :
re

O  On input of 

( , )
k k

y x ψ′∈ ∈ ∈Y X  by A, the challenger C first 

computes 
,

ReKey( , )
y x y

rk SK x
′

′←  where 
y

SK ←  

KeyGen( , ).msk y  It then computes 
x

rct
′
←  

,

ReEncaps( , ).
x y x

oct rk
′

 Finally, it gives 
x

rct
′
 to A. 

－ Second-level ciphertext decapsulation oracle 

:
sde

O  On input of ( , )
k x

x oct ψ∈ ∈X  by A, the 

challenger C computes Decaps ( , )
oct x y

k oct SK←  

where KeyGen( , )
y

SK msk y←  and ( , ) 1
k

R x y = . 

It then returns k to A. 

－ First-level ciphertext decapsulation oracle 

:fdeO  On input of ( , )
k x

x rct ψ
′

′∈ ∈X  by A, the 

challenger C computes Decaps ( , )
rct x y

k rct SK←  

where KeyGen( , )
y

SK msk y
′

′←  and ( , ) 1
k

R x y′ ′ = . 

It then returns k to A. 

‧ Challenge. A outputs a ciphertext attribute *

k
x ∈X  

with restriction that:  

－ 
*( , ) 0

k
R x y =  for all 

k
y∈Y  submitted to 

ke
O ; 

－ for all ( , )
k k

y x′∈ ∈Y X , ( )
k

x′∈X  submitted to 

rk
O , *( , ) 0

k
R x y = . 

If *

x  satisfies the above requirements, the challenger 

C then randomly chooses a bit {0,1}b∈ , and responds 

with 
*

* *( , )
bx

oct k , where 
*

* * *

0
( , ) Encaps( )

x

oct k x←  and 

*

1
k  is randomly chosen from K. 

‧ Phase 2. A can continue to issue more queries to the 

oracles as follows: 

－ Key generation oracle :
ke

O  The oracle is the 

same as Phase 1 with three additional restrictions: 

‧ 
*( , ) 0

k
R x y = ; 

‧ for all 
k

y′∈Y  such that *( , ) 1 ( , ) 1,
k k

R x y R x y′ = ∧ =  

the tuple ( , )y x′  must not have been queried to 
rk

O  

before: 

‧ for all 
k

y′∈Y , ,
k

x x′∈X , and oct ψ′ ∈  such that 

( , ) 1 ( , ) 1,
k k

R x y R x y′ ′= ∧ =  and ( , )x oct′ ′  is a 

derivative of 
*

* *( , )
x

x oct , the tuple ( , , )y x oct′  has 

not been queried to 
re

O  before. 

－ Re-encapsulation key generation oracle :
rk

O  

The oracle is the same as Phase 1 with a 

restriction: if *

x x= , then for all 
k

y′∈Y  such that 

( , ) 1 ( , ) 1,
k k

R x y R x y′ ′= ∧ =  y′  must not have 

been queried to 
ke

O  before. 

－ Re-encapsulation oracle :
re

O  The oracle is the 

same as Phase 1 with a restriction: if ( , )
x

x oct  is 

a derivative of 
*

* *( , )
x

x oct , then for all 
k

y′∈Y  

such that ( , ) 1 ( , ) 1,
k k

R x y R x y y′ ′ ′= ∧ =  must not 

have been queried to 
ke

O  before. 

－ Second-level ciphertext decapsulation oracle 

:
sde

O  The oracle is the same as Phase 1 with a 

restriction: ( , )
x

x oct  is not a derivative of 

*

* *( , )
x

x oct . 

－ First-level ciphertext decapsulation oracle 

:fdeO  The oracle is the same as Phase 1 with a 

restriction: ( , )
x

x rct
′

′  is not a derivative of 

*

* *( , )
x

x oct . 

‧ Guess. In the end, A outputs a guess {0,1}b∈  and 

wins the game if b b′= . 

The advantage of the adversary A in winning the 

above game is defined as: 

 
,

1
( ) | Pr[ ] | .

2

PH SC

PPKREM A
Adv b bλ

−

′= = −  

Definition 9 (Payload-hiding Security for Second-

level Ciphertext). We say that a single-hop 

unidirectional PPKREM scheme PPKREM for 

predicate family R is payload-hiding secure for second-

level ciphertext if, for any polynomial time adversary 

A, the function 
,

( )PH SC

PPKREM A
Adv λ

−  is negligible. 

Game  Payload-hiding for First-level Ciphertext: 



1190 Journal of Internet Technology Volume 22 (2021) No.5 

 

‧ Setup. The challenger C runs the algorithm 

Setup(1 , )kλ  to generate parameter params and the 

master secret key msk. It then sends params to the 

adversary A. 

‧ Phase 1. The A may adaptively make a polynomial 

time of queries to the following oracles. 

－ Key generation oracle :
ke

O  On input of 
k

y∈Y  

by A, the challenger C computes 
y

SK ←  

KeyGen( , )msk y . It then gives 
y

SK  to A. 

－ Re-encapsulation key generation oracle :
rk

O  

On input of ( , )
k k

y x′∈ ∈Y X   by A, the challenger 

C computes 
,

ReKey( , ),
y x y

rk SK x
′

′←  where 

KeyGen( , )
y

SK msk y← . It then gives 
,y x

rk
′
 to A. 

－ Re-encapsulation oracle :
re

O  On input of 

( , , )
k k x

y x oct ψ′∈ ∈ ∈Y X  by A, the challenger C 

first computes 
,

ReKey( , )
y x y

rk SK x
′

′←  where 

KeyGen( , ).
y

SK msk y←  It then computes 
x

rct ←  

,

ReEncaps( , ).
x y x

oct rk
′

 Finally, it gives 
x

rct
′
 to A. 

－ Second-level ciphertext decapsulation oracle 

:
sde

O  On input of ( , )
k x

x oct ψ∈ ∈X  by A, the 

challenger C computes Decaps ( , )
oct x y

k oct SK←  

where KeyGen( , )
y

SK msk y←  and ( , ) 1
k

R x y = . 

It then returns k to A. 

－ First-level ciphertext decapsulation oracle 

:fdeO  On input of ( , )
k x

x rct ψ
′

′∈ ∈X  by A, the 

challenger C computes Decaps ( , )
rct x y

k rct SK
′ ′

←  

where KeyGen( , )
y

SK msk y
′

′←  and ( , ) 1
k

R x y′ ′ = . 

It then returns k to A. 

‧ Challenge. A  outputs a ciphertext attribute *

k
x ∈X  

with restriction: for all 
k

y∈Y  submitted to 
ke

O , 

*( , ) 0
k

R x y = . If *

x  satisfies the above requirements, 

the challenger C first computes 
*

y
SK ←  

*KeyGen( , )msk y  where * *( , ) 1
k

R x y = . Then, it 

chooses a ciphertext attribute ˆ
k

x∈X , and randomly 

chooses a bit {0,1}b∈ . Next, it computes: 

a. 
* *ˆ,

ˆReKey( , )
y x y

rk SK x← ; 

b. 
* *

* *
ˆ ˆ,

ReEncaps( , )
x x y x

rct oct rk← , 

where * * *

0
( , ) Encaps( )

x
oct k x←  and *

1
k  is randomly 

chosen from K. Finally, it responds * *

ˆ
( , )

x b
rct k  to A. 

‧ Phase 2. A can continue to issue more queries to the 

oracles as in Phase 1 with two additional restrictions: 

－ Key generation oracle :
ke

O  for all 
k

y∈Y , 

ˆ( , ) 0
k

R x y = . 

－ First-level ciphertext decapsulation oracle 

:fdeO  it cannot be queried with the challenge 

ciphertext *

x̂
rct  as input. 

‧ Guess. In the end,  A  outputs a guess {0,1}b∈  and 

wins the game if c. 

The advantage of the adversary A in winning the 

above game is defined as: 

 
,

1
( ) | Pr[ ] | .

2

PH FC

PPKREM A
Adv b bλ

−

′= = −  

Definition 10 (Payload-hiding Security for First-

level Ciphertext). We say that a single-hop 

unidirectional PPKREM scheme PPKREM for 

predicate family R is payload-hiding secure for first-

level ciphertext if for PPT adversary A the function 

,

( )PH FC

PPKREM A
Adv λ

−  is negligible. 

4 Generic Construction of Predicate Proxy 

Key Re-encapsulation Mechanism 

(PPKREM) 

In this Section, we first give a generic construction 

that can obtain a PPKREM scheme from a secure 

linear PKEM scheme, then we give a generic 

PPKREM construction by using a secure linear PE 

scheme. At a high level, to generate a re-encapsulation 

key 
,y x

rk
′
, we first encaps the ciphertext attribute x′  to 

obtain a pair ( , ),
x

CT k ′  then compute ( ),h H k ′=  

where ( )H ⋅  is a cryptographic hash function. Next, we 

let the re-encapsulation key be 
,

{( ) , }h
y x y xrk SK CT

′ ′
= , 

where ( )hySK  denotes the h component-wise 

exponentiation to .

y
SK  Note that, due to the 

complexity of the discrete-log problem, the proxy 

entity is impossible to obtain h from ( )hySK . In other 

words, the proxy entity cannot recover 
y

SK  from 

,y x
rk

′
. In order to generate a first-level ciphertext 

x
rct

′
 

from the second-level ciphertext 
x

oct  using the re-

encapsulation key 
,y x

rk
′
, we directly run: 

 PKEM.Decaps( , ( ) ).n

x y
oct SKδ ← . 

With the linear property of PKEM (Definition 6), if 

( , ) 1
k

R x y = , δ  actually equals to ( )hk , where 

( , ) PKEM.Encaps( )
x

oct k x← . Then, the first-level 

ciphertext 
,y x

rk
′
 is set as { , }

x
CTδ

′
. Only the proxy 

receiver can decaps 
x

CT
′
 using her/his private key to 

obtain k ′ , and recover the value hidden in the 

encapsulation key, i.e., ( )h H k ′= . Finally, the proxy 

receiver can obtain:  
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1 1

( ) ( ) .h h h
k kδ

− −

⋅

= =  

Let PKEM = (Steup, KeyGen, Encaps, Decaps) be 

an IND-CCA secure PKEM with linear property for 

predicates family { }
k

R R=  and let :H K →�  be a 

cryptographic hash function, we define the construction 

of PPRKEM as follows: 

‧ Setup(1 , ) :k
λ  On input of a security parameter 

λ∈�  and a description k∈� , this algorithm runs 

( , ) .Setup(1 , ).params msk PKEM kλ
←  It then 

outputs the parameter params and the master secret 

key msk. 

‧ KeyGen( , )msk y : On input of a master secret key 

msk and a key attribute 
k

y∈Y , this algorithm runs 

.KeyGen( , )PKEM msk y  to output a private key 

y
SK  for key attribute y and outputs it. 

‧ Encaps( )x : On input of a ciphertext attribute 

,
k

x∈X  this algorithm runs ( , ) .
x

oct k PKEM←  

Encaps( )x . It then outputs a second-level ciphertext 

x
oct  and an encapsulation key k. 

‧ ReKey( , )
y

SK x′ : On input of a private key 
y

SK  for 

some key attribute 
k

y∈Y  and a ciphertext attribute 

k
x′∈X , this algorithm runs the following steps to 

generate a re-encapsulation key: 

－ Computes ( , ) .Encaps( )
x

CT k PKEM x
′

′ ′← ; 

－ Computes ( )h H k ′= ; 

－ Outputs 
,

{( ) , }h
y x y xrk SK CT

′ ′
= . 

‧ 
,

ReEncaps( , )
x y x

oct k
′

: On input of a second-level 

ciphertext 
x

oct  encapsed by ciphertext attribute 

k
x∈X  and a re-encapsulation key 

,

{( ) , },h
y x y xrk SK CT

′ ′
=  

to generate a first-level ciphertext 
x

rct
′
 which can 

be decapsed by the private key 
y

SK  for some key 

attribute 
k

y′∈Y  where ( , ) 1,R x y′ ′ =  this algorithm 

runs .Decaps( , ( ) )hx yPKEM oct SKδ ← , and outputs 

{ , }
x x

rct CTδ
′ ′
= . 

‧ 
oct

Decaps ( , ) :
x y

oct SK  On input of a second-level 

ciphertext 
x

oct  and a private key 
y

SK  for some key 

attribute ,
k

y∈Y  this algorithm runs .DecapsPKEM  

( , )
x y

oct SK  to obtains an encapsulation key k or ⊥ , 

and outputs it. 

‧ 
rct

Decaps ( , ) :
x y

rct SK
′ ′

 On input of a first-level 

ciphertext { , }
x x

rct CTδ
′ ′
=  and a private key 

y
SK  

for some key attribute 
k

y′∈Y , this algorithm runs 

the following steps:  

－ Runs .Decaps( , )
x y

PKEM oct SK
′ ′

 to obtain k ′  if 

( , ) 1
k

R x y′ ′ = . Otherwise, outputs ⊥ ; 

 

－ Computes ( )h H k ′= ; 

－ Computes 
1

( )hk δ
−

= . 

Lemma 1. The proposed PPKREM scheme PPKREM 

described above is correct if the underlying PKEM 

scheme PKEM is correct and linear. 

Proof. We separate this proof into two parts: one for 

the second-level ciphertext and the other for the first-

level ciphertext. For all security parameter λ∈�  and 

description k∈� , WLOG., we assume that the 

second-level ciphertext 
x

oct  and the key k are 

generated from .Encaps( )PPKREM x  for some 
k

x∈X  

and the first-level ciphertext { , }
x x

rct CTδ
′ ′
=  is 

generated from 
,

.ReEncaps( , )
x y x

PPKREM oct rd
′

 

where 
,

ReKey( , ).
y x y

rk SK x
′

′←  Besides, 
y

SK ←  

KeyGen( , )
k

msk y∈Y , KeyGen( , ),y kSK msk y′← ∈Y  

and ( , ) Setup(1 , )params msk kλ
← . 

‧ Second-level ciphertext: Since the pair of second-

level ciphertext and encapsulation key ( , )
x

oct k  is 

actually generated from .Encaps( )
k

PKEM x∈X , 

with the correctness of the underlying PKEM, it is 

trivial that the same encapsulation key k can be 

obtained by running .Decaps( , )
x y

PKEM oct SK  if 

( , ) 1
k

R x y = . Thus, the encapsulation key k can be 

correctly obtained. 

‧ First-level ciphertext: Since the pair of ( , )
x

CT k
′

′  is 

generated from .Encaps( ),PKEM x′  with the 

correctness of the underlying PKEM, k ′  can be 

obtain using private key 
y

SK  where ( , ) 1
k

R x y′ ′ =  is 

satisfied. On the other hand, since .PKEMδ ←  

Decrypt( , ( ) )hy yoct SK  and the underlying PKEM is 

linear, δ  actually equals to .DecapsPKEM  

(( , )) ,hx yoct SK  that is h
kδ =  if ( , ) 1.

k
R x y =  

Therefore, we can compute: 

 
1 1

( ) .h h h
k kδ

− −

⋅

= =  

In the following, we give a generic construction of a 

predicate proxy key re-encapsulation mechanism 

scheme from a secure linear predicate encryption 

scheme. Let (Setup, KeyGen, Enc, Dec)PE =  be an 

IND-CCA secure predicate encryption scheme with 

linear property for predicates family { }
k

R R=  and let 

1 2
: , :H M K H M→ →�  be two cryptographic hash 

functions. We define the construction of predicate 

proxy key re-encapsulation mechanism as follows: 

‧ Setup(1 , )kλ : On input of a security parameter λ  

and a description k, this algorithm runs ( , )params msk  

.Setup(1 , ).PE k
λ

←  It then outputs the parameter 
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params and the master secret key msk. 

‧ Setup(1 , )kλ : On input of a security parameter λ  

and a description k, this algorithm runs ( , )params msk  

.Setup(1 , )PE k
λ

← . It then outputs the parameter 

params  and the master secret key msk. 

‧ KeyGen( , )msk y : On input of a master secret key 

msk and a key attribute ,
k

y∈Y  this algorithm runs 

.KeyGen( , )PE msk y  to output a private key 
y

SK  

for key attribute y and outputs it. 

‧ Encaps( ) :x  On input of a ciphertext attribute 

,
k

x∈X  this algorithm first randomly chooses 

1
,m M∈  and then runs 

1
.Encrypt( , )

x
oct PE x m← . 

Finally, it outputs a second-level ciphertext 
x

oct  and 

an encapsulation key 
1 1
( )k H m= . 

‧ ReKey( , )
y

SK x′ : On input of a private key 
y

SK  for 

key attribute 
k

y∈Y  and a ciphertext attribute 

,
k

x′∈X  to generate a re-encapsulation key, this 

algorithm runs the following steps: 

－ Randomly chooses a message 
2

m M∈ , and 

computes 
2

.Encrypt( , )
x

CT PE x m
′

′← ; 

－ Computes 
2 2
( )h H m= ; 

－ Outputs 
,

{( ) , }h
y x y xrk SK CT

′ ′
= . 

‧ 
,

ReEncaps( , )
x y x

oct rk
′

: On input of a second-level 

ciphertext 
x

oct  encapsed by ciphertext attribute 

k
x∈X  and a re-encapsulation key 

,y x
rk

′
=  

{( ) , },h
y xSK CT

′
 to generate a first-level ciphertext 

x
rct  which can be decaps by the private key 

y
SK  

for key attribute 
k

y′∈Y  where ( , ) 1
k

R x y′ ′ = , this 

algorithm runs .Decrypt( ,( ) )hx yPE oct SKδ ← , and 

outputs { , }
x x

rct CTδ
′

= . 

‧ Decaps ( , )
oct x y

oct SK : On input of a second-level 

ciphertext 
x

oct  and a private key 
y

SK  for key 

attribute ,
k

y∈Y  this algorithm runs 
1

.m PE←  

Decrypt( , )
x y

oct SK , and outputs 
1 1
( )k H m=  if 

( , ) 1
k

R x y = , outputs ⊥ , otherwise. 

‧ Decrypt( , ) :
x y

rct SK
′

 On input of a first-level 

ciphertext { , }
x x

rct CTδ
′

=  and a private key 
y

SK  

for key attribute 
k

y′∈Y , this algorithm runs the 

following steps: 

－ Runs 
2

.Decrypt( , )
x y

m PE oct SK
′ ′

←  to obtain 
2

m  

if ( , )
k

R x y′ ′ . Otherwise, it terminals and outputs 

⊥ ; 

－ Computes 
2 2
( )h H m= ; 

－ Computes 
1

( )hm δ
−

′ =  

－ Outputs
1
( )

x
k H m

′

′= . 

Lemma 2. The generic construction of PPKREM 

described above is correct if the underlying PE scheme 

PE is correct and linear. 

Proof. We separate this proof into two parts: one for 

the second-level ciphertext and the other for the first-

level ciphertext. For all security parameters λ  and 

descriptions k, WLOG., we assume that the second-

level ciphertext 
x

oct  and the key 
x
k  are generated 

from Encaps( )
k

x∈X  and the first-level ciphertext 

{ , }
x x

rct CTδ
′ ′
=  is generated from 

,

ReEncaps( , )
x y x

oct rk
′

 

where 
,

ReKey( , ).
y x y

rk SK x
′

′←  Besides, KeyGen
y

SK ←  

( , ),
k

msk y∈Y  KeyGen( , ),y kSK msk y
′

′← ∈Y  and 

( , ) Setup(1 , )params msk kλ
← . 

‧ Second-level ciphertext: Since the second-level 

ciphertext 
x

oct  is actually generated from 

1
.Encrypt( , )

k
PE x m M∈ ∈X , with the correctness 

of the underlying predicate encryption scheme, it is 

obvious that 
1

.Decrypt( , )
x y

m PE oct SK←  if 

( , ) 1.
k
R x y =  Thus, the encapsulation key 

1 1
( )

x
k H m

′
=  

can be correctly obtained. 

‧ First-level ciphertext: Since 
x

CT
′
 is generated from 

2
.Encrypt( , )PE x m′ , with the correctness of the 

underlying predicate encryption scheme, 
2

m  can be 

obtain using private key 
y

SK  where ( , ) 1
k

R x y′ ′ =  is 

satisfied. On the other hand, since .DecryptPEδ ←  

( , ( ) ),h
x yoct SK  with the linear property of the 

underlying predicate encryption scheme, δ  actually 

equals to 
1

( )hm  if ( , ) 1
k

R x y = . Therefore, we can 

compute:  

 
1 1

1
( ) ( ) ,h h h

m mδ
− −

⋅

= =  

and obtain the encapsulation key:  

 
1 1
( ) .

x x
k H m k

′
= =  

5 Security Proofs 

In this Section, we provide the security proofs for 

the payload-hiding security of the proposed 

constructions. 

Theorem 1. The first proposed construction is 

payload-hiding secure for second-level ciphertext 

under predicate family R if the underlying PKEM 

scheme PKEM is IND-CCA secure under the same 

predicate family, and the underlying hash function H is 

collision-resistant. 

Proof. Suppose there exists an adversary A against the 

payload-hiding security for second-level ciphertext of 

the proposed construction that has non-negligible 
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advantage. Then, there exists another adversary B that 

can use A to break the IND-CCA game of the 

underlying PKEM scheme PKEM with non-negligible 

advantage. B constructs a hybrid game interacting with 

A as follows. 

‧ Setup. B first invokes the IND-CCA game of PKEM 

to obtain the system parameters params. B then 

passes params to A. 

‧ Phase 1. In this phase, A can adaptively make 

polynomial times of queries to the following oracles. 

－ Key generation oracle :
ke

O  When A queries this 

oracle for a key attribute 
k

y∈Y , B  invokes the 

key generation oracle of PKEM on the same y, 

and is given a private key 
y

SK . B then passes 

y
SK  to A. 

－ Re-encapsulation key generation oracle :
rk

O  

When A queries to this oracle for a key attribute 

k
y∈Y , and a ciphertext attribute 

k
x′∈X , B first 

invokes the key generation oracle of PKEM  on 

the same y, and is given a private key 
y

SK . Then, 

B runs ( , ) .Encaps( )
x

CT k PKEM x
′

′ ′←  and ( ).h H k′=  

Finally, B returns 
,

{( ) , }h
y x y xrk SK CT

′ ′
=  to A. 

－ Re-encapsulation oracle :
re

O  When A queries 

this oracle for a key attribute 
k

y∈Y , a ciphertext 

attribute 
k

x′∈X , and a second-level ciphertext 

x
oct ψ∈ , B first invokes the key generation 

oracle of PKEM on the same y, and is given a 

private key .

y
SK  Then, B runs ( , )

x
CT k

′

′ ←  

.Encaps( ),PKEM x′  computes ( ),h H k ′=  and sets 

,

{( ) , }.h
y x y xrk SK CT

′ ′
=  Finally, B runs ReEncaps  

,

( , )
x y x

oct rk
′

 as the proposed construction to 

obtain a first-level ciphertext ={ , }
x x

rct CTδ
′ ′

, 

and returns 
x

rct  to A. 

－ Second-level ciphertext decapsulation oracle 

:
sde

O  When A queries to this oracle for a 

ciphertext attribute 
k

x∈X , and a second-level 

ciphertext 
x

oct ψ∈ , B first randomly chooses a 

key attribute 
k

y∈Y  such that ( , ) 1
k

R x y = . B then 

invokes the decapsulation oracle of PKEM on 

( , )
x

oct y , and is given an encapsulation key 

k K∈ . In the end, B returns k to A. 

－ First-level ciphertext decapsulation oracle 

:fdeO  When A queries this oracle for a ciphertext 

attribute 
k

x′∈X  and a first-level ciphertext 

={ , }
x x

rct CTδ
′ ′

, B first randomly chooses a key 

attribute 
k

y′∈Y  such that ( , ) 1
k

R x y′ ′ = . B then 

invokes the decapsulation oracle of PKEM on 

( , )
x

CT y
′

′ , and is given a key .k M′∈  B computes 

( )h H k ′=  and computes 
1

( ) .h
k δ

−

=  Finally, B 

returns k to A. 

‧ Challenge. In this phase, A submits a target 

ciphertext attribute *

k
x ∈X  to B with following 

restrictions:  

－ 
*( , ) 0

k
R x y =  for all 

k
y∈Y  submitted to 

ke
O ; 

－ for all ( , )
k k

y x′∈ ∈Y X  submitted to ,
rk

O  

*( , ) 0
k

R x y =  

After receiving *

x  from A, B invokes the challenge 

phase of PKEM on *

x , and is given * *( , )CT k . B then 

returns * *( , )CT k  to A. 

‧ Phase 2. This phase is the same as Phase 1 with the 

additionally restrictions described in the payload-

hiding security for second-level ciphertext game in 

Section 3. 

‧ Guess. Finally, After A outputs a guess b′ , B takes 

b′  as its own guess. 

If *

k  is indeed an encapsulation key of *

,CT  then 
* *( , )CT k  is a valid second-level ciphertext. On the 

other hand, if *

k  is sampled from the key space K, to 

the view of A, * *( , )CT k  is still a valid second-level 

ciphertext. Therefore, if A can distinguish whether *

k  

is an encapsulation key of the ciphertext *

CT  or not 

and wins the payload-hiding game for second-level 

ciphertext with non-negligible advantage, then B can 

follow A’s answer to win the IND-CCA security game 

of the underlying PKEM scheme with the non-

negligible advantage. Thus, the proof is completed.  

Theorem 2. The first proposed construction is 

payload-hiding secure for the first-level ciphertext 

under predicate family R if the underlying PKEM 

scheme PKEM is IND-CCA secure under the same 

predicate family, and the underlying hash function H is 

collision-resistant. 

Proof. Suppose there exists an adversary A against the 

payload-hiding security for the first-level ciphertext of 

the proposed construction that has non-negligible 

advantage. Then, there exists another adversary B that 

can use A to break the IND-CCA game of the 

underlying PKEM scheme PKEM with non-negligible 

advantage. B constructs a hybrid game interacting with 

A as follows. 

‧ Setup. B first invokes the IND-CCA game of PKEM 

to obtain the system parameter params. B then 

passes params to A. 

‧ Phase 1. In this phase, A can adaptively make 

polynomial times of queries to the following oracles. 

－ Key generation oracle :
ke

O  When A queries this 

oracle for a key attribute 
k

y∈Y , B invokes the 

key generation oracle of PKEM on the same y, 

and is given a private key .

y
SK  B then passes 
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y
SK  to A. 

－ Re-encapsulation key generation oracle :
rk

O  

When A queries this oracle for a key attribute 

k
y∈Y , and a ciphertext attribute 

k
x′∈X , B first 

invokes the key generation oracle of PKEM on 

the same y, and is given a private key 
y

SK . Then, 

B runs ( , ) .Encaps( )
x

CT k PKEM x
′

′ ′←  and computes 

( ).h H k ′=  Finally, B returns 
,

{( ) , }h
y x y xrk SK CT

′ ′
=  

to A. 

－ Re-encapsulation oracle :
re

O  When A queries 

this oracle for a key attribute 
k

y∈Y , a ciphertext 

attribute 
k

x′∈X , and a second-level ciphertext 

x
oct ψ∈ , B invokes the key generation oracle of 

PKEM on the same , and is given a private key 

.

y
SK  Then, B runs ( , ) .Encaps( ),

x
CT k PKEM x

′

′ ′←  

computes ( ),h H k ′=  and sets 
,

{( ) , }.h
y x y xrk SK CT

′ ′
=  

Finally, B runs 
,

ReEncaps( , )
x y x

oct rk
′

 as the 

proposed construction to obtain a first-level 

ciphertext ={ , }
x x

rct CTδ
′ ′

, and returns 
x

rct
′
 to A. 

－ Second-level ciphertext decapsulation oracle 

sde
O : When A queries this oracle for a ciphertext 

attribute 
k

x∈X , and a second-level ciphertext 

x
oct ψ∈ , B first randomly chooses a key attribute 

k
y∈Y  such that ( , ) 1

k
R x y = . B then invokes the 

decapsulation oracle of PKEM on ( , )
x

oct y , and 

is given an encapsulation key k K∈ . In the end, 

B returns k to A. 

－First-level ciphertext decapsulation oracle fdeO : 

When A queries this oracle for a ciphertext 

attribute x′  and a first-level ciphertext 

={ , }
x x

rct CTδ
′ ′

, B first randomly chooses a key 

attribute 
k

y′∈Y  such that ( , ) 1
k

R x y′ ′ = . B then 

invokes the decapsulation oracle of PKEM on 

( , ),
x

CT y
′

′  and is given a key k M′∈ . B 

computes ( )h H k ′=  and computes 
1

( ) .h
k δ

−

=  

Finally, B returns k to A. 

‧ Challenge. In this phase, A submits a target 

ciphertext attribute *

k
x ∈X  to B with the restriction: 

*( , ) 0
k

R x y =  for all 
k

y∈Y  submitted to 
ke

O . After 

receiving *

x  from A, B invokes the challenge phase 

of PKEM on *

,x  and is given * *( , )CT x . B then 

randomly chooses 
k

x←� X  and computes ( , )
x

CT k ←
�

�  

.Encaps( ).PKEM x�  Next, B returns * ( ){( ) , }H k

x x
rct k CT=

�

�

 

to A. 

‧ Phase 2. This phase is the same as Phase 1, with the 

additional restrictions described in the payload-

hiding security for the first-level ciphertext game in 

Section 3. 

‧ Guess. Finally, After A outputs a guess b′ , B takes 

b′  as its own guess. 

We first analyze the distribution of the first-level 

ciphertext 
*

* ( ){( ) , }.H k

xx
rct k CT=

�

�

 First, the distribution 

of 
x

CT
�

 is trivially the same as
x

CT
′
 returned from 

re
O . 

Second, δ  in 
re

O  is equal to h
k  if the linear property 

is hold, where k is the encapsulation key of the second-

level ciphertext and h∈� . That is, the distribution of 
* ( )( )H k

k
�

 is the same as δ  returned from .

re
O  

Therefore, the distribution of 
x

rct  and the first-level 

ciphertext queried from 
re

O  are the same to A. 

In the following, we discuss the advantage of B that 

wins the game. If  A wins the payload-hiding security 

game for first-level ciphertext of PPKREM scheme 

with non-negligible advantage, it implies that A has the 

ability to distinguish whether *

k  is an encapsulation 

key of the *

CT . B can follow A’s answer to win the 

IND-CCA security game of the underlying PKEM 

scheme with non-negligible advantage. Therefore, the 

proof is completed. 

Theorem 3. The second proposed construction is 

payload-hiding secure for the second-level ciphertext 

and first-level ciphertext under predicate family R, if 

the underlying PE scheme PE is IND-CCA secure 

under the same predicate family, and the underlying 

hash function H is collision-resistant. 

Proof. The proof is intuitive and similar to Theorem 1 

and Theorem 2, except that the oracles invoked by B. 

More concretely, as the underlying building block is 

PE, B can only invoke the key generation oracle and 

decrypte oracle. In addition, in the Challenge phase, B 

is given a challenge ciphertext attribute *

k
x ∈X . Then, 

it randomly chooses two messages 
1 2
,m m  with the 

same length and sends *

1 2
( , , )x m m  as the challenge 

for IND-CCA game of the underlying PE scheme. 

After receiving the challege ciphertext *

,CT  B 

randomly chooses a message , {0,1},
b

m b∈  and 

submits * *(( , ) ( ))
b

CT k H m=  to A. Then, if A can 

distinguish whether *

k  is an encapsulation key of the 
*

CT , B can follow A’s answer to win the IND-CCA 

security game of the underlying PE scheme with non-

negligible advantage. Therefore, the proof is completed. 

6 Concrete Instantiation 

In this Section, we propose a (single-hop, 

unidirectional) identity-based proxy key re-

encapsulation scheme from Water’s identity-based 

encryption [14]. More precisely, we first obtain an 

identity-based KEM from [14]. Then, since the scheme 

satisfies the linear property, we can adopt our proposed 
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generic construction to obtain an identity-based 

PKREM. Here, we note that identity-based KEM is 

actually a kind of PKEM over the predicate function 

k
R  such that ( , ) 1

k
R x y =  if ;x y=  ( , ) 0,

k
R x y =  

otherwise. 

6.1 Identity-based Key Encapsulation Mechanism 

Let 
1

,G G  be two groups with the same order p. Let 

g∈G  be the generator of G  and 
1

:e × →G G G  be a 

bilinear mapping that maps two elements of G  to 

group 
1
.G  The identity-based key encapsulation 

mechanism is presented as follows: 

‧ Setup(1 , )kλ : On input of the security parameter 

λ∈� , this algorithm runs the following steps to 

generate system parameter params and master secret 

key msk:  

－ Randomly chooses 
p

a∈� ; 

－ Randomly chooses a generator g∈G ; 

－ Sets 
1

a

g g= , and randomly chooses 
2

g ∈G ; 

－ Chooses an encode function *:{0,1}F →G  that 

maps an arbitrary length string to a group element 

of G ; 

－ Finally outputs system parameter params =  

1 2
{ , , , }g g g F  and master secret key 

2

amsk g= .  

Here, we note that the system parameter params will 

be implicit input for the following algorithms: 

‧ Encaps( )id : On input of an identity *{0,1}id∈ , this 

algorithm first randomly selects 
p

t∈�  and then 

computes 
1

t
c g=  and 

2

t
c eid= . Finally, it outputs a 

ciphertext 
1 2

{ , }CT c c=  and an encapsulation key 

1 2
( , )tk e g g= . 

‧ KeyGen( , )msk id : On input of a master secret key 

2

amsk g=  and an identity *{0,1}id∈ , this algorithm 

first encodes user’s identity to a group element, that 

is ( )eid F id= . Then, it randomly selects 
p

r∈�  and 

computes 
1 2

a rd g eid= ⋅  and 
2

rd g= . Finally, it sets 

the private key 
1 2

{ , }
id

SK d d=  for the identity id, 

and output 
id

SK . 

‧ Decaps( , ) :
id

CT SK  On input of a ciphertext 

1 2
{ , }CT c c=  and a private key 

1 2
{ , }

id
SK d d= , this 

algorithm decrypts the ciphertext by computing:  

 1 1

1 2

2 2

( , )
( , ) .

( , )

t
e d c

k e g g
e d c

= =  

Finally, it outputs an encapsulation key 
1

k∈G . 

6.2 Identity-based Proxy Key Re-

encapsulation Mechanism 

In the following, we obtain an identity-based proxy 

key re-encapsulation mechanism scheme from the 

above scheme. Here we use the same notation setting 

as Section 6.1. 

‧ Setup(1 , ) :k
λ  On input of the security parameter 

λ∈� , this algorithm runs the following steps to 

generate system parameter params and master secret 

key msk:  

－ Randomly chooses 
p

a∈� ; 

－ Randomly chooses a generator g∈G ; 

－ Sets 
1

a

g g= , and randomly chooses 
2

g ∈G ;. 

－ Randomly chooses u∈G ; 

－ Chooses an encode function *:{0,1}F →G  that 

maps an arbitrary length string to a group element 

of G ; 

－Chooses a cryptographic hash function 
1

:
p

H →�G ; 

－ Finally, outputs system parameter params =  

1 2
{ , , , , }g g g F H  and master secret key 

2

amsk g= . 

Here, we note that the system parameter params 

will be implicit input for the following algorithms. 

‧ Encaps( ) :id  On input of an identity *{0,1}id∈ , this 

algorithm first randomly selects 
p

t∈�  and then 

computes 
1

,

t
c g=  

2
.

t
c edi=  Finally, it outputs a 

second-level ciphertext 
1 2

{ , }CT c c=  and an 

encapsulation key 
1 2

( , )tk e g g= . 

‧ KeyGen( , ) :msk id  On input of a master secret key 

2

amsk g=  and an identity *{0,1}id∈ , this algorithm 

first encodes user’s identity to a group element, that 

is ( )eid F id= . Then, it randomly selects 
p

r∈�  

and computes 
1 2

( ) ,a rd g eid= ⋅  
2

.

rd g=  Finally, it 

sets the private key 
1 2

{ , }
id

SK d d=  for the identity 

id, and output 
id

SK . 

‧ ReKey( , ) :
id

SK id ′  On input of an identity’s private 

key 
1 2

{ , }
id

SK d d=  and a target identity id ′ , this 

algorithm first randomly chooses 
p

t′∈� . Then, it 

encodes the identity, that is ( )eid F id′ ′= . Next, it 

computes 
1

,

t
r g

′

=  
2

,

t
r edi

′

′=  and sets 
1 2

{ , }
id

CT r r
′
= . 

It also computes 
1 2

( ( , ) ).th H e g g
′

=  Finally, it 

outputs a re-encryption key:  

 , 1 2 1 2{ { , }, { , }}.h h h

id id id id
rk SK d d CT r r

′ ′
= = =  

‧ 
, ,

ReEncaps( ) :
id id id

oct RK
′

 On input of a first-level 

ciphertext 
1 2

{ , }
id

oct c c=  and a re-encryption key 

, 1 2 1 2{ { , }, { , }},h h h

id id id id
rk SK d d CT r r

′ ′
= = =  

this algorithm computes:  

 1 1

1 2

2 2

( , )
( ( , ) ) .

( , )

h

t h

h

e d c
e g g

e d c
δ = =   
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‧ 
,

Decaps ( ) :
oct id id

oct SK  On input of a second-level 

ciphertext 
1 2

{ , }
id

oct c c=  and a private key 
id

SK =  

1 2
{ , },d d  this algorithm decrypts the ciphertext by 

computing 1 1

1 2

2 2

( , )
( , ) .

( , )

t
e d c

k e g g
e d c

= =  

‧ 
,

Decaps ( ) :
rct id id

rct SK
′

 On input of a first-level 

ciphertext 
1 2 1 2

{ ( ( , ) ) , { , }}t h

id id
rct e g g CT r rδ

′ ′
= = =  

and a private key 
1 2

{ , }
id

SK d d′ ′= , this algorithm 

first computes:  

 1 1

2 2

( , )

( , )

e d r
H

e d r

′⎛ ⎞
⎜ ⎟′⎝ ⎠

 

 2
( , )

( , )

a r t

r t

e g eid g
H

e g eid

′ ′

′ ′

⎛ ⎞′⋅
= ⎜ ⎟

′⎝ ⎠
 

 1 2
( , ) , ( , )

( , )

t t r

r t

e g g e eid g
H

e g eid

′ ′ ′

′ ′

⎛ ⎞′
= ⎜ ⎟

′⎝ ⎠
 

 
1 2

( ( , ) )tH e g g
′

=  

 .h=  

Finally, it outputs an encapsulation key:  

 
1 1

1 2 1 2
( ) ( ( , ) ) ( , ) .h th h tk e g g e g gδ

− −

= = =   

Note that we use 
p

r′∈�  to represent the random 

number used in the key generation algorithm for 

identity id ′ . 

7 Conclusions and Future Work 

In this paper, we present two novel generic 

constructions that can obtain a (single-hop, 

unidirectional) PPKREM from a linear PKEM or from 

a linear PE. By combining with a secure symmetric 

encryption, a (single-hop, unidirectional) PPRE is also 

obtained. Hence, the result provides a new solution for 

constructing a PPRE that supports any predicate 

function and solves the problem that the current PPRE 

only supports the inner product predicate function. In 

further work, we will expand the single-hop setting to 

multi-hop setting to support more complex scenarios, 

while considering a bidirectional setting. 
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