
Service Process Improvement Based on Business Process Management 1119

Service Process Improvement Based on Business Process

Management

Jia-Xing Wang1, Si-Bin Gao2, Cong-Er Yuan1, Da-Peng Tan3, Jing Fan1

1 College of Computer Science, Zhejiang University of Technology, China
2 Department of Computing, Research Institute of CETHIK Group, China

3 College of Mechanical Engineering, Zhejiang University of Technology, China

wjx@zjut.edu.cn, sibin.gao@gmail.com, yce3612635@126.com, tandapeng@zjut.edu.cn, fanjing@zjut.edu.cn*

*Corresponding Author: Jing Fan; E-mail: fanjing@zjut.edu.cn

DOI: 10.53106/160792642021092205015

Abstract

The service vendors desire to improve their service

processes to retain consumers and increase profits. Most

existing methods require a mass of domain knowledge to

improve their service processes, which are time-

consuming and error-prone. This paper proposes a

method named Diff-BPI to automatically improve a

service process, reducing execution cost while

guaranteeing consumers’ waiting/process time. Given the

existing two versions of a service process, Diff-BPI first

detects their differences and all possible candidate

improved service processes are constructed by connecting

their same parts and combinations of different parts.

After that, Diff-BPI calculates three metrics for each

candidate: “quality of improvement (QoI)”, “longest

execution time (LET)” and “stability of time (SoT)”, and

filters the candidates with LETs higher than the given

time limit and QoIs/SoTs less than the given one. Finally,

Diff-BPI picks the best candidate with the lowest cost

less than the costs of two existing versions. A case study

shows that Diff-BPI can construct an improved service

process with a lower cost than the existing two versions.

The efficiency evaluation reveals that Diff-BPI can save

more than 20% of the running time for improving a

service process using the filter strategy when the number

of differences between the two versions is more than 3.

Keywords: Service process, Process difference, Business

process improvement

1 Introduction

Nowadays, service vendors provide various service
processes to consumers in different scenarios [1-2].
Since the cut-throat competition of market share or
even survival, service vendors need to improve their
service processes to retain consumers and increase
profits [3]. Usually, the service vendor has multiple
versions with different control flow patterns and
resource allocations for a specific service process,
corresponding to different performances, such as

execution time and consumer satisfaction [4-5]. Thus,
weaken or even cancel the low-efficiency and high-
cost parts in the existing versions of a service process,
remain the high-efficiency and low-cost parts, and
provide a service process with better performance than
the existing versions is challenging [6].

Since the control flow of a service process can be
modeled as a business process [7-8], the business
process improvement (BPI) technique can be
introduced to improve the service processes [9]. Most
existing BPI methods manually or semi-automatically
improve the service processes based on the knowledge
gained through process analyzers’ experience.
However, the service processes’ control flows get more
complicated than these in the past, so the service
process improvement rounds in these methods become
time-consuming, expensive, and error-prone [10].
Hence there is an urgent need to develop automatic
methods to improve the service processes, which can
lower costs through reduced working hours.

To recognize which parts in the service process
produce high cost and low efficiency, we compare two
existing versions of this service process and detect
their differences. Based on these differences, we
propose a BPI approach Diff-BPI to automatically
build an improved service process with a lower cost

than the existing versions. First, Diff-BPI identifies the

differences between two versions of a service process.
Since the existing difference detection methods [7, 11-
14] just display the compositions of differences and do
not point out which control flow patterns a difference
belongs to and in which location, we redefine the
differences by considering their positions. All possible
candidate improved service processes are then
constructed by connecting the same parts and the
combinations of different parts between two versions.
Next, Diff-BPI calculates three metrics for each
candidate: “quality of improvement (QoI)”, “longest
execution time (LET)” and “stability of time (SoT)”,
and filters the candidates with LETs larger than the
given time limit and QoIs/SoTs less than the given one.

1120 Journal of Internet Technology Volume 22 (2021) No.5

Finally, Diff-BPI selects the best one with the minimal
cost less than the existing versions’ costs. Therefore,
the improved service process can save the service
vendor’s cost and guarantee the waiting/process time
of consumers.

The contributions of this paper are summarized as
follows:

(1) The candidate improved service processes are
automatically built by connecting the same parts and
the combinations of different parts between two
versions of a service process.

(2) Three new metrics: quality of improvement,
longest execution time and stability of time, are
proposed to filter the candidate improved service
processes and select the best one with a lower cost than
the existing versions while guaranteeing consumers’
waiting/process time.

(3) A case study is provided to show the practical
use of the proposed method.

(4) The efficiency evaluation shows that Diff-BPI
can save more than 20% of the running time for
building an improved service process using the filter
strategy when the number of differences between two
existing versions is greater than 3.

The remainder of this paper is structured as follows.
Related work and preliminaries are given in Section 2
and Section 3. Section 4 and Section 5 present the
details and experiments of Diff-BPI. Section 6
concludes this paper.

2 Related Work

BPI has the potential to various aspects concerning a
service process, including reduced execution time and
cost, and increased consumer satisfaction. There are
many methods to improve a service process, albeit
under different titles: process innovation, process
change, process evolution, and process refactor.

Pyon et al. [16] present a web-based decision
support system for business process management
employing customer complaints and handling data for
service process improvement. Ghattas et al. [10]
develop a semi-automated method to improve process
performance by learning and deriving decision criteria
formulated as decision rules. Beerepoot et al. [15] spot
which activities are essential in improvement projects
based on organizational size, culture and resources.
They use a multiple case study approach to determine
how to tackle the improvement organizations of
different contexts. Attong et al. [17] provide tools,
agendas and activities detailing each of the six stages
of BPI. Jin et al. [18] analyzed the real causal relations
between business tasks based on data operation
dependency analysis, and refactored business process
models with process mining technology. In this way,
some sequence structures could be refactored to
parallel structures, and the efficiency of business
processing could be correspondingly improved.

Griesberger et al. [19] analyze the existing BPI
techniques and give hints about how to select a suitable
method for a specific improvement situation. Yousfi et
al. [20] propose a BPI technique based on ubiquitous
computing, which positively impacts the process
performance metrics. They later introduce ubiquitous
decision-aware business processes and explain how to
use these processes for improvement [9]. Seethamraju
et al. [21] explain the importance and role of process
knowledge in the BPI methodology with the help of a
case study. Sallos et al. [22] propose a business process
improvement framework for knowledge-intensive
entrepreneurial ventures, which integrates critical
concepts from the knowledge-intensity and knowledge
management literature. Iren et al. [23] proposed an
approach to facilitate BPI by providing analytical
capabilities to detect and resolve requirement conflicts,
analyze impacts, and develop actionable BPI plans.
Based on the fundamental assumption of improvement
in BPM, i.e., redesigns deliver refined and improved
versions of business processes, Satyal et al. [24]
proposed a middle ground through shadow testing,
where a new process version can be simulated using
historical data from the old version.

Most existing methods manually or semi-automatically
analyze the processes and improve them by identifying
areas that can increase effectiveness and efficiency,
heavily relying on human knowledge and experience.
Due to the differences in knowledge and experience
among different experts, the diagnoses made by
different experts may be different, leading to
inconsistency in the diagnosis results. Specifically, the
manual or semi-automatic methods will spend plenty
of time and cost to improve the process, which is
inefficient and the results cannot be guaranteed. In this
paper, Diff-BPI automatically construct an improved
service process based on the existing versions of a
service process with better performance than the
existing versions of this service process, which can
increase the efficiency of service process improvement.

3 Preliminaries

This section presents a set of preliminaries that are
important to set the stage for understanding Diff-BPI.

3.1 Service Process Modeling

A service process’s structure can be modeled as a
business process, described by a directed graph
denoted as a tuple P = (T, G, E), where

(1) T = {t1, ..., tn} is the task node set.
(2) G = {g1, ..., gm} represents a gateway node set

including six types: “And-split”, “And-join”, “Xor-
split”, “Xor-join”, “Loop-split”, “Loop-join”.

(3) E is a set of directed edges, where each edge
connects two nodes m, n ∈ T ∪ G.

There are four basic control flow patterns in a

Service Process Improvement Based on Business Process Management 1121

service process:
(1) Sequential pattern, where each task in it has

exactly one incoming and one outgoing edge.
(2) Parallel pattern, which starts from “And-split”

and ends at “And-join”, all tasks in it can be parallelly
executed.

(3) Conditional pattern that consists of multiple
branches, which starts from “Xor-split” and ends at
“Xor-join”, only one branch is allowed to be executed.

(4) Loop pattern, which starts from “Loop-split” and

ends at “Loop-join”, the tasks in it can be repeatedly
executed.

Figure 1 shows two return goods service processes
modeled by two business processes. Taking “Service
process 1” in Figure 1(a) as an example, its task node
set is {A, B, C, D, E, F}, and its gateway node set is
{Xor-split, Xor-join}. Besides, “Service process 1”
contains one conditional pattern that starts from “Xor-
split” and ends at “Xor-join”, and either task E or task
F can be executed.

A B C D
Xor-

split

E

F

Xor-

join

A
And-

split

B

C

And-

join
D

Xor-

split

F

Xor-

join

H

(a) Service process 1 (b) Service process 2

Figure 1. Two return goods service processes modeled by business processes, where A: apply for a return, B:
confirm request, C: verify request, D: agree to return, E: courier pick up, F: self-drop off, H: post express

3.2 Task-based Process Structure Tree (TPST)

A service process can be decomposed into a
hierarchy of sub-processes where each sub-process is a
single-entry-single-exit fragment, and such a
decomposition can be organized into a process
structure tree (PST) [25]. In a PST, a leaf node
represents an edge in its corresponding service process.
To facilitate the difference detection, we use a variant
of PST, i.e., task-based process structure tree (TPST)
[26]. The features of a TPST are as follows:
‧ TPST has four types of gateway nodes: Sequence,

Loop, XOR, and AND, corresponding to the
sequential, loop, conditional, and parallel pattern in

a service process.
‧ The leaf and non-leaf nodes in a TPST separately

represent the service process’s task nodes and
control flow patterns.
Figure 2 shows two TPSTs transformed from two

service processes in Figure 1. The leaf nodes colored
blue and non-leaf nodes colored green in “TPST 1” and
“TPST 2” are separately the task nodes and control
flow patterns in two service processes. Taking “TPST
1” in Figure 2(a) as an example, the non-leaf node
Sequence reveals that the highest abstraction level of
“Service process 1” is a sequential pattern, XOR and its
child nodes E and F correspond to a conditional pattern.

A

Sequence

D XOR

g2

B C

E F

g1

A

Sequence

AND D XOR

g4 g5

B C H F

g3

(a) TPST 1 (b) TPST 2

Figure 2. Two task-based process structure trees

3.3 Calculation of Capability Degree

The capability degree of an engineer is calculated
based on the satisfaction degrees of service processes
he has improved. The service satisfaction degree is
rated by consumers using linguistic variables such as
“low” and “good”, which effectively represent the
imprecise information. A linguistic variable can be

quantified and extended to mathematical operations
using triangle fuzzy numbers (TFNs) [27]. A TFN can
be defined as Ã = (al, am, ar), where al and ar denote
the minimum value and the maximum value, showing
that Ã is ranged from al to ar, and am = (al + ar) / 2 is
the highest possible value. For example, the linguistic
variable set {“Excellent”, “Good”, “Normal”, “Bad”}
is used to measure the service satisfaction degree,

1122 Journal of Internet Technology Volume 22 (2021) No.5

where each linguistic variable is quantified by a TFN
with three scores (between 0-100): “Excellent” = (85,
92.5, 100), “Good” = (75, 79.5, 84), “Normal” = (60,
67, 74), “Bad” = (0, 29.5, 59).

Usually, the service process improvement requires
multiple capabilities c1, ..., cn and corresponds to a
service satisfaction degree SSD. Thus, the degrees of
c1, ..., cn owned by the engineer who improves this
service process are scored as SSD. As shown in Figure
3, “Service process 1” requires two capabilities “write”
and “compute” to improve it and its service satisfaction
degree is “Good”. Hence the degrees of “write” and
“compute” owned by the engineer are both scored as
“Good”. In addition, each capability degree of an
engineer is equal to the average of all satisfaction
degrees of service processes he has performed that
include this capability. For example, the engineer A
improved 3 service processes in the past shown in
Figure 3 with satisfaction degrees “Good” = (75, 79.5,
84), “Normal” = (60, 67, 74) and “Excellent” = (85,
92.5, 100), and the capability sets required by these
three service processes are separately {“write”,
“compute”}, {“design”, “write”} and {“design”,
“compute”}. Thus, A’s degrees of “write”, “design”
and “compute” are (67 + 79.5)/2 = 73.25, (67 + 92.5)/2
= 79.75, (79.5 + 92.5)/2 = 86, where 79.5, 67, 92.5 are
separately the mean values of “Good”, “Normal” and
“Excellent”. Since 73.25 belongs to (60, 74), the
degree of “write” is “Normal”. Similarly, the degrees
of “design” and “compute” are “Good” and
“Excellent”, respectively.

Improved services
Required

capabilities

Service

satisfaction degree

Service process 1

write

compute

Good

design

write

Normal

design

compute

Excellent

Service process 2

Service process 3

Figure 3. Three improved service processes with
required capabilities and service satisfaction degree

Since how to get the capability required for
improving a service process and owned by an engineer
is not the focus of our work, we directly use the
provided capability sets in this paper. Table 1 presents
an example, meaning that two service processes in
Figure 1 contain two improvements I1 and I2, and three
engineers A, B, C can be selected to perform these two
improvements. The capabilities required for the
improvements and owned by the engineers are “read”,

“write” and “compute”, and the capability degree
corresponds to four TFNs: “Excellent”, “Good”,
“Normal”, and “Bad”. Taking capability “read” as an
example, the degree required for I1 is “Normal”, and
the degree owned by B is “Excellent”.

Table 1. Capability table

 I1 I2 A B C

Read Normal Excellent Normal Excellent Good

Write Bad Good Normal Excellent Good

Compute Good Normal Good Good Normal

3.4 Cost and Execution Time

Different staff spends various execution times and
monetary costs performing the tasks in a service
process. Thus, an Allocation Table is used to record the
execution time and monetary cost for each staff to
perform the tasks. In the Allocation Table, each
allocation can be defined as <s, task, t, c>, indicating
that staff s is allocated for executing task task with
execution time t and monetary cost c. As shown in
Table 2, it records the allocation for staff and tasks. For
example, (a, A, 4, 10) in the second row and second
column shows that staff a spends 4 hours and $10
performing task A.

Table 2. Allocation table

 A B C D E F G H

a 4,10 5,10 2,10

b 3,20 2.5,20 5.5,20

c 2,40 2.5,40 3,40

d 3,30 2.5,30 3.5,30

3.5 Problem Statement

Given two service processes S1 and S2, Diff-BPI
constructs all possible candidate improved service
processes based on combinations of differences
between S1 and S2, and selects the best improved
service process Sbest, with the following constraints: (1)
The quality of improvement and the stability of time
are separately greater than the given quality of
improvement Q and stability rate S. (2) The longest
execution time is not allowed to exceed the given time
limit T. (3) The execution cost of Sbest is minimal
among all candidates as well as less than the costs of S1
and S2.

4 Diff-BPI Implementation

This section presents the details of implementing
Diff-BPI. The main idea is to construct all possible
candidate improved service processes, filter the
candidates that do not meet the constraints, and select
the best one with minimal cost. It consists of three
phases: (1) Difference Positioning, (2) Improved

Service Process Improvement Based on Business Process Management 1123

Service Process Construction and (3) Best Improved

Service Process Selection.

4.1 Phase 1: Difference Positioning

A difference means that two mapped parts in the
same position of two service processes are different.
Since the existing difference detection methods [7, 11-
14] just display the compositions of differences and do
not point out which control flow patterns a difference
belongs to and in which location, we redefine a
difference as {[p1, node1, pos1], [p2, node2, pos2]. For
each part [p, node, pos], node represents the node set in
this difference part, p is the control flow pattern that
node belongs to. The positions of node in p are
recorded in pos, the position of a node is 0 if p is
unordered, i.e., p is a parallel or conditional pattern. To
achieve this goal, we transform two service processes
into their corresponding TPSTs. In this way, we
traverse each TPST to determine the control flow
pattern that a difference part belongs to and the
positions of task nodes in each difference part.

Figure 2 shows two TPSTs transformed from two
service processes in Figure 1. There are two
differences between these two service processes: (1)
the execution order of B and C in “Service process 1”
is sequential, while this order becomes parallel in
“Service process 2”. (2) The conditional pattern in
“Service process 1” consists of E and F, while it

consists of H and F in “Service process 2”. These two
differences can be defined as difference1 = {[g1, {B, C},
{2, 3}], [g4, {B, C}, {0, 0}], difference2 = {[g2, {E},
{0}], [g5, {H}, {0}].

4.2 Phase 2: Improved Service Process

Construction

We build all possible candidate improved service
processes by connecting the same parts and the
combinations of different parts between two service
processes in this phase. First, the same parts in two
service processes are fixed, and we connect every
combination of different parts to these same parts to
create all possible candidate improved service
processes. In this way, we can construct 2n-2
candidates if there are n differences between two
service processes, where two input service processes
are removed.

For example, there are two differences between
“Service process 1” and “Service process 2” in Figure
1, corresponding to 22-2=2 combinations of differences.
After separately connecting two process differences to
the same parts in “Service process 1” and “Service
process 2”, we obtain two candidates “Improved
Service process 1” and “Improved Service process 2”
shown in Figure 4.

A B D
Xor-

split

F

Xor-

join
C

H

A
And-

split

B

C

And-

join
D

Xor-

split

F

Xor-

join

E

(a) Improved service process 1 (b) Improved service process 2

Figure 4. Two candidate improved service processes

m r

i i i

m r

i i i

(,) (,)

+ 1
1

,100 3

0,

, ,

i j i j

l l m r

j j j

l l m r

j j j

md I A md I A

A I A I A I

otherwise

A I A I A I

=

⎧ − − + −
⎪ − ×

= ⎨
⎪
⎩

> > >

��

 (1)

1

1
(,), (,) 0

(,)

0,

n

i j i j

i

md I A md I A
MD I A n

otherwise

=

⎧
∀ >⎪

= ⎨
⎪
⎩

∑
 (2)

4.3 Phase 3: Best Improved Service Process

Selection

In this phase, we propose three metrics: quality of
improvement (QoI), longest execution time (LET) and
stability of time (SoT) to filter the candidate improved

service processes and select the best one with minimal
cost, which consists of five steps:

Step 1: Quality of improvement (QoI) calculation. In
this step, we first calculate the matching degree in
terms of a capability between an improvement and an
engineer, then the matching degree in terms of all
capabilities between each improvement and each
engineering is computed. Finally, the QoI of a service
process is calculated depends on the matching degrees
between improvements and engineers.

The capability set required for an improvement is
recorded as I = (I1, ..., In), and we use a TFN

(, ,)l m r

i i i i
I I I I=
� (1 < i < n) to represent the degree of

each capability Ii. The capability set owned by an
engineer is E = (E1, ..., En), where the degree of each Ej

is represented as a TFN (, ,)l m r

j j j jE E E E=
� (1 < j < n).

To select the most suitable engineer for an
improvement, we propose a metric to calculate the

1124 Journal of Internet Technology Volume 22 (2021) No.5

matching degree between improvement and engineer,
including three parts: (1) matching degree in terms of a
capability between an improvement and an engineer, (2)
matching degree in terms of the capability set between
each improvement and each engineer, and (3) the QoI
of a service process.

(1) Matching degree in terms of a capability

between improvement and engineer

In the first part, Equation (1) is used to calculate the
matching degree between a capability required for an
improvement Ii and a capability owned by an engineer
Ej, where Ii and Ej are represented by two TFNs

(, ,)l m r

i i i i
I I I I=
� and (, ,)l m r

j j j jE E E E=
� . There are two

cases:
Case 1: The matching degree is 0 if l

jE , m

j
E , r

j
E are

separately lower than l

i
I , m

i
I , r

i
I .

Case 2: If l

jE , m

j
E , r

j
E are separately larger than l

i
I ,

m

i
I , r

i
I , each value in

j
E� and

i
I� is first normalized by

dividing the highest score of 100 and then the average
distance of (l

jE , l

i
I), (m

j
E , m

i
I) and (r

j
E , r

i
I) is

calculated. Finally, the matching degree is one minus
this average distance.

Table 3 presents the matching degrees between each
improvement and each engineer in terms of a specific
capability “Read”, “Write” or “Compute” shown in
Table 1. For example, the value in the second row and
second column of Table 3 shows that the matching
degree in terms of capability “Write” between I1 and A
is 0.625. According to Table 1, the capability degree
required for I1 is “Bad” = (0, 29.5, 59) and owned by A
is “Normal” = (60, 67, 74). This is the second case of
Equation (1), so the matching degree between I1 and A

is equal to
60 0 67 29.5 74 59 1

1 0.625
100 3

− + − + −
− × = .

However, since the capability degree owned by
engineer C is lower than the capability degree required
for improvement I2, the matching degree between I2
and C in terms of “Read” is 0.

Table 3. Matching degrees of all pairs of capability
degree

 (I1,A) (I1,B) (I1,C) (I2,A) (I2,B) (I2,C)

Read 1 0.745 0.875 0 1 0

Write 0.625 0.37 0.5 0 0.87 1

Compute 1 1 0 0.875 0.875 1

(2) Matching degree in terms of the capability set

The matching degree between I = (I1, ..., In) and E =
(E1, ..., En) is calculated by Equation (2), which also
contains two cases.

Case 1: The matching degree between I and E is 0 if
one or more matching degrees between Ii and Ei are 0.

Case 2: If any matching degree between Ii and Ei is
larger than 0, i.e., (,) 0

i j
md I E∀ > , then the matching

degree between I and E is the average of md(I1,
E1), ...,md(In, En).

Table 4 lists the matching degrees between any
improvement in {I1, I2} and any engineer in {A,B,C}.
For example, the matching degree between I1 and A is
(1 + 0.625 + 1) / 3 = 0.88, while the matching degree
between I1 and C is 0 since their matching degree in
terms of capability “compute” is 0.

Table 4. Matching degrees of all pairs of improvement
and engineer

 Improvement I1 Improvement I2

Engineer A 0.88 0

Engineer B 0.71 0.92

Engineer C 0 0

(3) QoI of a service process

The QoI of an improvement I is the maximum
matching degree among all matching degrees between
I and an engineer who performs it, which is denoted as
MD(I, E)max. The QoI of a service process is the
average matching degree of all its improvements,
which can be calculated by Equation (3):

max

1

1
() (,)

N

i

QoI s MD I A
N

=

= ∑ (3)

As shown in Table 4, the maximum matching
degrees for I1 and I2, i.e., the QoIs of I1 and I2, are
separately 0.88 and 0.92, which means that engineers
A and B are assigned to perform them. Since
“Improved service process 1” and “Improved service
process 2” separately include improvement I2 and I1,
their QoIs are 0.92 and 0.88, respectively.

Step 2: Independent path extraction. We introduce
the independent path [28] to describe the typical
behavior in a service process. An independent path is
any path through a service process that introduces at
least one new edge or node that is not included in any
other independent path. We extract independent paths
from a service process using the existing techniques
[29]. For example, the independent paths of two
improved service processes in Figure 4 are {ABCDH,
ABCDF}and {ABCDE, ABCDF}, respectively.

Step 3: Longest execution time (LET) calculation.

Since a candidate improved service process has
multiple independent paths {ip1, ..., ipM}, we calculate
the LET for each candidate based on its independent
paths. The LET of a candidate is calculates as follows:
for each task task in an independent path ipj, the LET
of task is selected according to the Allocation Table
and the sum of each LET for all tasks in ipj is recorded.
The LET among all independent paths is selected as
the LET of this candidate. For example, the
independent paths of “Improved service process 1” and
“Improved service process 2” in Figure 4 are separately
{ABCDH, ABCDF} and {ABCDE, ABCDF}. The

Service Process Improvement Based on Business Process Management 1125

allocation for tasks in these two candidate improved
processes is shown in Table 2. For the independent
path ABCDH, where the LETs of task A, B, C, D and
H are 4h, 3h, 5h, 2.5h and 3.5h, so the LET of this
independent path is 18h. The LET of the independent
path ABCDF is 17.5h. Thus, the LET of “Improved
service process 1” is max (18h, 17.5h) = 18h. Similarly,
the LET of “Improved service process 2” is 18h.

Step 4: Stability of time (SoT) calculation. The
independent path set of each candidate improved
service process is IP = {ip1, ..., ipM}. We use a
dynamic programming algorithm to compute all
possible allocations {a1, ..., aN} for staff and task in
terms of M independent paths. Each allocation ai (1 < i
< N) produces an execution time ti and a cost ci. In this
way, we obtain an execution time set T = {t1, ..., tN}
and a cost set C = {c1, ..., cn} from each candidate
improved service process. The SoT of T recorded as
()TΦ can be calculated as follows:

i 1 1,

1 ()
()

(1) () | |

N N

j j i i j

avg T
T

N N avg T t t
= = ≠

Φ =
− + −

∑ ∑ (4)

where avg(T) represents the average execution time of
T, and the main idea of Equation (4) is to calculate the
average fluctuation of T by comparing avg(T) with the
fluctuation of each pair (ti,tj). The allocation in terms of
staff and task for two candidates in Figure 4 is shown
in Table 2, and all possible of allocations, execution
time and execution cost for an independent path are
described in Table 5. According to Equation (4), the
SoTs of “Improved service process 1” and “Improved
service process 2” are separately 0.88 and 0.87.

Table 5. Allocations, execution time and cost for
independent paths

Independent

Path
Allocation Execution Time Execution Cost

abacd 18 110

abbcd 15.5 120

cbacd 16 140
ABCDH

cbbcd 13.5 150

abaca 16.5 90

acacc 17.5 120

abbca 14 100

abbcc 15 130

cbaca 14.5 120

cbacc 15.5 150

cbbca 12 130

ABCDF

cbbcc 13 160

abacb 20 100

abacd 17.5 110

abbcb 17.5 110

abbcd 15 120

cbacb 18 130

cbacd 15.5 140

cbbcb 15.5 140

ABCDE

cbbcd 13 150

Step 5: Filter strategy design and best improved

service process selection. In this step, we filter the
candidate improved service processes that are not meet
the constrains and select the best one from the rest
candidates. First, the service processes that their QoIs
are less than the given QoI Q will not be built. For
example, only “Improved service process 1” in Figure
4 is constructed if we set Q to 0.9. Then, the candidates
that their LETs exceed the given time limit T are
filtered. For example, the LET of “Improved service
process 1” in Figure 4 is 18h, so “Improved service
process 1” is left if we set T to 20h. Next, we compute
the SoTs of the rest candidates, where the ones that
their SoTs are less than the given SoT S are filtered.
For example, “Improved service process 1” is still not
filtered if we set S to 0.8. Since the SoT calculation
involves expensive computations of the allocation for
staff and tasks concerning the candidates’ independent
paths, the first step of this filter strategy can
significantly decrease the number of candidate, saving
the execution time of SoT calculation for filtered
candidates.

For the remaining candidates, we compare their
average execution costs and select the one with
minimal cost less than the costs of the existing two
versions. For example, the average cost of “Improved
service process 1” is $126.7, and the costs of the
existing two service processes “Service process 1” and
“Service process 2” in Figure 1 are $125 and $126.7.
Thus, we fail to build the improved process, because
the constraint (3) in Problem Statement is not met.

5 Experimental Evaluation

This section provides the case study and efficiency
evaluation of Diff-BPI. All experiments were
evaluated on a machine with Intel(R) Core(TM) i7-
6650U CPU @ 2.20GHZ 2.21 GHz, running JDK 1.8
and Windows 10. We use the existing method Pro-Diff
[14] to detect differences between two business
processes modeled service processes. Pro-Diff first
summarizes two groups of difference patterns from the
node level and control flow level: (1) node edit
difference patterns, and (2) control flow difference
patterns. Then, Pro-Diff finds out the difference
patterns between two business processes at different
levels of abstraction. In this experiment, we use the
difference patterns at the lowest level of abstraction.

5.1 Case Study

This section discusses how to apply Diff-BPI to
improve the service process in a real-life scenario. The
service processes used in this case study are conducted
based on a mixture of real and synthetic data sets,
where the real part comes from the process models
used in the health care domain [30]. We choose one
service process from the real part and make some

1126 Journal of Internet Technology Volume 22 (2021) No.5

modifications to it, i.e., remove/insert some nodes and
edges from/to this service process, to obtain two
different versions, as shown in Figure 5. The goals of
V1 and V2 are the same, i.e., a physical examination for
the patients. Two TPSTs converted from V1 and V2 are
shown in Figure 6. Table 6 shows the allocation of

medical staff for V1 and V2, where the units of time
and cost are separately “minute” and “$”. There are
three kinds of staff: staff a is receptionist, staff b and c
are nurses, staff d and e are doctors. We set the given
quality of improvement Q, stability rate S, and time
limit T to 0.94, 0.9, 100, respectively.

Register

patient

(A)

Select

examination

(B)

Schedule

patient

(E)

Perform

examination

(I)

Create

report

(J)

Transport

patient

back (M)

Prescribe

(P)

Order

examination

(D)

Call in

patient

(F)

And-

split

And-

join

A1 A2 A3 A4

Transport

patient

(H)

Prepare

patient

(G)

(a) One version of a service V1

Register

patient

(A)

Perform

examination

(I)

Create

report

(J)

Transport

patient

back (M)

Prescribe

(P)

Order

examination

(D)

Loop-

split

Loop-

join

Call in

patient

(F)

Schedule

patient

(E)

Select

examination

(B)

B1 B2 B4

Prepare

patient

(G)

Transport

patient

(H)B3

Xor-

split

Xor-

join

(b) The other version of a service process V2

Figure 5. Two versions of a service process

D

Sequence

I XOR

g1

g2

E H

J M

F G PA B

A

Sequence

IXOR

g3

g5

D

E

H GB

F MLoop

g4

PJ

(a) TPST of V1 (b) TPST of V2

Figure 6. TPSTs of two service processes in case study

Table 6. Allocation of case study

 A B D E F H G I J M P

a 5,10 1,3 1,2

b 10,10 15,25 13,50 16,20

c 5,20 2,4 20,30

d 20,40 10,50

e 5,60 15,30

There are four differences between V1 and V2: (A1,

B1) = {[g1, {B,D}, {2,3}], [g4, {B,D}, {1,2}], (A2, B2)=
{[g1, {F,E}, {4,5}], [g3, {E,F}, {3,4}], (A3, B3) = {[g1,
{H,G}, {6,7}], [g5, {H,G}, {0,0}], (A4, B4) = {[g2,
{J,M}, {0,0}], [g3, {J,M}, {7,8}], which are separately
colored light blue, green, yellow and purple. These
four differences correspond to four improvements: I1,
I2, I3, I4, and the description of these four differences
are as follows:

(1) The patient can only select and order the
examination once in V1, while the patient can select
and order examination multiple times in V2.

(2) The patient is first called in and then scheduled
in V1, while the orders of these two tasks are
interchanged in V2.

(3) After the patient is called in and scheduled, this
patient will be transported and prepared in V1, while
this patient will be either transported or prepared in V2.

(4) Creating a report and transporting the patient
back in V1 can be performed simultaneously while
sequentially executing these two tasks in V2.

Table 7 shows the details of the capabilities required
for the improvements and owned by the engineers.
According to the matching degrees between all pairs of

Service Process Improvement Based on Business Process Management 1127

improvement and engineer shown in Table 8,
improvements (abbreviated as Imp.) I1, I2, I3, I4 are
separately assigned to engineers D, A, C, D. This result
shows that the proposed matching degree metric can
assign the most suitable engineer to perform the
improvements. For I2, engineers A, B, C, D can

improve it, while A is selected with the least waste of
capability, and other engineers with higher skill levels
can be assigned to perform the improvements with
higher capability requirements. Based on these four
differences, we can construct 14 candidate improved
service processes P1 - P14.

Table 7. Capability required for improvements in case study

Capability Imp. I1 Imp. I2 Imp. I3 Imp. I4 Engineer A Engineer B Engineer C Engineer D Engineer E

Analysis Excellent Bad Good Good Normal Excellent Excellent Excellent Normal

Compute Good Normal Good Good Normal Excellent Good Good Bad

Design Excellent Normal Good Excellent Normal Excellent Good Excellent Good

Table 8. Matching degrees between improvements and
engineers

 I1 I2 I3 I4

A 0 0.875 0 0

B 0.96 0.62 0.87 0.91

C 0 0.71 0.96 0

D 1 0.67 0.91 0.96

E 0 0 0 0

Table 9 shows the details of 14 candidate improved

service processes, including the combination of
differences, the QoI, LET, SoT and execution cost. We
set the execution time of the loop pattern in V2 to 2, i.e.,
the examination can be selected and ordered twice. We

first filter the candidates with QoIs less than 0.93, i.e.,
P3, P8, P10 and P14 will not be built. Since the SoTs of
all rest candidates are larger than 0.9, no candidate in
the remaining is filtered. Then, the candidates that their
LETs more than 100 are filtered, so P1, P2 are left, and
other candidates are filtered. Finally, we calculate the
average cost of the independent paths for these three
candidates. Since they have the same average cost of
$214, anyone of them can be selected as the optimal
one. The average costs of V1 and V2 are $256.5 and
$219, so the improved service process has a lower cost
than any of them. For example, P2 is chosen as the best
improved service process, as shown in Figure 7. In this
way, we construct an improved service process with
better performance than the existing ones.

Perform

examination

(I)

Prescribe

(P)

Order

examination

(D)

Transpor

t patient

(H)

Prepare

patient

(G)

Xor-

split

Xor-

join

Schedule

patient

(E)

Call in

patient

(F)

Create

report

(J)

Transport

patient back

(M)

And-

split

And-

join

Register

patient

(A)

Select

examination

(B)

A1 A2 B3 A4

Figure 7. The best improved service process P2

Table 9. Difference combinations, QoI and LET of each improved service process in case study

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

Combi

nation

A1,A2,

B3,B4

A1,A2,

B3,A4

A1,B2,

B3,B4

B1,A2,

B3,A4

B1,B2,

A3,A4

B1,B2,

A3,B4

B1,A2,

A3,B4

A1,B2,

A3,B4

A1,A2,

A3,B4

A1,B2,

A3,A4

B1,B2,

B3,A4

B1,A2,

B3,B4

B1,A2,

A3,A4

A1,B2,

B3,A4

QoI 0.96 0.96 0.93 0.98 0.94 0.95 0.98 0.92 0.96 0.88 0.95 0.96 1 0.92

LET 100 100 - 102 115 115 115 - 113 - 102 102 115 -

SoT 0.943 0.943 - - - - - - - - - - - -

Cost 214 214 - - - - - - - - - - - -

5.2 Efficiency Evaluation

In this section, we first evaluate the efficiency of
Diff-BPI in terms of the running time for a pair of
service processes, where the difference detection and
independent path extraction are implemented based on
[14] and [29]. Then, the running time in terms of
comparing a given version of a service process with
other versions in a repository is studied. The
experiments in this section are based on a mixture of
real and synthetic data sets, where the real parts come

from an existing data set of IBM [31]. The synthetic
part is some modifications made on the real parts for
the sake of evaluations, i.e., remove/insert some nodes
and some edges from/to the models. In this way, we
build four data sets as follows:

(1) Six business process modeled service processes
T1 - T6 with the same number of independent path and
difference, and their task numbers are 30, 10, 20, 30,
40, 50, respectively.

(2) A service process repository consists of 30
service processes.

1128 Journal of Internet Technology Volume 22 (2021) No.5

(3) Five service processes T7 - T11 have the same
number of task and difference, while their independent
path numbers are 2, 4, 6, 8, 10, respectively.

(4) Six service processes T12 - T17 with the same
number of task and independent path, the numbers of
difference between each service process in T13 - T17
and T12 are ranged from 2, 3, 4, 5, 6.

Figure 8(a) applies the first data set to study the
impact of task number on the running time of Diff-BPI,
where T2 - T6 are separately compared with T1. The
numbers of difference between each compared pair of
service processes are the same. Figure 8(b) uses T1 and
the third data set to evaluate the impact of independent
path number on the running time of Diff-BPI, where T7
- T11 are compared with T1 one by one. From Figure
8(a) and Figure 8(b) we can see that the running time is
slightly growing as the task number is getting larger,
while the running time is dramatically growing with
the independent path number becomes larger. The
reason behind this is that more task nodes cause more
time for processing the task nodes. The more
independent path in a service process, the more time
for allocating staff to tasks include, leading to more
time spent in longest execution time and stability of
time calculation.

(a) Vary task number (b) Vary independent path

Figure 8. Efficiency evaluation results for two service

In Figure 9(a), T2 - T6 with different task numbers
are used to compare with the service process repository.
Figure 9(b) applies T7 - T11 with different independent
paths to compare with the service process repository.
In Figure 9(c), 5, 10, 15, 20, 25, 30 service processes in
the service process repository are separately compared
with T1. Figure 9(a) and Figure 9(b) shows that the
total running time spent by Diff-BPI increases
approximately linearly as the number of task nodes or
independent paths goes up. We can observe that the
change of independent path number is more sensitive
than the change of task number in terms of running
time. This is because the more independent paths lead
to more time spent in longest execution time and
stability of time calculation.

(a) Vary task number (b) Vary independent path (c) Vary repository size

Figure 9. Efficiency evaluation results based on the repository

Figure 10 result between with filter and without
filter compares the results with and without filter
strategy using the fourth data set, where the impact of
numbers of difference between two service processes
on the running time of Diff-BPI is studied. We can
observe that the execution time increases nearly
exponentially concerning the difference number
between a couple of service processes before using the
filter strategy. It is because that we calculate all metrics
for every candidate, and the optimal one is selected
from all candidates, which is time-consuming. While
once we use the filter strategy, the execution time
significantly decreases. For example, the execution
time of using filter decreases by approximately 20%
compared with no filter strategy when the difference
number between two versions of a service process is
more than 3. The reason behind this is that the filter
strategy can significantly decrease the number of

candidate improved service processes. Notably, the
running time for LET and SoT calculation about the
filtered candidates is saved. The results show that the
filter strategy saves time for building the improved
service process.

Figure 10. Comparison result between with filter and
without filter

Service Process Improvement Based on Business Process Management 1129

6 Conclusion

This paper aims for the consumer to receive the best
service process from the service vendors. Therefore,
this paper proposes Diff-BPI, a difference detection
based BPI method for improving service processes.
Diff-BPI can construct an improved service process
with better performance than its existing two versions.
A case study is conducted on a pair of service
processes in a real-life scenario to show the practical
use of Diff-BPI, and the efficiency evaluation reveals
the effectiveness and extensibility. The limitation of
this paper is that the proposed method is too simple to
satisfy the real requirements. In the future, we will
consider more kinds of differences between two
service processes and more real BPI requirements to
deal with practical problems. Besides, the
reinforcement learning methods will be introduced to
schedule the service process resource with resource
constraints.

Acknowledgments

This research was supported by National Key
Research & Development Program of China (No. 2018
YFB1402802), National Natural Science Foundation of
China (No. 6210070439) and China Postdoctoral Science
Foundation (No. 2019M660145).

References

[1] H. Gao, L. Kuang, Y. Yin, B. Guo, K. Dou, Mining

Consuming Behaviors with Temporal Evolution for

Personalized Recommendation in Mobile Marketing Apps,

ACM/Springer Mobile Networks and Applications, Vol. 25,

No. 4, pp. 1233-1248, August, 2020.

[2] L. Li, D. Tan, T. Wang, Z. Yin, X. Fan, R. Wang, Multiphase

coupling mechanism of free surface vortex and the vibration-

based sensing method, Energy, Vol. 216, Article No. 119136,

February, 2021.

[3] H. Gao, W. Huang, Y. Duan, The Cloud-edge-based Dynamic

Reconfiguration to Service Workflow for Mobile Ecommerce

Environments: A QoS Prediction Perspective, ACM

Transactions on Internet Technology, Vol. 21, No. 1, Article

No. 6, February, 2021.

[4] H. Gao, C. Liu, Y. Li, X. Yang, V2VR: Reliable Hybrid-

Network-Oriented V2V Data Transmission and Routing

Considering RSUs and Connectivity Probability, IEEE

Transactions on Intelligent Transportation Systems, pp. 1-14,

April, 2020, DOI: 10.1109/TITS.2020.2983835

[5] Y. Yin, Z. Cao, Y. Xu, H. Gao, R. Li, Z. Mai, QoS Prediction

for Service Recommendation with Features Learning in

Mobile Edge Computing Environment, IEEE Transactions on

Cognitive Communications and Networking, Vol. 6, No. 4, pp.

1136-1145, December, 2020.

[6] H. Gao, X. Qin, R. J. D. Barroso, W. Hussain, Y. Xu, Y. Yin,

Collaborative Learning-based Industrial IoT API

Recommendation for Software-defined Devices: The Implicit

Knowledge Discovery Perspective, IEEE Transactions on

Emerging Topics in Computational Intelligence, pp. 1-11,

September, 2020, DOI: 10.1109/TETCI.2020.3023155

[7] J. Wang, B. Cao, J. Fan, T. Dong, FB-Diff: A feature based

difference detection algorithm for process models, IEEE

International Conference on Web Services, Honolulu, HI,

USA, 2017, pp. 604-611.

[8] C. Liu, L. Cheng, Q. Zeng, L. Wen, Formal Modeling and

Discovery of Hierarchical Business Processes: A Petri Net

Based Approach, IEEE Transactions on Systems, Man and

Cybernetics: Systems, in press, 2021.

[9] A. Yousfi, K. Batoulis, M. Weske, Achieving business

process improvement via ubiquitous decision-aware business

processes, ACM Transactions on Internet Technology, Vol.

19, No. 1, pp. 1-19, March, 2019.

[10] J. Ghattas, P. Soffer, M. Peleg, Improving business process

decision making based on past experience, Decision Support

Systems, Vol. 59, pp. 93-107, March, 2014.

[11] C. Liu, Q. Zeng, L. Cheng, H. Duan, J. Cheng, Measuring

Similarity for Data-aware Business Processes, IEEE

Transactions on Automation Science and Engineering, pp. 1-

13, January, 2021. DOI: 10.1109/TASE.2021.3049772

[12] N. V. Beest, M. Dumas, L. Garcia-Banuelos, M. L. Rosa, Log

Delta Analysis: Interpretable Differencing of Business

Process Event Logs, in: H. Motahari-Nezhad, J. Recker, M.

Weidlich (Eds.), Business Process Management. BPM 2016,

Vol. 9253, Springer, Cham, 2015, pp. 386-405.

[13] J. Wang, J. Lu, B. Cao, J. Fan, D. Tan, KS-Diff: A key

structure based difference detection method for process

models, IEEE International Conference on Web Services,

Milan, Italy, 2019, pp. 408-412.

[14] B. Cao, J. Wang, J. Fan, S. Deng, J. Yang, W. Zhao, J. Yin,

M. Zhou, Pro-Diff: A process difference detection method

based on hierarchical decomposition, IEEE Transactions on

Services Computing, pp. 1-14, November, 2019. DOI:

10.1109/TSC.2019.2953853

[15] I. Beerepoot, I. van de Weerd, H. A. Reijers, Business process

improvement activities: differences in organizational size,

culture, and resources, International Conference on Business

Process Management, Vienna, Austria, 2019, pp. 402-418.

[16] C. U. Pyon, J. Y. Woo, S. C. Park, Service improvement by

business process management using customer complaints in

financial service industry, Expert Systems with Applications,

Vol. 38, No. 4, pp. 3267-3279, April, 2011.

[17] M. Attong, T. Metz, Change or die: The business process

improvement manual, Productivity Press, 2017.

[18] T. Jin, J. Wang, Y. Yang, L. Wen, K. Li, Refactor business

process models with maximized parallelism, IEEE

Transactions on Services Computing, Vol. 9, No. 3, pp. 456-

468, May-June, 2016.

[19] P. Griesberger, S. Leist, G. Zellner, Analysis of techniques

for business process improvement, European Conference on

Information Systems, Helsinki, Finland, 2011, pp. 1-13.

[20] A. Yousfi, A. De Freitas, A. K. Dey, R. Saidi, The use of

1130 Journal of Internet Technology Volume 22 (2021) No.5

ubiquitous computing for business process improvement,

IEEE Transactions on Services Computing, Vol. 9, No. 4, pp.

621-632, July-August, 2016.

[21] R. Seethamraju, O. Marjanovic, Role of process knowledge in

business process improvement methodology: a case study,

Business Process Management Journal, Vol. 15, No. 6, pp.

920-936, November, 2009.

[22] M. P. Sallos, E. Yoruk, A. Garcia-Perez, A business process

improvement framework for knowledge-intensive entrepreneurial

ventures, The Journal of Technology Transfer, Vol. 42, No. 2,

pp. 354-373, April, 2017.

[23] D. Iren, H. A. Reijers, Leveraging business process

improvement with natural language processing and

organizational semantic knowledge, International Conference

on Software and System Process, Paris France, 2017, pp. 100-

108.

[24] S. Satyal, I. Weber, H. Y. Paik, C. D. Ciccio, J. Mendling,

Shadow Testing for Business Process Improvement, OTM

Confederated International Conferences “On the Move to

Meaningful Internet Systems”, Valletta, Malta, 2018, pp. 153-

171.

[25] J. Vanhatalo, H. Volzer, J. Koehler, The refined process

structure tree, Data & Knowledge Engineering, Vol. 68, No.

9, pp. 793-818, September, 2009.

[26] J. Fan, J. Wang, W. An, B. Cao, T. Dong, Detecting

difference between process models based on the refined

process structure tree, Mobile Information Systems, Vol. 2017,

pp. 1-17, March, 2017.

[27] M. G. Voskoglou, Application of fuzzy numbers to

assessment of human skills, International journal of fuzzy

system applications, Vol. 6, No. 3, pp. 59-73, July, 2017.

[28] J. Wang, D. Tan, B. Cao, J. Fan, S. Deep, Independent path-

based process recommendation algorithm for improving

biomedical process modelling, Electronics Letters, Vol. 56,

No. 11, pp. 531-533, May, 2020.

[29] B. Cao, F. Hong, J. Wang, J. Fan, M. Lv, Workflow

difference detection based on basis paths, Engineering

Applications of Artificial Intelligence, Vol. 81, pp. 420-427,

May, 2019.

[30] C. Li, M. Reichert, A. Wombacher, The minadept clustering

approach for discovering reference process models out of

process variants, International Journal of Cooperative

Information Systems, Vol. 19, No. 3-4, pp. 159-203,

September & December, 2010.

[31] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann,

H. Volzer, K. Wolf, Instantaneous soundness checking of

industrial business process models, International Conference

on Business Process Management, Ulm, Germany, 2009, pp.

278-293.

Biographies

Jia-Xing Wang received the Ph.D.
degree in control science and
engineering from Zhejiang University
of Technology, China, in 2019. She is
now a postdoc in the College of
Computer Science and Technology at
Zhejiang University of Technology.

Her research interest is business process management.

Si-Bin Gao received the master’s
degree in College of Computer
Science from Zhejiang University of
Technology, China, in 2017. He is
now an algorithm engineer in the
Cethik Group Co., Ltd. His research
interest is artificial intelligence and

deep learning.

Cong-Er Yuan is the undergraduate

student in the College of Computer
Science and Technology at Zhejiang
University of Technology. His major
is software engineering.

Da-Peng Tan received Ph.D. degree

from the College of Mechanical and
Energy Engineering, Zhejiang
University, China, in 2008. He is now
a Professor of College of Mechanical

and Energy Engineering. He performed research in the
areas of embedded system technology, advanced
manufacturing technology, and metallurgy process
automatic control. His research interests include real-
time intelligent networks and industrial process
monitoring and diagnosis.

Jing Fan received her B.S., M.S. and
Ph.D. degree in Computer Science
from Zhejiang University, China in
1990, 1993 and 2003. She is now a
Professor of School of Computer
Science and Technology, and Director
of Institute of Computer Software at

Zhejiang University of Technology, China. She is a
Director of China Computer Federation (CCF), and
Member of CCF Technical Committee on Service
Computing. Her current research interest includes
Service Computing, Software Middleware.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

