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Abstract 

In many metropolitans, especially during rush hours on 

holidays, thousands of riders will initiate travel orders at 

the same time, and the existing carpool matching model 

cannot handle largescale travel orders quickly enough. 

For handling this problem, a fast and efficient multi-

objective carpool matching algorithm (MOCMA) is put 

forward, which generates a set of different matching 

schemes suitable for different practical scenarios. First, 

the idea of partition is adopted to gather riders and drivers 

with similar journeys, and the relationship matrix 

construction algorithm (RMCA) is proposed; then from 

the perspective of riders and drivers, the maximum 

service quality and the maximum shared mileage are two 

objectives, and a set of non-dominated solution sets are 

generated using MOCMA; finally, the simulation 

experiment results show that MOCMA proposed is 

suitable for different practical scenarios, the matching 

success rate is as high as 99.7%, and it has significant 

advantages over MOEA/D, SPEA2, and FastPGA. 

Keywords: Ridesharing, Ride-Matching, Multi-objective 

optimization, Genetic algorithm 

1 Introduction 

In recent years, the problem of urban traffic 

congestion has become more and more serious. Traffic 

congestion will cause many problems such as energy 

waste, environmental pollution, and difficulty in taking 

taxis. The large demand for automobile transportation 

at rush hours together with low occupancies leads to 

traffic congestion in many urban [1]. Particularly when 

the taxi is empty load, it will cause unnecessary waste 

of resources and increase the burden on the 

environment. The number of vehicles that can travel 

every day is limited to avoid traffic congestion. 

Research shows that private car occupancy rates are 

relatively low. The average car occupancies used for 

leisure travel in Europe range from 1.8 for leisure trips 

to 1.1 for commuters [2], the same is true in the United 

States [3]. Ridesharing can share taxi services and 

occupy a large number of taxi seats, so that the 

remaining resources can be used rationally, which will 

help reduce the pressure on the economy, the 

environment, and traffic. Nowadays, the rapid 

development of ridesharing has gradually changed the 

way people travel. Especially during rush hours on 

holidays, many riders choose to accept ridesharing to 

avoid waiting too long. Out of environmental 

awareness or economic benefits, more and more 

private car drivers are willing to share their journey 

with riders. The requirements for eCommerce, such as 

safety and timeliness, are becoming increasingly strict 

[4]. To increase the occupancy rate of service taxis, 

and to make full use of a large number of human and 

environmental resources, scholars in various fields 

continue to explore and research. An efficient and 

reliable data routing decision scheme is critical for 

passengers [5].  

Ridesharing can be divided into static ridesharing 

and dynamic ridesharing. Static ridesharing refers to 

the comprehensive consideration of the driver and 

riders’ boarding location, alighting location, departure 

time, and maximum waiting time before the vehicle 

departs, the matching relationship is determined in 

advance and the driving path is planned. Dynamic 

ridesharing refers to the real-time matching of drivers 

and riders while the vehicle is driving. Ridesharing is 

beneficial in many aspects, such as increasing the 

income of drivers, reducing the expense of riders, 

alleviating traffic pressure, and reducing environmental 

pollution. Driven by huge economic and environmental 

benefits, the issue of ridesharing has gradually gained 

wide attention from academia [6-8] and industry [9-10] 
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in recent years.  

Carpool matching problem is usually modeled as an 

optimization problem, and its processing methods are 

divided into two categories: mathematical methods and 

heuristic algorithms. The main idea of the mathematical 

method is to solve it with integer programming or 

dynamic programming. Although simple and easy to 

implement, it has the disadvantage of high complexity. 

The complexity of the heuristic is low but unstable, 

and the performance depends on the specific problem. 

The running time and efficiency will be affected when 

the scale of the problem is too large. How to quantify 

the matching relationship between riders and drivers, 

and how to propose fast and efficient algorithms to 

match a large number of travel orders promptly have 

become the current research focus. 

This paper proposes a fast response multi-objective 

matching algorithm for ridesharing, which is suitable 

for large-scale carpool matching problems, and the 

running time and efficiency will not be affected by the 

expansion of the problem scale.  

In summary, the main contributions of our work are: 

(a) proposing a multi-objective carpool matching 

algorithm (MOCMA), (b) proposing the approximate 

shortest distance (ASD), (c) introducing the relationship 

matrix construction algorithm (RMCA), and (d) 

proposing the matrix compression. 

2 Related Work 

In recent research on carpool matching problems, 

literature [11] used mathematical programming to 

establish a stable matching model of the dynamic 

matching system. Literature [12] used mixed integer 

programming to solve different types of ridesharing 

problems. Literature [13] introduced the problem of 

large-scale real-time ridesharing with a service 

guarantee on road networks, which match the schedule 

request to the vehicle dynamically while trip waiting 

and service time constraints are satisfied and propose 

kinetic tree algorithms which are better suited to 

efficient scheduling of dynamic requests and adjust 

routes on-the-fly. Literature [14] used two methods to 

solve the carpool matching problem, one is to model 

the problem as a maximum-weighted bipartite graph 

matching problem for the situation of multiple riders 

and multiple drivers, an approximate method with error 

bound guarantee is proposed to compute the driver-

rider pairs to avoid the expensive calculation of the 

shared route percentage, the other is to consider the 

situation of multiple drivers and a single rider, and 

develop a best-first method to compute the top-k 

drivers for a rider. Some literature adds user 

preferences into consideration [15-16], e.g., female 

riders are more willing to match female drivers due to 

gender considerations [17-18]. Optimal task allocation 

strategy is widely used to deal with combinatorial 

optimization problems [19].  

Heuristic algorithms have also been widely used in 

the research of ridesharing problems. Literature [20] 

proposed a hybrid algorithm based on GIS and ant 

colony. First, the spatio-temporal clustering of 

passengers is carried out; second spatio-temporal 

matching of passengers’ clusters and drivers are carried 

out by combining Voronoi continuous range query, a 

region connected calculus, and Allen’s temporal 

interval algebra; third, the optimum shared-route is 

found by the ant colony optimization algorithm. 

Literature [21] proposed a heuristic algorithm to divide 

the graph based on the bipartite graph generated by the 

dynamic carpool matching problem.  
Many papers also consider multi-objective algorithms 

to deal with ridesharing matching problems. Literature 

[22] proposed an exact and a heuristic method for 

ridesharing problem, which aims to encourage 

employees to pick up colleagues to and from get off 

work, reduce the number of private cars to and from 

the company site, minimize vehicle mileage and 

maximize the number of participants. Literature [23] 

applied the hybrid simulated annealing algorithm to 

allocate rider demand by proposing shared-taxi 

algorithms, to minimize the total travel time of riders 

and maximize the system benefits. Literature [24] 

proposed an incentive-compatible dynamic ridesharing 

solution based on auction, which adapts to the 

individual preferences of the participants, minimizes 

the total travel distance and maximizes the number of 

participants.  

In the papers mentioned above, there are 

characteristics of high computational complexity and 

slow operation speed when using exact mathematical 

methods to deal with large-scale carpool matching 

problems. Most of the literature that used heuristic 

algorithms to deal with it converts multi-objective into 

single-objective considerations through weighting or 

divide multi-objectives into primary and secondary 

objectives, and does not fully consider the dominance 

relationship between multiple objectives. The Kuhn-

Munkras (KM) algorithm that is the mathematical 

method for solving the maximum weight matching 

problem takes 3( )O n  time, which is too expensive 

when the bipartite graph is quite large. The proposed 

MOCMA not only takes into account the interests of 

drivers and passengers simultaneously, but also has a 

lower time complexity, and the algorithm performance 

does not decrease with the increase of the problem 

scale. 

3 Problem Formulation  

DEFINITION 1 (ROAD NETWORK) A road 

network is denoted by a weighted undirected graph 

( , )G V E= , where ( _ , , )V node id latitude longitude=  

is a set of nodes. ( , , ( , ))E u v W u v= , ( , )u v V∈  is a set 
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of edges, W(u,v) is the Manhattan Distance between 

node u and node v. 

DEFINITION 2 (RIDER) 
_ _( , , , )s d d time MW time

i i i i i
rider r r r r= , 

where s

i
r  is the starting point of the ith rider, d

i
r  is the 

destination, _d time

i
r  is the departure time, _MV time

i
d  is the 

maximum waiting time. 

DEFINITION 3 (DRIVER) _( , , )s d d time

i i j idiver d d d= , 

where s

i
d  is the starting point of the ith driver, d

i
d  is 

the destination, _d time

i
d  is the departure time. 

DEFINITION 4 (BIGRAPH) Bigraph is a special 

model in graph theory. Let ( , )g V E=  be an undirected 

graph. If vertex V can be divided into two disjoint 

subsets (A, B), and the two vertices i and j associated 

with each edge (i, j) in the graph belong to these two 

different vertex sets ( , )i A j B∈ ∈ , then the graph g is 

called a bigraph.  

We construct a bigraph ( , , )
R D E

g g g g= , where the 

vertex set 
R

g  represents the set R composed of riders, 

the same for 
D

g , and 
E

g  represents the set of 

associated edges between 
R

g  and 
D

g . The vertex sets 

R
g  and 

D
g  do not intersect each other, and the two 

vertices associated with each edge in the graph belong 

to different vertex sets. 

DEFINITION 5 (BIGRAPH MATCHING) Given a 

bigraph g, in a subgraph M of g, any two edges in the 

edge set of M are not attached to the same vertex, then 

M is a bigraph match.  

DEFINITION 6 (PERFECT MATCHING) If each 

edge of the bigraph has a weight, a complete matching 

scheme *

M  is required to maximize the weight of all 

matching edges, then *

M  is called the perfect 

matching.  

Example 1. As shown in Figure 1, the set of red edges 

is a matching M(0.3 + 0.2 + 0.1 = 0.6), and the 

matching M* (0.2 + 0.3 + 0.4 = 0.9) shown in Figure 2 

is a perfect matching. 

 

Figure 1. Unperfect matching 

 

Figure 2. Perfect matching 

DEFINITION 7 (α) It is used to describe the 

compactness of the relationship between the rider and 

the driver set, i.e., the number of drivers that can be 

matched of the rider divided by the driver set size, or 

the compactness of the relationship between the driver 

and the rider set, i.e., the number of riders that can be 

matched of the driver divided by the rider set size. 

Through time constraints and road network 

constraints, the candidate set is constructed for drivers 

and riders, which greatly reduces the search space. 

The Time Constraint: The delta-T between the 

departure time of the driver and that of the rider is less 

than or equal to the rider’s maximum waiting time, 

which ensures that the driver has enough time to serve 

the rider within the acceptable range. 

 _ _ _d time d time MV time
r d r− ≤  (1)  

The Road network Constraint: The distance between 

the starting point of the driver and the rider divided by 

the average road speed should be less than or equal to 

the maximum waiting time of the rider, so that drivers 

who are far away from the rider are excluded. 

( , )s s

AD d r  represents the actual distance traveled 

from s

d  to s

r . 

 _

( , )s s

MW timeAD d r
r

Speed
≤  (2) 

Quality of Service (QoS): The driver travels from 

his starting point to the riders’, takes the shortest route 

to send the rider to the destination, and then goes to his 

destination. For riders, there is no extra detour distance, 

riders care about the time they need to wait, so the 

authors use the rider waiting time to measure the 

quality of service provided by the driver to the rider. 

 

_

_

1

jAV time

i

ij MV time

i

r
QoS

r
= −  (3) 

Equation(3) is the quality of the ith rider served by 

the jth driver. The actual waiting time of the rider is 

less than the maximum waiting time, i.e., 
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_

_jAW time MV time

i i
r r≤ , so 0 1

ij
QoS≤ ≤ , the larger the QoS, 

the better the service quality.  

Shared mileage Rate (SmR): For drivers, the more 

miles shared with riders, the more generous the 

rewards. Therefore, the authors use the shared mileage 

rate to describe the interests of drivers. 

 
( , )

( , ) ( , ) ( , )

s d

j i

ij s s s d d d

j i i i i j

AD r r
SmR

AD d r AD r r AD r d
=

+ +

 (4) 

Equation(4) is the shared mileage rate of the ith rider 

and the jth driver, 0 1
ij

SmR≤ ≤ , the large the SmR, the 

more profit the driver. Introduce 0-1 variable:  

1( )

0 ( )
ij

the ith rider is matched to the jth driver
x

the ith rider is not matched to the jth driver

⎧
= ⎨
⎩

 (5) 

The 
ij

QoS  and 
ij

SmR represents the quality and 

shared mileage rate of the ith rider served by the jth 

driver respectively, n and m is the number of riders and 

drivers respectively. The mathematical model of multi-

objective carpool matching (MOCM) problem is: 

 

1 1

1 1

1

1

max *

max *

. . 0 /1( 1, 2, , )

0 /1( 1, 2, , )

0 /1(( 1, 2, , ), ( 1, 2, , ))

n m

ij ij

i j

n m

ij ij

i j

n

ij

i

m

ij

j

ij

QoS x

SmR x

s t x j m

x i n

x i n j m

= =

= =

=

=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨

= =⎪
⎪
⎪

= =⎪
⎪
⎪ = = =⎩

∑∑

∑∑

∑

∑

…

…

… …

 (6) 

Equation (6) represents the mathematical model of 

the MOCM problem, where the objective function 

represents the maximum service quality and the 

maximum shared mileage rate, constraints, in turn, 

means the rider can be served by one driver at most, 

each driver can serve at most one rider, and the 

decision variable can only take 0 or 1. 

4 Multi-Objective Carpool Matching 

Algorithm 

4.1 Approximate Shortest Distance 

The shortest path is used in the process of selecting 

candidate drivers for riders and calculating SmR. 

However, the shortest path takes (( ) log )O E V V+  time 

[25], which is not suitable for processing large-scale 

complex road networks. Therefore, we hope to find an 

approximate distance to replace the Dijkstra shortest 

path distance (SPD). 

(1). Euclidean Distance (ED): refers to the true 

distance between two points in n-dimensional space. 

 2

1

( )
n

xy i i

i

ED x y
=

= −∑  (7) 

1 2
( , , , ).

n
X x x x= …

i
x  is the ith dimensional 

coordinate of the point X, same for 
i
y . Since the 

straight line between two points is the shortest, ED 

must be less than SPD. Because the shortest path 

between two nodes in the road network is related to the 

distribution structure of the road network, the road 

network is complicated. Although the ED has the 

advantages of low time and space complexity, it is not 

appropriate to directly replace SPD. Taking these 

factors into account, we divide the road network into 

regions, use the K-means clustering algorithm [26] to 

divide the road network into several regions according 

to the geographic location of the nodes, and propose a 

cluster distance considering the comprehensive 

geographic location. 

(2). Cluster Distance (CD): Considering the reality 

comprehensively, two locations in the same region 

have similar road traffic, and the sum of ED from these 

two locations to the regional center is used to describe 

CD. In different regions, road traffic is very different, 

so CD is described by the sum of ED between two 

locations and regional centers and the sum of ED 

between two regional centers. We define 
ij

CD  as 

Equation (8). ( )C v  represents the center of the cluster 

where site v is located. 

,

( , ( )) ( , ( )), ( ) ( )

( , ( )) ( , ( ) ( ( ), ( )), ( ) ( )
ij

i V j V

ED i C i ED j C j C i C j
CD

ED i C i ED j C j ED C i C j C i C j

∈ ∈

+ =⎧
= ⎨

+ + ≠⎩

 (8) 

(3). Approximate shortest distance (ASD): As we 

know, the ED must less than ASD. The CD obtained 

by adding multiple distances is often greater than SPD 

when the network partition is specific enough. 

Therefore, we use the average of ED and CD to replace 

SPD. ASD is defined Equation (9). 

 
2

ED CD
ASD

+
=  (9) 

4.2 Relationship Matrix Construction Algorithm  

Given the large number of travel orders initiated by 

riders and drivers at a certain moment, the authors aim 

to quickly and efficiently match riders with drivers. So 

the problem is transformed into: Find a perfect 

matching in a weighted bigraph ( , , )
R D E

g g g g=  

quickly and efficiently. 

In this paper, the adjacency matrix is used to store 

the bigraph, but for a large-scale matrix with thousands 

of riders and drivers, it is somewhat difficult to deal 

with it as a whole. Therefore, riders and drivers with 

close relationships are separately classified for 
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processing, and the relationship matrix construction 

algorithm (RMCA) is proposed in this section.  

As shown in Algorithm 1, input an unmatched rider 

and the parameter α, add the rider to the rider set R and 

marked it (line 1). Enter the loop when there is an 

unmarked driver in the candidate set of R (line 3) and 

select a driver from that (line 5) to determine whether it 

can be added to D (line 6). Mark this driver and jump 

out of this layer of the loop (line 7) if the conditions 

are met, otherwise it is marked that the driver cannot 

be added and continues to search for unmarked drivers 

in the candidate set of R (line 8). When there are 

unmarked riders in the candidate set of D, it enters the 

loop (line 9) and selects a rider (line 11) in that to 

determine whether it can be added to R (line 12). Mark 

that the rider has been visited and jump out of the loop 

(line 13) if the conditions are met, otherwise mark that 

the rider cannot be added and continue to search for 

unmarked riders in the candidate set of D (line 14). 

Remove the rider or driver that has been visited before 

and cannot be added, so that these riders or drivers can 

be selected again after a cycle of R or D is expanded 

(line 15). The algorithm ends until no driver(rider) can 

join in the candidate set of R(D). 

Algorithm 1. Pseudocode for EstablishSet 

Algorithm 1. EstablishSet 

Input: rider, α 

Output: R[], D[] 

1. R[]←rider, Marked(rider, 1) 

2. While true 

3.     while Exist_unmarked (R.candidateSet)  

4.           dflag = 0 

5.           driver = GetCandidate(R)  

6.           if IfcanAdd(D, driver, α)  

7.               dflag = 1, D[]←driver,  

8.           Marked (driver, 1), break 

9.           else Marked (driver, 0)  

10.     while Exist_unmarked (D. candidateSet) 

11.           rflag = 0 

12.           rider = GetCandidate(R) 

13.           if IfcanAdd(R, rider, α)   

14.               rflag = 1, R[]←rider 

15.           Marked (rider, 1), break  

16.          else Marked (rider, 0)  

17.     unMaked (D, R, 0)  

18.     IF dflag = 0 & rflag = 0 

19.         Break 

 

4.3 Matrix Compression 

From Section 3, the solution to the n*m scale 

carpool matching problem is a n*m matrix, where the 

element of the matrix values is 0 or 1, and each row 

and column have at most one non-zero element. We 

compress and store it as a 1*m matrix to reduce the 

storage space. There is a one-to-one correspondence 

between riders and drivers, and the one-dimensional 

matrix values are a sequence of all integers between 0 

and n-1 when n m= ; the number of drivers is more 

than that of riders when n m< , there are unmatched 

drivers (represented by -1), and the one-dimensional 

matrix values are a sequence consisting of all integers 

between 0 and n-1 and the number -1 of m; the number 

of riders is more than that of drivers when n>m, and 

there are unmatched riders, and the one-dimensional 

matrix values are a sequence of integers between 0 and 

n-1. As shown in Figure 3 to Figure 5, [ ]x j i=  

indicates that the element in the ith row of the jth 

column is non-zero, and the meaning in the 

corresponding carpool matching problem is that the jth 

driver will match the [ ]x j th rider. Therefore, the 

authors only need matrix x to represent the solution of 

carpool matching. 

 

Figure 3. Matrix compression1 

 

Figure 4. Matrix compression2 

 

Figure 5. Matrix compression3 

4.4 The Flow of Multi-Objective Carpool 

Matching Algorithm 

According to the characteristics of the MOCM 

problem, the coding in the experiment uses permutation 
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number coding, the multi-objective genetic algorithm 

uses the NSGA-II [27] algorithm framework. Figure 6 

is the Flowchart of MOCMA. Algorithm 2 is the 

Pseudocode of MOCMA. 

 

Figure 6. Flowchart of MOCMA 

Algorithm 2. Pseudocode for MOCMA 

Algorithm 2. MOCMA 

Input: G, Drivers[], Riders[] 

Output: M_Pairs[] 

1. Kmeans(G) 

2. numofsets = RMCA(Drivers, Riders, QoS, SmR) 

3. 0i =  

4. for i < numofsets do 

5.       
0
P = Pop_Intialization ( , )

i i
QoS SmR  

6.       NondominatedSort(
0
P )  

7.       t = 0 

8.       for t < Max do  

9.             Selection(
t
P ) 

10.             Crossover(
t
P ), 

t
Q = Mutation(

t
P ) 

11.             
t

R = Merge( ,
t t
P Q ) 

12.             NondominatedSort(
t

R ) 

13.             
1t

P
+

 = Select(
t

R ) 

14.             t++ 

15.       M_Pairs[] =  
1t

P
+

 

16.       i++ 

17. Print(M_Pairs) 

 

As shown in Algorithm 2, input road network, the 

order of drivers, and riders. Use the k-means clustering 

algorithm to cluster the road network (line 1). Call 

RMCA to divide the global riders and drivers into a 

series of closely independent small sets, then generate 

the corresponding QoS matrix and SmR (line 2). Enter 

the loop when there exists a set unprocessed. (line 4). 

Perform initial encoding according to the size 

relationship the number of riders 
i
n  and the number of 

drivers 
i

m , generate the parent population 
0
P  (line 5), 

and perform non-dominated sorting on 
0
P  (line 6). 

Enter the loop when iteration is not terminated (line 8). 

Select individuals from 
t
P  through the Binary 

tournament (line 9). Two points crossover and Swap 

mutation are used to cross and mutate selected 

individuals to generate a new generation of population 

t
Q  (line 10). By merging 

t
P  and 

t
Q  to generate a new 

population 
t t t

R P Q= ∪  (line 11). Non-dominated 

sorting of 
t

R  (line 12), and N individuals are selected 

through crowding distance and elite retention strategy 

to form a new generation population 
1t

P
+

 (line 13). 

Print matching pairs M_Pairs (line 17). 

Figure 7 shows an example of using MOCMA to 

obtain a set of non-dominated solution sets. Reference 

macroeconomics resource allocation model, the 

drivers’ interests are first considered when the overall 

number of drivers is less than riders, the solution with 

the highest total SmR is selected as the final matching 

plan; the riders’ interests are first considered when the 

overall number of riders is less than drivers, the 

solution with the highest total QoS is selected; when 

the total number of riders is equal to drivers, the best 

compromise solution (solution in the middle of the 
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ordered non-dominated solution set) is taken. 

 

Figure 7. Selection of solution in different situations  

The time complexity of ED is O(1), and that of CD 

is O(n), where n is the number of road network nodes, 

so the ASDA time complexity is O(n). The time 

complexity of RMCA is O(N), where N numo f Rider= +  

,numo f Drier  numofRider, and numofDriver is the 

number of rider and driver sets respectively. The time 

complexity of NSGA-II is O(M*N2), M is the number 

of objective functions, and N is the population size, so 

the algorithm complexity of MOCMA is O(S*M*N2), 

and S is the number of matrix decomposition. 

5 Simulation Experiments 

The experiment is divided into three sections, the 

first section introduces the dataset, the second section 

is to discusses the two important parameters of this 

article: the number of clusters Core and the parameter 

α, and the third section is algorithm contrast. In the 

following experiments, the initial population size is 80, 

the number of iterations is 500, and the crossover and 

mutation probabilities are both 0.9. The experiment 

was repeated 50 times independently and the average 

value was taken as the final result. 

5.1 Dataset 

In this paper, the New York city road network 

dataset is obtained through Open Street Map [28], 

which contains 61,298 nodes and 141,373 edges. The 

order dataset uses the New York Taxi Data Set [29]. 

The information available for each trip includes the 

longitude and latitude of the trip origin and destination 

and the departure time of the trip. We choose the green 

taxi records of February 2016 as the order data set. 

5.2 Parameters Discuss 

To reduce the time complexity, ASD is proposed to 

replace SPD. ASD is related to the number of 

clustering clusters Core. To determine the best Core  

and minimize the difference between ASD and SPD, 

we use the average Closeness Closeness  of SPD and 

ASD of 10,000 randomly selected test orders as the 

final Closeness the equation of Closeness  is shown in 

(10): 

 
| |

1
ASD SPD

Closeness
SPD

−

= −  (10) 

In Figure 8, Core selects 10 to 100. The overall 

proximity is in an upward trend as the number of 

clusters increases. The compactness is minimal when 

10Core =  and 0.802Closeness = . The degree of 

compactness is maximum when 90Core =  and 

0.842Closeness = . It depends on the structure of the 

road network, the size of the area, and the distribution 

of the location. The partition effect of the road network 

is closest to the real situation when 90Core = . 

Therefore, the Core  of the following experiments 

takes 90. 

 

Figure 8. Closeness of different Core 

The size of α directly affects the results of RMCA 

and then affects the quality and efficiency of MOCMA. 

To discuss the impact of the size of α on the 

experimental results, we use a randomly selected 

10,000 test order set, in which the number of driver 

orders and rider orders are both 5000, and the running 

time in milliseconds and MFR are used as the 

evaluation criteria of the experimental results. The 

experiment results are shown in Table 1.  

Table 1. Comparison of the number of different α 

matrices, solving time, and matching failure rate 

1/α 
Number 

Of 

matrices 

Build 

Matrix 

Time 

Solving

Matrix 

Time 

Total 

Time 
MFR 

2 1407 24776 8809 33585 0.20% 

3 1048 33764 5918 39682 0.22% 

4 849 42871 5046 47917 0.18% 

5 754 49811 4806 54617 0.16% 

6 699 60309 4108 64417 0.16% 

7 644 65559 4270 69829 0.14% 
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In Table 1, the larger α means that the relationship 

between riders and drivers in the same matrix is closer, 

the more matrices are generated, the longer the solving 

time, and the smaller the matrix construction time. 

When α tends to be infinitely small, the number of 

matrices is infinitely close to 1, which means that 

without any processing, the running time increases 

infinitely. With the increase of α, MFR is not much 

different, but the running time is greatly reduced. 

Therefore, it is proved that RMCA can improve the 

matching speed without affecting the matching quality. 

The following experiment α takes 1/2 for convenience. 

5.3 Algorithm Contrast 

To verify the superiority of MOCMA, we designed 

two groups of comparative experiments. One is 

compared with the mathematical KM algorithm and the 

other with the three classical multi-objective 

algorithms. 

MOCMA has a high quality to deal with the carpool 

matching problem as a very small MFR shown in 

Table 1. The authors use the KM algorithm as the 

reference object and the running time as the evaluation 

criteria to evaluate the efficiency of MOCMA. Since 

the KM algorithm cannot solve the multi-objective 

problem, we use a weighted method to assign weights 

to the two objectives of QoS and SmR, which are 0.5 

and 0.5 respectively. Convert MOCMA to GA and 

compare the running time with KM. The experiment 

results are shown in Figure 9. 

 

Figure 9. Running time of KM and GA 

In Figure 9, the number of matrices increases as α 

becomes smaller. The running time of the KM 

algorithm is much longer than GA. The running time 

of the KM algorithm no longer increases when α takes 

1/20 and 1/30, this’s because when α is reduced to a 

certain extent, the number of orders limits the number 

of matrices and indirectly limits the size of matrices. 

The running time of GA is relatively small and stable 

in the range of 2200ms-4700ms. 

To show the advantages of MOCMA, we compared 

it with MOEA/D, SPEA2, and FastPGA based on 

running time and MFR as evaluation criteria. In Table 

2, the unit of time in milliseconds, and the size of the 

test data set are 100, 200, 400, 1000, and 2000. The 

size of the passenger set and the driver set are the same 

for convenience. 

Table 2. The comparison of different algorithm 

MOEA/D SPEA2 FastPGA MOCMA
Size

time MFR time MFR time MFR time MFR 

100 359 0.960 469 0.940 1828 0.920 89 0.83 

200 652 0.970 975 0.970 1718 0.960 259 0.83 

400 825 0.985 1791 0.955 1849 0.965 417 0.64 

1000 2752 0.986 3897 0.978 3849 0.972 910 0.44 

2000 8120 0.987 10535 0.984 10824 0.980 1512 0.42 

 

As shown in Table 2, the number of matching orders 

increases as the order set size increases, so the MFR of 

MOCMA decreases. The experimental results show 

that compared to other algorithms, MOCMA has a 

significant decrease in running time and MFR, which is 

more suitable for handling large-scale and timely 

response order matching problems. 

To verify the statistical results of the algorithms, the 

Wilcoxon signed-rank test is used for the performance 

difference of pair-wise comparison algorithms. The 

following hypothesis is proposed: 
0

H : MOCMA has a 

significant improvement over the other algorithms. 

Table 3 shows the statistical results, p-values is 

considered to reject 
0

H  or not. p-value=0.043＜0.05. 

means the result of the Wilcoxon test is less than the 

significance level α. we can accept that MOCMA has a 

significant improvement over the other three algorithms. 

Table 3. Wilcoxon signed-rank test results with 

significance level α = 0.05 

Methods 

MOCMA 

vs 

MOEA/D 

MOCMA 

vs 

SPEA2 

MOCMA 

vs 

FastPGA 

p-value 0.043 0.043 0.043 

 

6 Conclusion 

This paper uses the k-means clustering algorithm to 

cluster the road network. It narrows the geographic 

region by judging whether they are in the same cluster 

and improves the search speed when constructing the 

candidate set of riders or drivers. Using the boundary 

approximation idea, we propose the ASD to replace the 

complicated and time-consuming SPD. To reduce the 

scale of the problem and improve the matching 

efficiency, the riders and drivers with a high degree of 

compactness are gathered to form multiple smaller sets. 

Comparison experiments with multiple algorithms 

show that MOCMA has good performance. Besides, 
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MOCMA not only solves the carpool matching 

problem, but its variants can be used in the fields of 

operation research and economics to solve assignment, 

optimize resource configuration, and task allocation 

problems. However, the uniform driving speed is used 

to calculate the travel time in MOCMA. In future 

research work, dynamic real-time driving speed can be 

considered. It is also possible to consider the many-to-

many matching mode. 
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