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Abstract 

As an important part of human daily life, video 

contains rich emotion information. Therefore, it is a 

current research trend to find efficient approaches to 

conducting emotional analysis on videos. Based on tensor 

fusion, we propose a low-rank multimodal fusion context 

modeling. At the beginning, modality information is 

preprocessed by GRU (Gate Recurrent Unit) in Recurrent 

Neural Network. We construct semantic dependencies to 

convey contextual information in the context of the video. 

The proposed model improves performance of applied 

emotion classification. Additionally, LMF (Low-rank 

Tensor Multimodal Fusion) with the advantage of end-to-

end learning is implemented as a fusion mechanism to 

improve classification efficiency. We implemented the 

experiments on CMU-MOSI, POM, and IEMOCAP of 

multi-modal sentiment analysis, speaker traits and 

emotion recognition. And results show that our method 

improved the performance by a margin of 2.9%, 1.3%, 

and 12.2% respectively contrast with TFN (Tensor 

Fusion Network). 

Keywords: Neural architecture search, Sequence 

regression models, Performance prediction, 

Network structure feature 

1 Introduction 

Multi-modal fusion is an emerging research field of 

artificial intelligence. Recent works have made great 

progress in many areas, such as face recognition [1], 

emotion recognition [2], behavior recognition [3], 

visual question-answering, and other directions [4], the 

multi-modal fusion method pushes these technologies 

into a new stage of development. 

Computer applications that use machine learning in 

multi-modal emotion analysis have become a new 

trend in the field of fusion between natural language 

processing and computer vision [5-6]. Qu proposed a 

dynamic facial expression recognition algorithm based 

on a deep residual network, which used the thick-

trained deep residual network as a feature extractor [7]. 

Morency proposed a model integrating video, audio 

and text features, this model can effectively identify 

emotions from web videos [8]. Su proposed Attention-

of-Emoticons Based Convolutional Neural Network 

(AEB-CNN), which combined emotion and attention 

mechanism CNN, by adding emoticons to the 

calculation of attention weight, important keywords get 

higher attention, thus improving the accuracy of 

prediction [9]. Bai proposed to use a convolutional 

neural network and short and long time memory to 

compress together and accelerate the processing of 

visual question answering system at the same time, 

including using tensor to decompose the full 

connection layer of CNN and LSTM [10]. Recently, 

text-based sentiment analysis is extended to videos 

expressing opinions. There are three modalities in the 

video: language (spoken words), visual (gesture), and 

acoustic (voice). We focus on the problem of the 

fusion of different modality features faced by 

multimodal sentiment analysis. 

Due to different modalities information contradict 

with each other since they are extracted by different 

features extraction methods, so we proposed a method 

to fix it, the method combines the context modeling 

and low-rank tensor network, can model the inter and 

among model’s interaction, and it is end-to-end 

learnable. Additionally, the proposed is computationally 

fast and memory saved. Experimental evaluation of 

multi-modal tasks on three common datasets shows 

that the proposed model performs better than the 

previous baseline standard models. 

Section 2 of this paper introduces related work of 

multi-modal sentiment analysis. Section 3 describes the 

context-modeling based low-rank multi-modal fusion 

learning method proposed in this paper. Section 4 

introduces test parameter setting, test results, and 

theoretical analysis. Section 5 gives the conclusion of 

the text and sets future research. 

2 Related Work 

Previous studies on multi-modal fusion mainly focus 
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on early and late fusion. Early fusion methods simply 

stack the features of various modalities and fuse these 

features to the input level [11]. Unfortunately, such 

approaches cannot fully explore the dynamic effects 

within the modality. Contrary to early fusion, late 

fusion enables decisions to be made on the basis of 

each modality and the decisions to be fused by 

weighted averaging [12], but cross-modal interaction 

cannot be modeled since features cannot interact 

dynamically with each other. Zadeh proposed a 

memory fusion network, which used LSTM fusion 

features (Long-Short Term Memory network) over 

time and extended it by using a dynamic fusion graph 

to fuse features [13]. Hu proposed an adversarial 

encoder-decoder-classifier framework to learn a 

modality-invariant embedding space by introducing 

adversarial training to match distributions, modality 

gap can be significantly narrowed and the representations 

can be directly fused [14]. 

Recent studies have focused on the dynamic 

interactions in and among modalities. Arachchi 

proposed a model composed of Convolutional Neural 

Networks (CNN), Long Short-term Memory (LSTM), 

and Gated Recurrent Unit (GRU), by fine-tuning the 

parameters of the push layer and using the serial LSTM 

and GRU model [15]. Zadeh proposed a tensor fusion 

network which creates a tensor representation by 

calculating the outer product of three different 

unimodal modalities [16]. That method adopted tensor 

representation to model interactions among different 

modalities. However, the outer products of tensors in 

multi-modal leads to high dimensional, and 

computational complexity increases exponentially. Mai 

proposed a locally confined modality fusion network, 

which contains a bidirectional multi-connected LSTM, 

as a result local interaction in learning features of each 

block was improved [17]. Compared with the previous 

tensor method, the approach contained fewer 

parameters and training time is shorter, but dividing the 

feature vector into equal segment influents the 

performance. 

Inspired by the above works, we developed a new 

model of feature fusion, the modal based on modeling 

semantic dependencies within each video modality by 

GRU, adopted a low-rank tensor network to fuse the 

context-aware multi-modal features, the fusion results 

are expressed by multi-modal, and softmax function is 

used to predict the emotion. 

3 Proposed Method 

According to the relevant methods mentioned above, 

we proposed a method that combines contextual 

modeling with low-rank tensor fusion. The model 

framework involved in the proposed method is shown 

in Figure 1. The context-aware multi-modal features 

are obtained by taking the context-modeling multi-

modal representation as the input to the sub-embedded 

network, and then the low-rank tensor fusion network 

is employed for feature fusion. 
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Figure 1. The overall architecture of low-rank multimodal fusion based on context modeling 

3.1 Context Modeling 

Each modality is interrelated internally in the video, 

this paper uses context modeling to determine the 

complete meaning of the utterance in this modality. 

Based on Zadeh’s proposal to use RNN (Recurrent 

Neural Networks), especially GRU, to model the 

context dependence in three modalities of video. For 

each modality in the video session, GRU is used to 

model the context dependency, and the multi-modal 
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context dependency representations l ( ),
l l

GRU N=  

( )
a a

a GRU N=  and ( )
v v

v GRU N=  are obtained. The 

following three terms are used to represent unimodal 

features: a
N d

a
z

×

∈�  (audio feature) v
N d

v
z

×

∈� , (visual 

feature) and l
N d

l
z

×

∈�  (text feature), where N is the 

maximum number of utterances in the video. 

Therefore, context-aware multimodal features can be 

expressed as ( ( )),
a a a a
z S GRU N=  ( ( )),

v v v v
z S GRU N=  

( ( ))
l l l l
z S GRU N= . 

3.2 Feature Extraction 

The dataset contains three modalities (language, 

visual, acoustic), therefore, we have designed three 

unimodal embedded networks ,
l

S  ,
v

S  ,
a

S  three sub-

embedded networks are used to extract context-aware 

multimodal representations L, A, V, and obtain 

context-aware multi-modal features ,
l
z  ,

a
z  

v
z  and the 

dimensions of the multimodal features are balanced 

, ,
a v l

m m m . 

In our model, the sub-embedded network of visual 

and acoustic is a simple 2-layers feed-forward neural 

network, which is used to extract features. For 

language modality the sub-embedded network uses 

LSTM to extract text features. 

Language embedded sub-network ( )lS  is presented 

in Figure 2. The Glove is a set of words represented by 

a sequence of 300-dimension word vectors [18], let 

language feature be a vector 
300

1 2 3
{ , , , ..., ; },

T t
l l l l l l= ∈�  

where 
l
T  is the number of words in an utterance. 

LSTM network is used to learn the time-dependent 

language representations 
128

1 2 3
{ , , , ..., ; },

T t
L L L L l L= ∈�  

according to the following LSTM formula. 

LSTM

LSTM
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LSTM
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Figure 2. Spoken language embedding subnetwork 
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1 2 3
; ; ; ...;

l
T

L L L L L⎡ ⎤= ⎣ ⎦   (4) 

Where L is a language representation matrix 

concatenated by 
1 2 3
, , , ...,

l
T

L L L L , and L is took as 

input of fully connected network, and then network 

generates language embedding 128( ; ) ,l

l l
s S L W= ∈�  

where 
l

W  is collection of weights in 
l

S  network. 

Visual embedding sub-network ( )
v

S  is presented in 

Figure 3. Let visual feature be a vector 1 2 3
[ , , , ..., ]

p
j j j j j

v v v v v

∧

=  

of p visual features in j video frame, and 
v
T  represents 

the total number of video frames. We perform the 

average pooling on frame to obtain the desired visual 

feature 1 2 3
, , , ...,

l
v E v E v E v E v⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ , then V 

is used as visual embedded network 
v

S  input. We have 

used FACET extracted information from video, for 

which deep neural network is used to generate visual 

embedded features [19]. The network contains three 

hidden layers of 32 ReLU units with weight matrix 
v

W . 

The subnet output provides visual embedding 

32
( ; ) .v

V v
s S v W= ∈�  

FACET
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Pooling v

32Relu 32Relu 32Relu

.

.

.

.

.

.

.

.

.

 

Figure 3. Visual embedding subnetwork 

Acoustic embedding sub-network ( )
a

S  is presented 

in Figure 4. For each opinion fragment with 
a
T  audio 

frames (sampled at 100Hz; that is 10ms), and extract 

acoustic feature vector 1 2 3
[ , , , ..., ]

p
j j j j j

a a a a a

∧

=  of p 

features in j audio frame. These extracted acoustic 

features are combined on average to obtain desired 

acoustic feature [ ] [ ] [ ] [ ]1 2 3
, , , ...,a E a E a E a E q⎡ ⎤= ⎣ ⎦ , 

where a  is input of the audio embedded sub-network 

.

a
S  Applied Cov-AREP (Collaborative Speech 

Analysis Library) can extract rich features from audio, 

acoustic modality can be modeled using deep neural 

network [20]. Similar to 
v

S , 
a

S  is a 3-layers network 

composed of 32 ReLU units with weight matrix 
a

W . 

The subnet output provides acoustic embedding 

32
( ; ) .a

a a
s S a W= ∈�  
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Figure 4. Acoustic embedding subnetwork 

3.3 Low-Rank Tensor Multimodal Fusion 

The goal of multimodal fusion is to integrate 

unimodal representation into a compact multi-modal 

representation for downstream prediction tasks. The 

tensor is created by taking the outer product on the 

input modality. In addition, the interactions among the 

modality subsets are modeled with tensors, and the 

input tensor M formed by the unimodal representation 

can be calculated by formula (5). 

 ,
u

U
d

u u
M m m= ⊗ ∈�  (5) 

where 
1

U

u=
⊗  represents the tensor outer product on a set 

of vectors indexed by u, and 
u

m  is the input 

representation plus 1. Input tensor 1 2 u
d d d

M
× × ×

∈
�

�  

generates vector representation through linear layer 

( )g ⋅ . 

 ( ; , )h g M W b W M b= = ⋅ +  h, y
d

b∈�  (6) 

Where W is the weight of the layer and b is the bias. 

When M is a tensor of order U (where U is the number 

of input modalities), the weight of the (U+1) order 

tensor in 1 2 u h
d d d d× × × ×�

�  is still W. The dimension of M 

will increase exponentially with the number of 

modalities 
1

U

uu
d

=

∏ , and the number of parameters 

learned in the weight tensor W still also increase 

exponentially, which not only introduces a lot of 

calculations, but also exposes the model to the risk of 

overfitting.  

In this part, it is explained in detail that LMF 

decomposes weight W into low-order factors, which 

reduces the number of parameters in the model. The 

parallel decomposition of low-rank weight tensors and 

input tensors is used to calculate tensor-based fusion, 

which can effectively perform weight decomposition, 

and the method can scale linearly with a number of 

modalities. 

3.3.1 Low-Level Weight Decomposition 

The LMF is to decompose the weighted tensor W 

into U groups of modality features factors (as shown in 

Figure 5). Since W is U+1 order tensor, the commonly 

used decomposition methods will produce U+1 parts. 

Therefore, W is summed by U-order tensor 

� 1 2
,

u
d d d

kW
× × ×

∈
�

�  ( )

1
1

r M
i

m
m

i

W w
=

=

= ⊗∑ and we can 

decompose each ( )

1
1

r M
i

m
m

i

W w
=

=

= ⊗∑ , decomposed into the 

form of a vector: 

 �
( ) ( )

. .
1

1

, ,

r U
i i d

k u k u k u
u

i

W w w
=

=

= ⊗ ∈∑ �  (7) 
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Figure 5. The idea of low-rank multimodal fusion is to decompose the weighted tensor W into a modal specific 

factor of U 

Where the minimum R is called the rank of the 

tensor that makes decomposition effective, and the 

vector set ( )

, 1 1{{ } }i U R

u k u i
w

= =

 is called the decomposition 

factor of the original tensor. In LMF, we start with a 

fixed rank r and use the decomposition factor 

( )

, 1 1{{ } } ,i U r

u k u i
w

= =

 ( )

1
1

r M
i

m
m

i

W w
=

=

= ⊗∑  to parameterize the 

model. The decomposition factor can also be used to 

reconstruct low-order ( )

1
1

.

r M
i

m
m

i

W w
=

=

= ⊗∑  We can 

recombine and connect these vectors to the specific 

low-rank factor of the U group of modalities. Let 
( ) ( ) ( ) ( )

,1 ,2 ,[ , , ..., ],
h

i i i i

u u u u d
w w w w=  for the modality u, ( )

1{ }i r

u i
w

=

 

is its corresponding low-order factor, and the low-order 

weight tensor is reconstructed by the following method. 



Low-rank Multimodal Fusion Algorithm Based on Context Modeling 917 

 

 ( )

1
1

r U
i

u
u

i

W w
=

=

= ⊗∑  (8) 

Therefore, formula (6) can be calculated by formula 

(9): 

 ( )

1
1

r U
i

u
u

i

h w M
=

=

⎛ ⎞
= ⊗ ⋅⎜ ⎟
⎝ ⎠
∑  (9) 

Note that for all u, ( ) u h
d di

u
w

×

∈�  shares the same size 

in the second dimension, but by introducing a low-rank 

factor, it is necessary to calculate the reconstruction of 

( )

1
1

r U
i

u
u

i

W w
=

=

= ⊗∑ for forward propagation, which generates 

more computational complexity. Therefore, the 

following parallel decomposition method is proposed. 

3.3.2 Efficient Low-Rank Fusion Using Parallel 

Decomposition 

The original input 
1

{M }U
u u=

 is decomposed by tensor 

M, which is parallel to the process of a decomposing 

tensor into specific modality low-rank factors. Using 

this principle, formula (9) can be simplified: 

 ( )

1
1

r U
i

u
u

i

h w M
=

=

⎛ ⎞
= ⊗ ⋅⎜ ⎟
⎝ ⎠
∑   

 ( )

1
1

r U
i

u
u

i

w M
=

=

⎛ ⎞
= ⊗ ⋅⎜ ⎟

⎝ ⎠
∑  

 ( )

1 1

U U
i

u u
u u

w m

= =

⎡ ⎤
= ∧ ⊗ ⋅⎢ ⎥⎣ ⎦

 (10) 

Where 
1

U

u=

∧  represents the product of elements on the 

tensor sequence 3

1 1 2 3t t
x x x x

=

∧ = � � . 

Figure 1 shows three modalities condition of 

formula (10), which can be derived from formula (11) 

in two modalities condition. 

 ( ) ( )

1

r

i i

a v

i

h w w M

=

⎛ ⎞
= ⊗ ⋅⎜ ⎟
⎝ ⎠
∑  

 ( ) ( )

1 1

r r

i i

a a v v

i i

w m w m

= =

⎛ ⎞ ⎛ ⎞
= ⊗ ⊗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑�  (11) 

An important reason for this simplification is that it 

utilizes parallel decomposition of M and W, so that h 

can be calculated without actually creating tensor M 

from the input representation 
u

m . In addition, different 

modalities are decoupled in the simplified calculation 

of h, which allows the method proposed in this paper to 

be extended to any number of modalities. Adding a 

new modality can be done by adding another set of 

modality-specific factors. Equation (10) is a 

differentiable operation, and the parameter 
( )

1{w } 1, ...,i r

u i
u U

=

= can be optimized end-to-end 

through backpropagation. 

Using the formula (10), h can be calculated directly 

from the input unimodal representation and 

decomposition factor of its modality, avoid the 

complicated calculation of the input tensor M and 

weight W. On the contrary, the input tensor and linear 

projection are implicitly calculated together in formula 

(10), which makes the tensor fusion method more 

efficient. In fact, LMF reduces the computational 

complexity of tensor quantization and fusion from 

( )1

U

y uu
o d d

=

∏  to ( )1

U

y uu
o d r d

=

× ×∏ . 

In practice, a different form of the formula (10) is 

used for less complex calculations, formula (12), which 

connects low-rank factors into a third-order tensor of U, 

and exchanges the order of element product and 

summation: 

 (1) (2) ( )

1 1
,:

, , ...,

r U
r

u u u u
i u

i

h w w w m

∧

= =

⎡ ⎤⎡ ⎤= ∧ ∧ ⋅⎣ ⎦⎢ ⎥⎣ ⎦
 (12) 

The order of summation is backward according to 

the first dimension of the matrix in parentheses and 

,:
[ ]

i
⋅  represents the i-th part of the matrix. In this paper, 

the U-order tensors are used to parameterize the model 

instead of vectors. 

4 Experiments 

The paper adopts tensor fusion network (TFN) as 

baseline because its structure is the most similar to this 

paper. The difference is that it is clearly formed as a 

multi-dimensional tensor for the fusion of different 

modalities. 

4.1 Datasets 

Experiments were performed on three multi-modal 

datasets CMU-MOSI [21], POM [22] and IEMOCAP 

[23]. The CMU-MOSI dataset is a set of 93 comment 

videos from YouTube film reviews. The CMU-MOSI 

dataset has rich emotional expressions and is an 

annotated dataset. These videos are segmented 

according to opinions and discourses to adapt to the 

spoken language whose sentence boundaries are not as 

clear as the text. Each video consists of multiple 

opinion segments, and each segment is annotated with 

a sentiment in the range [-3, 3], where -3 represents 

highly negative and 3 means highly positive. The POM 

dataset consists of 903 movie review videos. Each 

video has traits of the speaker: self-confidence, 

enthusiasm, pleasant voice, dominant, credible, vivid, 

professional, entertaining, introverted, trusting, relaxed, 

extroverted, thorough, nervous, persuasive, humorous. 

The IEMOCAP dataset contains 151 recorded 

conversations, each has 2 speakers and a total of 302 

videos in the dataset. Each video has 9 emotion 

annotations: anger, excitement, fear, sadness, surprise, 

frustration, happiness, disappointment, neutrality. 

IEMOCAP is the most commonly used dataset in 
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dialogue emotion recognition. It is of high quality and 

has the advantage of having multi-modal information. 

In order to evaluate the generalization of the model 

in this article, the data is divided into a training set, 

validation set and test set, and it is ensured that there is 

no same speaker from the training set in the test set. 

The data is divided as shown in Table 1. 

Table 1. Speaker independent dataset segmentation, 

training set, validation set, and training set 

Datasets CMU-MOSI IEMOCAP POM 

Train 1284 6373 600 

Val 229 1775 100 

Test 686 1807 203 

 

4.2 Multimodal Data Features and Alignment 

Each dataset is composed of three modalities: 

language, visual and acoustic. In order to achieve the 

same time alignment between different modalities, this 

paper uses P2FA [24] to achieve alignment, which can 

align language, visual and audio at word fine-grained. 

The visual and acoustic features are calculated by 

taking the average of their feature values within the 

word interval. The experiment processes the 

information in the video as follows. 

(1) Language view: The Glove embedding was used 

to encode a sequence of transcribed words into the 

sequence of word vectors. 

(2) Visual view: Facet library [25] is used to extract 

a set of visual features of each frame (sampling 

frequency is 30Hz), including 20 facial action units, 68 

facial landmarks, head postures, gaze tracking, and 

HOG features. 

(3) Acoustic view: COVAREP acoustic analysis 

framework is applied to extract a set of low-level 

acoustic features. 

4.3 Benchmark Model 

In multi-modal sentiment analysis, speaker traits 

recognition, and emotion recognition tasks, the model 

proposed in this article is compared with the following 

benchmark models. 

Support Vector Machine (SVM) is a widely used 

non-neural network classifier [26]. It trains series of 

multi-modal features for classification or regression 

tasks. We extract unimodal features (Section 3.2) and 

connect them to form multi-modal features, and then 

apply the feature vector to SVM for final sentiment 

classification. Bidirectional Context LSTM (BC-LSTM) 

performs context-dependent fusion of multi-sequence 

data, maintaining the latest technology of emotion 

recognition on the IEMOCAP dataset [27]. Multi-

Attention Recurrent Network (MARN) is a model for 

understanding human communication [28], the model 

uses a neural network component called MAB(Multi-

attention Block) to simulate the interaction between 

different modalities and store it in LSHTM (Long 

Short-Term Hybrid Memory). 

The recursive multi-level fusion network (RMFN) 

automatically decomposes multi-modal fusion 

problems into multiple recursive stages, and in each 

stage, a subset of multi-modal signals is highlighted 

and fused with previous representation results [29]. 

This paper model combines a new multi-level fusion 

process with a Recurrent Neural Network system to 

model time and intra-mold the interactions. The Tensor 

Fusion Network (TFN)creates a multi-dimensional 

tensor to capture interaction of unimodal, bimodal, and 

trimodal, so as to realize dynamic interaction of 

different modalities. Memory Fusion Network (MFN) 

uses multi-view gate memory units to store the change 

over time internal information of modalities and 

interaction information among modalities. The 

methods of extracting features for BC-LSTM, TFN and 

MFN are methods involved in processing information 

in video in section 4.2. 

4.4 Evaluation Metrics 

Based on the provided tags, different evaluation 

tasks are performed on different datasets. We applied 

multi-category classification and regression. Multi-

classes classification task is applied to three 

multimodal datasets, and the regression task is applied 

to the CMU-MOSI and POM datasets. For binary 

classification and multi-class classification, F1 score 

and accuracy (Acc) is used to represent model 

performance. For regression tasks, Mean Absolute 

Error (MAE) and Pearson Correlation (Corr) are used 

to express performance. Except for MAE, the higher 

the value of other indicators, the better the model 

performance. 

5 Results and Discussion 

Experimental results of the classification task of this 

method on three datasets are shown in Table 2 and 

Table 3. The boldface indicates the numerical value 

with the best performance. 

As shown in Table 2, the article adopts three 

representative datasets POM, IEMOCAP, and CMU-

MOSI, and randomly extracts modalities from them to 

form three “text+audio”, “text + video”, and “video + 

audio” research datasets. Table 2 shows the “video + 

audio” performance among the three two-modalities 

fusion. The three-modalities combination “text + video 

+ audio” proposed in this article helped to increase 

accuracy of classification(ACC) values by 9.0%, 1.8% 

and 6.7% respectively to the datasets. On the basis of 

“video + audio” model fusion, we proved the substantial 

significance of multimodal fusion research. 
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Table 2. Bimodal fusion and trimodal fusion were compared on the data set for emotional analysis tasks 

Datasets POM IEMOCAP CMU-MOSI 

Metrics MAE Corr ACC (%) F1-score (%) ACC (%) MAE Corr Acc (%) F1-score (%)

T + A 0.899 0.109 32.2 81.3 81.9 1.873 0.254 67.8 67.8 

T + V 0.855 0.264 33.9 83.4 84.8 1.542 0.498 68.9 70.2 

V + A 0.887 0.213 34.0 79.0 85.6 1.673 0.378 70.1 69.4 

T + A + V (ours) 0.794 0.382 43.0 85.9 87.4 0.916 0.670 76.8 76.7 

 

As shown in Table 3, compared with TFN, the Corr 

of this method on POM and CMU-MOSI is increased 

by 0.261 and 0.037 respectively. Compared to TFN on 

two tasks of IEMOCAP and CMU-MOSI, the F1-score 

(%) is increased by 2.7% and 3.3%. Our proposed 

method reduces MAE performance of two tasks of 

POM and CMU-MOSI by 0.087 and 0.054 compared 

to TFN. On three task sets, compared to TFN baseline 

classification accuracy of ACC(%) has increased by 

12.2%, 1.3%, and 2.9% respectively. Acoustic and 

visual forms in the IEMOCAP dataset are better than 

CMU-MOSI, thus in the sentiment analysis task 

(CMU-MOSI) MFN model, the classification accuracy 

of ACC(%) and F1 score performance are better. On 

the other hand our proposed method still performs well 

in performance of MAE and Corr. On three task 

datasets, compared to other baseline models SVM, 

MARN, RMFN, BC-LSTM, TFN, classification 

performance of our proposed model is significantly 

improved. Using proposed low-rank fusion method 

based on contextual modeling in multi-modal emotion 

recognition (IEMOCAP), all emotion recognition 

(IEMOCAP) results on F1 scores are better than in 

previous baseline models. In multimodal speaker traits 

recognition (POM), the three evaluation metrics of our 

model on POM dataset are improved. In multi-modal 

sentiment analysis task (CMU-MOSI), performance of 

MAE and Corr is better than other previous models. 

Experimental results show that the prediction accuracy 

of the proposed method in sentiment analysis is 

significantly improved. 

Table 3. Bimodal fusion and trimodal fusion were compared on the data set for emotional analysis tasks 

Datasets POM IEMOCAP CMU-MOSI 

Metrics MAE Corr ACC (%) F1-score (%) ACC (%) MAE Corr Acc (%) F1-score (%) 

SVM 

BC-LSTM 

MARN 

RMFN 

MFN 

TFN 

Ours 

0.897 

0.889 

- 

0.870 

0.802 

0.881 

0.794 

0.124 

0.274 

- 

0.376 

0.356 

0.121 

0.382 

32.7 

34.1 

39.4 

36.9 

39.0 

30.8 

43.0 

81.3 

82.5 

83.1 

84.3 

83.2 

83.2 

85.9 

83.2 

84.6 

84.9 

85.9 

85.2 

86.1 

87.4 

1.864 

1.079 

1.001 

0.967 

0.965 

0.970 

0.916 

0.054 

0.581 

0.629 

0.628 

0.632 

0.633 

0.670 

50.2 

73.9 

74.5 

75.1 

77.4 

73.9 

76.8 

50.1 

73.9 

74.8 

76.2 

77.3 

73.4 

76.7 

 

6 Conclusion 

We explored sentiment analysis based on the low-

rank multi-modal fusion method using context 

modeling. GRU in RNN is used to convey the context 

information in the video segment, and a low-rank 

tensor fusion network is applied in the fusion 

mechanism to improve classification performance on 

emotion recognition tasks. Through experiments and 

analysis on three datasets of multimodal sentiment 

analysis that are more generalization, the method in 

this paper is significantly better than the baseline 

model. 

In future work, our model will be further developed 

for other multi-modal applications to verify the 

robustness of the method and work on processing 

improvements. In addition, our method can be an 

optional way for future multi-modal research, which is 

more efficient on classification tasks, and its tensor 

representation can save memory and computational 

costs. 
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