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Abstract 

Spectrally efficient frequency division multiplexing 

(SEFDM) is a bandwidth-compressed non-orthogonal 

multicarrier communication scheme, which provides 

improved spectral efficiency compared to orthogonal 

frequency division multiplexing (OFDM) system. The 

loss of orthogonality yields the self-introduced inter-

carrier interference (ICI) complicating the equalizer 

design. In this work, a deep learning (DL) -based 

SEFDM equalization scheme is proposed to 

characterize the ICI and to detect the transmitted 

information bits. The DL-based equalization scheme is 

trained offline using randomly-generated data and then 

deployed online. The performance of the equalization 

scheme is tested by extensive numerical simulations. 

The results show that the proposed equalization scheme 

outperforms the linear equalization based equalization 

scheme, such as zero forcing (ZF), minimum mean 

squared error (MMSE) and truncated singular value 

decomposition (TSVD), under additive white Gaussian 

noise (AWGN) channel in terms of the bit-error rate 

(BER). Especially for BPSK, the uncoded BER 

performance approaches the traditional OFDM even 

for the compression ratio of 0.7, which saves the 

bandwidth by 30%. 

Keywords: Deep neural networks, Equalization scheme, 

Non-orthogonal signal, Bandwidth-com-

pressed multicarrier  

1 Introduction 

Orthogonal frequency division multiplexing 

(OFDM) is a successful approach to achieve high-

speed data transmission, which is widely adopted 

multicarrier modulation scheme in wireless 

broadband communication nowadays. In OFDM, 

the complex information symbols are modulated 

onto orthogonal subcarriers, where the frequency 

separation of subcarriers equals to the OFDM symbol 

rate. To improve the transmission rate and spectral 

efficiency in OFDM, higher order modulation is 

required at the cost of higher signal-to-noise-ratio 

(SNR). Further, the transmission is more sensitive to 

the channel impairments such as the multi-path 

propagation or the nonlinear effects.  

In 1975, Mazo’s work [1] presented that the data 

symbols could be transmitted at a rate 25% faster 

than the Nyquist rate while maintaining optimum 

performance [2]. Such spectral efficiency 

improvement method (Faster-than-Nyquist signaling 

(FTNS)) was later extended to both time and 

frequency domains by Rusek et.al [3], and a time-

frequency compressed single carrier FTNS (TFC-

SC-FTNS) scheme to improve the spectral 

efficiency via two dimensions simultaneously 

proposed by S. Wen et al. [4]. In 2003, a new non-

orthogonal multi-carrier scheme, termed spectrally 

efficient frequency division multiplexing (SEFDM), 

was proposed to improve the spectral efficiency by 

reducing the spacing between the subcarriers [5]. As 

an underlying technique, SEFDM is required in 

future communication networks to address the 

coming challenges in Internet of Vehicle (IoV) and 

Smart City Applications [6-7]. However, due to the 

violation of Nyquist principle, such systems suffer 

from the self-introduced inter-carrier interference 

(ICI), which complicates the equalization scheme 

design. The maximum-likelihood (ML) detection 

achieves the optimum system performance, but 

facing an NP-hard problem due to the exponentially 

growing complexity [8], and it was shown not 

computationally feasible [5]. On the other hand, with 

much reduced complexity, the classical linear 

equalization methods, including zero forcing (ZF), 

minimum mean squared error (MMSE) [9], 

truncated singular value decomposition (TSVD) [10], 

were utilized to deal with the ICI-spoiled symbols, 

but failing to provide competitive BER performance 

for moderate bandwidth savings or number of 
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subcarriers. A detailed view of the history of 

SEFDM could be found in [11]. 

1.1 Related Work 

Deep learning (DL) and deep neural networks 

(DNNs) are efficient tools to model complex 

problems. DL has shown its great potentials in the 

areas of computer vision, natural language 

processing, speech recognition and so on [12]. Also, 

DL is a promising approach for such communication 

systems, in which the implementation complexity 

is extremely high, or the mathematical models of 

some communication modules (e.g., channel model) 

are hard to build up. H. Ye et. al employed DL to 

channel estimation and symbol detection in OFDM 

system [13], showing advantages over the 

conventional methods, e.g., MMSE. It is established 

in [14], that the transmitted symbols can be 

recovered from the inter-symbol interference (ISI) -

corrupted received signal by DL method. [15] gives an 

overview on DL and a comprehensive overview on the 

application of deep learning for the physical layer can 

be found in [16]. Inspired by the conclusion that DNN 

can learn complex interference features using back 

propagation mechanism. We choose DNN as the 

network architecture to implement the equlization 

scheme because it connects all the input neurons and 

can consider the effects from both adjacent neurons 

and non-adjacent neurons [17]. 

1.2 Contribution 

The contribution of this paper can be summarized as 

follows: 

We proposed a DL-based equalization scheme, 

combining the equalizer and symbol demapper to 

handle the ICI and correlated noise in SEFDM system.  

The proposed equalization scheme can learn the 

features from raw data automatically instead of manual 

extraction. With the a priori knowledge of 

communication and DL, such as the output range of the 

activation function, the DNN structure has been 

tailored, obtaining four types of DNN based 

equalization scheme for further performance 

improvement.  

·We have carried out comprehensive evaluations to 

verify and analyze the proposed DL-based equalization 

scheme for bandwidth-compressed multicarrier 

Communication. The simulation results show that our 

equalization scheme achieves excellent BER 

performance, compared with the linear equalization 

schemes, and very close to that of the BPSK-

modulated OFDM without ICI on the additive white 

Gaussian noise (AWGN) channel. 

The rest of this paper is organized as follows. Sec. 

2 introduces the SEFDM system and describes the 

linear equalization based equalization scheme. The DL 

principles are briefly introduced in Sec. 3, followed 

by developing the DL equalization scheme. In 

Section 4, numerical results are presented to verify 

the proposed scheme. Finally, some conclusions are 

drawn in Section 5. 

2 Traditional Equalization Scheme for 

Bandwidth-compressed Multicarrier 

Communication 

2.1 The Principle of SEFDM Signaling  

SEFDM is a bandwidth compressed non-orthogonal 

multicarrier communication technique that can be 

viewed as a subcarrier spacing compressed version of 

OFDM. In an OFDM system with N  subchannels, the 

high-speed serial data stream is divided into N low-

speed parallel streams, which modulated on a group of 

mutual orthogonal subcarriers. The above modulation 

behavior can be performed by inverse discrete Fourier 

transform (IDFT). Therefore, the OFDM signal can be 

expressed as 

 ( )
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where 
,l n

S  (being l  the time index and n  the 

carrier index) are the transmitted symbols and the 

subcarrier spacing is 1/f TΔ = . As to SEFDM, the 

spacing is compressed to /Tα , where α  is called the 

bandwidth compression factor (BCF) and 0 1α< ≤ , 

Consequently, the bandwidth saving from SEFDM 

is ( )1 100%α− × . Then, the transmitted signal (1) is 

changed as 
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Without loss of generality, the first time slot is 

considered, i.e., 0l =  and 0 t T≤ ≤ . Meanwhile, it 

is convenient to deal with the discrete-time SEFDM 

signal obtained by sampling the continuous-time 

signal (2) at times 
T

k
Q

, where Q Nρ=  and ρ  is 

the oversampling factor, typically equals to 1. Then 

the Q-point sequence [ ]{ }x k  is given by 
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(3)  

where 0 1k Q≤ ≤ −  and 1/ Q  is the scaling factor 

for normalization. In matrix notation, (3) is written 

as 

 =X SΦ
 (4) 
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where S  is the symbol vector of N  samples, and X  

is the discrete-time SEFDM signal of Q  samples. Φ  

is a Q N×  matrix, i.e. 
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where, exp( )2j Qω πα= . 

Due to the violation of orthogonality, SEFDM 

signals cannot be generated directly by conventional 

IDFT, but can be generated as a sum of multiple 

IDFT outputs [18]. In our model, the SEFDM 

signal is transmitted through the AWGN channel. 

At the equalization scheme, the multiple DFTs is 

employed to demodulate the received signal [19], 

yielding the observation R, 

 = + = = ++H H H H
R X Z S Z CS Z

ω
Φ Φ Φ Φ Φ  (6) 

Where [ ]
H

⋅ denotes the conjugate transpose. Z
ω

is 

the vector of correlated noise samples. =

H
C Φ Φ  is 

the cross correlation coefficient matrix. The 

coefficients in correlation matrix are 
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In the case of 1α = , then =C I , i.e., no ICI 

introduced where it becomes the OFDM. 

2.2 Linear Equalization Based Detection 

Scheme 

Practically, the suboptimal linear equalization was 

developed to retrieve the transmitted symbols from 

the ICI-spoiled observation according to some 

criteria, e.g., ZF and MMSE. Hence, we give an 

illustration of SEFDM system employing linear 

equalization methods as depicted in Figure 1.  
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Figure 1. SEFDM system model based on linear equalization and DL-based equalization scheme 

The ZF equalization can be expressed as 

 ( )
1

= =
ˆ

HH

ZF ZF
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−

S G R C C C R  (8) 

where ˆ

ZF
S  denotes the estimated symbol vector. The 

MMSE equalization is implemented as 
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where 2
σ  and 2

s
σ  denote the noise and signal 

power. 

With the increase of the subcarrier number and the 

decrease of α , the correlation matrix C  becomes 

ill-conditioned and singular [20]. To solve this 

problem, the pseudo inverse of C  is used to produce 

a better quality [21-22]. The method is called the 

Truncated Singular Value Decomposition (TSVD), 

which discards the small singular values. First, a 

SVD of is performed as 

 H
=C U VΣ  (10) 
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where U  and V  are unitary matrixes, i.e., H
=U U I , 

H
.=V V I  ( )1 2

, , ,
N

diag σ σ σ= �Σ  is the diagonal 

matrix formed by the singular values of C . Then the 

pseudo inverse of matrix C  is given by  

 1 1 H

ξ ξ

− −

=C V UΣ  (11) 

Where 1

ξ

−

C  indicates the pseudo inverse, and 
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1 2
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ξσ σ σ

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
�Σ  with ξ , being the 

truncation index. The optimal truncation index is given 

by [7]: 

 1.Nξ α= +⎡ ⎤⎢ ⎥  (12) 

Where ⋅⎡ ⎤⎢ ⎥  denotes the celling operation. The 

TSVD method ignores the small singular values and 

forces their reciprocals to zero when computing 1−
Σ . 

In this way, the TSVD equalization method avoids 

amplifying the input noise and, preventing the further 

degradation of the system performance. The estimated 

received symbols can be expressed as 

 
1

ˆ

TSVD TSVD

−

= =S G R C R  (13) 

3 DL-based Equalization Scheme for 

Bandwidth-compressed Multicarrier 

Communication 

In this section, we develop a new equalizer and 

demapper joint design based on DL for the SEFDM 

system. The system block is shown in Figure 1. After 

training, the DNN is utilized to retrieve the transmitted 

information bits. 

3.1 Deep Learning Basics 

DNNs are neural networks that have multiple 

layers of different perceptrons. The structure of 

DNN is shown in Figure 2. 
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Figure 2. The DNN model 

Each layer of the network consists of multiple 

neurons, with a nonlinear function alled activation 

function computing the weighted sum of the 

preceding layer. The activation function generally 

includes the Sigmoid function, the Relu function, or 

the tanh function, which are defined as 

( )
1

1
Sigmoid a
f a

e−

=

+
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( ) ( )Re
max 0,
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f a a=  and ( ) ( )tanh
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a a
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e e
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+
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respectively. Hence, the output of the DNN can be 

expressed as: 
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where superscript [ ]l  denotes the quantity associated 

with the l-th layer; x  and y  are respectively the input 

and the output of the DNN; 
[ ]l

Z  is the output of the 

l-th layer, and 
[ ]l

f  is the activation function. 
[ ]l

W  

and 
[ ]l

b  are respectively the weight matrix and bias 

vector. The DNN can be formulated as an abstract 

function: 

 
[ ] ( ) [ ] [ ] [ ] ( )( )( )1 1 2 1

;
L L L

y f x f f f xθ
− − −

= = = �Z  (15) 

where θ  denotes the set of parameters in the neural 

network, which needs to be optimized before the 

online deployment. 

3.2 DNN Based SEFDM Equalization Scheme 

Design 

The observation R  is The DNN based SEFDM 

equalization scheme architecture is also illustrated in 
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Figure 1. The observation R  is As we know, the 

source bits are regularly assumed to be Bernoulli 

distributed, with values of 0 or 1. The transmitter 

modulates the information bits in proper forms to fit 

the channel. The purpose of the equalization scheme 

is to find a proper architecture to retrieve the 

information bit sequence. That is to say, the 

equalization scheme needs to recover the 

information bits from the observation while there 

exists different kinds of distortions, from the 

transmitter, the channel, and even the equalization 

scheme itself. The final output of the equalization 

scheme is the estimated bits, also with values of 0 or 

1. Therefore, in communication system, the output of 

the DNN requires predicting the value of a binary 

variable. Sigmoid units are suitable for Bernoulli 

output distributions and classification problems with 

two classes can be cast in this form [9]. In the study, 

we adopt the Sigmoid function in the output layer of 

our developed DNN. 

From (15), we design an abstract function, of 

which the input is from the received symbols and the 

output estimates are the information bits. Then we 

give the expression of the function: 

 ( )ˆ ;f θ=X R  (16) 

where ˆX  is an estimate of the transmitted bit vector 

X . From the definition of Sigmoid in Sec. III, we 

know that the Sigmoid returns values restricted to the 

open interval ( )0,1 . A simple design is thereby to train 

the model to minimize the difference between the 

output of the DNN, and the information bits from the 

source. In the designed DNN-based detector, hence, we 

use the mean squared error to portray the difference, 

 
( )

2

2

ˆθ = −L X X
 

 (17) 

We perform the system training in a supervised 

manner by using a set of labeled data. The DNN 

parameter vector θ  is iteratively updated via 

RMSPropOptimizer aimed at minimizing the loss 

( )θL  over a mini-batch from the training set, given 

by (15). After the training, the output of the DNN is 

a vector of real numbers restricted in ( )0,1  that are 

close to the original information bits. In the stage of 

the online deployment, it is reasonable to use a 

comparator gate with threshold of 0.5, to force 

output to 0 or 1, as the output bits. The received 

complex information symbols are divided into the 

real and imaginary parts, and then sent into the DNN. 

A detailed illustration of Information Bits Recover 

part in Figure 1 is given in Figure 3. 

 

Figure 3. The implementation of the block of Information Bits Recovery 

The number of layers and the number of neurons in 

each layer influence the system performance 

significantly. The DNN design relates to the SEFDM 

system configuration, such as the compression factor, 

the modulation constellation, the prototype filter. We 

present two kinds of DNNs which have different 

numbers of neurons. One is the narrower one there 

contains less neurons, and a wider one with more 

neurons. 

Another aspect that affects the performance is the 

activation function. The activation function 

introduces the non-linearity to make DNNs possible 

to handle complex problems. Different activation 

functions have different effects on the DNN based 

equalization scheme because of the different output 

range. Since the information symbols are in 

normalized constellations, whose range in value is 

usually in [ ]1,1− . According to the definition in Sec. 

III-A of the Relu and tanh function, the output 

range of Relu is [ )0, +∞ . As for tanh, the range is 

( )1, 1− + . The two kinds of activation functions are 

designed in the DNN-based equalization scheme to 

investigate the system error-rate performance. 

4 Simulation Results 

In this section, simulation results are presented to 

verify the developed DL-based SEFDM detection 

scheme. The number of subcarriers of the SEFDM 

system is chosen as 64, and the oversampling factor ρ  

is 1. In the simulation, we assume perfect 

synchronization and perfect knowledge of the noise 

variance for the MMSE detectors. In the simulation 
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platform, we consider a few typical values of BCF α , 

including 0.9, 0.8, and 0.7. We use BPSK and QPSK 

as the modulation formats and no forward error 

correction (FEC) codes are considered in our system. 

Without exhaustive hyperparameters (i.e., the number 

of layers and the number of neurons in each layer) 

optimization, the DNNs are manually optimized to 

achieve an optimal performance. All the DNNs we 

considered contain 5 layers. The numbers of neurons in 

the layers of the narrower DNN are respectively 128, 

512, 256, 128, 64(for BPSK)/128 (for QPSK), labeled 

as “DNN-n” in the BER plots. For the wider one, the 

numbers are 128,2048, 1024, 512, 64 (for BPSK)/128 

(for QPSK), then labeled as “DNN-w”. The output 

layer is fixed using the Sigmoid function, while the 

other layers adopt the same activation function, 

specifically, we only consider Relu and tanh, refered 

to as “relu DNN” and “tanh DNN” in the plots. The 

performance of the equalization scheme based on 

four different DNNs, i.e., “relu DNN-n”, “relu 

DNN-w”, “tanh DNN-n” and “tanh DNN-w”, is 

examined, respectively. The optimizer for DNN we 

utilized is the RMSProp with learning rate decay. The 

training SNR is set to 2 dB SNR per bit (Eb/N0). The 

networks are trained with randomly-generated data for 

a known α, and then deployed online to assess the 

system performance. The models are trained with 

50000 batches of data, and each training batch 

contains 1000 SEFDM symbols. 

Figure 4 to Figure 6 demonstrate the BER 

performance of the BPSK-SEFDM system with 

different values of α . From the BER plots, it 

follows that the DL-based scheme outperforms the 

conventional linear equalization schemes, and 

achieves a bandwidth saving by up to 30%. In the 

high bandwidth compressing case when 0.7α =  DL-

based equalization scheme could improve the 

performance by at least 3 dB at BER of 10−2, and an 

obvious improvement in higher Eb/N0 range, which 

means that the characteristics of the ICI and the 

correlated noise can be learned by the DNN in the 

training stage. Moreover, the combination of 

equalizer and demapper could help improve the 

performance. Meanwhile the BER plots marked as 

“tanh DNN-n” are very close to the performance 

reference of OFDM system without ICI, which shows 

a significant performance improvement, even no FEC 

codes used in the system. The results also show that 

the network with tanh activation function has a 

better performance than Relu, which improves the 

BER performance by approximately 0.5 dB at BER 

of 10−4 for all BCFs, since the output range of the 

tanh is more suitable for the equalization scheme 

output. With the same activation function, DNN-n 

outperforms DNN-w, resulting from a fact that there 

are more weights in DNN-w to be trained in the 

learning stage. 

 

Figure 4. BER versus Eb/N0, 0.9,α =  BPSK 

modulation 

 

Figure 5. BER versus Eb/N0, 0.8,α =  BPSK 

modulation 

 

Figure 6. BER versus Eb/N0, 0.7,α =  BPSK 

modulation 
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The BER performance, for QPSK modulation, 

is depicted in Figure 7 to Figure 9. Compared with 

the BPSK signaling schemes, the performance of 

proposed scheme degrades significantly as α 

decreases Nevertheless, there still shows some 

improvements in BER, compared with the linear 

equalization based schemes. From Figure 7, the 

performance is also improved by 3 dB at BER of 

10−2 with the network “tanh DNN-w” when α = 0.9. 

However, other networks fail to improve the 

performance in this case. As for higher bandwidth 

compression when 0.8α =  and 0.7α =  the 

performance improvement degraded significantly, 

even though there still shows some improvements in 

high SNR ranges, as depicted in Figure 8 and 

Figure 9. For QPSK, DNN-w network shows better 

performance, which means the QPSK is more 

complex and needs more parameters to characterize. 

In general, the tanh activation function also brings 

some performance gain. 

 

Figure 7. BER versus Eb/N0, 0.9,α =  QPSK 

modulation 

 

Figure 8. BER versus Eb/N0, 0.8,α =  QPSK 

modulation 

 

Figure 9. BER versus Eb/N0, 0.7,α =  QPSK 

modulation 

5 Conclusion 

In this paper,we propose a novel DL-based 

equalization scheme for SEFDM non-orthogonal 

multicarrier communication system, which 

outperforms the conventional equalization schemes. 

The neural network is trained over randomly-

generated data and learns the interference features of 

SEFDM system automatically. Numerical results 

demonstrate the scheme can effectively improve the 

BER performance. The simulation results show that 

the DL method has advantages when solving ill-

conditioned problems. However, the proposed 

scheme works on condition that the number of 

subcarriers is fixed. When we want to change the 

number of subcarriers, we have to train another NN, 

which inspires us to do more indepth research in the 

future, on the network design of the DL-based 

SEFDM equalization scheme. 
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