
Hash Forest Structure Assisted Bi-auditing Protocol with Multiuser Modification in E-health Systems 923

Hash Forest Structure Assisted Bi-auditing Protocol with

Multiuser Modification in E-health Systems

Linghong Jiang1, Jian Shen1,2, Sai Ji1,3, Yihui Dong1, Tiantian Miao1

1 School of Computer and Software, Nanjing University of Information Science and Technology, China
2 Cyberspace Security Research Center, Peng Cheng Laboratory, China

3 School of Information Engineering, Suqian College, China

jianglinghong@126.com, s_shenjian@126.com, jisai@nuist.edu.cn, dongyh99@126.com, mtt_0106@126.com*

*Corresponding Author: Jian Shen; E-mail: s_shenjian@126.com

DOI: 10.53106/160792642021072204019

Abstract

Due to the increasing volume of medical data, storing

medical data in the cloud has become a trend of the times.

With the popularity of cloud computing, how to ensure

the integrity of medical data in the cloud is an urgent

problem to be solved. Also, how to realize the following

functions such as supporting for dynamic operation,

multiuser modification, and user revocation are also

further challenges for data integrity verification after

fully consider the particularity of the medical scenario. In

this paper, a new primitive of bi-auditing is put forward

given the particularity of the medical scene. According to

the different configurations and requirements of medical

personnel and patients, two auditing schemes are

designed to support different users along with various

functions. On the one hand, a novel hash forest structure

is designed to provide medical personnel with dynamic

operations on data. Besides, the proposed structure

supports medical personnel to perform multiuser

modification operations on relevant data and supports the

revocation of illegal users. On the other hand, considering

the weak security awareness and low device

configuration on the patient side, the key update is

provided for the patient to deal with the key exposure

problem. Both theoretical and experimental analyses

demonstrate that the proposed scheme is secure and has a

decent performance in computational overhead.

Keywords: Cloud computing, Data outsourcing, Cloud

storage auditing, Data integrity verification,

Dynamic data

1 Introduction

Storing medical data in the cloud has become the

development trend of the times, because doing so will

not only help to solve the problem of storing the huge

volume of medical data, but also help to realize the

upward and downward linkage of medical data, and

realize regional collaborative medical treatment.

However, the data stored in the cloud may be

destroyed or lost due to inevitable hardware failures,

software errors and human errors [1-2]. In recent years,

outsourced data integrity verification has attracted

extensive attention and research, and many remote data

integrity verification schemes have been proposed. In

addition, schemes that focus on more functions of

cloud storage auditing have been proposed

successively, such as high efficiency, data privacy

protection, identity privacy protection, dynamic data

operation, data sharing, etc. But at present, there are

still no auditing schemes that can fully fit the

particularity of the medical scene. Therefore, it is still

of great significance to verify the integrity of medical

data in the cloud for special medical scenarios.

In addition to the above failures and errors, data in

the cloud may be subject to various external security

attacks. Medical data are often well classified, and

patients’ sensitive data can be accessed from the cloud

records of hospital physicians, emergency rooms,

outpatient services, and health care organizations.

Hackers can easily find data of interest, such as name,

home address, email address, birthday, and even

insurance policy number, diagnosis results, etc. In this

way, hackers can use the data to forge false identities

and fake insurance policies to seek medical treatment,

buy medicine and so on. Several recent incursions in

the medical industry have reportedly been caused by

insiders. In addition to the benefits driven by health

information, personal curiosity may also lead to

improper access or data theft. Therefore, these

organizations need to strictly restrict access rights to

ensure that the data can only be accessed by relevant

personnel. Therefore, it is necessary to support the

revocation of illegal users in the e-health system.

Motivation of this paper: At present, only a few data

integrity auditing schemes have been specifically

studied for special scenarios in the medical

environment. With the improvement of living

standards, patients are no longer satisfied with

knowing the results of their own medical data only in

the paper medical records. In addition, paper-based

924 Journal of Internet Technology Volume 22 (2021) No.4

medical records are not easy to be kept, which makes

patients more urgent to control electronic medical data.

What’s more, support the dynamic operation of

multiple medical personnel on the same patient’s

medical data is the current development trend of

medical data. For example, the medical data in the

process of emergency/hospitalization is often generated

and modified by multiple medical personnel. Then, a

new security challenge has been brought, and the issue

of user security revocation in the medical system is

needed to be concerned. Given the above problems,

this paper mainly focuses on the different

configurations and requirements between the medical

personnel and the patient in the medical system. The

scheme will be designed more in line with the actual

needs of these two different types of users for medical

data.

1.1 Our Contributions

(1) A concept of bi-auditing is presented. In this

paper, bi-auditing means auditing on two levels. The

first one refers to the integrity of the same data can be

verified in different ways. The second is that the

integrity of the data can be verified for diverse types of

users. In such a scheme, data integrity verification can

be implemented adaptively according to user-

differentiated requirements and their resource

configuration.

(2) A novel hash forest structure is provided in the

protocol. This hash forest structure can effectively

support fully dynamic operations, constant auditing

metadata and lightweight batch auditing. Specifically,

these properties mean that group members can perform

modifications, and the size of the validation material

for the data integrity check is independent of the

number of users and the size of the data, and the

overhead of batch auditing is much lower than that of

the general scheme.

(3) A bi-auditing protocol for different types of users

is designed for the e-health system. On the one hand,

for the patient users, due to the weak awareness of

security and their low resource allocation, user’s secret

keys are more likely to be leaked. Therefore, a strong

key-exposure resilient auditing is taken into account in

this protocol for patients. On the other hand, in many

scenarios, a patient may be diagnosed and treated by

multiple medical personnel, such as emergency surgery.

Then, the user’s medical data may be jointly

formulated by multiple medical personnel. Therefore,

considering the particularity of the medical scene, it is

necessary to design an auditing protocol with multiuser

modification, secure user revocation and public

auditing for medical personnel.

1.2 Related Works

As a service hotspot in the field of cloud computing,

in recent years, scholars and experts at home and

abroad have conducted extensive research on cloud

storage. In 2003, Deswarte et al. [3] first proposed the

concept of remote data integrity auditing based on

public key cryptography, which was used to verify data

integrity stored on untrusted servers. However, the

designed scheme did not consider the need to store

large amounts of data in the cloud, and the

computational cost of the solution was relatively high.

Even so, the proposal of scheme [3] provided ideas for

subsequent scholars on cloud data auditing research. In

2007, Ateniese et al. [4] introduced the concept of

public auditing and proposed a model of provable data

possession (PDP). In the PDP model, when users want

to obtain data integrity information, they only need to

send certain data block subsets as a challenge. In the

same year, A. Juels et al. [5] proposed the model of

proofs of retrievability (POR). The POR model can

recover the data with a certain probability after the

cloud data is damaged, but is prone to cause a lot of

computational cost and communication cost. For the

shortcomings of the POR model, most of the

subsequent researches [6-7] are still based on the PDP

model, and various functional extensions have been

made. In the following, we classify auditing protocols

from different perspectives.

According to the different roles of auditors, data

integrity auditing can be divided into private auditing

protocols and public auditing protocols. The private

auditing protocol means that the data stored in the

cloud can only be verified by the data owner. However,

this process causes a heavy burden of computing

resources and a lot of overhead for the data owner.

Typical schemes are proposed in [8-9]. To solve the

above problems, a third-party entity is introduced into

the model of public auditing and is delegated the data

auditing task by the owner. Typical schemes are

proposed in [10-11]. But it comes with a new challenge,

how to protect users’ data privacy in the cloud.

Therefore, Wang et al. [12] introduced the data privacy

protection technology to the field of auditing. To

improve the efficiency of public auditing, He et al. [13]

first proposed a batch auditing scheme, which supports

TPA to perform multiple auditing tasks. Subsequently,

in terms of public auditing, data privacy protection and

batch auditing schemes [14-15] were successively

proposed and improved.

According to whether the data in the cloud supports

dynamic operations, auditing protocols can be further

divided into integrity auditing for static data and

integrity auditing for dynamic data. The PDP model

proposed in scheme [4] can only support static data

auditing. That is to say, users can no longer perform

dynamic operations on data after uploading their data

to the cloud [16]. However, with the improvement of

users’ needs and the consideration of various aspects of

performance, it is inevitable to support users to operate

dynamically on the data in the cloud. The first auditing

scheme supporting fully dynamic operation was

proposed by Erway et al. [17], which realized the

Hash Forest Structure Assisted Bi-auditing Protocol with Multiuser Modification in E-health Systems 925

combination of dynamic data structure and verification

auditing. Since then, a series of data structures [18-19]

have been introduced into the auditing scheme. After

that, supporting multi-user collaborative office has

become the trend of cloud data development. In 2017,

Wang et al. [20] proposed a data integrity auditing

scheme that supports the revocation of group users.

However, this scheme cannot resist the security

problems caused by the collusion between malicious

revoked users and the cloud. Henceforth, how to

realize the security revocation of invalid and malicious

group members and how to deal with the files operated

by the revoked members have become a research

hotspot [21-22].

However, the schemes in the above classification

still have the problems of insufficient security and low

efficiency. In addition, there is no auditing protocol

that can meet the above characteristics at the same time.

To sum up, it is necessary to design an auditing scheme

based on the above aspects for the medical

environment.

1.3 Organization

The remaining chapters of this paper are organized

as follows: We first describe the system architecture

that contains the system model and the security model

of the proposed scheme in Section 2. Then, we

demonstrate an overview of the proposed scheme,

present the bi-auditing hash tree and hash forest

structure, and represent a detailed description of the

proposed scheme in Section 3. Besides, a security

analysis is performed in Section 4. After that, Section 5

presents the performance analysis of our scheme.

Finally, we conclude the findings of the paper in

Section 6.

2 Models

2.1 System Model

The new paradigm of bi-auditing proposed in this

paper includes two implications. One is to double-

verify the medical data so that the accuracy of

verification results can be enhanced. The other is to

verify data integrity for different types of users, so as

to improve the actual availability of the scheme. For

the medical environment, the scheme can realize data

integrity verification adaptively according to the user-

differentiated needs and the resource allocation of

patients and medical personnel. We focus on the

deployment of the system model, which contains of

following five entities as shown in Figure 1: a group of

user medical personnel, patients, system service, a

third part auditor (TPA), and cloud services.

Figure 1. The proposed user-differentiated system

model

Medical personnel: including the patient’s attending

doctor and qualified medical personnel. Based on the

patient’s condition assessment, medical personnel will

develop appropriate diagnosis and treatment records,

including examination, treatment, and care plans. After

the treatment, the complete medical file is formed and

finally stored in the cloud. Medical personnel have the

authority to review and modify the medical data of the

patient in charge before the patient file is archived. In

addition, this scheme supports secure user revocation

of medical personnel.

Patients: the main user object in the medical system.

Generally, they only have authority to access their own

relevant medical data. Taking into account the

particularity of the medical system, this protocol does

not support the revocation of patient status.

System server: the e-health system server distributes

initial keys for medical personnel, patients, and the

TPA.

TPA: with nearly unlimited computing and storage

capacity. After receiving the user’s auditing requirements,

TPA verifies the integrity of the data in the cloud and

feeds back the auditing results to the user.

Cloud services: can provide almost unlimited

computing resources and storage capacity, with ultra-

fast computing speed.

2.2 Security Model

In real-world scenarios, cloud service providers are

not always honest and trustworthy for some business

interests. According to [24], the possible attack

patterns for a malicious CS are described below.

Forge attack: the malicious CS can construct a valid

sector authenticator without knowing the privacy key.

Replay attack: the malicious CS can generate a proof

from the previous proof, without retrieving the actual

challenged.

926 Journal of Internet Technology Volume 22 (2021) No.4

Replace attack: the malicious CS can choose an

uncorrupted and valid pair of data sector and sector

authenticator to replace the challenged pair of data

sector and sector authenticator.

3 Our Construction

3.1 Overview

In the medical environment, according to the user-

differentiated resource allocation and requirements, the

scheme can implement the distinct data integrity

verification protocol adaptively. This paper proposes a

multi-user modification process in e-health system, to

elaborate the process of medical personnel modifying

patient medical data. The proposed scheme makes the

authenticator accurate to the sector, which is suitable

for the medical scene, and can realize the accountability

of the relevant medical personnel. In this paper, the

attending physician of the patient is regarded as the

creator of the medical data, the specific process is

shown in Figure 2.

Figure 2. The proposed multi-user modification

process in e-health system

First of all, we treat Alice as the attending physician

for a patient and is responsible for generating and

updating the patient’s medical data original file A. Bob

can be any medical personnel involved in treating the

patient and has the authority to review and modify the

patient’s medical data. Specifically, if Bob finds that

some data of original file A may have errors during the

review process, he can modify it and generate file AB.

Then, Alice confirms the modified file AB. If Alice

agrees that Bob’s modification can make the data more

complete, the file AB becomes the valid version and

replaces the original file A. Otherwise, the file AB

becomes an invalid version and is eventually cleared.

3.2 The Proposed Bi-auditing Hash Tree and

Hash Forest Structure

In this paper, we propose a novel bi-auditing hash

tree and hash forest structure assisted data integrity

verification with multiuser modification, as shown in

Figure 3 and Figure 4.

Figure 3. The proposed bi-auditing hash tree structure

Figure 4. The proposed hash forest structure

In the e-health system, to complete the data integrity

verification of massive users more efficiently, the

design scheme needs to achieve the rapid search of

data while meeting the storage requirements of massive

data. When the traditional binary tree structure is used

to store a large amount of data, the depth of the binary

tree structure will be enlarged. Then, the disk

input/output will be read and written too frequently,

which will reduce the query efficiency. To solve the

above problem, the basic idea of reducing tree depth is

to use a multi-branches tree structure. Therefore,

combined with the file preprocessing process of the

traditional auditing scheme, an n s∗ tree structure that

supports the fast search of file blocks is proposed.

Specifically, the bi-auditing hash tree structure

proposed in this paper is based on the medical file of

the patient. A user file is divided into n data blocks
i

χ ,

where 1 i n≤ ≤ . However, the data block
i

χ is too

large to be processed in
P

Z . Therefore, each data block

i
χ is divided into s blocks

,i j
χ , where

,i j q
Zχ ∈ and

1 j s≤ ≤ . The processed files are stored in a tree

structure, as shown in Figure 3.
,i j

χ represents the

value of each data block.
,i j

ψ denotes the log tag

corresponding to each data block.
,i j

σ is the

authenticator generated by the user, which embeds

his/her own key.
i

Q signifies the pointer of leaf node

to the adjacent node, which is convenient for quick

Hash Forest Structure Assisted Bi-auditing Protocol with Multiuser Modification in E-health Systems 927

index after data sector is inserted or deleted. For the i -

th block
i

χ , the corresponding node stores a triple

(, ,)
i i

i Vσ , where i is the block index number,
i

σ is

the authenticator aggregation of s relevant sectors

belonging to the i -th data block. And
i

V is the hash

value of
i

σ . For the root node, which stores a tuple

(,)
i

i F
F V ,

i
F represents the i -th file of patient ,

p
ID

i
F

V denotes the hash value of the file .

i
F A bi-auditing

hash tree represents a medical file of a patient, and

each tree contains a tree root. The tree root is used to

store the relevant file information and log information,

which is conducive to the rapid indexing of patients’

files.

 =ID k p iT ID ID F� �

i
F

Root is the value after embedding the patient’s

key into the hash value of the root node. FT and ST

represent pointers that can be linked to the preceding

and subsequent adjacent trees, respectively. By linking

all the medical files of a patient as shown in Figure 4,

the proposed hash forest structure can help the patient

to verify the integrity of medical data in a lightweight

and fast way.
p

Root is the hash value of the

constructed hash forest for patient p .

3.3 Description of Our Scheme

According to the particularity of medical

environment, the scheme proposed in this paper will be

respectively elaborated for medical personnel and

patient users. Note that for ease of reading, Table 1

summarizes some of the main notations used in the

paper as follows:

Table 1. Notation

a The system master key
,n s The number of blocks and sectors for file F

i
F The i -th file of patient p

,i j
χ The data of the j sector of the i -th block in the file

Λ The aggregate authentication value

,
ID

Tτ The file tag and tree ID of file F

,
i p

ID ID The identity of medical personnel i and patient p

1 2 3
, ,H H H Three hash functions

, ,
i p TPA

d SK SK The secret key of medical personnel i , patient p and TPA

, ,

,
i j i j

ψ σ The log information and block authenticator of data
,i j

χ

0
, ,

k R
U U U The index set of data modified by attending doctor, medical personnel k and revoked users

3.3.1 Medical Personnel

This part of the protocol is mainly designed for

medical personnel to achieve more detailed data sector

verification of medical files.

(1) SysSetup Phase. In this phase, the e-health

system server in charge of generates the system master

secret key, public parameters and distributes the initial

keys for medical personnel.

‧ Taking as input a secure parameter κ , the e-health

system server randomly chooses two cyclic groups

1
G and

2
G with prime order ,q and selects an

element
1
.g G∈ Randomly pick two cryptographic

hash functions, *

1 3 1
, :{0,1}H H G→ is used to map

any length string to
1

G and * *

2
:{0,1}

q
H Z→ is used

to map any length string to a finite field.

‧ The server of e-health system randomly selects a

random integer *

q
a Z∈ , and computes

1

a

g g= . As

the system master key, a is used to generate the

initial key for medical personnel and is kept secret.

‧ The e-health system server generates the corresponding

key
1
()a

i i
d H ID= for medical personnel i

according to the medical personnel ID. In order to

distinguish, the medical personnel involved in the

diagnosis and treatment of the same patient can be

treated as a group of K users, which includes an

attending doctor and 1K − medical qualified

personnel. And the corresponding secret keys are

0 1 0
()ad H ID= and

1
() ,1 1.a

k k
d H ID k K= ≤ ≤ − .

After receiving the key, the medical personnel i can

verify it through the following equation.

?

1 1
(,) ((),)

i i
e d g e H ID g= (1)

 If the equation is true, the key is correct; otherwise,

the e-health system server is requested to resend the

key.

‧ The e-health system server also calculates 0
/

k
d d

k
gθ =

and publishes the public parameters as PK =

1 2 3 1
(, , , , ,)

k
H H H g g θ .

(2) Preprocess Phase. At this stage, the attending

doctor first generates initial medical records for the

928 Journal of Internet Technology Volume 22 (2021) No.4

patient, preprocesses the files and uploads them to the

e-health system.

‧ Multiple files would be produced during the

diagnosis and treatment of a patient. To facilitate the

file processing, suppose that the attending doctor

divides each medical file *(0,1)F∈ into n blocks,

and each block
i

χ comprises s sectors, that is,

,

()
i j n s

F χ
×

= . Note that, patient p owns the set of

files
1

{ }
p i i N

F F
≤ ≤

= , N is the upper limit of the

number of files for a patient.

‧ Randomly select an integer *

q
Zξ ∈ , generate set

{ },1 .
j

g j s
ξ

≤ ≤ The attending doctor calculates the

authenticator

 , 0

, ,

()
j

i j d

i j i j g
χ ξ

σ ψ
⋅

= ⋅ (2)

 for each sector
,

,
i j

χ where
, 2

()
i j i n

H i j k t vψ = � � � � ,

i is the index of data block
i

χ , j is the index of

sector
,i j

χ in data block
i

χ , k is the index of user

in the group,
i
t is the time stamp and

n
v is the

version number.

‧ The attending doctor sends these files and tuples

, , , 0
(, , ,)

i j i j i j
χ ψ σ U to the system server,

0
U is the

index set of the data generated by attending doctor,

and these files can be viewed and modified by the

rest of the doctors in the group.

(3) DataModify Phase. Medical qualified personnel

are allowed to modify files in the e-health system.

‧ Specifically, as the medical personnel modifies the

sector data, the corresponding sector log changes to

, 2
' (' ' ')
i j i n

H i j k t vψ = � � � � , and the authenticator

changes to

 ,

'

, ,
' (')

j
i j kd

i j i j g
χ ξ

σ ψ
⋅

= ⋅ (3)

accordingly.

‧ After modification, the medical personnel send the

file and the tuple
, , ,

(' , ' , ' ,)i j i j i j kχ ψ σ U to the

system server,
k

U is the index set of the data

modified by medical personnel. At this time, there

are two versions before and after modification in the

e-health system, and the valid version is left after

confirmation by the attending doctor.

(4) Upload Phase. According to the files to be

uploaded, the e-health system constructs a bi-auditing

hash tree described in section 3.2 for each medical

record. After that, the medial record and root value will

be sent to the patient. If the patient agrees with the

current diagnosis and treatment data, the root value

will be encrypted and returned to the e-health system.

‧ According to the files to be uploaded, the e-health

system constructs a bi-auditing hash tree described

in section 3.3 for each medical record. If there is no

medical personnel to modify the original data, then

calculate the aggregated block authenticators as

follow:

0

,

(,)

i i j

i j

σ σ

∈

= ∏
U

 (4)

 On the contrary, if the original data is modified by

the set of medical personnel
k

U , then the

aggregated block authenticators computed as follow:

0

, ,

(,) (,)
k

i i j i j

i j i j

σ σ σ

∈ ∈

= ⋅∏ ∏
U U

 (5)

 where
,

(0, , ,),
i i j

χ χ=

���

� �
0

(,)i j ∈U and
i

χ ′ =
�

,

(0, , ' ,)
i j

χ� � , (,)
k

i j ∈U .

‧ Computes the auxiliary value of the bi-auditing hash

tree
1

{ }
i i n

V
≤ ≤

, in which
3
()

i i
V H σ= . Then the root

value
3 1 2
()

i
F n

V H V V V= � ��� of the bi-auditing

hash tree corresponding to the file
i

F can be obtain.

‧ The e-health system generates a file tag

1 1
= { } ({ })

i i
ID F i i n ID F i i n

T V V SIG T V Vτ
≤ ≤ ≤ ≤

� � � � � .
i

F is

the index number of the file, which can also be the

file name. The e-health system uploads file tag τ ,

the set of authenticators { }
j

g
ξ

Φ = along with file

i
F to the cloud, and sends the tuple (,)

i
i F

F V to the

corresponding patient.

(5) UserRevo Phase. Due to the revoked user may

upload or even modify many files, the process of

downloading and re-signing relevant data in the cloud

will cause a large computational overhead. Therefore,

this protocol adopts Shamir Secret Sharing technology

and uses multiple cloud nodes to re-sign the relevant

data sectors.

‧ The system server generates
0

() /
k

d dη ε= + , where
*

.

q
Zε ∈

0 0
= /()d dλ ε+ is also produced and sent to

valid group users and the TPA as part of the PK. The

e-health system server runs the Shamir secret

sharing scheme and generates N points (, ())j f j

of a 1M − degree polynomial 2

1 2
()f x a x a xη= + +

1

(1) .

M

M
a x

−

−

+…+ N points will be sent to N nodes

of a cloud server.

‧ Then any M cloud nodes can reconstruct η and

calculate

 , 0

, , ,

() ()
j

i j d

i j i j i j g
χ ξ εη

σ σ ψ
′ ⋅ +

′′ ′ ′= = ⋅ (6)

 where (,)
R

i j ∈U , and the
R

U is the number of

revoked medical personnel.

Hash Forest Structure Assisted Bi-auditing Protocol with Multiuser Modification in E-health Systems 929

(6) Challenge Phase. In order to ensure the integrity

of medical data in the cloud, medical personnel can

entrust TPA to verify the integrity of outsourcing data.

In the medical environment, the devices of medical

personnel perform better than the patient’s, which also

has a more powerful capacity of calculation. Thus, a

more detailed data verification protocol is designed for

medical personnel to ensure the integrity of cloud data

in this paper.

‧ After receiving the auditing request from the

attending doctor, TPA first verifies the validity of

the file tag τ . If the file tag is valid, TPA can

resolve n and s from the file tag τ . However,

when τ is verified to be invalid, the protocol aborts.

‧ Taking a single file as an example, TPA randomly

chooses c data sectors in n data blocks as a

challenge data sector set {(,) |1 ,1 },C i j i n j s= ≤ ≤ ≤ ≤

and picks two random integers *

,
q

r Zν ∈ .

‧ Suppose that the selected c data sectors are

modified by a set of users, denoted by ,U which

0 1U K≤ ≤ − , and generate set } .{ r

k k U
η θ

∈
= If the

set C contains sectors last modified by any revoked

user, add r

λ to set .η Send the challenge Chal =

{ , , , }rC gν η to the cloud server.

(7) Prove Phase. After receiving the challenge from

TPA, the cloud server generates a corresponding proof

and returns it to TPA.

‧ According to the challenge, the cloud server locates

the data sectors according to the challenge and

computes ,(,)
,

i
r

i ji j C
ϕ ψ

∈

=∏ in which mod ,
i

i
r qν=

i C∈ .

‧ Calculate ()mod ,
A
f qφ ν=
� where

,1
(0, ,

i ii D
A rχ

∈

= ∑
�

,2 ,
, ,).

i i i i si D i D
r rχ χ

∈ ∈
∑ ∑� Divide the polynomial

() ()
A A
f x f ν−

� � with ()x ν− using polynomial long

division, and denote the coefficients vector of the

resulting quotient polynomial by
1 2

(, , ,),
s

ω ω ω ω=

�

�

i.e.,
() ()

() .A A
f x f

f x
x

ω

ν

ν

−

≡

−

� �

� With ω
�

, computes

()

1
()

j
j

s f

j
g g ω

ω ξξ

=

Γ = =∏
�

 (7)

‧ For sectors never modified by any medical

personnel or only modified by attending doctor,

compute
, ,

(,).r

i j i j
e gσΛ = For sectors in C that

were last modified by medical personnel ,
k

u k U∈ ,

compute
, ,

(,).r

i j i j ke σ θΛ = For sectors in C that

were last modified by revoked medical personnel,

compute
, ,

(,).r

i j i j
e σ λ′′Λ = Aggregate

i
Λ as

 ,(,)

i
r

i ji j C∈
Λ = Λ∏ (8)

 and send the proof { , , , }ϕ φ Γ Λ to the TPA.

(8) Verify Phase.

‧ Compute ,(,)
= .

i
r

i ji j C
ϕ ψ

∈
∏ Verify the integrity of

file as

?

0 0 0
(,)= (,) (,)r r r

e g e e
φ νθ ϕ θ θ θ− −

Λ ⋅ ⋅ Γ ⋅ (9)

‧ If the above equation holds, the data stored in the

cloud is intact, otherwise, it is not.

3.3.2 Patients

This part is the data integrity verification protocol

designed for patients, which aims to give patients more

authority over their medical data.

(1) SysSetup Phase. This phase is identical to the

SysSetup Phase of medical personnel in section 3.3.1,

with the following difference.

‧ The e-health system server randomly selects a
*

q
a Z∈ as system master secret key for generating

privacy keys for patients, and computes
1

a

g g= .

‧ Calculates and sends the privacy key
1
()a

p p
sk H ID=

to patient p . After receiving the key, the patient p

can verify it through the following equation.

?

1 1
(,) ((),)

p p
e sk g e H ID g= (10)

 If the equation is true, the key is correct; otherwise,

the e-health system server is requested to resend the

key. The public key of patient p is p
sk

ppk g= .

‧ The e-health system server randomly picks an

integrity *

TPA qsk Z∈ and send it to TPA as TPA’s

secret key. The public key of TPA is .

TPA
sk

TPA
pk g=

‧ Select an element
1

u G∈ and set system public

parameters as
1 1 2

(, , , , , ,).p TPAPK g g u H H pk pk=

(2) KeyUpdate Phase. Due to the weak security

awareness and low security configuration of the patient

client, the e-health system server provides patients with

key updates to address the key-exposure issues.

‧ TPA calculates and sends update messages
t

M =

1
() TPA

sk
H t to the patient users at regular intervals.

‧ Patients can verify whether the update message
t

M

is valid according to the following equation.

?

1
(,) ((),)

t TPA
e M g e H t pk= (11)

‧ If the update information
t

M is valid, the patient

updates the sign secret key in time period t as

1
() p

sk

t t
SK H t M= ⋅ (12)

(3) AuthGen Phase. Generally, patients do not have

relevant professional knowledge and have fewer

930 Journal of Internet Technology Volume 22 (2021) No.4

computing resources, so we design an auditing

protocol for patients with relatively simple functions

without high overhead.

‧ After the patient’s medical data is finally modified

and confirmed in the e-health system during the

Uploading Phase in section 3.3.1, the system server

sends each file and the root value of the constructed

tree to the patient. After the file is confirmed, the

patient randomly picks *

Z
q

α ∈ , and calculate g
α

γ = .

Then, the label

2

(())Fi

i

V

F t ID
Root SK H t T u

α

= ⋅ ⋅� (13)

 is calculated for the corresponding root value and

returned the tuple (, ,)
i N

F F
t Root Rootγ � to the e-

health system server.

‧ The e-health system server receives the labels from

patient and gets a forest value

1

3
()

N
p F F

V H V V= ��� (14)

 which is an aggregation of labels about all files of

the patient, and finally will be sent to the cloud

server.

(4) Challenge Phase. TPA first verifies the validity

of the file tag, and selects *

i
F q
s Z∈ ,

1
[,]

i N
F F⊆F , and

send the challenge { , }
i i i

i F F
Chal F s

∈
=

F
 to the cloud.

(5) Prove Phase. After receiving the challenge from

TPA, the cloud server generates a corresponding proof

and returns it to TPA.

‧ When the cloud server receives the challenge, the

aggregate label is calculated as Fi

i

i i

s

p F

F

Root Root

∈

=∏
F

.

‧ Computes a linear combination of file

=

i i

i i

F F

F

s Vπ

∈

⋅∑
F

.

‧ Send an auditing proof { , , }
p

P Root tπ= to the TPA.

(6) Verify Phase.

‧ After receives the cloud server’s proof, TPA verifies

the following equations.

?

1

2

(,) (, ())

(,(()))

Fi
Fi i

Fi

i i

s

p p TPA

s

ID

F

e g Root e pk pk H t

e H t T uπ

γ

∈

∈

∑
= ⋅

⋅ ⋅∏ �

F

F

 (15)

‧ If the above equation holds, the data stored in the

cloud is intact, otherwise, it is not.

4 Security Analysis

In this section, we will analyze and demonstrate the

correctness and security of the proposed scheme. That

is, if all entities in the e-health system are functioning

properly, then the user registration information, file log

and the processed data generated by the proposed

scheme can be properly audited. We will clarify the

security of the relevant protocols from two aspects of

medical personnel and patients according to the

characteristics of the scheme proposed in this paper.

Theorem 1: In the successful system setup and phase,

medical personnel and patients always accept the

private key generated by the system server. The file

processing related operations are performed correctly if

the corresponding medical personnel and patients are

honest. If the auditing file is correctly stored in the

cloud, the proof generated by the cloud server will be

proved to be valid. In other words, the following

equation holds.

Proof:

‧ Medical personnel: From the description of

SysSetup Phase in section 3.3.1, the correctness of

Equation (1) is intuitive. Owing to

, 0

, 0

, 0

, , , 0

, , ,

, , ,

(,) (,) ,(,)

(,) (,) ,(,)

(,) (,) ,(,)

j
i j

j
i j

j
i j

d rr

i j i j i j

d rr

i j i j k i j k

d rr

i j i j i j R

e g e g g i j

e e g g i j

e e g g i j

χ ξ

χ ξ

χ ξ

σ ψ

σ θ ψ

σ λ ψ

′

′

⋅ ⋅

⋅ ⋅′ ′ ′

⋅ ⋅′′ ′′ ′

Λ = = ⋅ ∈

Λ = = ⋅ ∈

Λ = = ⋅ ∈

⎧
⎪
⎪
⎨
⎪
⎪
⎩

U

U

U

 (16)

and

 ,

()

(,)
=

j
i i j A

f
r

i j C
g g

ξ
χ ξ →
⋅ ⋅

∈
∏ (17)

it follows that

 , 0

0 0

,(,)

,(,)

()

,(,)

(,)

(,) (,)

i

j
i j i

i A

r

i ji j C

d r r

i ji j C

f
r d r d r

i ji j C

e g g

e g e g g

χ ξ

ξ

ψ

ψ
→

∈

⋅ ⋅ ⋅

∈

⋅ ⋅

∈

Λ = Λ

= ⋅

= ⋅

∏

∏

∏

 (18)

Then,

0

0 0

0

0 ,(,)

()

()

0

0 0

0 0

(,) (,)

(,) (,)

(,) (,)

(,) (,)

(,) (,)

i

A

r d rr

i ji j C

f
d r d r

f
d rr

r r

r r

e g e g

e g g e g g

e e g g

e e

e e

ω

φ

ξ
φ

ξ
ξ ν

ν

ν

θ ψ

ϕ θ

ϕ θ θ θ

ϕ θ θ θ

→

→

⋅−

∈

⋅ ⋅−

⋅−

−

−

Λ ⋅ =

⋅ ⋅

= ⋅

= ⋅ Γ ⋅

= ⋅ Γ ⋅

∏

 (19)

‧ Patient: From the description of SysSetup Phase

and AuthGen Phase in section 3.3.2, the correctness

of Equation (10) and Equation (11) is intuitive. With

the challenge of { , }
i i i

i F F
Chal F s

∈
=

F
 and proof

= ,
i i

i i

F F

F

s Vπ

∈

⋅∑
F

 we can verify the equation as

follows:

Hash Forest Structure Assisted Bi-auditing Protocol with Multiuser Modification in E-health Systems 931

2

1

2

1

2

(,)

(,)

(,)

(, (()))

(, (()))

(, (()))

(, ())

(, (()

Fi

i

i i

Fi

i i

Fi Fi

i i

p TPA Fi

i i

F FiiF FFi i i

i i

FiF Fi

F

p

s

F

F F

s

t

F F

V s

ID

F F

SK SK s

F F

V s
s

ID

F F

s

p TPA

s

ID

e g Root

e g Root

e g SK

e g H t T u

e g H t

e H t T u

e PK PK H t

e H t T

α

α

γ

γ

∈

∈

∈

⋅

∈

⋅

∈

+

∈

⋅

∈

=

= ⋅

⋅

= ⋅

∑
⋅

∑
= ⋅ ⋅

∏

∏

∏

∏

∏

�

�

�))i

i iF F

u
π

∈

⋅∏

 (20)

Hence, the above equation holds.

5 Performance Analysis

In this section, we evaluate the performance of the

proposed scheme. First of all, we compare the

performance of our scheme with several classical

schemes. Then, we provide the experimental results of

this scheme.

5.1 Efficiency Evaluation

In the e-health system, to complete the data integrity

verification of massive users more efficiently, the

design scheme needs to achieve the rapid search of

massive data.

When the traditional binary tree structure is used to

store a large amount of data, the depth of the binary

tree is enlarged. As a result, the read/write frequency of

disk I/O will be high, which will lead to inefficient

queries. Therefore, the hash forest structure proposed

in this paper can not only solve the above problem, but

also support user-differentiated auditing protocol.

Besides, the proposed scheme can support multiple

functions. The functionality comparison with existing

related schemes is shown in Table 2. Compared with

these typical schemes, our scheme can satisfy all the

following properties: certificate management simplification,

dynamic operation, multiuser modification, user

revocation, and key-exposure resilience, while others

cannot.

Table 2. Functionality comparison with existing related schemes

Schemes
Certificate management

simplification

Dynamic

operation

Multiuser

modification
User revocation

Key-exposure

resilient

Wang et al. [16] Yes Yes No No No

Wang et al. [23] Yes No No No No

Yu et al. [24] Yes Yes No No Yes

Ours Yes Yes Yes Yes Yes

5.2 Computational Cost

In this paper, the computation cost of hash operation

is far less than that of exponentiation operation and

multiplication operation. To simplify, we ignore hash

operations in our evaluation in this chapter. And we

use
exp
T ,

mul
T ,

P
T to represent the computing cost of

one exponentiation operation, one multiplication

operation and one pairing operation, respectively.

It can be seen from the description of the scheme in

section 3.3 that our scheme mainly includes two parts

of protocol. In section 3.3.1, the system server first

performs 2
exp

KT operations to generate system master

key, system public parameters and medical personnel’s

secret keys, where K is the number of medical

personnel. To verify the validity of secret key, the

computational cost of each medical personnel is 2
P

T

operations. In data Preprocess phase, the computational

cost of the attending doctor is 2
exp

snT operations and

mul
snT operations, where n is the number of file

blocks and s is the number of data sectors. In

DataModify phase, we set
k

U as the amount of data

modified by the medical personnel, then the

computational cost needs 2 k expTU operations and

k mul
TU operations. In Upload phase, the system

server conducts (1)
mul

s T− operations. In UserRevo

phase, the system server performs
R exp
TU operations,

where
R

U is the number of revoked medical

personnel. In Challenge phase, to generate the

challenge Chal , the TPA conducts
exp

U T operations,

where U is the number of medical personnel who

have modified data in the challenged file. In Prove

phase, the cloud server executes
P

cT operations,
exp

cT

operations and (1)
mul

c T− operations to yield a proof.

Finally, in Verify phase, TPA performs 3
P

T operations,

5
exp
T operations and 3

mul
T operations to verify the

proof.

Similarly, in section 3.3.2, the system server

performs (3)
exp

p T+ operations to yield master key and

public parameters of the e-health system and privacy

keys of patients. And each patient executes 2
P

T

932 Journal of Internet Technology Volume 22 (2021) No.4

operations to verify the validity of the privacy key. In

KeyUpdate phase, the computational cost of the TPA is

1
mul
T operation. And each patient performs 2

P
T

operations to verify the validity of the update message,

which can be done off-line. If the update message is

valid, the patient conducts 1 1exp mulT T+ operations to

update the sign secret key. In AuthGen phase, the

patient performs 2exp mulNT NT+ operations. In Prove

phase, the TPA executes (2 1)i exp i mulT T+ −F F

operations. In Verify phase, the patient conducts

(2 2) 3 3i exp mul pT T T+ + +F operations to verify the

proof.

Figure 5 shows the computational cost of each entity

in the proposed scheme, which is described in section

3.3.1. As shown in Figure 5, the computational cost of

system server and attending doctor increases with the

increase of n and s . Besides, the computational cost

of cloud server is linearly related to the number of c .

(a) (b)

Figure 5. Computational cost of each entity in section 3.3.1

Figure 6 shows the computational cost of each entity

in the proposed scheme, which is described in section

3.3.2. In this experiment, we set the number of patients

as 500000 , and the computational cost is about 3350

seconds. Because the computational cost of system

server is only linearly related to the number of patients,

we will not discuss it here. As shown in Figure 6, we

set the maximum number of files owned by patients to

50 in Figure 6(a). And in Figure 6(b), we set the

maximum number of files N owned by users to 100 .

As we can see, the computational cost of patients is

were nearly one second and two seconds, respectively,

which is the time required by the whole process.

Besides, the computational cost of the TPA and CS is

linearly related to the number of
i

F .

(a) (b)

Figure 6. Computational cost of each entity in section 3.3.2

6 Conclusion

In this paper, we propose a new hashing forest

structure and construct an adaptive dynamic auditing

scheme that can be implemented according to the

different configurations and needs of medical

personnel and patients in the medical scenario. In our

scheme, the proposed structure enables medical

personnel to perform multi-user modification

Hash Forest Structure Assisted Bi-auditing Protocol with Multiuser Modification in E-health Systems 933

operations on relevant data. Support for the revocation

of illegal users with ensuring the full availability of

relevant medical data. Also, the scheme provides

patients with key updates to solve the key exposure

problem. Specifically, the performance analysis shows

that our scheme is secure and efficient.

Further work will optimize the construction of the

proposed scheme to improve the patient’s batching

auditing protocol. Besides, the work will be evaluated

in a real-world environment.

Acknowledgements

This work is supported by the National Natural

Science Foundation of China under Grants No.

U1836115, No. 61672295, No. 61922045, 61877034,

the Natural Science Foundation of Jiangsu Province

under Grant No. BK20181408, the Peng Cheng

Laboratory Project of Guangdong Province PCL2018

KP004, the CICAEET fund, and the PAPD fund.

References

[1] K. Ren, C. Wang, Q. Wang, Security challenges for the

public cloud, IEEE Internet Computing, Vol. 16, No. 1, pp.

69-73, January-February, 2012.

[2] M. Sookhak, A. Gani, H. Talebian, A. Akhunzada, S. U.

Khan, R. Buyya, A. Y. Zomaya, Remote data auditing in

cloud computing environments: A survey, taxonomy, and

open issues, Acm Computing Surveys, Vol. 47, No. 4, pp. 1-

34, July, 2015.

[3] Y. Deswarte, J.-J. Quisquater, A. Saïdane, Remote integrity

checking, In: S. Jajodia, L. Strous (Eds.), Integrity and

Internal Control in Information Systems VI. IICIS 2003.

Working Conference on Integrity and Internal Control in

Information Systems, Springer, Boston, Massachusetts, 2004,

pp. 1-11.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, D. Song, Provable data possession at untrusted

stores, Proceedings of the 14th Acm Conference on Computer

and Communications Security, Alexandria, Virginia, USA,

2007, pp. 598-609.

[5] A. Juels, B. S. Kaliski, Pors: Proofs of retrievability for large

files, Proceedings of the 14th ACM Conference on Computer

and Communications Security, Alexandria, Virginia, USA,

2007, pp. 584-597.

[6] H. Wang, Y. Zhang, On the knowledge soundness of a

cooperative provable data possession scheme in multicloud

storage, IEEE Transactions on Parallel and Distributed

Systems, Vol. 25, No. 1, pp. 264-267, January, 2014.

[7] H. Wang, Identity-based distributed provable data possession

in multicloud storage, IEEE Transactions on Services

Computing, Vol. 8, No. 2, pp. 328-340, March-April, 2015.

[8] R. Curtmola, O. Khan, R. Burns, Robust remote data

checking, Proceedings of the 4th ACM International

Workshop on Storage Security and Survivability, Alexandria,

Virginia, USA, 2008, pp. 63-68.

[9] D. Cash, A. Küpçü, D. Wichs, Dynamic proofs of

retrievability via oblivious ram, Journal of Cryptology, Vol.

30, No. 1, pp. 22-57, January, 2017.

[10] J. Shen, J. Shen, X. Chen, X. Huang, W. Susilo, An efficient

public auditing protocol with novel dynamic structure for

cloud data, IEEE Transactions on Information Forensics and

Security, Vol. 12, No. 10, pp. 2402-2415, October, 2017.

[11] L. Zhou, A. Fu, G. Yang, H. Wang, Y. Zhang, Efficient

certificateless multi-copy integrity auditing scheme

supporting data dynamics, IEEE Transactions on Dependable

and Secure Computing, pp. 1-1, August, 2020.

[12] C. Wang, Q. Wang, K. Ren, W. Lou, Privacy-preserving

public auditing for data storage security in cloud computing,

2010 Proceedings IEEE INFOCOM, San Diego, California,

USA, 2010, pp. 1-9.

[13] K. He, C. Huang, J. Wang, H. Zhou, X. Chen, Y. Lu, L.

Zhang, B. Wang, An efficient public batch auditing protocol

for data security in multi-cloud storage, 2013 8th ChinaGrid

Annual Conference, Los Alamitos, California, USA, 2013, pp.

51-56.

[14] Y. Wu, Z. L. Jiang, X. Wang, S. M. Yiu, P. Zhang, Dynamic

data operations with deduplication in privacy-preserving

public auditing for secure cloud storage, IEEE International

Conference on Computational Science and Engineering and

IEEE International Conference on Embedded and Ubiquitous

Computing, Guangzhou, China, 2017, pp. 562-567.

[15] J. Han, Y. Li, J. Liu, M. Zhao, An efficient lucas sequence-

based batch auditing scheme for the internet of medical things,

IEEE Access, Vol. 7, pp. 10077-10092, 2019.

[16] H. Wang, D. He, J. Yu, Z. Wang, Incentive and

unconditionally anonymous identity-based public provable

data possession, IEEE Transactions on Services Computing,

Vol. 12, No. 5, pp. 824-835, September-October, 2019.

[17] C. C. Erway, A. Kupcu, C. Papamanthou, R. Tamassia,

Dynamic provable data possession, ACM Transactions on

Information and System Security, Vol. 17, No. 4, Article No.

15, April, 2015.

[18] H. Tian, Y. Chen, C. C. Chang, H. Jiang, Y. Huang, Y. Chen,

J. Liu, Dynamic-hash-table based public auditing for secure

cloud storage, IEEE Transactions on Services Computing,

Vol. 10, No. 5, pp. 701-714, September-October, 2017.

[19] L. Rao, H. Zhang, T. Tu, Dynamic outsourced auditing

services for cloud storage based on batch-leaves-

authenticated merkle hash tree, IEEE Transactions on

Services Computing, Vol. 13, No. 3, pp. 451-463, May-June,

2020.

[20] B. Wang, B. Li, H. Li, Panda: Public auditing for shared data

with efficient user revocation in the cloud, IEEE Transactions

on Services Computing, Vol. 8, No. 1, pp. 92-106, January-

February, 2015.

[21] J. Yuan, S. Yu, Public integrity auditing for dynamic data

sharing with multiuser modification, IEEE Transactions on

Information Forensics and Security, Vol. 10, No. 8, pp. 1717-

1726, August, 2015.

[22] Y. Zhang, J. Yu, R. Hao, C. Wang, K. Ren, Enabling efficient

934 Journal of Internet Technology Volume 22 (2021) No.4

user revocation in identity-based cloud storage auditing for

shared big data, IEEE Transactions on Dependable and

Secure Computing, Vol. 17, No. 3, pp. 608-619, May-June,

2020.

[23] Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, J. Hu, Identity-

based data outsourcing with comprehensive auditing in

clouds, IEEE Transactions on Information Forensics and

Security, Vol. 12, No. 4, pp. 940-952, April, 2017.

[24] J. Yu, H. Wang, Strong key-exposure resilient auditing for

secure cloud storage, IEEE Transactions on Information

Forensics and Security, Vol. 12, No. 8, pp. 1931-1940,

August, 2017.

Biographies

Linghong Jiang received the B.E.

degree in 2018 and is currently

working toward the M.E. degree in

Nanjing University of Information

Science and Technology (NUIST),

Nanjing, China. Her research interests

include data auditing and cloud computing security.

Jian Shen received the M.E. and

Ph.D. degrees in Computer Science

from Chosun University, South Korea,

in 2009 and 2012, respectively. Since

late 2012, he has been a professor at

the NUIST. His research interests

include public cryptography, cloud

computing and security, data auditing and sharing, and

information security systems.

Sai Ji received his M.S. degree from

the Nanjing Aeronautics and

Astronautics University (NUAA),

Nanjing, China, in 2006. He works as

an Associate Professor at the NUIST.

His research interests are in the areas

of computer measurement and control,

structural health monitoring, and WSNs.

Yihui Dong received the B.E. degree

in 2018 and is currently working

toward the M.E. degree in the NUIST,

Nanjing, China. His research interests

include computer networking, cloud

computing security, and IoT security.

Tiantian Miao received the B.E.

degree in 2018 and is currently

working toward the M.E. degree in the

NUIST, Nanjing, China. Her research

interests include data access control

and privacy preserving in cloud

computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

