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Abstract 

For the multisignature schemes, the tight security in 

the plain public key (PPK) model is considered as one of 

the desirable features. In this paper, we give a generic 

construction of multisignature schemes which is tightly 

secure in the PPK and random oracle model. Our 

construction can capture the known tightly secure 

multisignature schemes. The generic construction is 

derived from the identification (ID) scheme which has 

two properties called the linearity and the lossiness. Thus, 

we can obtain new tightly secure multisignature schemes 

by applying our construction to existing linear and lossy 

ID schemes. Moreover, we consider the relationship 

between these two properties to shrink the conditions 

required for our generic construction. We propose a new 

property of ID schemes, called the difference soundness, 

and show that the combination of the linearity and the 

difference soundness implies the lossiness. 

Keywords: Linear identification scheme, Lossy 

identification scheme, Multisignature, Tight 

security, Plain public key model 

1 Introduction 

The multisignature scheme admits multiple signers 

in the signature generation. The signers compute a 

single signature on a single common message in an 

interactive manner. The resulting signature ensures that 

the signers having a corresponding public key used in 

the verification participated in the signature generation. 

This feature yields the advantage for the multisignature 

scheme in the case where each signer issues an 

ordinary signature individually because the size of a 

multisignature can be less than the total size of 

individual signatures by signers. Thus, the 

multisignature scheme is considered as an attractive 

building block to develop a resource-constrained 

technology such as the IoT and the blockchain. 

The security in the plain public key (PPK) model [1] 

is considered as the standard security model of 

multisignature schemes. The PPK model requires no 

restriction on the public key generation rather than 

other security models [2-3] of multisignatures. 

Therefore, the forger can select public keys arbitrary in 

the security game of the PPK model, and then the 

security in PPK model is stronger than the one in other 

models. 

The BN multisignature [1] is the first multisignature 

scheme whose security is proven in the PPK and 

random oracle (RO) model. This scheme is constructed 

based on the Schnorr signature [4] which is a Fiat-

Shamir [5] type signature scheme. Thus, the security of 

the BN multisignature is carried from the Schnorr 

signature, namely it is proven under the discrete 

logarithm (DL) assumption in RO model [6]. 

There are some multisignature schemes secure in the 

PPK and RO model which are constructed by 

employing the strategy of the BN multisignature. Le, 

Bonnecaze, and Gaillon [7] proposed a DDH-based 

multisignature scheme. Their scheme is based on the 

Katz-Wang signature [8] and achieves the tight 

security in the RO model. Concerning another 

algebraic structure, El Bansarkhani and Sturm [9] 

proposed a lattice-based multisignature scheme, and its 

security is proven under the Ring-SIS assumption. 

Fukumitsu and Hasegawa [10] enhanced their 

multisignature scheme concerning the tightness. 

Namely, the scheme by [10] has a tight security 

reduction under the Ring-LWE assumption, whereas 

the original one of [9] is a loose reduction. 

The tight security proof means that the probability 

that a probabilistic polynomial-time (PPT) algorithm 

breaks an underlying cryptographic assumption is 

almost the same as the probability that a PPT algorithm 

attacks the designated cryptographic scheme. If a 

cryptographic scheme is not tightly secure, we are 

required to set a large security parameter to maintain 

the security. On the other hand, a cryptographic 

scheme having the tight security allows a small 

parameter setting rather than the one having a loose 

security reduction only. Thus, achieving the tight 

security enables us to use cryptographic schemes 

efficiently. 
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There exist some multisignature schemes which 

have the tight security in the PPK and RO model. The 

representative schemes are the DDH-based scheme by 

[7] and the lattice-based scheme by [10]. Both schemes 

share some features. They are based on decisional 

assumptions, secure in the PPK and RO model, and 

employ the BN’s construction. Therefore, it is a natural 

idea that we can obtain new tightly secure 

multisignature schemes by using these features. 

1.1 Contribution 

In this paper, we propose a generic construction of 

multisignature schemes with tight security in the PPK 

and RO model. We also give new instantiations of 

tightly secure multisignature schemes by using our 

generic construction. Our construction employs the 

linear identification (ID) scheme and the lossy ID 

scheme and, is obtained by incorporating these two ID 

schemes into the strategy of the BN’s multisiganture 

construction. 

The linear ID scheme [11] is defined by using the 

linear structure of modules. Many existing ID schemes 

are captured by the linear ID schemes. Moreover, the 

known multisignature schemes employing the BN’s 

construction seem to use the linearity which originates 

in the underlying linear ID schemes. 

The lossy ID scheme [12] is a specific variant of ID 

schemes which have another key generator, called a 

lossy key generator. It has two properties called the 

key indistinguishability and the lossiness. The key 

indistinguishability states that the distribution of lossy 

keys, public keys generated by the lossy key generator, 

is computationally indistinguishable from the one of 

regular public keys. The lossiness guarantees that an 

adversary cannot break the security of ID schemes 

when a lossy key is given, even if an adversary has 

unbounded computing power. The lossy ID scheme is 

employed to obtain tightly secure signature schemes 

via the Fiat-Shamir heuristic [8, 12-13]. Additionally, 

the tight security of the multisignature schemes by [7, 

10] was proven by using the proof technique based on 

the lossy ID scheme. 

The results and facts above suggest that we can 

obtain generic construction of multisignature schemes 

by abstracting the BN multisignature scheme with the 

linear ID scheme. Furthermore, we can add the tight 

security to the generic construction by incorporating 

the lossy ID scheme. The security is proven in the PPK 

and RO model. 

In addition to the generic construction, we consider 

a more compact condition to give a tight security proof 

on the multisignature scheme. We consider the 

relationship between the lossiness and the linearity of 

ID schemes because we find that the known proofs of 

the lossy ID schemes are mostly based on the linearity. 

This means that lossy ID schemes can be constructed 

by using the linearity of ID schemes. However, the 

linearity seems not to imply the lossiness directly. 

Therefore, we introduce a new property, called the 

difference soundness on the ID scheme so that such an 

implication always holds. Then we prove that the 

linearity implies the lossiness with the help of the 

difference soundness. To the best of knowledge, this is 

the first sufficient condition to construct lossy ID 

schemes generally. 

1.2 Applications 

Our generic construction can be used to explain the 

existing tightly secure multisignature scheme. 

Moreover, we can obtain new multisiganture schemes 

by applying our generic construction to existing linear 

and lossy ID schemes. The DDH-based multisignature 

scheme by [7] is obtained from the DDH-based lossy 

ID scheme [8] via our generic construction. The lattice-

based scheme [10] is also constructed from the lattice-

based lossy ID scheme in [12]. In [12], other lossy ID 

schemes are proposed, the decisional short-discrete-

logarithm (DSDL) based scheme and the subset-sum-

based scheme. Applying our generic construction to 

these two lossy ID schemes, we can obtain the first 

tightly secure DSDL-based multisignature scheme and 

the first tightly secure subset-sum-based multisignature 

scheme, respectively. 

We note the lossy ID schemes which are excluded 

from our construction such as [13-14]. The reason is 

that the key indistinguishability depends on groups of 

hidden order. In our generic construction, the signer’s 

secret key and its public key are generated with respect 

to the predetermined public parameter which contains 

the representation of the underlying algebraic structure 

such as groups and rings. Since the order is necessary 

to generate the secret key for all signers in our setting, 

it is required to be contained in the public parameter. 

However, revealing the order breaks the security of the 

schemes above. Thus, we only consider the lossy ID 

schemes with the public order in this paper. It is an 

important question to construct a generic construction 

which is applicable to the hidden-order ID schemes. 

1.3 Related Works 

Multisignature schemes with tight security in the 

PPK model were proposed in [7, 10, 15-19]. The 

multisignature scheme proposed in [20] requires 

establishing a key authority. The construction of this 

paper does not require a key authority and thus the 

security can be proven in the PPK model. Most of the 

schemes above are pairing-based one [16-19], whereas 

the multisignature schemes [7, 10, 15] are paring-free. 

Since there are known pairing-free lossy ID schemes 

[12], we can add new instantiations of pairing-free 

multisignature schemes with tight security in the PPK 

model via our generic construction. 
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2 Preliminaries 

In this section, we introduce notions and notations 

used in this paper. For a distribution D over a set X, we 

denote by 
R

x D←  that x X∈  is chosen according to 

D. Let U(X) be the uniform distribution over the finite 

set X. And 
U

x X←  stands for ( )
R

x U X← . For 

distributions D1 and D2 over a set X, the statistical 

distance is defined by 
1 2

1
| Pr[ ] Pr[ ]|

2
R R

x X

x D x D

∈

← − ←∑ . 

For an algorithm A, A(x) means that A outputs y on 

input x. When A is probabilistic, A(x) is the random 

variable on input x, where the probability is taken over 

the internal coin flips of A. Let [D] denote the support 

of a distribution D, and let [A(x)] denote the set of all 

outputs which would be output by the probabilistic 

algorithm A on input x. We abbreviate “deterministic 

polynomial-time” and “probabilistic polynomial-time” 

to DPT and PPT, respectively. 

2.1 Identification Scheme 

An identification (ID) scheme [21] is an interactive 

protocol between a prover P and a verifier V by which 

P convinces V of the possession of a secret key sk 

which corresponds to a public key pk. We explain 

some specific types of ID schemes, linear or lossy ID 

schemes, below. 

2.1.1 Linear ID Scheme  

Linear ID (LID) schemes [11] are three-move ID 

schemes which are based on some specific algebraic 

structures. In this paper, we focus on some features of 

LID schemes only. Therefore, we hereafter define such 

a variant of LID schemes as succinct LID schemes. A 

succinct LID scheme consists of a tuple ( ,{ , , ,} ,Su D R S
π π π π

 

{ , , }, ).sk st
D D CH RC

π π π
 Su is a PPT public parameter 

generator such that Su returns a public parameter π on 

a security parameter 1λ. { , , }D R S
π π π π

 expresses a 

family of components to build linear functions fπ : Dπ 

→ Rπ parameterized by a public parameter π. For any 

security parameter λ and public parameter [ (1 )]Su
λ

π ∈ , 

fπ has the following properties: 

‧ Dπ and Rπ are Sπ-modules for the ring Sπ. 

‧ fπ can be evaluated in polynomial time in λ. 

‧ fπ is linear, i.e., ( ) ( ) ( )f x y c f x f y c
π π

+ ⋅ = + ⋅  for 

any ,x y D
π

∈  and any c S
π

∈ . 

{ , , }sk st
D D CH

π π π
 is a family of samplable distributions 

sk
D

π
 and st

D
π

 over Dπ, and a subset CH S
π π
⊆ . The 

rejection checker RC is a DPT algorithm which returns 

either 0 or 1 on input string res.  

The protocol between P and V constructed by 

( ,{ , , , } ,{ , , }, )sk st
Su D R S D D CH RC

π π π π π π π
 is depicted 

in Figure 1. Intuitively, a public key pk and a first 

message cmt, called commitment, are made by fπ(sk) 

for a secret key sk

R
sk D

π
←

 and fπ(st) for a state string 

st

R
st D

π
← , respectively. A second message cha, called 

challenge, is chosen uniformly at random from CHπ. 

Then, a third message res, called response, is set to 

st sk cha D
π

+ ⋅ ∈ . The verification is done by checking 

whether or not res passes the check of RC and 

( )f res cmt pk cha
π

= + ⋅  holds over Rπ by the linearity 

of fπ. 

 

Figure 1. Description of succinct LID scheme 

We note that the succinct ID scheme can capture ID 

schemes using rejection sampling [12] by setting RC 

appropriately.  

The representative properties of ID schemes [12, 21] 

are listed as follows: Consider any λ, any [ (1 )]Su
λ

π ∈ , 

any ( , ) [ ( )]sk pk Kg π∈ , and any (cmt, cha, res) 

generates as in Figure 1, 

‧ ε -completeness: It holds that res ≠⊥  with at least 

probability ε  (λ). And Vr(π, pk, cmt, cha, res) = 1 

always holds if res ≠⊥ . 

‧ 
s
ε -simulatability: There exists an PPT algorithm 

Sim which returns (cmt, cha, res)  on (π, pk) satisfying 

the followings: 

(A) the statistical distance between the distribution 

of (cmt, cha, res)  and that of (cmt,cha,res) 

under the condition that RC(res) = 1 is at most 

s
ε (λ); and 

(B) ( , , cmt, cha, res) 1Vr pkπ = . 

‧ η-commitment-min-entropy: The minimum value of 

log2 1/α(π, sk) is η, where α(π, sk) means the 

maximum probability that cmt = fπ(st) with 
st

R
sk D

π
←

 for any fixed cmt∈Rπ. 

2.1.2 Lossy Identification Scheme 

A lossy ID scheme [12, 22] is another variant of an 

ID scheme which has a PPT algorithm KgL. Since we 

now focus on succinct LID schemes rather than 

ordinary ID schemes, we directly add the lossy 

property to succinct LID schemes ( ,{ , , , } ,Su D R S
π π π π

 

{ , , }, )sk st
D D CH RC

π π π
. KgL returns a lossy public key 
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pk  on [ (1 )]Su
λ

π ∈ , and it has the following properties: 

Let [ (1 )]Su
λ

π ∈  for any λ. 

‧ (TK, 
K
ε )-indistinguishability: For any probabilistic 

algorithm A of running time at most TK, A can 

determine that a given public key pk is generated by 

either KgL(π) or Kg(π) with the probability at most 

K
ε (λ). 

‧ 
L
ε -lossiness: The expected value of the 

maximum probability that res which induces that 

( , , , , ) 1Vr pk cmt cha resπ =  exists is at most 
L
ε (λ), 

where ( ),
L

pk Kg π→  
U

cha CH
π

←  and the maximum 

is considered among cmt D
π

∈ . 

2.2 Multisignature Schemes 

A multisignature scheme [1] with S signers 
1

{ }S
i i

S
=

 

consists of the four algorithms (Setup, KGen, Sign, 

Ver). Given a security parameter 1λ, Setup returns a 

public parameter pp. For each 1 ≤ i ≤ S, Si issues a pair 

(ski, pki) of a secret key ski and its public key pki by 

using KGen on pp. Each Si executes Sign on a tuple (pp, 

ski, L, M) of a public parameter pp, Si’s secret key ski, a 

set 
1

{ }Sj jL pk
=

=  of all signers’ public keys and a 

message M to issue a multisignature σ on the pair (L, M) 

with the interaction among all signers. Ver returns 1 on 

a tuple (pp, L, M, σ) of a public parameter pp, a set L of 

public keys, a message M and a multisignature σ if σ is 

valid. 

‧ Correctness: For any λ, any [ (1 )]pp Setup
λ

∈  and 

any message M, for each 1 ≤ i ≤ S, Si issues a pair 

( , ) ( )
i i

sk pk KGen pp←  and then for 
1

{ }Sj jL pk
=

= , 

executes ( , , , )
i

Sign pp sk L M  to issue a 

multisignature σ on (L, M). Then, Ver(pp, L, M, σ) = 

1 holds. 

‧ Security: We introduce the security in the plain 

public key model [1]. This is defined by the security 

game as in Figure 2. Then, a multisignature scheme 

is (S, T, qs, ε )-secure in the plain public key model 

if any PPT forger F of running time at most T and 

making at most qs queries in Signing phase can win 

the game with S signers with the probability ε . In 

the case of the random oracle model, the (S, T, q0, 

q1, ..., qs, ε )-security in the plain public key model 

means the (S, T, qs, ε )-security in the plain public 

key model in which F can make at most qk queries to 

the random oracle Hk. 

3 Relationship between Linearity and 

Lossiness 

We discuss the relationship between the 

linearity and the lossiness of ID schemes. We first 

show that a succinct LID scheme ( ,{ , , , } ,Su D R S
π π π π

 

‧ Init: C generates pp ← Setup(1λ) and (sk*, pk*) ← 

KGen(pp), then sends (pp, pk*) to F. 

‧ Signing: When F queries a pair (L(t), M(t)), then C and F 

run the signing protocol to issue a multisignature σ(t). 

Here, C plays the role of the signer owning sk*, whereas 

F does that of the other co-signers. 

‧ Challenge: When F finally returns (L*, M*, σ*), F wins if 

the followings hold: 

(1) pk*∈L*. 

(2) (L*, M*) is not queried in Signing phase. 

(3) Ver(pp, L*, M*, σ*) = 1. 

Figure 2. Plain public key game 

{ , , }, )sk st
D D CH RC
π π π

 as in Figure 1 with a lossy key 

generator KgL has the lossiness. 

We first introduce a new property called the 

difference soundness. Intuitively, the difference 

soundness states that there are no distinct pairs (cha, 

res) which satisfy the specific formula concerning fπ 

and pk except the small probability. The formal 

definition of the difference soundness is given as 

follows. 

Definition 1. For any λ and any [ (1 )]Su
λ

π ∈ , let X be a 

family of sets X D
π π
⊆

 

parameterized by π. Then the 

(X, 
dif
ε )-difference soundness states that the 

probability that there exist cha cha CH
π

′≠ ∈  and 

,res res X
π

′∈
 

such that ( ) ( )f res res pk cha cha
π

′ ′− = ⋅ −  

is at most 
dif
ε (λ), where the probability is taken over 

(1 )Su
λ

π ←  and ( )
L

pk Kg π← . 

We show that the difference soundness implies the 

lossiness in succinct LID schemes. 

Lemma 1. Let ( ,{ , , ,} ,{ , , }, )sk st
Su D R S D D CH RC

π π π π π π π
 

be a succinct LID with a lossy key generator KgL. And, 

let RS = {RSπ}π be a family of sets { |RS res D
π π
= ∈  

( ) 1}RC res = . Assume that the succinct LID has the 

(RS, 
dif
)ε -difference soundness. Then, it is (1/|CHπ| 

dif
)+ ε -lossy. 

Proof. Let (1 )Su
λ

π ←  and ( )
L

pk Kg π← . We first 

show that for any cmt R
π

∈ , the probability that there 

exist two pairs ( , ), ( , )cha res cha res CH RS
π π

′ ′ ∈ ×  

such that cha cha′≠  and Vr(π, pk, cmt, cha, res) = 

Vr(π, pk, cmt, cha’, res’) = 1 is at most
dif
ε . Assume 

that there are two such pairs. This implies that 

( )f res cmt pk cha
π

= + ⋅  and ( )f res cmt pk cha
π

′ ′= + ⋅ . 

Hence, we have ( ) ( ) ( )f res res f res f res
π π

′ ′− = − =  

( )pk cha cha′⋅ − . It follows from the (RS, 
dif
ε )-

difference soundness that such a probability is at most 

dif
ε . 

Assume that for any cmt R
π

∈ , there are only one 

( , )cha res CH RS
π π

∈ ×  such that Vr(π, pk, cmt, cha, 

res) = 1. Due to 
U

cha CH
π

← , the probability that 



Linear and Lossy Identification Schemes Derive Tightly Secure Multisignatures 1163 

 

such a challenge cha appears is 1/|CHπ|. Totally, we 

can ensure the (1/|CHπ| + dif
ε )-lossiness. 

To propose a generic construction of multisignature 

schemes in the next section, we introduce new notions, 

batch rejection checker, and summing lossiness. 

‧ batch rejection checker 1 : For each 1 ≤ i ≤ S, let 

i
res RS

π
∈ . The batch rejection checker BRC is a 

DPT algorithm which returns 1 on res if res =  

1

S

i

i

res

=

∑  and RC(resi) = 1 for all 1 ≤ i ≤ S. 

‧ 
L
ε -summing lossiness: The expected value of the 

maximum probability that res satisfies the condition 

*

2

( )
S

i i

i

f res cmt pk cha pk ch
π

=

= + ⋅ + ⋅∑  is at most 
L
ε , 

where π ← Su(1λ), pk* ← KgL(π) and 
U

cha CH
π

← , 

the maximum is considered among the choice of cmt, 

(pk2, ..., pkS) and (cha2, ..., chaS). 

In a similar manner to Lemma 1, we can show the 

following lemma on the summing lossiness. 

Lemma 2. Let ( ,{ , , ,} ,{ , , }, )sk st
Su D R S D D CH RC

π π π π π π π
 

be a succinct LID with a lossy key generator KgL. And, 

let { }sres sres

RS RS
π π

=  be a family of sets sres

RS
π

=  

1

{ | 1 , }
S

i i

i

res res i S res RS
π

=

= ∀ ≤ ≤ ∈∑ . Assume that the 

succinct LID has the (RSsres, 
dif
ε )-difference soundness. 

Then, it is (1/|CHπ| + 
dif
ε )-summing lossy. 

Proof. Assume that π ← Su(1λ) and pk* 
← KgL(π). We 

consider the tuple (pk2, ..., pkS) of public keys and the 

tuple (cha2, ..., chaS) of elements in CHπ. We first show 

that for any cmt, there is only one ( , )cha res ∈  

sres

CH RS
π π
×  such that the verification formula 

*

1

( )
S

i i

i

f res cmt pk cha pk cha
π

=

= + ⋅ + ⋅∑  is satisfied 

except the probability 
dif
ε . Assume that there are two 

such pairs ( , ), ( , ) sres

cha res cha res CH RS
π π

′ ′ ∈ ×  such 

that ,cha cha′ ′ . Then, we have 

 *

1

( ) ,
S

i i

i

f res cmt pk cha pk cha
π

=

= + ⋅ + ⋅∑  

 *

1

( ) ,
S

i i

i

f res cmt pk cha pk cha
π

=

′ ′= + ⋅ + ⋅∑  

This implies that fπ(res − res′) = fπ(res) − fπ(res′) = 

pk* · (cha − cha′). By the (RSsres, 
dif
ε )-difference 

                                                           
1 This condition was called the “product verifying condition” in the 

proceeding version. We rename it so that the new name 

represents the requirement of this condition intuitively, since 

BRC considers only the results of RC for all resi, not all 

conditions required in the verification. 

soundness, the probability that such equation holds is 

at most 
dif
ε . 

Due to 
U

cha CH
π

← , we can ensure the (1/|CHπ| + 

dif
ε )-summing lossy. 

4 Proposed Multisignature 

In this section, we propose a generic construction of 

multisignature schemes from succinct LID schemes. 

Let ( ,{ , , , } ,{ , , }, )sk st
LID Su D R S D D CH RC

π π π π π π π
= be 

a succinct LID which has the batch rejection checker. 

For a polynomial δ, let H0: Rπ → {0,1}δ and H1 : {0,1}* 

→ CHπ be hash functions. The hash functions H0 and 

H1 are treated as the random oracle, respectively. Then, 

our proposed construction MS[LID] is given in Figure 

3. 

 

Figure 3. Proposed Multisignature Scheme MS [LID] 

4.1 Correctness 

The correctness of MS[LID] can be proven in the 

following way. For any security parameter λ, let us 

consider the situation that for any π∈[Setup(1λ)], any 

message M and for each 1 ≤ i ≤ S, Si issues a pair (ski, 

pki) ∈  [KGen(π)] and executes Sign(π, ski, L, M) to 

issue a multisignature σ = (cmt, res) of M with respect 
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to 
1

{ }S
i i

L pk
=

= . Assume that for each 1 ≤ i ≤ S, Si 

passes (S3.5) in Sign. Namely, for each 1 ≤ i ≤ S, we 

have RC(resi) = 1. It follows from the definition of the 

batch rejection checker and 
1

S

i

i

res res

=

=∑  that BRC(res) 

= 1. Therefore, the condition (VC.1) is satisfied. 

The procedures (S1.1), (S3.3) and (S3.4), the 

definitions of Kg in Figure 1 and the linearity of fπ 

implies that 

 

1

1

1

1

1

1 1

1

( )

( )

( )

( ( ) ( ) )

( )

S

i

i

S

i

i

S

i i i

i

S

i i i

i

S

i i i

i

S S

i i i

i i

S

i i

i

f res f res

f res

f st sk cha

f st f sk cha

cmt pk cha

cmt pk cha

cmt pk cha

π π

π

π

π π

=

=

=

=

=

= =

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

= + ⋅

= + ⋅

= + ⋅

= + ⋅

= + ⋅

∑

∑

∑

∑

∑

∑ ∑

∑

 (1) 

Therefore, the condition (VC.2) is satisfied. 

We next evaluate the abort probability in (S3.5). We 

fix an index 1 ≤ i ≤ S. Since the random oracle H1 

chooses chai, chai distributes uniformly over CHπ. This 

is the same as in Figure 1. On the other hand, cmti and 

resi are computed as in Figure 1 in (S1.1) and (S3.4), 

respectively. The ε  -completeness implies that Si does 

not abort with the probability over ε . In this signing 

protocol, all signers are required to pass this check 

simultaneously. Thus, the abort probability during the 

protocol is 1−ε S. 

4.2 Security Proof 

In this section, we show the tight security of our 

proposed multisignature scheme. 

Theorem 1. For a succinct LID scheme LID =  

( ,{ , , , } ,{ , , }, )sk st
Su D R S D D CH RC

π π π π π π π
 having the 

batch rejection checker BRC and the lossy key 

generator KgL, assume that LID is ε -complete, 
s
ε -

simulatable, η-commitment-min-entropy, (TK, )
K
ε -

indistinguishable and 
L
ε -summing lossy. Then, MS 

[LID] is (S, T, q0, q1, qs, ε )-secure in the plain public 

key model and the random oracle model, where 

 0 0

0 1

( 1)( )

2

( 1)( )1
.

| |

,

2

K s S

s s

K

L

s s

q

q q S q

T T pol

q S

q q q q

R

y

δ

η
π

≤ + +

+ − +
+

+ − +
+

= −

+

ε ε ε ε

  

Proof. We show the statement by the hybrid argument. 

Assume that F is a forger which wins the ppk game 

with probability ε . For any 0 ≤ k ≤ 5, let Gamek be the 

security game defined below and Wk be the event that F 

wins Gamek, respectively.  

The idea of the proof is based on [12]. Namely, 

Signing phase is replaced with a simulator which does 

not use the secret key by utilizing the simulatability of 

the underlying linear ID scheme and the programming 

technique which is allowed in the random oracle model. 

It is mainly done in Game4, while the preparation for 

the simulation is done in Game1 to Game3. In Game5, 

the challenge public key *pk  given to C is replaced 

with the lossy one. Note that the key indistinguishability 

guarantees this replacement. We evaluate the 

difference of the winning probabilities of F between 

the games. Finally, the winning probability by any 

unbounded forger F in Game5 is shown to be 

negligible. 

Game0: This game is the ppk game of the proposed 

multisignature scheme as in Figure 4. Therefore, we 

have 

 
0

Pr[ ] .W = ε  (2) 

Game1: In H0 phase, C aborts this game if the value h(t) 

is already set as the hash value of some previous query 

as described in Figure 5. 

To evaluate the difference between W1 and W0, we 

now estimate the abort probability. Before proceeding 

to H0 phase on a t’-th query, at most t’ − 1 distinct hash 

values on H0 are already defined. Since H0 phase is 

totally queried at most q0 times by F and at most qsS 

times by C in Signing phase, the abort probability is 

evaluated as follows: 

 
0

1
1{0,1}

1

0 0

Pr [ { } ]

1

2

( 1)( )

2

t U

s

t
t t th

q q S

t

s s

h h

t

q q S q q S

δ

δ

δ

−

′ ′=←

+

=

∈

−
=

+ − +
≤

∑  

Thus, we have 

 
0

1

0

0

(

| Pr[ ] P

1)(

[ |

)

r ]

.
2

s s
q q S q S

W W

q
δ

+ − +

− ≤

 (3) 
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Figure 4. Game0 

Game2: For each query to Signing phase, a hash value 
( )
1
t

cha  of H1 is computed in Stage 2 instead of Stage 3 

as in Figure 5. 

We fix a t-th query to Signing phase. Assume that C 

does not abort in (2.1) during Game2. Namely, for all 2 

≤ j ≤ S, there exists ( )t
jc R

π
∈  such that the hash value 

of ( )t
jc  on H0 is already defined as hj which is given by 

F. Then, we show that the replaced condition 
( ) ( )t t

j jcmt c≠  at (3.1) in Game2 is equivalent to the one 

( ) ( )
0 ( )t t

j jh H cmt≠  which is the original condition. We  

 

Figure 5. Game1−Game5 

fix an index 2 ≤ j ≤ S. If ( ) ( )t t

j jcmt c= , then the 

assumption implies that ( ) ( ) ( )
0 0( ) ( )t t t

j j jh H c H cmt= = . 

On the other hand, if ( ) ( )
0 ( )t t

j jh H cmt= , then we have 

( ) ( )t t

j jcmt c= . This is because ( ) ( )
0 ( )t t

j jh H c=  is 

assumed and there is only one c ∈  Rπ such that 
( )

0 ( )t

jh H c=  by the setting at Game1. 
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We next evaluate the abort probability at (2.1). The 

abortion at this point means that F sends ( )t
jh  which is 

not obtained from H0 phase for some 2 ≤ j ≤ S. On the 

other hand, F is required to find c such that 
( )

0 ( )t

jh H c= . However, the hash value of c on H0 is 

distributed uniformly at random over Rπ as in H0 phase. 

It follows that the abort probability is evaluated by at 

most 1/|Rπ|. Thus, we have 

 
2 1

1
| Pr[ ] Pr[ ] | .

| |
W W

R
π

− ≤  (4) 

Game3: For each t-th execution of (2.3), C aborts if the 

hash value of (pk*, L(t), cmt(t), M(t)) on H1 is already 

defined. Otherwise, the hash value is programmed to 
( )
1
t

U
cha CH

π
← . 

For each t-th execution of (2.3), such a programming 

is succeeded if the hash value of (pk*, L(t), cmt(t), M(t)) 

on H1 is not defined yet before the execution. This can 

be evaluated by the probability that cmt(t) already 

appears as part of some previous query at H1 phase. 

Recall that cmt(t) is set as in ( ) ( )
1

2

S
t t

j

j

cmt c

=

+∑  in (2.1). η-

commitment-min-entropy implies that for any ( )
2{ }t S

j jc
=

, 

such a probability is evaluated as 1/2η. 

On the other hand, (2.3) is executed at most q1 + qs 

times. In a similar manner to the evaluation of the abort 

probability in Game1, the abort probability is therefore 

at most 
1

1 1

1

( 1)( )( 1)

2 2

S
q q

S S

t

q q q qt

η η

+

=

+ − +−
≤∑ .  

Thus, we 

 
3

1

2

1
( 1)( )

| Pr[ ] .r[ ] |
2

P S S
q q q q

W W
η

+ − +
− ≤  (5) 

Game4: A tuple ( ) ( ) ( )
1 1 1( , , )t t t

cmt cha res  is computed by 

using Sim in (1.2). More precisely, Stage 1, and Stage 

2 in this game are depicted in Figure 5. 

Observe that ( ) ( ) ( )
1 1 1( , , )t t t

cmt cha res  in Game3 is 

generated as in Figure 1 by ( )
1
t

U
cha CH

π
← . ε -

completeness implies that ( )
1( ) 1t

RC res ≠  with the 

probability 1 − ε . In other words, Game3 aborts with 

the probability 1 − ε due to ε -completeness. To 

capture this situation in Game4, C aborts Game4 

with the same probability in (1.1) because 
( ) ( ) ( )
1 1 1( , , )t t t

cmt cha res  by Sim always passes the 

verification. 

We consider the situation where C does not abort. In 

this situation, ( ) ( ) ( )
1 1 1( , , )t t t

cmt cha res  in Game3 is 

generated as in Figure 1 so that ( )
1( ) 1t

RC res = , 

whereas it in Game4 is generated by the simulator Sim. 

The 
s
ε -simulatability implies that the statistical distance 

of the distributions of ( ) ( ) ( )
1 1 1( , , )t t t

cmt cha res  in both 

games is at most 
s
ε . Since Signing phase is executed 

as most qs times, we have 

 
4 3

| Pr[ ] Pr[ ] | .
S s

W W q− ≤ ε  (6) 

Game5: A challenge public key pk* is generated by 

using KgL instead of KGen = Kg as in Figure 5. 

Since this change is directly implied by the (TK, 
K
ε )-

indistinguishability of LID, we have 

 
5 4

| Pr[ ] Pr[ ] | .
K

W W− ≤ ε  (7) 

The upper bound that W5 occurs: For * *

1
{ }S

i i
L pk

=

=  

such that * *

i
pk pk=  and * * *( , )cmt resσ = , let (L*, M*, 

σ*) be the final output of F at Game5. The probability 

of W5 is evaluated by the chance to set a “good” 

challenge *

1
cha , which induces the acceptance, as the 

hash value of * * * *( , , , )pk L cmt M  on H1. This is 

naturally evaluated by the 
L
ε -summing lossiness. Thus, 

we have 

 
5

Pr[ ] .
L

W ≤ ε  (8) 

Putting together with Eqs. (2)-(8), it holds that 

 

0 0

0 0

( 1)( )

2

( 1)( )1
.

| | 2

s s

s

s

K L

s

S

q q S q q S
q

q q q q

R

δ

δ

π

+ − +
≤ + + +

+ − +
+ +

ε ε ε ε

 

By combining Theorem 1 and Lemma 2, the 

following holds. 

Corollary 1. For a succinct LID scheme LID =  

( ,{ , , , } ,{ , , }, )sk st
Su D R S D D CH RC

π π π π π π π
 having the 

batch rejection checker BRC and the lossy key 

generator KgL, and the family { }sres sres

RS RS
π π

=  

defined in Lemma 2, assume that LID is ε -complete, 

s
ε -simulatable, η-commitment-min-entropy, (TK, 

K
ε )-

indistinguishable and (RSsres, 
dif
ε )-difference sound. 

Then, MS[LID] is (S, T, q0, q1, qs, ε )-secure in the 

plain public key model and the random oracle model, 

where 

 
0

0

if

0

0

d

( ),

1

| |

( 1)( )

2

( 1)( )1
.

| | 2

K S L

K

s

s s

s s

T T poly

q
CH

q q S q q S

q q q q

R

π

δ

η
π

λ= −

≤ + + + +

+ − +
+ +

+ − +
+ +

ε ε ε ε ε
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5 Application of Proposed Generic 

Construction 

In this section, we show that our generic 

construction can be used to explain the existing tightly 

secure multisignature scheme and to obtain new 

multisiganture schemes by applying our generic 

construction to existing linear and lossy ID schemes. 

We consider the existing lossy ID schemes proposed in 

[8, 12], and observe that they satisfy linearity.  

5.1 Mathematical Notations 

Let G be a group of prime order p with generators g 

and h. For any natural number n, let Zn and *

n
Z be the 

residue ring modulo n and its multiplicative group. [a, 

b] denotes the set of all integers x satisfying a ≤ x ≤ b 

for any integers a ≤ b. For any natural number n, Z|n| = 

[-n, n]. For natural numbers q and n, R represents 

Zq[X]/(Xn + 1). And R× is the set of all invertible 

elements in R. By letting 
1

0

n

i

i

i

w X R

−

=

= ∈∑w , the 

absolute value |wi| is considered to be less than (q − 

1)/2, and |w| means max0≤i≤n−1 |wi|. For any number β ≤ 

q, R≤β is the set of all elements w ∈ R such that |w| ≤ β. 

Dβ stands for the distribution that assigns the 

probability proportional to exp(−π|y|2/β2) for any y ∈ R, 

where β is a number, and y is now represented as the n-

dimensional coefficient vectors, or 0 otherwise. 

We represent any vector as a column vector in this 

paper. For a vector a, aT denotes the transpose of a. For 

any vectors a and x, ,a x  is defined by aT
x. A 

function ε  is said to be negligible in λ, if for any 

polynomial ν, there exists a natural number λ0 such that 

for any λ > λ0, ε (λ) < 1/ν(λ). We write negl to denote 

some negligible function in λ.  

5.2 KW ID Scheme 

Figure 6 and Table 1 illustrate KW ID scheme [8], 

and the setting which is suitable to the succinct 

linearity of KW ID scheme, respectively. By applying 

our generic construction to KW ID scheme with the 

setting in Table 1, we can obtain the multisiganture 

scheme which is almost the same as the multisiganture 

scheme by [7]. The completeness, the simulatability, 

and the indistinguishability of KW ID scheme are 

discussed in [8]. The summing lossiness of KW ID was 

proven in [7]. Since BRC defined in Table 1 always 

returns 1, it is the batch rejection checker of KW ID. 

Therefore, the security of the resulting multisiganture 

can be interpreted by Theorem 1. 

 

Figure 6. KW ID scheme [8] 

Table 1. Setting of succinct LID based on KW ID 

scheme 

π (G, p, g, h) 

Dπ Zp 

Rπ G × G 

Sπ Zp 

fπ ( , )x xx g h�  

sk
D
π

 U(Zp) 

st
D
π

 U(Zp) 

CHπ Zp 

RC (res) always return 1 

BRC (res) always return 1 

 

5.3 AFLT Lattice ID Scheme 

In a similar manner to KW ID scheme, the succinct 

linearity of AFLT lattice ID scheme (Figure 7) can be 

discussed as in Table 2. The multisignature scheme 

given by applying our generic construction to the 

setting in Table 2 is almost the same as Fukumitsu-

Hasegawa multisignature scheme [10], in which they 

showed the summing lossiness. The following lemma 

shows that AFLT lattice ID scheme has a batch 

rejection checker. Thus, the security of this 

multisignature is guaranteed by Theorem 1. 

 

Figure 7. AFLT lattice ID scheme [12], where 

, , , , ,β β β
s y c

q n  and 
z

β  are some designated 

parameters [10, 12] 
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Table 2. Setting of succinct LID based on AFLT 

lattice ID scheme 

π R
×

×a  

Dπ R R×  
Rπ R 

Sπ R 

fπ 1 2 1 2
( , )x x x x+� a  

sk
D
π

 Dβs × Dβs 

st
D
π

 U(R≤βy) × U(R≤βy) 

CHπ R≤βc 

RC (res) return 1 if z1, z2 ∈ R≤βz for res = (z1, z2) 

BRC (res) return 1 if z1, z2 ∈  R≤Sβz for res = (z1, z2) 

 

Lemma 3. BRC defined in Table 2 is a batch rejection 

checker of AFLT lattice ID scheme. 

Proof. Assume that RC(resi) = 1 for each 1 ≤ i ≤ S. This 

implies that zi,1, zi,2 ∈ R≤β for each 1 ≤ i ≤ S, where resi 

= (zi,1, zi,2). It follows from 
1 2

1

( , )

S

i

i

res res

=

= =∑z z  that z1, 

z2 ∈ R≤Sβ
z. Thus, BRC returns 1 on input res = (z1, z2). 

5.4 AFLT Decisional Short-discrete-logarithm 

ID Scheme 

The description AFLT decisional short-discrete-

logarithm (DSDL) ID scheme [12] is illustrated in 

Figure 8. And the setting for the succinct linearity is 

given in Table 3. We show that AFLT DSDL ID 

scheme has the batch rejection checker and the 

difference soundness by the following lemmas, 

respectively. Hence, we can obtain the multisignature 

scheme based on the DSDL assumption by the setting 

in Table 3 and Corollary 1. 

 

Figure 8. AFLT DSDL ID scheme, where k, k’ and c 

are some designated natural numbers [12] 

Lemma 4. BRC defined in Table 3 is a batch rejection 

checker of AFLT DSDL ID scheme. 

Proof. Assume that RC(resi) = 1 for each 1 ≤ i ≤ S. 

This implies that resi ∈ [2k + c, 2k + k’ + c – 1] for each 1 ≤  

Table 3. Setting of succinct LID based on AFLT 

DSDL ID scheme 

π (p, q, S, s) 

Dπ Zp 

Rπ S 

Sπ Zp 

fπ  
sk

D
π

 ([ , ])U −0 2 1
c  

st
D
π

 ([ , ])U
′

−0 2 1
k+k +c  

CHπ [ , ]−0 2 1
k  

RC (res) return 1 if res ∈ [2k+c, 2k+k′+c − 1] 

BRC (res) return 1 if res ∈ [S2k+c, S(2k+k′+c–)] 

 

i ≤ S. It follows from 
1

S

i

i

res res

=

=∑  that res ∈ [S2k + c, 

S(2k + k’ + c – 1)]. Therefore, BRC returns 1 on input res. 

Lemma 5. Let (p, q, S, s) ←Sudsdl(1λ), and let 

( , , , )dsdl

L
pk Kg p q s← S . For any 1S ≥ , AFLT 

DSDL ID scheme is ([S2k+c, S(2k+k’+c – 1)], S2k+k’+c+2/q) 

- difference sound. 

Proof. Let ( , , , )dsdl

L
pk Kg p q s← S . This implies that 

there exists x ∈ Zq such that pk = sx, and x is uniformly 

distributed over Zq. Assume that there exist cha, cha’ 

∈ [0, 2k − 1] and res, res′
∈ [S2k + c, S(2k + k’ + c – 1)] such 

that cha cha′≠  and ( ) ( ).f res res pk cha cha
π

′ ′− = − . 

The linearity and *

q
cha cha′− ∈Z  imply that pk =  

( )
.

( )

res res
f

cha cha
π

′−⎛ ⎞
⎜ ⎟′−⎝ ⎠

 Since [ (2 1), 2 1]k k
cha cha′− ∈ − − −  

and [ (2 1), (2 1)]k k c k k c
res res S S

′ ′+ + + +
′− ∈ − − − , there 

are at most (2(2 1) 1)(2 (2 1) 1)k k k c
S

′+ +
− + − + ≤  

2 2
2

k k c
S

′+ + +  possibilities of the value (res – res’)/(cha – 

cha’). Therefore, such cha, cha’, res and res’ exist with 

probability at most S2k + k’ + c + 2/q. 

5.5 AFLT Subset-sum ID Scheme 

To consider the linearity of AFLT subset-sum ID 

scheme [12] (Figure 9), we should note the definition 

of a linear function. As in Table 4, we bypass defining 

the set Sπ in the definition. Instead, we slightly modify 

the construction of ID scheme from Figure 1 in the 

following way, to represent their ID scheme by the 

linear function. The key generation algorithm Kgss 

generates a pair (sk, pk) by choosing sk = (x1, ..., xk) for 

each sk

i R
x D

π
← , and then setting pk = (fπ(x1), ..., fπ(xk)). 

Then, the batch rejection checker and the difference 

soundness of AFLT subset-sum ID scheme are verified 

by the sequential lemmas below. This implies that we 

can obtain the multisignature scheme based on the 

subset-sum problem and its security is proven by 

Corollary 1. 
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Figure 9. AFLT subset-sum ID scheme, µ is a prime 

greater than (2kn + 1)n32k [12] 

Table 4. Setting of succinct LID based on AFLT 

subset-sum ID scheme 

π 
n

µ
∈a Z  

Dπ Z
n 

Rπ Zµ 

fπ , mod mod
T

µ µ=x a x a x�  

sk
D
π

 ([0, 1] )nU  

st
D
π

 | |( )n

kn
U Z  

CHπ [0, 1]
n  

RC(res) return 1 if | |
n

kn k
res

−

∈ Z  

BRC(res) return 1 if | ( )|
n

S kn k
res

−

∈ Z  

 

Lemma 6. BRC defined in Table 4 is a batch rejection 

checker of AFLT subset-sum ID scheme. 

Proof. Asume that RC(resi) = 1 for each 1 ≤ i ≤ S. This 

implies that | |
n

kn k
res

−

∈Z  for each 1 ≤ i ≤ S. It follows 

from 
1

S

i

i

res res

=

∈∑  that | ( )|
n

S kn k
res

−

∈Z . Therefore, BRC 

returns 1 on input res. 

Lemma 7. Let (1 )ss

Su
λ

←a , and let ( )ss

L
pk Kg← a . 

For any 1S ≥ , AFLT subset-sum ID scheme is 

| ( )|

(3 (2 ( ) 1)
,

k n

n

S kn k

S kn k

µ
−

⎛ ⎞+ −
⎜ ⎟
⎝ ⎠
Z -difference sound. 

Proof. ( ).ss

L
pk Kg← a  This implies that pk is 

uniformly distributed over n

µ
Z . Assume that there exist 

, [0,1]
k

cha cha′∈  and | ( )|,

n

S kn k
res res

−

′∈Z  such that 

cha cha′≠  and ( ) ( )f res res pk cha cha
π

′ ′− = ⋅ − . It 

follows from fπ(x) = ,a x  mod µ that 

, ( ) , ( ) 0(mod )res res pk cha cha µ′ ′− − − ≡a . In a 

similar manner to the proof of Lemma 5, there are at 

most 3 (2 ( ) 1)k n
S kn k+ −  pairs ( , )cha cha res res′ ′− − . 

Since a and pk are uniformly chosen from n

µ
Z  and µ 

is prime, the probability that , ( )res res′− −a  

, ( ) 0(mod )pk cha cha µ′− ≡  holds is at most 

3 (2 ( ) 1)k n
S kn k

µ

+ −
 as in the discussion in Section 6 

on [12]. 

6 Concluding Remarks 

In this paper, we have proposed a generic 

construction of multisignature schemes with the tight 

security proof in the plain public key and random 

oracle model. Our construction employs the linear ID 

scheme and the lossy ID scheme and is obtained by 

incorporating these two ID schemes into the strategy of 

the multisignature scheme by [1]. Our generic 

construction can be used not only to explain the 

existing tightly secure multisignature scheme but also 

to obtain new multisiganture schemes by applying it to 

existing linear and lossy ID schemes. We have also 

proposed a more compact condition to give a tightly 

secure multisignature scheme. We have introduced the 

difference soundness on the ID scheme and have 

shown that the combination of the linearity and the 

difference soundness implies the lossiness. To the best 

of knowledge, this is the first sufficient condition to 

construct lossy ID schemes generally. 

We finally note the signing protocol of our generic 

construction. The signing protocol aborts when the 

rejection checker rejects the response, whereas some 

multisignature schemes [9-10, 23] restarts the signing 

protocol in such a case. We remain an open question to 

consider a generic construction which supports the 

restart in the signing protocol. 
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