
A Hybrid Method of Heuristic Algorithm and Constraint Programming for No-wait Integrated Scheduling Problem 1085

A Hybrid Method of Heuristic Algorithm and Constraint

Programming for No-wait Integrated Scheduling Problem

Zhiqiang Xie1, Xiaowei Zhang1, Yingchun Xia1, Jing Yang2, Yu Xin3

1 College of Computer Science and Technology, Harbin University of Science and Technology, China
2 College of Computer Science and Technology, Harbin Engineering University, China

3 Faculty of Electrical Engineering and Computer, Ningbo University, China

xiezhiqiang@hrbust.edu.cn, zhangxiao_526@163.com, xiayingchun@hrbust.edu.cn, yangjing@hrbeu.edu.cn

xinyhrb@qq.com*

*Corresponding Author: Zhiqiang Xie; E-mail: xiezhiqiang@hrbust.edu.cn

DOI: 10.53106/160792642021092205012

Abstract

No-wait Integrated Scheduling Problem (NISP)

describes a real-life process of the non-standard products

where the consideration is given to the great structure

differences, processing parameter differences, no-wait

constraint, and the need for further deep processing after

assembly of jobs. To deal with the dynamic orders of

non-standard products, the scheduling algorithm to be

design should be a dynamic algorithm with the ability to

deal with the above conditions. At first, the dynamic

scheduling problem is transformed to a series of

continuous static scheduling problem by adoption of

window-based event-driven strategy, thus establishing

constraint programming model targeted at minimal total

tardiness and thereby proposing a hybrid method of

Heuristic Algorithm and Constraint Programming (HA-

CP) for the problem. In order to enhance the ability to

response the dynamic orders of non-standard products,

HA-CP adopts heuristic algorithm to generate a pre-

scheduling solution at each dynamic event moment, so

that jobs that fall into the window period are labelled as

dispatched jobs, while the remaining jobs are labelled as

jobs to be dispatched. To improve solution quality, the

jobs to be dispatched are mapped into an operation-based

constraint programming model, then, during the

execution interval of dispatched jobs, constraint

programming solver starts to solve the jobs to be

dispatched and update the current solution if the solver

gets a better solution within the execution interval. The

above procedures are repeated until all jobs are scheduled.

Finally, the results of simulation experiment show that

the proposed algorithm is effective and feasible.

Keywords: Non-standard products, Integrated scheduling,

Dynamic scheduling, No-wait, Constraint

programming

1 Introduction

Production scheduling represents a very practical

optimization method, through which, manufacturing

can be accelerated to reduce operating consumption by

reasonable arrangement of production sequence

without adding any production machine [1]. With the

continuous development and upgrading of related

industries, competition among some enterprises has

gradually shifted from fight for output and markets to

supply of high-quality customized services and

personalized products with demonstrating sufficient

differences. In this case, the differences in structure

and processing attributes between different non-

standard products are obvious. With the above

conditions, scheduling algorithms are more important

for production workshops [2].

For different task types and machine environments,

scholars have proposed abundant scheduling

algorithms. Where, scheduling problem with no-wait

constraints widely exists in the real-life process of steel

production, computer systems, food processing,

chemical industry, pharmaceutical industry, concrete

products, etc. [3-4]. Many experts and scholars have

studied scheduling problems with no-wait constraints.

For instance, in literature [5], to solve no-wait Flow

Shop scheduling problem with m-machine, a hybrid

algorithm is taken based on genetic algorithm and

simulated annealing. To minimize makespan of no-

wait Flow Shop scheduling problem, literature [6]

studied several variants of descending search and tabu

search algorithm, and proposed a strategy based on a

dynamic tabu list, which enhanced the algorithm’s

ability to jump out of local optimum to a certain extent.

Literature [7] proposed a hybrid optimization

algorithm based on variable neighbourhood descent

and discrete particle swarm optimization to solve no-

wait Flow Shop scheduling problem with two

optimization goals. To minimise the weighted sum of

maximum completion time and total completion time,

literature [8] proposed a TOB (Trade-off Balancing)

algorithm based on machine idle times. For no-wait

Job Shop scheduling in which each job has its own

1086 Journal of Internet Technology Volume 22 (2021) No.5

processing sequence, literature [9] proposed a hybrid

genetic algorithm, in which the genetic operation is

treated as a subproblem and transformed into

asymmetric travelling salesman problem. Literature [10]

introduced artificial bee colony algorithm to solve no-

wait Job Shop scheduling problem. In the above-

mentioned commonly used production scheduling

algorithms, no consideration is given to the great

product structure differences, processing parameter

differences, and the need for further deep processing

after assembly of jobs in the real-life manufacturing

process of non-standard products.

In fact, to quickly respond to the ever-changing

market and alleviate the pressure of non-standard

products in research and trial production, some

enterprises have established dedicated production

workshops to improve production efficiency of less-

than-truckload, personalized products and non-standard

products [11-12]. Where, some order-oriented SMEs

organize production according to orders. During the

production process, there are a large number of non-

standard products that demand scribing, hand lapping,

scraping and precision templates. Big differences exist

in product structure and component parameters, jobs

demand further deep processing after assembly, so

parts cannot be predicted and prepared in advance, and

production must be advanced according to BOM (Bill

of Material). The problem of requiring further deep

processing after jobs assembly is often referred to as

Integrated Scheduling Problem (ISP) [13-15]. For ISP

scheduling problem, literatures [16-17] discussed

hybrid optimization method of bottleneck shifting and

genetic algorithm. Literature [18] pointed out that

common no-wait scheduling algorithms can only deal

with the case where the number of no-wait child nodes

is 1. However, in ISP, there are abundant cases in

which further deep processing is required after jobs

assembly, that is, the number of no-wait child nodes

can be greater than 1 in ISP. Therefore, ISP with no-

wait constraints is more complicated.

Some of the above-mentioned ISP scheduling

algorithms do not consider the no-wait constraint,

some algorithms do not consider the existence of

flexible multifunctional machine in the workshop, and

some do not consider dynamic scheduling needs of

non-standard products and less-than-truckload custom

products. Therefore, the No-wait Integrated Scheduling

Problem (NISP) scheduling algorithm designed herein

needs to meet the following conditions: 1) A

rescheduling mechanism capable of handling dynamic

orders should be designed for dynamic scheduling

needs of non-standard products and less-than-truckload

custom products. 2) When the number of no-wait child

nodes is greater than 1, the algorithm to be designed

still works. 3) The algorithm should be able to deal

with the problem of flexible multifunctional machine

in the workshop. 4) It should be able to deal with the

problems of great differences in processing parameters

and further deep processing after assembly in

manufacturing process of non-standard products. To

solve the above problems, this paper converts dynamic

scheduling problem into a series of continuous static

scheduling problem by adoption of window-based

event-driven strategy, thereby proposing a hybrid

optimization method of heuristic algorithm and

constraint programming (HA-CP). In the end, validity

of the proposed algorithm is verified by real-life

instance data.

2 Problem Formulation

This paper mainly discusses No-wait Integrated

Scheduling Problem (NISP) with minimal total

tardiness as the goal. The NISP problem demands the

following agreements: the various workbenches,

machine tools, and machining centres are collectively

referred to as machine; the various processing,

assembly, and workflow are collectively referred to as

processing; the machine environment is a dedicated

trial production workshop for dynamic production; a

product is composed of multiple jobs which may

demand further deep processing after assembly. The

product could be mapped into an operation-based task

graph with tree structure constraint, as shown in Figure

1 and Table 1. In Figure 1, there are 2 products

consisting of 4 jobs: Job1(v8, v9), Job2(v1, v2, v3),

Job3(v4, v5), Job4(v6, v7). Where, weight of the directed

edge represents that the operation is subject to no-wait

constraint. For instance, weight<v6, v7> = Φ indicates

that the start time of operation v7 cannot be earlier than

the completion time of operation v6, and there is no no-

wait constraint between v6 and v7; weight<v3, v6> = 0

means that the start time of operation v6 must be equal

to the completion time of operation v3, and there is a

no-wait constraint between the nodes of the directed

edge <v3, v6>.

v3

Job2 Job3

Job4

Job1

Product2Product1

v
2

v
1

v
5

v
4

v9

0 0

v8

v7

v
6

Figure 1. Instance of operation-based task graph with

tree structure constraint

A Hybrid Method of Heuristic Algorithm and Constraint Programming for No-wait Integrated Scheduling Problem 1087

Table 1. Detailed data for the instance of Figure 1

Product Job Operation Machine and processing time

v8 (d1, 5), (d2, 4)
Product1 Job1

v9 (d3, 5)

v1 (d3, 4)

v2 (d2, 6) Job2

v3 (d3, 3)

v4 (d1, 8), (d2, 5)
Job3

v5 (d1, 9)

v6 (d4, 4)

Product2

Job4
v7 (d1, 3), (d2, 4)

Suppose D = {d1, …, dm} is an machine set; the

product set that arrives at time t0 is P0 = {P01, …, P0u};

DT(P0 i) represents due date of product P0 i(1≤ i ≤ u),

CT(P0 i) represents the completion time of product P0

i, then E(P0 i) = max[CT(P0 i) - DT(P0 i), 0] means

tardiness of product P0 i; P0 is mapped into an

operation-based task set with tree structure constraint,

i.e. V0 = {v0 w1, …, v0 wb}, and an operation v0 i(w1≤

i ≤ wb) could be processing on machine set D; S(v0 i, dk,

pk) = 1 means that operation v0 i is processed on

machine dk(1 ≤ k ≤ m), which requires pk hour. If

machine dk could not deal with operation v0 i, S(v0 i, dk,

-) = 0. ST(v0 i) represents the start time of v0 i, CT(v0 i)

represents the completion time of v0 i. Therefore, the

objective function for the problem studied in this paper

is shown in Equation (1).

 min [∑u I = 1 E(P0 i)] (1)

The following constraints need to be met:

If weight<v0 i, v0 j> = Φ, the operations in the

directed edge should meet Equation (2).

 ST(v0 j) - CT(v0 i) ≥ 0 (2)

If weight<v0 i, v0 j> = 0, the operations in the

directed edge should meet Equation (3).

 ST(v0 j) - CT(v0 i) = 0 (3)

Only one machine can be selected among flexible

machine set for any operation v0 i, which means

Equation (4) should be met.

 ∑m k=1 S(v0 i, dk, -) = 1 (4)

Time overlapping is not allowed for any two

operations v0 i and v0 j (i ≠ j) assigned to the same

machine, that is, Equation (5) should be met.

 nooverlap(v0 i, v0 j), if S(v0 i, dk, -)

 = S(v0 j, dk, -) = 1 (5)

The objective functions and constraints described in

equations (1)~(5) can be easily converted into a

constraint programming model in Google OR-Tools or

CPLEX [19-20]. Compared with common production

scheduling problem, on the basis of no-wait constraints,

the NISP discussed in this paper needs to further

consider the great structural differences and processing

parameter differences of different products, and there

is also need to consider need for further deep

processing after jobs assembly, so the solving

difficulty is higher than common production

scheduling problem [13].

3 Methodology

3.1 Dynamic Rescheduling Mechanism

As production tasks arrive in succession, to respond

to these dynamic events, the scheduling algorithm

needs to determine when to reschedule which jobs,

then determine the processing machine for each

operation and arrange the sequence of these operations

on the corresponding machines. After a certain time,

the finished product leaves the workshop. Repeat the

above procedures until all products are finished. And, a

dynamic rescheduling mechanism is exactly designed

to deal with the above procedures. According to the

characteristics of NISP and the actual requirements for

non-standard products, an event-based rescheduling

method combined with window technology is taken to

handle dynamic production tasks. Figure 2 is a flow

chart of the dynamic rescheduling mechanism in this

paper.

Start

End

Establish constraint
programming model
targeted at minimal
total tardiness

Update the workshop informa-
tion; then adopt the heuristic
algorithm for generating a
pre-scheduling scheme R; jobs
involved in R are classified into
3 sets, i.e. the finished jobs, the
dispatched jobs and jobs to be
dispatched

Execute the dispatched
jobs; set timer TW = 0, then
the constraint program-
ming solver starts to solve
the jobs to be dispatched

Execute the dispatched jobs

Stop the constraint program-
ming solver and output the
result Rcp; update R if Rcp is
superior to the pre-scheduling
scheme

new
products?

event occurs

N

N

Y

Tw == W ?

N

all tasks are
finished?

Figure 2. Flow chart of the dynamic rescheduling

mechanism

The main process is: first, define a window with a

certain coverage width, for instance, W = 2 means a

window with a width of 2 hours; at each moment of the

dynamic event, the newly arrived products are mapped

into a set of operations with tree structure constraint;

then, update the current workshop information, and

adopt the heuristic algorithm for generating a pre-

scheduling scheme R; take moment of dynamic event

as the starting point and W as window width, classify

1088 Journal of Internet Technology Volume 22 (2021) No.5

the jobs involved in R, i.e. the completed jobs that have

finished its processing, the dispatched jobs that fall into

the window period, and the rest jobs which are labelled

as jobs to be dispatched; at last, during the time period

when the dispatched jobs are being processed,

constraint planning solver is used to reschedule the

jobs to be dispatched. If the rescheduling result is

superior to the pre-scheduling scheme, update the pre-

scheduling scheme R.

Now, we take Figure 1 and Figure 3 as an instance

for description. Product2 arrives at time ti. At this time,

Job1 is completed and all machines are idle. Product1

has only one job, so CT (Product1) = ti, it is then

labelled as completed job. For the newly arrived

product Product2, a pre-scheduling scheme R is

generated using heuristic algorithm. Jobs are classified

based on window (ti, ti + W). In the end, Job2, Job3 are

labelled as dispatched jobs, Job4 is labelled as job to be

dispatched. Production task of the dispatched jobs are

executed during window (ti, ti + W). Then, constraint

programming solver starts to solve the jobs to be

dispatched, i.e. Job4 should be rescheduled during time

interval (ti, ti + W).

ti ti+W
h

v8 v4

v1

v2

v3

v6

v7v5

v9

completed jobs

dispatched jobs

jobs to be dispatched

d1

d2

d3

d4

Figure 3. Instance of workshop information at time ti

It can be known from Figure 2 that the pre-

scheduling scheme R is a response of the scheduling

algorithm to a dynamic event. To quickly respond to

dynamic events, the scheduling algorithm in this phase

imposes higher requirement for computing time.

Therefore, the scheduling algorithm of this phase

adopts heuristic algorithm with a faster computing

speed, whose details are described in the next section.

For the jobs to be dispatched, they are arranged out of

the window period and can be solved using a slower

but better-quality constraint programming solver.

Constraint programming is an accurate solution

method. The problems are pruned by algorithms such

as constraint propagation to effectively reduce the

search space, so that the precise algorithm has certain

practicability [19-20]. Hence, the proposed HA-CP

algorithm in this paper can to some extent balance the

contradiction between real-time performance and

solution quality in dynamic scheduling problem.

3.2 Heuristic Algorithm

In the NISP studied in this paper, a static scheduling

is required at each dynamic event occurrence time.

Because the number of no-wait child nodes may be

greater than 1, for no-wait tasks that satisfy tree

structure constraints, Equation (3) should be met. Such

is a many-to-one constraint relationship. For dealing

with tree structure constraints, Lei et al [13] proposed a

coding method based on an operation relationship

matrix table, which can guarantee that the operation

sequence still satisfies the tree structure constraints

after action by crossover operator and mutation

operator. However, this algorithm is inapplicable if the

number of no-wait child nodes is greater than or equal

to 1. Therefore, on the basis of literature [13], this

paper adopts grouping-based first-time fit algorithm to

deal with no-wait constraint relationship. The main

process is: for the operation chromosome V that satisfy

the tree structure constraints and the corresponding

machine chromosome M, label the operations in V as

two types of no-wait operation and ordinary operation,

and then divide the operation sequence V into several

segments; successively schedule the operation in V; if

the type of the target operation is an ordinary process,

use First Fit strategy to schedule the target operation to

the position where the operation is first accommodated,

and label the target operation as a scheduled operation.

If the type of target operation is no-wait operation, then

look forwards for other operations in the same

operation group, schedule them separately in the order

in V, and then place the results to the previous part of

the scheduling where the group of no-wait operations

are first accommodated, label the group of operations

as scheduled operations. Repeat the above procedures

until all operations are scheduled.

Suppose there are two products shown in Figure 1

and Table 1 that need to be scheduled at the initial time.

For the operation chromosome that satisfies the tree

structure constraints V = {v8, v9, v1, v2, v4, v5, v3, v6, v7}

and the corresponding machine chromosome M = {d2,

d3, d3, d2, d2, d1, d3, d4, d1}, operations in V can be

labeled as three segments: ordinary operations {v8, v9,

v1, v2, v4}, no-wait operations {v5, v3, v6}, ordinary

operation {v7}. Sequentially schedule the operations in

V, v8 is processed on d2, the gap where v8 is first

accommodated is [0, 4], then schedule v8 to this

position, as shown in Figure 4(a); Completely

scheduled {v8, v9, v1, v2, v4} is shown in Figure 4(b);

{v5, v3, v6} is a group of no-wait operations, and its

individual scheduling results must be closely linked

together. Then, find the position from the gap in Figure

4(b) where the group of no-wait operations is first

accommodated, the result is shown in Figure 4(c); the

final scheduling result is shown in Figure 4(d). In this

way, the conversion from V, M to a scheduling solution

is completed.

A Hybrid Method of Heuristic Algorithm and Constraint Programming for No-wait Integrated Scheduling Problem 1089

Figure 4. Instance of grouping-based first-time fit

algorithm

Literature [13] is a genetic algorithm, and the

chromosome is an operation sequence V and

corresponding machine sequence M that satisfy the tree

structure constraints. The genetic algorithm is sensitive

to the initial population and causes important influence

on the scheduling results. Topcuoglu et al [21]

proposed the EFT (Earliest Finish Time) scheduling

strategy, which is a simple and fast task scheduling

algorithm. EFT strategy sorts the operations based on

upward path value, and the value is calculated by

average processing time of each operation. This paper

proposes a method for generating random initial

population. For process vi, it supports flexible

processing on multiple machines. The processing time

can be consistent or different. Suppose the upper and

lower limits of the processing time are [pmin, pmax], then

the random value in this interval can be taken as a

reference value for the processing time in process vi.

Then, randomly assign a random processing time

reference value belonging to respective interval for all

processes, calculate the process scheduling order at this

time, and schedule according to EFT strategy. At this

time, a pair of sequences can be obtained, i.e. the

operation sequence V and the corresponding machine

sequence M that satisfy the tree constraint relationship.

Repeat this process until the quantity requirements are

met.

3.3 Constraint Programming Solver

Google OR-Tools is an open source software suite

for optimization, tuned for tackling the world’s

toughest problems in vehicle routing, flows, integer

and linear programming, and constraint programming

[19]. We use Google OR-Tools CP-SAT solver as the

constraint programming solver in this work.

4 Simulation Experiment

The HA-CP algorithm designed in this paper adopts

a hybrid optimization method combining heuristic

algorithm and constraint programming, which has

strong adaptability to less-than-truckload personalized

products with great structural differences and obvious

differences in processing parameters. In order to verify

HA-CP performance, Workflow Generator [22] is used

as a reference to write an Instance Generator for NISP

problems in this work. The main configuration of the

experimental computer is: Dell PowerEdge R720 (Intel

Xeon E5-2660 v2@2.6GHz * 2).

We utilize the following methods, ORMT

(Integrated Scheduling Algorithm based on an

Operation Relationship Matrix Table) [13], VCLDC

(Product Comprehensive Scheduling Algorithm based

on Virtual Component Level Division Coding) [23] as

the control methods. As ORMT and VCLDC do not

consider the no-wait constraints and the dynamic

scheduling demand, we give the following improvement

for the methods.

Improved ORMT. Firstly, the dynamic scheduling

problem is transformed to a series of continuous static

scheduling problem by adoption of window-based

event-driven strategy. Then, for a particular static

scheduling problem, to convert operation chromosome

V, machine chromosome M to a scheduling solution

that meet no-wait constraint, it adopts grouping-based

first-time fit algorithm (in 3.2) to generate the solution.

At each dynamic event moment, reschedule all target

jobs according to the above procedures.

Improved VCLDC. Same as Improved ISA-ORMT.

To verify the performance of HA-CP, each instance

is simulated 10 times using HA-CP, ORMT and

VCLDC respectively. From the one aspect of average

of the 10 running results, compared with the control

methods.

Experiment 1: HA-CP adopts a heuristic algorithm

for scheduling at event-driven moment, and uses a

constraint programming solver to optimize the

dispatched jobs during the time period when the

dispatched jobs are processed. Where, set the

parameters of the heuristic algorithm of HA-CP

according to literature [13], i.e. population size is 100,

maximum generation count is 200, probability of

crossover operator is 0.6 and probability of mutation

operator is 0.01.

In Figure 2, the window period W when the

dispatched jobs are processed is used to solve the jobs

to be dispatched. It is easy to know that for a longer

window period W, the number of dispatched jobs in the

pre-scheduling scheme is increased, and the number of

remaining jobs to be dispatched is decreased relatively.

At this time, the problem size decreases and the

running time for the constraint programming solver

turns longer, thus the probability that the constraint

programming solver gets the optimal solution increases.

1090 Journal of Internet Technology Volume 22 (2021) No.5

However, the probability of occurrence of dynamic

events will increase in an excessively long window

period, and frequent occurrence of dynamic events will

interrupt the constraint programming solver. Therefore,

the value of window period W should fully consider the

contradiction between real-time performance and

solution quality in dynamic scheduling. To check W

value and the solution quality of the proposed HA-CP,

G1-G10 have been generated by the Instance Generator.

G1-G10 are characterized by the following parameters:

device count m = 10, product count of each instance is

u = 5, average operation count per product is w = 50,

average no-wait constraint count per product is 10.

There are 5 products in each instance, and the arrival

hour and due hour of each instance are {0 0 24 24 48}

and {50 70 80 80 120} respectively. HA-CP algorithm

takes W = {1, 2, 3} parameters to simulate the

scheduling G1-G10 respectively. Performance indicators

of the algorithm is verified under different parameters,

and the results are shown in Figure 5.

Figure 5. The results of G1-G10 generated by HA-CP with different W value

Figure 5 shows the simulation results of G1-G10. It

can be seen that HA-CP have reached the optimal

solutions in 7 instances when W = 1, and HA-CP have

reached the optimal solutions in all instances when W =

2 or 3.

Experiment 2: A workshop of a Shanghai power

equipment company is mainly engaged in the R&D

and production of complex mechanical and electrical

products. Its workshop adopts less-than-truckload,

customized processing. In the dynamic production

process, the production task of processing new orders

is normal. In this paper, HA-CP algorithm takes W =

{1, 2, 3} respectively to simulate and schedule

production tasks in a certain time period of the

workshop. The production tasks are characterized by

the following parameters: count of device m = 25, total

product count u = 18, total operation count is 658, total

count of no-wait constraint is 133. There are 18

products in experiment 2, and the arrival hour and due

hour are {0 0 0 0 0 0 0 10 15 15 25 25 35 45 50 55 65

65} and {40 40 60 50 46 65 65 59 55 60 55 60 40 60

58 50 53 52} respectively. Figure 6 is the result of

experiment 2.

Figure 6. The result of experiment 2

Compared with the control methods, the HA-CP gets

better results in all instances of the 2 simulation

experiments, because HA-CP makes full use of the

time period when the scheduled jobs of the pre-

scheduled solution are executing and optimizes the

jobs to be scheduled with constraint programming

solver during the time period. Therefore, the proposed

HA-CP in this work is effective and feasible.

A Hybrid Method of Heuristic Algorithm and Constraint Programming for No-wait Integrated Scheduling Problem 1091

5 Conclusion

The differences between NISP scheduling and

commonly used scheduling are described. A constraint

programming model is descripted for NISP problem. A

hybrid optimization method combining heuristic

algorithm and constraint programming is put forward.

The conclusions are drawn as follows: (1) the proposed

HA-CP optimization method provides an effective and

feasible technical solution; (2) solving the jobs outside

the window W using constraint programming solver

within the processing period of dispatched jobs inside

the window W could balance to a certain extent the

contradiction between real-time performance and

solution quality in dynamic scheduling; (3) seen from

the result of experiment 2, HA-CP could improve the

solution quality by adjusting the window duration

value W.

In fact, constraint programming solver is accurate

method, and its time complexity increases exponentially

with the problem scale. In order to alleviate the

running time of large-scale instance, multi-level

window technology can be adopted. That is, the pre-

scheduling scheme could be subdivided for multiple

levels of windows to reduce the number of jobs in a

window. By making full use of the time period in

which the tasks of the previous window are being

processed, the tasks of the next window are solved by

using constraint programming solver. Therefore, this

work can serve as the research basis for NISP dynamic

scheduling problem.

Acknowledgements

This work was supported by the National Natural

Science Foundation of China (Grant No.: 61772160,

61602133), the China Postdoctoral Science Foundation

(Grant No.: 2016M591541), the Research Fund for the

Doctoral Program of Higher Education of China (Grant

No.: 20122304110012), the Scientific and Technological

Research Project of Heilongjiang Provincial Education

Department (Grant No.: 12531105), the Postdoctoral

Scientific Research Start Fund Project in Heilongjiang

Province (Grant No.: LBH-Q13092), the Postdoctoral

Science Foundation of Heilongjiang Province (Grant

No.: LBH-Z15096).

References

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems,

Book Reviews, IIE Transactions, Vol. 28, No. 8, pp. 695–697,

September, 2016.

[2] X. Zhang, Z. Xie, Y. Xin, J. Yang, Integrated Scheduling

Algorithm of Two Workshops based on Optimal Time,

Computer Integrated Manufacturing Systems, Vol. 23, No. 9,

pp. 1938–1949, September, 2017.

[3] A. Allahverdi, A Survey of Scheduling Problems with No-

wait in Process, European Journal of Operational Research,

Vol. 255, No. 3, pp. 665–686, December, 2016.

[4] C. J. Schuster, J. M. Framinan, Approximative Procedures for

No-Wait Job Shop Scheduling, Operations Research Letters,

Vol. 31, No. 4, pp. 308–318, July, 2003.

[5] T. Aldowaisan, A. Allahverdi, New Heuristics for No-Wait

Flowshops to Minimize Makespan, Computers and

Operations Research, Vol. 30, No. 8, pp. 1219–1231, July,

2003.

[6] J. Grabowski, J. Pempera, Some Local Search Algorithms for

No-Wait Flow-Shop Problem with Makespan Criterion,

Computers & Operations Research, Vol. 32, No. 8, pp. 2197–

2212, August, 2005.

[7] Q.-K. Pan, M. F. Tasgetiren, Y.-C. Liang, A Discrete Particle

Swarm Optimization Algorithm for the No-Wait Flowshop

Scheduling Problem, Computers & Operations Research, Vol.

35, No. 9, pp. 2807–2839, September, 2008.

[8] H. Ye, W. Li, B. R. Nault, Trade-off Balancing Between

Maximum and Total Completion Times for No-Wait Flow

Shop Production, International Journal of Production

Research, Vol. 58, No. 11, pp. 3235–3251, June, 2020.

[9] J. C. H. Pan, H. C. Huang, A Hybrid Genetic Algorithm for

No-Wait Job Shop Scheduling Problems, Expert Systems with

Applications, Vol. 36, No. 3 PART 2, pp. 5800–5806, April,

2009.

[10] S. Sundar, P. N. Suganthan, C. T. Jin, C. T. Xiang, C. C.

Soon, A Hybrid Artificial Bee Colony Algorithm for The Job-

Shop Scheduling Problem with No-Wait Constraint, Soft

Computing, Vol. 21, No. 5, pp. 1193–1202, March, 2017.

[11] B. Wen, Z. Zhou, Q. Han, B. Su, Important Role of Products

Design of Modern Machinery in the Research and

Development of New Products: Study on the Threefold

Synthesis Method “Dynamic Design, Intelligent Design and

Partial Virtual Design” Face to Products Generalization

Quality, Chinese Journal of Mechanical Engineering, Vol. 39,

No. 10, pp. 43–52, October, 2003.

[12] J. H. Cui, J. Chen, Y. F. Deng, Q. Liu, L. Sun, Research for

New Product Trial Production Task Scheduling Method in

Machinery Manufacturing Enterprises, Journal of Jiangnan

University (Natural Science Edition), Vol. 14, No. 3, pp. 326–

332, June, 2015.

[13] Q. Lei, W. Guo, Y. Song, Integrated Scheduling Algorithm

based on an Operation Relationship Matrix Table for Tree-

Structured Products, International Journal of Production

Research, Vol. 56, No. 16, pp. 5437–5456, February, 2018.

[14] Z. Xie, S. Hao, G. Ye, G. Tan, A New Algorithm for

Complex Product Flexible Scheduling with Constraint

Between Jobs, Computers & Industrial Engineering, Vol. 57,

No. 3, pp. 766–772, October, 2009.

[15] Z. Q. Xie, X. H. Zhang, Y. Xin, J. Yang, Time-selective

Integrated Scheduling Algorithm Considering Posterior

Processes, Zidonghua Xuebao/Acta Automatica Sinica, Vol.

44, No. 2, pp. 344–362, February, 2018.

[16] P. Ivens, M. Lambrecht, Extending the Shifting Bottleneck

Procedure to Real-Life Applications, European Journal of

1092 Journal of Internet Technology Volume 22 (2021) No.5

Operational Research, Vol. 90, No. 2, pp. 252–268, April,

1996.

[17] F. Shi, S. Zhao, Y. Meng, Hybrid Algorithm based on

Improved Extended Shifting Bottleneck Procedure and GA

for Assembly Job Shop Scheduling Problem, International

Journal of Production Research, Vol. 58, No. 9, pp. 2604–

2625, May, 2020.

[18] Z. Xie, Y. Xin, J. Yang, No-Wait Integrated Scheduling

Algorithm based on Reversed Order Signal-Driven, Journal

of Computer Research & Development, Vol. 50, No. 8, pp.

1710–1721, August, 2013.

[19] L. Perron, V. Furnon, OR-Tools, Google LLC, https://

developers.google.com/optimization, Accessed July, 2019.

[20] IBM, the CPLEX User’s Manual 12.8.0, Compagnie IBM

France, https://www.ibm.com, Accessed December, 2017.

[21] H. Topcuoglu, S. Hariri, M. Y. Wu, Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous

Computing, IEEE Transactions on Parallel and Distributed

Systems, Vol. 13, No. 3, pp. 260–274, March, 2002.

[22] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K.

Vahi, Characterizing and Profiling Scientific Workflows,

Future Generation Computer Systems, Vol. 29, No. 3, pp.

682–692, March, 2013.

[23] S. K. Zhao, Q. Han, G. C. Wang, Product Comprehensive

Scheduling Algorithm based on Virtual Component Level

Division Coding, Computer Integrated Manufacturing

Systems, Vol. 21, No. 9, pp. 2435–2445, September, 2015.

Biographies

Zhiqiang Xie obtained his M.S. and

Ph.D. at Harbin University of Science

and Technology in July 2003 and

2009 respectively. Since 2015, he

works as a Ph.D. supervisor for

Harbin University of Science and

Technology, China. He is an outstanding member of

China Computer Federation. His main research field is

integrated scheduling algorithm. Until now, he has

published more than 100 papers.

Xiaowei Zhang, Ph.D. student.

Currently he is in Harbin University

of Science and Technology, China.

He received his B.S. and M.S. at

Harbin University of Science and

Technology in July 2005 and 2012

respectively. His main research interests include cloud

scheduling algorithm and integrated scheduling

algorithm.

Yingchun Xia, Ph.D. student. He

received the M.S. Degree from Harbin

University of Science and Technology

in China. His main research interest is

integrated scheduling algorithm.

Jing Yang is a professor and PhD

supervisor at Harbin Engineering

University in China, she graduated

from Northeast Heavy Machinery

Institute in July 1984 and received her

PhD in computer application

technology from Harbin Engineering University in

June 2006. Her research covers big data analysis and

privacy protection, social networks, information

security, and scheduling algorithms.

Yu Xin, Ph.D., a professor at Ningbo

University, China. He is a member of

China Computer Federation. His main

research interests include database,

data mining, and privacy preservation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

