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Abstract 

Parkinson’s disease (PD) is a neurodegenerative 

disease that often occurs in elderly people. Its symptoms 

are static tremor and slow movement, which affect the 

life of the patient seriously. With the development of 

medical technology, the early diagnosis of PD has 

attracted widespread attention. Many studies have shown 

that abnormal gait characteristics are potential bases for 

judging whether suffering from Parkinson’s disease. If 

PD can be diagnosed in the early stage, it will benefit the 

control of the disease and subsequent treatment. However, 

the diagnosis of PD is a complex task which often relies 

on the doctor’s experience and subjective evaluation. In 

this stage, because of the lack of professional knowledge 

of doctors or errors in subjective judgment, it is easy to 

misdiagnose and miss the best treatment time. In 

response to this problem, this paper designs an auxiliary 

diagnosis system for PD based on abnormal gait, 

composed of embedded devices, mobile terminals and 

servers. The embedded device uses the accelerometer to 

collect the patient’s six-dimensional gait data, then the 

data are transmitted to the mobile phone via Bluetooth 

and sent to the server. The server analyzes the data by 1D 

convolutional neural network model and monitors the 

abnormality of the patient’s gait. Herein, we proved that 

the use of 1D convolutional neural network for analysis 

has better performance with five-fold cross-validation, 

and its recognition accuracy rate reaches 91.4%. 

Keywords: Embedded devices, Gait analysis, Parkinson’s 

disease, 1D convolutional neural network 

1 Introduction 

Parkinson’s disease (PD) is a common 

neurodegenerative disease caused by the progressive 

loss of dopaminergic and other subcortical neurons [1]. 

In recent years, the prevalence of PD has shown an 

upward trend, and over 6 million people worldwide 

suffer from PD [2]. Besides the symptoms of 

dyskinesia, PD can also cause non-motor symptoms 

such as sleep disturbance, depression and constipation 

[3], which has a great impact on the daily life of 

patients. 

The symptoms that doctors use to evaluate PD 

include rest tremor, bradykinesia, rigidity and loss of 

postural reflexes [4]. Many related works of assessing 

PD by patient actions are reported. Some studies have 

shown that the handwriting of Parkinson’s patients 

does not show the phenomenon of exercise 

expectations [5], so there are some studies on 

handwriting analysis to diagnose PD. Sara Rosenblum 

used a sensor to measure the average pressure and 

speed of the subjects when writing, and analyze the 

characteristics to determine whether the experimenter 

had PD [6]. Moises Diaz proposed a novel 

classification model based on one-dimensional 

convolutions and Bidirectional Gated Recurrent Units 

(BiGRUs) to assess the potential of sequential 

information of handwriting in identifying Parkinsonian 

symptoms [7]. And the proposed method outperformed 

state-of-the-art approaches on the PaHaW dataset and 

achieved competitive results on the NewHandPD 

dataset. However, the experimental process of this 

method is complicated, and it is necessary to collect all 

movement data for the entire experiment. 

Many studies have shown that abnormality of gait is 

also a basis for judging whether to have PD [8]. If PD 

can be diagnosed in the early stage, it will greatly 

facilitate the control of the disease and subsequent 

treatment. It can be seen that the early diagnosis of PD 

is important to guide treatment decision. But the 

diagnosis of PD is a very complex task, gait 

assessment as one of the evaluation methods is 

challenging, which often depends on the experience 

and subjective evaluation of doctors. In this stage, due 

to the lack of professional knowledge or subjective 

judgment error of doctors, it is easy to misdiagnose the 

disease, resulting in inappropriate treatment, and now 

there is no objective evaluation index to assist doctors 
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to judge whether patients have PD.  

Recently, people have done some research on PD 

detection based on abnormal gait. Xuwei Fan detected 

the patient’s panic gait and freezing of gait (FOG) 

through linear regression and wavelet transformation 

[9]. The average detection error of step length is 

3.17cm, the sensitivity of fog detection is 90.2%, and 

the specificity is 88.0%. Marc Bächlin proposed a 

wearable auxiliary device for gait symptoms of PD 

patients [10]. This wearable system uses acceleration 

sensors to measure the patient’s movement. It detects 

FOG by analyzing the frequency components inherent 

in these movements. When FOG is detected, the 

assistant will provide rhythmic auditory signals to 

stimulate the patient to resume walking. Imanne El 

Maachi uses a 1D convolutional neural network to 

process signals, and proposes a Parkinson based on 

Unified PD Rating Scale (UPDRS) The algorithm of 

disease severity prediction achieves 85.3% accuracy in 

predicting the severity of PD on the dataset collected 

by Physionet [11]. 

Although previous studies have high accuracy for 

Parkinson’s detection, the detection methods are 

complicated and require multi sensors [12]. Therefore, 

we designed a Parkinson-assisted diagnosis based on 

abnormal gait. The system uses fewer sensors to collect 

gait data, and uses deep learning methods to analyze 

the data to detect abnormal gait. The main 

contributions of this work are as follows: We designed 

a wearable gait data acquisition system so that patients 

can also collect gait data without the help of a doctor to 

detect panic gait or FOG gait event. And we designed a 

method to detect abnormal gait using 1D convolutional 

neural network, with an accuracy rate of 91.4%, and 

verified that the performance of the model is better 

than other models through comparative experiments.  

The rest of the paper is organized as follows. Section 

2 describes the composition and design method of the 

Parkinson’s auxiliary diagnosis system based on 

abnormal gait. Section 3 designs comparative 

experiments and cross-validation experiments to 

evaluate the performance of the system. In Section 4, 

we discuss and analyze the system from the 

experimental results, and propose prospects. Section 5 

is a summary of the full paper. 

2 Materials and Methods 

As shown in Figure 1, Gait Analysis based PD 

auxiliary diagnosis system consists of three parts: an 

embedded device for data collection, a mobile terminal 

for data transmission, and a server for data analysis and 

processing. The embedded device uses a six-axis 

accelerometer to collect gait data, and then sends the 

data to the mobile phone at 10 Hz through the 

Bluetooth module. The mobile phone then sends the 

data to the server. The server can analyze and detect 

the collected gait data faster whether there is any 

abnormal gait incident. The mobile phone sends the 

recognition result back to the wearable device. If an 

abnormal gait event occurs, the embedded device uses 

rhythmic auditory stimulation to assist in the gait’s 

correction. 

gait data

identification result

sensor server

 

Figure 1. The diagram of PD auxiliary diagnosis system 

2.1 Embedded Device 

The embedded device is composed of an 

accelerometer and a Bluetooth module. The 

accelerometer collects three-axis acceleration data and 

three-axis angular velocity data of the foot during 

walking for the subsequent server to analyze the gait. 

As shown in Figure 2, we can use the sensor when it is 

fixed on the shoes. We set the person’s walking 

direction as the y-axis to measure the acceleration data 

and angular velocity data of the experimenter while 

walking. Since the data is transmitted to the mobile 

phone through Bluetooth communication, and the 

original data sent by the sensor is transmitted from the 

mobile phone to the server, the server needs to analyze 

the original data to get the gait waveform data. 

2.2 Dataset 

Using the embedded device we developed, we 

collected the data of 50 patients with PD and 50 

normal subjects in the Department of Neurology, The 

First Affiliated Hospital of Xiamen University. The 

data has passed the ethical audit of Xiamen University. 

50 Parkinson’s disease patients, including 34 males  
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Figure 2. Accelerometer collects data and converts it into gait waveform after processing 

Parkinsonian Gait

Normal Gait

 

Figure 3. The samples of the waveforms of gait data collected by our system 
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and 16 females, with an average age of 57.68±6.93 

years old, with an average score of 23.87±16.88 in 

MDS-UPDRS Part III of the “on” stage, and an 

average of 1.57 in Hoehn-Yahr staging (HY staging) 

±0.65 period. All patients meet the PD diagnostic 

criteria introduced by the International Society for 

Movement Disorders (MDS) in 2015 [13], and all meet 

clinically diagnosed PD or likely PD. Subjects 

voluntarily participate in this study and can cooperate 

with the collection and scale of clinical data assessment. 

The subjects are required to keep a uniform pace as far 

as possible and walk 50 meters along a straight line. 

Because the packet sending frequency is 10 Hz, 

according to the different gait frequency of each 

subject, a subject can collect gait data of 800 ~ 1200 

sampling points. As shown in Figure 3 is the waveform 

of the gait data of the experimental personnel, we can 

see that the gait data has the characteristics of 

periodicity. 

Comparing the waveform data of Parkinson’s 

patients and normal subjects, each subject has different 

waveform data because of different walking posture. If 

we only observe the waveform of gait data intuitively, 

it is difficult to identify whether the gait data belongs 

to Parkinson’s patients or normal subjects by analyzing 

the common characteristics of the gait data, so we need 

to use the deep learning method to help us extract the 

characteristics of the data. The waveform of each cycle 

represents a step taken by the wearer. It can be seen 

that the cycle at the beginning of the waveform may be 

slightly different from the subsequent periodic 

waveform because the experimenter has just started to 

take a step. After collecting the data, we will crop the 

beginning and end of the gait data, leaving only the 

middle part. 

In order to make the network we designed have 

better performance, we need to fuse our six-

dimensional gait data when making the training set. 

Since the sensor has different ranges when measuring 

acceleration and angular velocity, we use the following 

formula to normalize: 
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| |
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Since our model uses a 1D convolutional neural 

network, an enormous amount of training data will 

make the model converge well. Due to the periodic 

characteristics of gait data, features can be extracted 

without a long sequence. So we use a time window of 

length 50 and interval 25 to intercept gait sampling 

data, and get 1001 segments of data for training and 

testing models. 

After the data preprocessing, we divided the dataset 

into the training set and validation set. As mentioned 

above, we use a time window with a length of 50 and a 

step of 25 to partition gait data. In order to avoid over-

fitting, we first divide the data set according to 

individual subjects, and then use the time window to 

augment the data of each subject, to ensure the training 

set, validation set and test set. The sample distribution 

of the machine is independent.  

2.3 1D Convolutional Neural Network 

The function of our model is to divide gait data into 

two categories: abnormal gait and normal gait. The 

input of the model is a six-dimensional gait sequence, 

and the output is a binary classification result. The six-

dimensional gait sequences are collected by the data 

embedded device introduced above and obtained after 

preprocessing. Because the length of the training data 

sequence is short, no complicated network structure is 

required. We use the deep learning method to build a 

simple one-dimensional convolutional neural network 

with convolutional layer, pooling layer and fully 

connected layer. Below we also prove through 

experimental comparison that this method is superior 

to other classification methods. 

It shows the architecture of the model in Figure 4. 

Our model has four convolutional layers, two pooling 

layers and two fully connected layers. The convolution 

layer is composed of several convolution units. The 

parameters of each convolution unit are obtained by 

the backpropagation algorithm during training. The 

purpose of using the convolutional layer is to extract 

the different features of normal gait, panic gait and 

FOG by performing convolution operations on the gait 

sequences. The structure of multiple convolutional 

layers enables the network to iteratively extract more 

complex features from the low-level features of gait 

data. And we use the maximum pooling method in the 

network. It divides the input sequence into several 

parts and outputs the maximum value for each part. 

This mechanism can reduce the dimensionality while 

preserving the main characteristics of the gait, reducing 

the network parameters and the amount of calculation, 

and it also controls over-fitting. We use the Dropout 

layer to prevent overfitting of neurons during training 

[14] (omitted in the figure). The fully connected layer 

integrates all the characteristics and classifies the gait 

data. 
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Figure 4. The model structure of the 1D convolutional neural network 

We use Softmax as the loss function in the output 

layer: 
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i
S  is the Softmax value of an element in an array V, 

which is equal to the ratio of the exponent of this 

element to the exponent of all elements in the array. It 

can be seen from the formula of the Softmax function 

that it can map the input to a value between (0, 1), and 

the sum of these values is 1, so the output result of 

Softmax can also be understood as a probability. In 

order to enable the network to be trained, we use 

categorical cross entropy as the loss function, which is 

defined: 

 log( )
yi
f

i j
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i
y
f  is the output of the correct classification of this 

set of data, taking the negative logarithm of the 

Softmax value of this output value as the loss function. 

If the model classification effect is good, the Softmax 

value of correct output is larger, and 
i
L  is smaller. 

3 Experiments 

We use the divided training set to train the network. 

During training, we use the Adam optimizer to train 

the network [15], and use a smaller learning rate to 

train the network. We set the learning rate to 10^-4. In 

order to test the performance of the network model, we 

use cross-validation and ROC curve to evaluate the 

system performance further. 

3.1 Cross Validation 

Cross-validation is one of the most important 

methods for statistical analysis, because in practice it is 

often necessary to verify the stability of a model, that is, 

the generalization ability of the model on a new data 

set. In this experiment, we used 5-fold cross-validation 

to evaluate the performance of the model. We divide 

our dataset into 5 parts, take 1 of the 5 parts as the 

validation set to evaluate the model, and the remaining 

4 parts are used to train the model, repeat this step 5 

times. Five different models can be obtained, and these 

five models are synthesized to evaluate the performance 

of our network model.  

For the test of this model, our samples are divided 

into two groups: normal gait or abnormal gait, normal 

gait is regarded as positive group, and abnormal gait is 

regarded as negative group. We divide the test results 

into four categories: 

True positive (TP): Normal subjects are correctly 

classified. 

False positive (FP): PD patients are misclassified. 

True negative (TN): PD patients are correctly 

classified. 

False negative (FN): Normal subjects are misclassified. 

Besides accuracy, we use specificity and sensitivity 

as the evaluation indicators of our cross-validation 

experiment, the calculation formula is as follows: 

 
TN

Sp
TN FP

=

+

 

 
TP

Se
TP FN

=

+

 

3.2 ROC Curve 

The ROC curve is often used to measure the 

performance of a system, and its meaning is the 

sensitivity of a system to a certain characteristic. We 

calculate the True Positive Rate (TPR) and False 

Positive Rate (FPR) by using true positive, false 

positive, true negative, and false negative. We draw the 

ROC curve based on the two data of false negative 

class rate and true class rate. The calculation formula 

for false negative class rate and true class rate is: 
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3.3 Comparative Experiment 

In order to verify the superiority of our model, we 

also set up several models as a control group for testing, 

including Support Vector Machine (SVM), Long 

Short-Term Memory (LSTM) and the combination of 

LSTM and convolutional neural networks. The layer 

descriptions for LSTM and LSTM+CNN are given in 

Table 1 and Table 2. 

Table 1. Layer descriptions for LSTM 

Layer no Layer type Number of units 

1 LSTM 40 

2 LSTM 20 

3 Dense 20 

4 Dense 2 

Table 2. Layer descriptions for LSTM+CNN 

Layer no Layer type Number of units Kernel size 

1 1D Convolutional 8 8 

2 1D Convolutional 8 8 

3 Max-pooling - 2 

4 1D Convolutional 16 4 

5 1D Convolutional 16 4 

6 Max-pooling - 2 

7 LSTM 20 - 

8 Dense 20 - 

9 Dense 2 - 

 

Support Vector Machines (SVM) is a two-category 

model. The learning strategy of SVM is to maximize 

the interval which can be formalized as a problem of 

solving convex quadratic programming. It is also 

equivalent to the problem of minimizing the 

regularized hinge loss function [16]. Compared with 

neural network, SVM has better generalization and 

promotion ability. We are interested in the 

classification ability of SVM on gait data, so we also 

set it as a control group.  

Long Short-Term Memory (LSTM) is a special type 

of time loop neural network that can learn long-term 

dependent information. LSTM was proposed by 

Hochreiter in 1997 [17] and was recently improved and 

promoted by Alex Graves [18]. It solves the problem 

of long-term dependence through deliberate design. In 

many practical problems, LSTM has achieved 

considerable success and has been widely used.  

The combination of LSTM and convolutional neural 

networks is proposed by Ming Tan [19]. Its function is 

the combination of the two, extracting the key 

semantics of the text, and then extracting the key 

features of the semantics. This method is often used for 

gait analysis in PD [20-22]. Since we use a 1D 

convolutional neural network as a model, we want to 

know through experiments whether the increase of the 

LSTM part will improve the performance of the 

network. 

4 Results & Discussion 

4.1 Results of the Experiment 

Table 3 and Figure 5 is the result of training using a 

one-dimensional convolutional neural network. As the 

training time increases, it can be seen that the loss and 

accuracy of the network tend to be stable and show 

better convergence. The accuracy of the validation set 

also increases with the increase in the number of 

training rounds. It shows that the network has no over-

fitting phenomenon. We use a 1D convolutional neural 

network trained for 120 rounds to cross-validate the 

data set. When dividing the data set, we should also 

follow the above criteria, first divide according to the 

experimenter, and then use the time window to 

intercept the data to ensure that the training set and the 

test set do not have data from the same subject. 

Table 3. Cross-validation results for PD identification 

 Sp(%) Se(%) Acc(%) 

1 83.0 92.7 87.5 

2 100 90.2 94.4 

3 97.1 90.2 93.4 

4 92.3 92.7 92.5 

5 86.3 94.7 88.7 

Average 91.7 90.1 91.4 
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Figure 5. Training loss function and accuracy curve 

Figure 6 is the result of calculating the AUC value 

of the ROC curve. The AUC values of the five cross-

validation results are all greater than 0.85, and the 

average AUC value is 0.930, showing that the 

classification model has good generalization 

performance. This method can correctly identify the 

abnormal gait of Parkinson’s patients.  

It can be seen from Table 4 that the performance of 

using 1D convolutional neural network is significantly 

better than the other three methods. Although its 

performance in specificity is not the best, the 1D  

 

Figure 6. ROC curve and AUC value 

convolutional neural network shows a good 

classification effect on the gait data we collected. The 

LSTM and LSTM+CNN methods may be more 

suitable for identifying long time intervals and delays 

in the sequence, and the gait data we used are all 

sequences of shorter length, so these two methods did 

not perform well. The SVM classifier also shows a 

worse classification performance, because it is difficult 

to find the kernel function and parameters suitable for 

the distribution of gait data. 

Table 4. The performance comparison of several algorithms 

Algorithm Sp(%) Se(%) Acc(%) 

1D CNN 91.7 90.1 91.4 

SVM 85.4 70.3 75.2 

LSTM 86.5 78.0 83.3 

LSTM+CNN 94.6 82.9 88.5 

 

4.2 Discussion 

In the testing stage, we found that when using the 

device, if the user stands still, the sensor will collect al-

most stationary waveforms. Such data with a large 

difference from the gait data will cause the system to 

misidentify. Therefore, we set a certain threshold for 

the gait analysis of the system. The embedded device is 

set to analyze and detect gait data only when it detects 

that the user is walking.  

As seen from the test results of the above question, 

we use the 1D convolutional neural network model, the 

recognition accuracy of abnormal gait is 91.4%, the 

specificity is 91.7%, and the sensitivity is 90.1%. Both 

cross-validation experiments and ROC curves can 

prove that the system can achieve a better detection 

effect of Parkinson’s symptoms. The identification 

accuracy of our model needs to be improved com-

pared to other gait-based Parkinson’s detection studies. 

The main reason is that we only collected 50 

Parkinson’s gait data for the time being. We will 

continue to use our development in the next step. The 

device collects gait data of Parkinson’s patients and 

normal people. As the amount of data increases, the 

accuracy of the model will also improve. We have 

published the data set we collected, and the data set is 

published in https://github.com/CFZ87983698/Dataset-

for-Gait-Analysis-based-Parkinson-s-disease-auxiliary-

diagnosis-and-treatment-system. 

Compared with other systems, the system we 

developed is more convenient to use. The user’s gait 

data can be detected by wearing the embedded device 

on the shoes. Other studies often place sensors in 

multiple positions on the legs or wear multiple 

wearable devices to collect data. Although the 

identification accuracy is high, the method of using 

devices is complicated, which is not conducive to the 

daily life of potential Parkinson patients use. 

The Parkinson’s auxiliary diagnosis system based on 

abnormal gait that we designed realizes the collection 

of gait data with embedded equipment, and accurately 

detects abnormal gait by analyzing the gait data, which 

provides help for the early diagnosis of PD. While 

assisting doctors in diagnosing PD, the system also 

avoids accidents of PD patients for abnormal gait.  

In the next stage, we plan to collect more 
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Parkinson’s patients and normal data, establish a data 

set with more data, and improve the recognition 

accuracy of the model. We plan to design a complete 

set of sup-porting software for the system on the 

mobile and computer terminals for use by potential 

Parkinson’s patients and doctors. We believe that this 

system can better assist in the diagnosis of PD in the 

future. 

5 Conclusions 

Diagnosis of PD is still challenging. In recent years, 

the early diagnosis of PD by abnormal gait has attract-

ed widespread attention. The Parkinson’s auxiliary 

diagnosis system based on abnormal gait proposed in 

this paper collects the user’s gait data with an 

embedded device and transmits the data to the server 

through Bluetooth. The server uses a 1D convolutional 

neural network to detect whether the gait is abnormal. 

The identification accuracy of our system has reached 

91.4%. In addition, the system is portable and easy to 

operate. It can be a practical tool to help potential 

patients with PD to detect whether they have signs of 

PD by gait, and to assist patients in correcting their gait.  
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