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Abstract 

Several research works had been carried out to 

discover suitable algorithms to quantify node centralities. 

Among the many existing centrality metrics, only few 

consider centrality at the sub-graph level or deal with 

structural hole capabilities of pivot nodes. Research has 

proven the importance of sub-graph information in 

distinguishing influential nodes. In this work, two 

centrality metrics are proposed to distinguish and rank 

nodes in complex networks. The first metric called Sub-

graph Degree Information centrality is based on entropy 

quantification of a node’s sub-graph degree distribution 

to determine its influence. The second metric called Sub-

graph Degree and Structural Hole centrality considers a 

node’s sub-graph degree distribution and its structural 

hole property. The two metrics are designed to efficiently 

support weighted and unweighted networks. Performance 

evaluations were done on five real world datasets and one 

artificial network. The proposed metrics were equally 

compared against some classic centrality metrics. The 

results show that the proposed metrics can accurately 

distinguish and rank nodes distinctly on complex 

networks. They can equally discover highly influential 

and spreader nodes capable of causing epidemic spread 

and maximum network damage. 

Keywords: Sub-graph degree, Entropy, Node ranking, 

Structural hole, Influential node 

1 Introduction 

Over the years, several research works had been 

carried out to discover appropriate metrics to quantify 

node centralities in order to find the most influential 

nodes in complex networks [1-3]. Out of the several 

existing centrality metrics, just a few of them 

considered centralities at the sub-graph level as they 

are mostly designed with local or global network 

information. Additionally, these metrics cannot 

efficiently measure influence-based proximity [3] such 

as structural holes property of a node which it exerts 

between two of its unconnected neighbours. 

In the literature, Closeness and Betweeness 

centralities are some of the most popular centrality 

metrics. But then, Estrada and Rodriguez-Velazquez 

[1] opined that these centrality methods are rather non-

suitable measures of sub-graph centrality at the sub-

graph level of a network. They equally pointed out that 

sub-graphs are very significant in real networks. To 

further explore the usefulness of a node’s sub-graph 

information, Ref. [2] proposed an entropy based Sub-

graph Degree Centrality that determines a node’s total 

influence by considering its direct influence on its 1-

hop neighbours and its indirect influence on its 2–hop 

neighbours. It has been revealed that apart from the 

topological connections a node has with its 1–hop 

neighbours and its indirect connection with its 2–hop 

neighbours, it could still play a very powerful role in 

bridging the communication among all of its 1-hop 

neighbours who have no direct link to each other. 

In line with this thought, a hub node with so many 

connections which at the same time enjoys a brokerage 

position over its neighbours, may be strategically 

positioned not just as a hub but also as a bridge to its 

direct neighbours that have no direct connections to 

each other. This idea had been extensively explored by 

Ronald Burt in his seminal papers on “Structural 

Holes” [4]. A node is termed a structural hole, if it 

controls the communication between two or more of its 

unconnected neighbours. Such a node can benefit 

significantly by acting as a bridge to many of its direct 

neighbours who have no connection with each other [5, 

6]. People benefit from acting as bridges between 

groups of people who do not otherwise interact [7]. In 

essence, structural-hole-rich networks provide 

informational benefits. In other words, a node that has 

many indirect ties is privy to more resources than a 

node with a limited reach in the network [5]. 

Bearing in mind that more information can be 

revealed about a node at its sub-graph level with 

respect to the points raised in the preceding paragraph, 

we first propose the Sub-graph Degree Information 

centrality (SDI). The degree distribution of a node’s 

sub-graph which involves its 1–hop neighbours, is 

computed and thereafter its influence is quantified by 

Dehmer’s entropy model. We also propose the Sub-

graph Degree and Structural Hole (SDSH) metric 

which computes the degree distribution of a node at the 
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sub-graph level involving its 1–hop neighbours as well 

as its structural hole capability among them. The two 

proposed algorithms are designed with the flexibility to 

support weighted and unweighted networks. In other 

words, the proposed metrics automatically switch 

between the options of considering or ignoring weights 

on networks as the situation demands. The proposed 

metrics were tested on five real-world datasets and one 

artificial network. They were equally compared against 

some select centrality metrics and, in some instances, 

their performance show that they can discover highly 

influential nodes that are epidemic spreaders which are 

capable of initiating rapid disease spread and can as 

well cause maximum network destruction. 

In essence, the contributions of our work are 

summarized below: 

‧ Two novel centrality metrics based on entropy and 

structural-hole are proposed. 

‧ Sub-graph degree distribution of nodes is explored 

and their influence quantified by entropy model. 

‧ Structural hole is exploited in combination with sub-

graph degree distribution to detect highly influential 

spreader nodes. 

‧ Both metrics are strategically designed to support 

weighted and unweighted networks. 

The rest of this work is organized as follows: in 

section 2, literature review of some related works is 

presented. In section 3, the models of the proposed 

metrics and their algorithms are described. In section 4, 

we conduct experiments and performance evaluations 

of the proposed centrality metrics. Also, the 

experimental results are discussed and analyzed. 

Finally, recommendations for improvement and future 

research are offered and the paper concluded in section 

5. 

2 Related Works 

The importance of sub-graph information of nodes 

can never be overemphasised. Estrada and Rodriguez-

Velazquez observed that sub-graphs are very 

significant in real networks. Hence, they proposed the 

Sub–graph centrality metric (SC) in which each node 

partakes in the sub-graph of a network [1]. It is noted 

that SC discriminates nodes much better than some 

classic centrality methods [8]. This notwithstanding, 

the computational complexity of this algorithm is quite 

high. 

Ref. [9] proposed a new node influence metric 

known as H-index and established its relation to 

Degree and Coreness centralities. The H–index 

centrality has had tremendous success with a number 

of variants that are designed for unweighted networks 

mostly. But we know that real world networks have 

weights which could add more meaningfulness in the 

detection of influential nodes on networks. 

Ref. [10] proposed a semi-local centrality metric to 

find influential nodes. They took advantage of Degree 

centrality’s low characteristics and combined it with 

the high computational complexities of Betweeness 

and Closeness centralities to achieve the Semi Local 

centrality. The performance of this metric in detecting 

influential nodes is quite reasonable yet, it does not 

support weighted networks nor can it be applied on star 

networks [11]. 

Ref. [2] proposed an Entropy based centrality model 

by disintegrating a graph into sub-graphs. This enabled 

them to compute the entropy of the sub-graph degree 

distribution of a node inspired by Shannon’s 

information theory on Entropy as formulated by 

Mathias Dehmer. Using entropy theory, they quantified 

the local influence of a node on its neigbhours and an 

indirect influence on its 2-hop neigbhours. Nonetheless, 

this model is specifically designed for undirected and 

unweighted networks. Yang and An [6] proposed 

Degree and Structural Hole Count algorithm to detect 

critical nodes. They leveraged the advantage provided 

by structural holes to design the model such that a node 

that has high degree with large number of neighbours 

who are not connected to each other, would be highly 

influential. The algorithm is designed for only 

unweighted networks. 

We modify the models proposed by Refs. [2] and [6] 

to come up with two centrality algorithms. First, we 

propose the Sub-graph Degree Information centrality. 

This metric computes the sub-graph degree 

information of a node and thereafter, its influence is 

quantified by computing the entropy of the sub-graph 

degree information using Dehmer’s entropy model. 

Second, the sub-graph degree and structural hole 

centrality is proposed. For every node, its sub-graph 

degree and those of its neighbours are computed in 

combination with its structural hole property. The two 

metrics are designed with the flexibility to support 

weighted and unweighted networks which gives them 

an edge over existing methods. Performance 

evaluations were done on five real-world datasets and 

one artificial network against some classic centrality 

methods. Results show that the proposed methods are 

very efficient in detecting influential nodes capable of 

causing maximum network destruction or rapid 

epidemic spread. 

3 Methodology 

A typical weighted and undirected graph G is given 

as a set of vertices, edges and weights ( , , )G V E W  

where, , 1, 2, 3, ...,
i

V v i N= =  which represent the set 

of nodes and E represents the set of edges connecting 

them, whereas W is the weight set of E. An edge 
ij
e  is 

given by 
ij
v  where 

i
v V∈  with a weight 

i
w W∈ . An 

edge 1
ij
e =  if 

i
v  and 

j
v  are connected else 0

ij
e =  in 

an unweighted network. In a given weighted network, 
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ij
w  is a weighted adjacency matrix that shows the 

weight of connections between nodes 
i
v  and .

j
v  A 

self-connection 0
ii
v =  and 

ij ji
v v= . The sub-graph of 

node 
i
v  is made up of first order neighborhood set 1

i
N  

of node 
i
v  inclusive of itself. 

3.1 Sub-graph Degree Information Centrality 

In order to ascertain the influence of nodes on a 

network, one needs to quantify the structural 

information of such network. To achieve this, we 

assume that in a given sub-graph, the probability of 

node 
i
v  to receive resources [12] is given by: 

 | |i
dv

n

′

′

 (1) 

where 
i

dv′  is the degree of node 
i
v  in the sub-graph 

and | |n′  is the cardinality of the number of nodes in 

that sub-graph. Since we are dealing with a symmetric 

network, we assume that a focal node can send and 

receive resources to its immediate neighbours. The 

strength of node connections is also captured alongside 

its topological connections. To achieve this, we 

consider the average weights incident on the focal node 

[13]. The model is given as:  

 ( )i

i

s

dv

α
′

′

 (2) 

i ij
S w′ = Σ  is the sum of weights incident on the focal 

node and [0,1]α =  is a tuning parameter. To compute 

the degree distribution of a node using its sub-graph 

information content, we propose the Sub-graph Degree 

(SD) model and Sub-graph Degree Information (SDI) 

centrality in equations 3 and 4 respectively: 

 
(1 ) ( )

( )
| | | |

i i i i

i

dv S dv S
SD

n dv n

α α

α

−

′ ′ ′ ′×
= × =

′ ′ ′
 (3) 

Therefore, 

 
(1 ) ( )| |

1 | |

n

i i

i

j

dv S
SD

n

α α−′

=

′ ′×
=

′
∑  (4) 

where j is node 
i
v ’s neighbors and | |n′  is the total 

number of nodes in node 
i
v ’s sub-graph. In other 

words, when 

 

0,
| |

1,
| |

i

i

dv
SD

n

S
SD

n

α

′⎧
=⎪ ′⎪

= ⎨
′⎪ =

⎪ ′⎩

  

α  is a tuning parameter used to control the level of 

importance given to topological or strength of 

connections between nodes. It is equally possible to 

determine the values of α  automatically from the 

network information using entropy weighting method 

[14]. In this case, the control parameter α  is replaced 

by 
1

α  and 
2

α . Therefore, 
1

α  controls the topological 

connections of nodes, while 
2

α  controls the strength of 

their connections.  

3.2 Highlights of Information Entropy 

Shannon’s information entropy of an assumed 

stochastic variable A is given by: 

 
2

1

( ) log
n

i i

i

H A P P

=

= −∑  (5) 

Matthias Dehmer [15] obtained the probability 

distribution of a graph from the information functional 

of such graph. He described and represented the 

measured structural information of a graph as the 

resultant graph entropy. i.e., 
1 2 3
, , , ...,

n
P P P P P= . Ref. 

[2] then used this probability distribution to define the 

relationship between any given node and its neigbhours 

at the subgraph level as: 

 

1

, 1, 2, 3, ...,i

i n

j

j

P j n
λ

λ

=

= =

∑
 (6) 

where λ  represents the 
th
i  non-negative integer. 

Therefore, entropy H(A) becomes: 

1 1 1

1

( ) log (log ) log
n n n

i
i b i b i b in

i j j
i

j

H A P P
λ

λ λ

λ
= = =

=

= − = −∑ ∑ ∑
∑

 (7) 

3.3 Influence Quantification of Nodes 

For any given graph, the influence of each node can 

effectively be quantified with the following equation: 

 
10 10

1 1

1

log ( ) log
n n

i

i i in

j j

i

j

SD
I SDI SD

SDI

′ ′

′

= =

=

= −∑ ∑
∑

 (8) 

Note that in all computations made in this work, the 

logarithm base 10b =  is used. The pseudocode to 

compute a node’s sub-graph degree information and 

influence is presented in Algorithm 1. 
 

Algorithm 1. Sub-graph degree information and 

influence computation 

Input: ( , , )G V E W  

Output: 
i

SDI , 
i
I  

1. if G.is_weighted == 0 then 

2.      
1

1α =  and 
2

0α =   

3. else 

4.      compute 
1

α  and 
2

α   

5. end if 
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6. for 1: | |i len G=  do 

7.      
i i

SubG G′=          #Extract the sub-graph  

8.                                  #details of node 
i
v  

9.      for 1:| |
i

ii SubG=  do 

10.            determine degree(ii); weights(ii) 

11.            compute 
i

SDI       #use equation 3 

12.      end for 

13.      compute 
i

SDI              #use equation 4 

14.      compute 
i
I                   #use equation 8 

15. end for 

 

3.4 Sub-graph Degree and Structural-hole 

Centrality 

In their work, Yang and An [6] proposed the Degree 

and Structural Hole Count (DSHC) algorithm. The 

model is given as: 

 21 1 1
(( ) )

1
i

i

j i j ij

DSHC
dv dv∈Γ

= + ×
+ Δ

∑  (9) 

where 
i

dv  is the degree of node 
i
v , 

j
dv  represents the 

degree of its neighbours and 
ij

Δ  is the number of 

structural holes that exist in node 
i
v  which originates 

from its neighbours. 

In view of the assumption in section 3.1, in any 

given sub-graph, a node can send or receive resources 

to any of its direct neighbours and at the same time 

function as the bridge connecting all of its neighbours 

who are not connected to each other. What this means 

is that unconnected neighbours of node 
i
v  can still pass 

resources to each other through node .

i
v  This 

arrangement gives node 
i
v  much influence over others. 

We adapt equation 3 into equation 9 to obtain the Sub-

graph Degree and Structural Hole (SDSH) model: 

 (( ) (1 ))
i

i i j ij

j

SDSH SD SD η

∈Γ

= + × +∑  (10) 

where 
i

SD  is the sub-graph degree of a focal node 

i
v , 

j
SD  represents the sub-graph degree of node 

i
v ’s 

neighbour and 
i

Γ  is the set of all node 
i
v ’s neighbours. 

ij
η  is the number of structural holes that exist in node 

i
v  which originates from its neighbours. The higher the 

value of SDSH, the more important node 
i
v . 

The pseudocode to compute SDSH is presented in 

Algorithm 2.  

 

 

 

 

 

Algorithm 2. Sub-graph degree and Structural-hole 

algorithm 

Input: ( , , )G V E W  

Output: SDSH 

1. if G.is_weighted == 0 then 

2.      
1

1α =  and 
2

0α =  

3. else 

4.      compute 
1

α  and 
2

α  

5. end if 

6. for 1: | |i len G=  do 

7.      
i i

SubG G′=          #Extract the sub-graph  

8.                                  #details of node 
i
v  

9.      for 1:| |
i

ii SubG=  do 

10.            0
ij

η =   

11.            for 1: | |
i

jj reversed SubG=  do 

12.                 find_path(ii, jj) 

13.                 if jj not in G.neighbours(ii) then 

14.                        1
ij

η + =   

15.                 end if 

16.            end for 

17.             compute ,
i j

SD SD         #use equation 3 

18.      end for 

19.      compute 
i

SDSH           #use equation 9 

20. end for 

 

An example of how to compute the sub-graph 

degree using node 2’s sub-graph shown in Figure 1(b) 

is given in Table 1. 

Computational example of SDI centrality 

(a) Toy graph (b) Sub-graph of node 2 

Figure 1. Example toy network. Picture adapted from 

[2] 

 
5

2 2 1 3 4 5

1

4.8583

i

SDI SD SD SD SD SD

=

= + + + + =∑  

Node 2’s influence can be determined with equation 

8. 
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Table 1. Computation of sub-graph degree 

Node 

ID 

1 2
( ) ( )

| |

i i
dv S

n

α α

′ ′×

′
 

i
SD

 

2 

0.5916 0.4084
4 8

5

×

 

1.0618 

1 

0.5916 0.4084
6 6

5

×

 

0.7963 

3 

0.5916 0.4084
3 4

5

×

 

0.6748 

4 

0.5916 0.4084
3 7

5

×

 

0.8481 

5 

0.5916 0.4084
5 13

5

×

 

1.4473 

 

5

2 10

1

10 10

10 10

2

1.0618
4.8583 [( log 1.0618)

4.8583

0.7963 0.6748
( log 0.7963) ( log 0.6748)
4.8583 4.8583

0.8481 1.4773
( log 0.8481) ( log 1.4773)]
4.8583 4.8583

0.6817

i

I

I

=

= − × +

× + × +

× + ×

=

∑

  

In Figure 2, the concept of structural hole is 

demonstrated. The number of structural holes that exist 

between node A and node Ego is equal to 2 indicated 

by the dotted lines. Notice that node B is not counted 

since node A has a direct connection to it. In like 

manner, the number of structural holes that exist 

between node C and node Ego is 3.  

Computational example of SDSH centrality 

 

Figure 2. An Ego network Picture adapted from [6] 

To compute the sub-graph degree and structural hole 

centrality of node 2, we go back to the sub-graph 

degree details of node 2 in Table 1. 

5

2 2 1

1

2 3 2 4

2 5

5

2

1

(( ) (1 2))

(( ) (1 2)) (( ) (1 1))

(( ) (1 1))

5.5743 5.2097 3.8197 5.0782 19.6819

i

i

SDSH SD SD

SD SD SD SD

SD SD

SDSH

=

=

= + × + +

+ × + + + × + +

+ × +

= + + + =

∑

∑

 

4 Results and Discussion 

All experiments were implemented with Python 

3.7.4. The codes available on GitHub were run on a 

computer with Windows 10 Operating System (64 bits), 

Intel (R) CoreTMi3-2310M CPU @ 2.10GHz and 4GB 

RAM. 

4.1 Tests on Network Datasets 

Five real-world datasets and one artificial (Barabasi-

Albert (BA-net)) network were used for the 

experimental evaluations. Self-looped edges as well as 

isolated nodes were deleted from the five real-world 

network datasets before use. Also, directed networks 

were converted to undirected networks. The BA-net 

was built with 10,000 nodes with the connection to two 

new nodes for every new connection. Details of the 

datasets are presented in Table 2. n is number of nodes, 

m is number of edges, < k > is average degree, C is 

clustering coefficient, < d > is average path length, R is 

assortavity and 
th

β  is the propagation threshold of 

each network. 

4.2 SIR Model 

The popular SIR epidemic model is adopted to 

quantify the disease propagation power of some 

influential nodes. This model has three compartments, 

Susceptible (S), Infected (I) and Recovered (R) 

compartments [21]. Before the epidemic propagation 

starts, all nodes are assumed to be uninfected and are in 

the Susceptible state. Then, to set off the epidemic 

propagation, one or a group of highly influential nodes 

are chosen as seed nodes to start the spread. These 

nodes and all subsequent infected nodes move to the 

Infected state. The infected nodes can infect 

susceptible nodes with the probability β . Also, all the 

infected nodes can recover to the Recovered state with 

the probability λ . In this work, the propagation 

threshold 
th

β  as shown for each network in Table 2 

was obtained with the model given in equation (11). 

 
2th

k

k k
β

< >
=

< > − < >

 (11) 

To actualize the SIR epidemic spread experiment, 

NDlib Python package [22] was used to implement 

SIR diffusion trend. The spreading probability β  was 

set to 
th

β β= . The value of the recovery rate was set at 

0.01λ =  to allow the infection to spread on the 

networks. A group of 10 highly influential seed nodes 

were chosen as the initial infected nodes. Results from 

the diffusion spread comparison evaluation is shown in 

Figure 3. 
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Table 2. Properties and descriptions of network datasets 

Network n m <k> C <d> R th
β  Description 

Netscience 1461 2742 3.7536 0.6937 1.138 0.4616 0.1684 Co-authorship network of scientists [16]. 

Polblogs 1224 16715 27.3121 0.3197 1.8687 -0.2212 0.0125 
Network of hyperlinks among weblogs on 

US politics [17]. 

Power 4941 6594 2.6691 0.0801 18.9892 0.0035 0.3483 Western States Power Grid of the US [18]. 

PGP 10680 24316 4.5536 0.2659 7.4855 0.2382 0.0559 
Interaction network of users of the Pretty 

Good Privacy algorithm [19]. 

Cond-mat 16264 47594 5.8527 0.638 1.1116 0.1846 0.0838 
Co-authorship network of scientists 

posting preprints [20]. 

BA-net 10000 19996 3.9992 0.007 4.9484 -0.0393 0.0783 Artificial network 

 

(a) Netcience  (b) Polblogs (c) Power 

(d) PGP  (e) Cond – mat  (f) BA – net 

 

Figure 3. SIR diffusion trend comparison on different networks  

For each network, the diffusion process was run for 

500 iterations. From Netscience network shown in 

Figure 3(a), SDSH, DHSC and Deg have very rapid 

spread, infecting about 30% of the entire network. But, 

SDSH was sustained just a little longer more than the 

other algorithms. From Polblogs network shown in 

Figure 3(b), all the methods have rapid spread with K-

core peaking at almost 63% over other methods. From 

Power network in Figure 3(c), SDSH, Deg and Betw 

have very rapid infection spread with SDSH and Deg 

peaking higher than Betw by infecting roughly 78% of 

the entire network. 

Continuing, all the methods show uniform rapid 

spread on PGP network as shown in Figure 3(d) with 

SDSH, CI and Deg peaking above other methods at 

almost 56%. From the Cond-mat network shown in 

Figure 3(e), all the methods exhibit uniform 

performance. From BA-net shown in Figure 3(f), all 

methods exhibit uniform spread with SDI peaking at 

80% slightly above other methods. 

Overall, SDSH shows a very remarkable spreading 

performance in terms of rapid infection spread and the 

total number of population infected. This validates the 

fact that SDSH can detect highly influential or spreader 

nodes better than other methods. 

4.3 Maximum Connectivity Coefficient 

Maximum connectivity G is one of the metrics used 

in evaluating the performance of a centrality method. It 

is the maximum damage that may be caused to a 

network by the removal of highly influential nodes. 

The degree of change caused to a network’s 

connectivity by the removal of a node is commensurate 

to the importance of that node. G is defined as: 

 
R

G
N

=  (12) 
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where R denotes number of nodes in the maximum 

connected component of a network after the removal of 

a node. N is the total number of nodes on the network. 

The lesser the value of G  or the faster it decreases, the 

better the attack stratagem adopted [6]. The centrality 

methods were used as the attack strategies to destroy 

the networks by gradually removing the most 

important nodes consecutively. The results are 

presented in Figure 4.  

  

(a) Network of scientists  (b) Power grid network  (c) Network of political blogs  

  

(d) Condensed matter network  (e) Pretty good privacy network  (f) Barabarsi-Albert artificial network

Figure 4. Maximum connectivity coefficient results of various networks 

In network of scientists shown in Figure 4(a), SDSH 

seem to have caused the most damage to the network 

when about 5% of the most important nodes were 

removed from the network. Following closely is DSHC 

and CI. In power grid network shown in Figure 4(b), 

SDI, SDSH and DSHC have the best performance. The 

three methods almost have a tie in destroying the 

network when about 13% of the most important nodes 

are removed. In network of political blogs shown in 

Figure 4(c), Deg and Betw surprisingly have the best 

performance when about 45% of the most important 

nodes are removed. DSHC has the worst performance. 

In condensed matter network shown in Figure 4(d), 

DSHC have the best performance followed closely by 

SDSH. They seem to collapse the network when about 

17% of the most important nodes are removed. In 

pretty good privacy network shown in Figure 4(e), 

SDSH and DSHC have a tie as they put up the best 

performance in collapsing the network when about 

13% of the most important nodes are removed. They 

are closely followed by Deg. In Barabarsi-Albert 

artificial network shown in Figure 4(f), Deg and DSHC 

have a tie as they have the best performance in 

collapsing the network when about 15% of the most 

important networks are removed. SDI and SDSH 

collapse the network completely when about 20% and 

30% of the most important nodes are removed from the 

network. 

The ability of the proposed metrics to discover very 

influential nodes capable of causing maximum network 

damage on real-world networks are highly impressive 

especially for SDSH. Overall, in terms of wider area of 

applicability, the proposed centrality methods can be 

effectively applied on both weighted and unweighted 

networks to achieve impactful results. The compared 

metrics are limited in this sense as they can only be 

applied to unweighted networks.  

4.4 Computational Efficiency 

From Table 3, Degree centrality has the lowest 

computational complexity of ( )O n  followed by SDI, 

SDC and K-core with ( log ),O n n  ( log )O n n  and 

( )O m  respectively. SDI’s time complexity is 

reasonably fast and can complete computations in a 

reasonable time limit but SDSH’s time complexity is 

somewhat high but it is better than Betweeness 

centrality which has the highest time complexity. 



1018 Journal of Internet Technology Volume 22 (2021) No.5 

 

Table 3. Computational complexity of the algorithms 

Algorithm Complexity 

SDI ( log )O n n  

SDSH 
2( ( log ) )O n n n  

Deg ( )O n  

Betw ( )O nm  

DSHC 
2( ( log ) )O n n n  

CI 
2( log )O n n  

K-core ( )O m  

SDC ( log )O n n  

 

5 Conclusions and Recommendations 

There has been an increased need to design suitable 

algorithms to distinguish nodes to facilitate the 

discovery of top spreaders. In this work, two centrality 

algorithms namely Sub-graph Degree Information 

centrality (SDI) and Sub-graph Degree and Structural 

Hole (SDSH) centrality were proposed. Experiments 

and comparison analyses were conducted on five real-

world datasets and one artificial network. SDSH 

showed impressive performance in network destruction 

on four of the real-world dataset as it declined faster 

than the other methods. The proposed methods can be 

deployed in areas such as epidemic or rumour control, 

viral product campaigns or product recommendation 

and so on. 

Finally, we hope to extend the algorithms 

implementation to directed networks and we will apply 

them to several other application scenarios. 
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