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Abstract 

The study of Transportation Mode Detection (TMD) 

has become a popular research field in recent years. It 

will be a crucial part of Smart mobility and Smart cities 

in upcoming years. In our study, using the approach of 

TMDataset
1
, we have gathered the data from different 

user’s Smartphones up to 5 different transportation 

modes. However, as the raw data contains noise, we use 

Feature Engineering to extract useful features from the 

raw dataset and convert it into different feature frames to 

feed into a deep learning model called Long Short-Term 

Memory (LSTM). We used different sized feature frames 

to input the LSTM network for efficient transportation 

mode detection and achieved up to 98% classification 

accuracy for five transportation modes.  

Keywords: Transportation mode, Deep learning, LSTM, 

Feature engineering, Intelligent transportation 

system  

1 Introduction 

Surveys in the travel domain are crucial for 

transportation engineers and researchers to understand 

human behavior. It can help to develop and maintain 

transportation systems.  

These surveys help to gather the travel data, 

including the origin, destination, duration, and other 

factors. This data must be used to improve travel 

understanding concerning the location and choice [1]. 

This data collection plays an essential role in 

inspecting transportation behavior. This data type 

provides more elaborated knowledge on travel patterns 

and selections during a long period to those extracted 

from traditional survey methods. One of its purposes is 

to make arrangements for transportation in rural and 

urban areas. 

Researchers are focusing on citizen movement in 

regular life to manage city transportation effectively. 

The details of these points would help the government 

estimate the needs of a city or a country [2]. The 

detection of transportation types may also allow us to 

showcase advertisements for the required users. For 

example, for a person traveling in a car, car service 

advertisements could be shown, or for a person who is 

transporting on a bus, PCs and books can be advertised. 

The main target of transportation mode for locating 

systems [3-4] is location-based services [5]. 

Smartphone sensors’ improved capabilities, 

combined with their easy programming and effective 

distribution channels, helped Smartphone develop into 

an impactful tool for efficiently monitoring travel 

behavior. Instead of the accuracy and utilization of 

Smartphone sensors, there remain challenges to 

overcome. Pointing to the data size and complexity, 

more advanced algorithms are required to gather travel 

information. 

In section 2 will review the related work of 

transportation mode detection and mention its 

limitations. In Section 3, we describe our approach for 

overcoming the drawbacks. We will discuss the data 

collection and its use in transportation mode detection 

in section 4. Following our proposed methodology, in 

Section 5. The detailed study with experiment results 

and model comparison is in Section 6, section 7, and 

section 8. Eventually, we state the overall conclusion 

of this research in Section 8. 

2 Related Work 

Here, we list the methods and the sources of data 

used in related studies. We present the relevant work 

on transportation mode detection. Then we identify 

some limitations in various aspects for further 

improvement in the performance of travel mode 

detection.  

TMD can be used as a significant step in activity 

recognition studies. It includes the two main tasks: (i) 

determining the movement of participants; (ii) what 

type of transportation methods one uses; for example, 

the study conducted by Broach et al. [6] shows that 
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transportation mode can be efficiently detected using 

the Multinomial Logit Model. The authors used four 

transportation modes: Walk, Bike, Auto, and transit, 

and collected the data using accelerometer and GPS 

sensors. Their proposed model performed slightly 

efficiently, and the accuracy reached up to 91%. 

However, Wang et al. [7] took a traditional approach 

for transportation mode detection. They used a random 

forest technique that was able to achieve up to 93% 

accuracy. However, they have collected the data from 

the GPS of six different transportation modes: walking, 

bicycle, e-bike, bus, car, and subway. 

Another transportation mode detection study was 

done by Xiao et al. [8]. They have used the Continuous 

Hidden Markov Model and the GPS data of five 

transportation modes: walk, bicycle, e-bicycle, bus, 

and car. The authors used the feature extraction process 

has been used by the authors for the collection of 

various features such as Average speed, 95th percentile 

speed, average absolute acceleration, traveled distance, 

low-speed point rate, and average heading change. 

Using a continuous hidden Markov model classifier, 

the authors achieved up to 94% accuracy. 

An attempt by Soares et al. [9] takes the help of 

AutoML for selecting algorithms and optimizing the 

hyperparameters with the data from sensors employed 

as input variants on the TMDataset
1. In the Auto ML 

component, the authors performed meta-learning using 

AutoSklearn [10] to determine the configurations that 

will get tested. The authors compared the accuracy of 

classification efficiently up to 97% while training the 

machine learning classifiers using the sensors’ features. 

Reviewing all these studies, the common challenge 

while using machine learning algorithms lies in 

configuring their hyperparameters and the data selected 

by us. Setting the parameters for the extracted feature’s 

data can directly affect the generated model’s accuracy 

and training loss than the machine learning algorithm 

itself [11]. That is why Feature Engineering plays a 

crucial role in any transportation mode detection 

process. The choices were made based on some 

statistical insights and some other previous works; this 

led authors to create the Automated Machine Learning 

frameworks to automatically identify machine learning 

algorithms’ filtered configuration. 

In terms of Deep Learning techniques for TMD, 

Soares et al. [12] performed a study using SFNN, 

DFNN, and LSTM networks. They used orientation 

sensors and collected the data from 16 users. For data 

preparation, they extracted some time domain as well 

as some frequency-domain features. Eventually, they 

performed the classification of five transportation 

modes, i.e., still, walking, train, bus, and car, and 

gained an overall 90% performance accuracy. 

2.1 Limitations  

Previously, many studies have achieved high detection 

rates. However, there remain some limitations with 

sample size, feature selection to classify the modes, 

and quantity of extracted features. Feature selection 

should be the higher priority, which is necessary before 

implementing classification to the transportation modes. 

Proper feature selection could increase detection 

accuracy and decrease the algorithm’s complexity to a 

significant level. 

3 Our Approach 

Several Deep Learning architectures are available in 

the literature, and Each works well with a particular 

type of data set; for example, Convolutional Neural 

Networks works well with image datasets [13-14]. 

Since we experiment with sensor responses concerning 

time, we use the Recurrent Neural Networks (RNNs) 

as RNNs support sequential data efficiently [14]. There 

are two popular versions of RNNs, i.e., Gated 

Recurrent Unit (GRU) and Long Short-Term Memory 

(LSTM). Since LSTMs outperform in comparison to 

GRUs [14] and can avoid the vanishing gradient 

problem [14]. 

Our work collected the 226 labeled data files of 5 

different transportation modes of 16 users with nine 

sensors using the TMD Data collection technique 

described by the University of Bologna researchers. 

We apply data cleaning, Window Partitioning, and 

feature extraction methods to extract crucial features 

and frame the collected data for sequence learning of 

the model. We use normalization and feed the prepared 

data in our LSTM model for scaling the values of 

different parameters of the stated data. For loss 

convergence, Hyperparameter optimization is used 

after getting optimal accuracy by observing the results.  

We have also compared our work with Soares et al. 

[12] that uses Bayesian Network as a classifier. The 

authors use Knowledge Discovery in Database (KDD) 

technique to perform Transportation Mode Detection. 

The overall accuracy metrics could only reach up to 

91%. The Precision, recall, and f-score metrics could 

reach only up to 44%, 50%, and 47%, respectively. In 

our work, before feeding the data from sensors to the 

LSTM classifier, we use feature vector framing, i.e., 

grouping extracted features in different vector frames 

and the Normalization technique following an 

additional Feature Engineering technique. Our model 

performed comparatively well with accuracy, Precision, 

Recall, and f-score of 98% in each. 

In brief, our primary contribution as listed: 

‧ We have taken the LSTM network as RNN’s suffer 

vanishing gradient problem [15], and Convolutional 

Neural Networks works well with image datasets. 

‧ Before feeding the data from sensors to the LSTM 

classifier, we use feature vector framing, i.e., 

grouping extracted features in different vector 

frames and Normalization technique following an 

additional Feature Engineering technique.  
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‧ We also compare our study with some existing 

studies that used SFNN, DFNN, LSTM, AutoML 

frameworks, and other traditional machine learning 

techniques. 

‧ Our model performed comparatively well with 

accuracy, Precision, Recall, and f-score of 98% in 

each. 

4 Data Collection Technique for 

Transportation Mode Detection  

Researchers of the University of Bologna 

demonstrated the TMD data collection technique and 

created a sample TMDataset1. We have collected our 

transportation mode data using the same process 

described in TMDataset1.  

4.1 Role of Sensors in Data Collection 

This technique consists of some phases. Data 

preprocessing at an initial stage is one of them, 

including data cleaning operations. To make the values 

of speed and sound sensors positive, we deleted the 

measures from the sensors. Further, the sensors with 

single data value outputs were used directly. In this 

technique, we will use an orientation-independent 

metric applicable to sensors based on coordinate 

systems. We can find the magnitude using equation (1). 

 2 2 2

( , ) ( , ) ( , )( ) | | ( )
x s y s z s

S magnitude v v v v= = + +  (1) 

Here, vx,s, vy,s, and vz,s are the given values of sensors 

on the x, y, and z axes. For the processing of these 

sensor data, samples need to be cut in time windows. 

The size of the time window depends on the types of 

actions to be recognized. As per our data samples, we 

came up with two optimal window sizes, i.e., 0.5 

seconds and 5 seconds. However, for complex activity 

recognition, it is advisable to use a large window size 

[16]. Hence, we consider 5 seconds of window size.  

Apart from the orientation-based sensors, we use 

some proximity sensors and ambient sensors. This 

method helps to obtain the dataset into 5 seconds time 

windows. We have also extracted different features 

such as the mean, standard deviation, maximum, and 

minimum from these sensors. We used two resampling 

methods, i.e., downsampling and Up-sampling. 

However, we removed bias and infrequently occurred 

classes with Down-sampling [17] without making the 

dataset denser.  

4.2 Transportation Modes of the Dataset 

The dataset has 226 labeled files.  

Before Down-sample the dataset, as shown in Figure 

1 and Figure 2, the dataset consists of 16 users, and the 

data collected using the android application installed in 

their Smartphones observed, 24% were not moving, 

26% were walking, 25% were using the car, 20% were 

using train and only 5% of users using the bus.  

 

Figure 1. Samples collected by each transportation 

mode 

 

Figure 2. Samples collected by each user 

We have used only nine sensors (Table 1) as per 

their expected availability in every user’s smartphones 

[18]. 

Table 1. Considered sensors-set 

Accelerometer Sensor 

Orientation Sensor 

Linear-Acceleration Sensor 

Uncalibrated Gyroscope Sensor 

Gyroscope Sensor 

Game-Rotation Vector Sensor 

Rotation-Vector Sensor 

Sound Sensor 

Sensors 

Speed Sensor 

 

4.3 Discussion 

We use an accuracy metric to evaluate the 

performance of each classifier. It can be defined as 

equation (2). 

 
TP TN

Accuracy
TI

+
=  (2) 
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Here, TP represents True Positives, TN represents 

True Negatives, and TI represents Total Interference. 

The accuracy provides a fraction of the optimum 

classifications. However, it cannot evaluate the correct 

insights about the sensitivity of the classifier. Hence, 

Precision, Recall, and F-Score metrics are crucial to 

calculating [19-20]. (3, 4, 5) shows the Precision, 

Recall, and f-score metrics. 

 
TP

Precision
TP FP

=

+

 (3) 

 
TP

Recall
TP FN

=

+

 (4) 

 2
Precision Recall

F Score
Precision Recall

×
− = ×

+

 (5) 

Here, TP represents True Positives, FP represents 

False Positives, and FN represents False Negatives. 

5 Proposed Methodology  

We propose a method to implement the 

dimensionality reduction technique for evaluating the 

effect on classification accuracy. Besides, we describe 

the proposed model (Figure 3). For Feature 

Engineering, we sample the data from the 

Smartphone’s built-in sensors and the timestamps 

according to the transportation modes for performing 

data cleaning and window partitioning tasks, as 

described in section 4. Afterward, we extract the 

features from the time window for dimensionality 

reduction using Principal Component Analysis (PCA) 

[21]. 

 

Figure 3. Our proposed real-time TMD model 

5.1 Feature Engineering 

Feature Engineering is the technique that addresses 

the challenges we face during extracting relevant 

features from the raw dataset for training a regression 

or a classification model using traditional ML 

algorithms. This technique requires domain knowledge 

because it involves the data cleaning process that 

includes transformation, construction, combination, 

and selecting appropriate features from extracted 

features [22].  

An alternative of an LSTM network with additional 

Feature Engineering is the ConvLSTM network [23-

24]. Since most of the data readings in the collected 

raw TMDataset1 are based on the orientation of a 3-

dimensional coordinate system, there are still some 

other sensors like Ambiental sensors and proximity 

sensors that return only a single data value. Hence, data 

cleaning and time window partitioning become 

necessary for the sake of the proposed model’s 

performance efficiency [25]. This additional Feature 

Engineering technique is more beneficial for the 

overall model performance than the proposed deep 

learning architecture. There is another technique called 

Principal Component Analysis (PCA), which 

transforms the large variable-set into the small-variable 

set without losing some of the most valuable 

information. In this stage, we traditionally extracted 

various features like mean, standard deviation, 

maximum, and minimum from all the sensor’s 5 

second time window and applied PCA for reducing the 

dimensionality of the data. Hence, the additionally 

applied Feature Engineering phase makes our model 

less complex and more performance efficient. A basic 

self-experiment strategy is applied for selecting 

different components consisting of choosing the first 

‘s’ components. For example, initially, there were 12 

features extracted using three sensors, namely 

Accelerometer, sound, and Gyroscope, in the smallest 

sensor setting. From those 12 features, we have 

selected the first three components using PCA, 

reducing the number of predictor variables by 75%, 

which reduces the time and computational costs related 

to model fitting. While performing experiments for 

performance evaluation, we compare classification cost 

and accuracy and the sensors’ extracted features to 

evaluate the trade-off for online transportation mode 

detection. 

5.2 Normalization 

Every extracted feature’s value lies in different 

ranges. For example, one sensor’s mean goes for 

thousands, while that sensor’s standard deviation often 

stays close to zero. For scaling each feature’s value, 

normalization has been applied to all the features in the 

range of 0 to 1. Normalization is represented by (6).  

 min

max min

x x

x

x x

−

=

−

 (6) 

5.3 Long Short-Term Memory (LSTM) 

Network 

Training the model is the last step of our proposed 

method. The Recurrent Neural Network is almost a 

traditional Deep Learning’s Deep Neural Network 
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architecture. However, it consists of additional weight 

for the hidden layer’s every cell, termed as a Hidden 

State. In this, past activities store to use them with a 

new set of inputs on the future iterations. The Bi-

directional RNNs are known for using data from the 

present and the past. Hence, it is the best model for 

feedbacked sequential data. Here, window overlapping 

has been avoided because RNN remembers the 

previous inputs and the patterns. 

Considering the input sequence as x, such as x1, x2, 

x3, ...., xn, the hidden state ht can be represented by (7). 

 
1

0, 0

( , ),
t

t t

t
h

h x otherwise
−

=⎧
= ⎨

Φ⎩
 (7) 

Where ‘Φ’ is an Activation Function, we can update 

the hidden state of RNN using (8) [26]. 

 
1

( )
t t t
h g wx Uh

−

= +  (8) 

Nevertheless, RNN is difficult for training for the 

long-term sequences due to a gradient-based 

optimization algorithm. Long sequences are impossible 

to train sufficiently because of the vanishing gradient 

problem, i.e., the change ratio to the weights that 

reduce slowly concerning the time. Thus, initial inputs 

are getting worthless because of future information. 

Therefore, Long Short-Term Memory (LSTM) was 

developed by Sepp Hochreiter and Jurgen 

Schmidhuber in 1997 [27]. LSTM can remember the 

data for a long time because it consists of a cell or a 

memory capable of reading, writing, deleting, and 

updating it. We can see the structure of LSTM in 

Figure 4.  

 

Figure 4. A basic LSTM cell structure 

Ct represents the line following signal, the hidden 

state is represented by ht, and the input vector is 

represented by xt. ft is the output that can be found after 

the input and past hidden state enter the forgetting gate. 

It can be defined as (9). 

 ( 1)( ( , ) )t f t t ff w h x bδ
−

= +  (9) 

The following two steps are for selecting the inputs 

as described in (10). 

 ( 1)( ( , ) )
t i t t i
i w h x bδ

−

= +   

 ( 1)
ˆ tanh( ( , ) )

c t t c
C w h x b

−

= +   (10) 

Now the LSTM will update Ct using these two gate 

equations in (11). 

 ( 1)
ˆ(( ) ( ))

t t t t t
C f C i C

−

= × + ×  (11) 

Eventually, these changes are applied to ht in (12), 

after updating the hidden state. 

 

 ( 1)( ( , ))
t o t t o
o w h x bδ

−

= +   

 tanh( )
t t t
h o C= ×  (12) 

In our method, LSTM is used because it is very 

efficient for different sequence modeling. We have 

used only one layer yet multiple cells of LSTM in our 

study. There are 256 features in each frame, and these 

features are the input-set of the LSTM. Say there are 

‘x’ features in a window, then the input-set is being 

iterated ‘x’ times throughout the LSTM network.  

After features (F) are extracted, we arrange them in 

various frames ({ })
t

F  We are shown in (13) and (14).  

 min

max min

{ } n

t

F F
F

F F

−

=

−

 (13) 

 
1

( , ) (( ) , )m m m m

t t m t t t
H C LSTM F C

−

=  (14) 

Here, m, t = 1, 2, …., n.  

The most commonly used number of LSTM cells, 

i.e., 128, 256, 512, and 1024 in the literature, are being 

tested. Overall, we used Adam optimizer with a 

dropout of 0.1 to maintain the rate of 73% and obtained 

prediction and loss using Categorical Cross-Entropy 

and Softmax activation function as there are five modes 

of transportation in our dataset. We can see our 

proposed LSTM model in Figure 5.  

 

Figure 5. Structure of LSTM network for the proposed 

model 
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5.4 Hyperparameter Tuning 

Hyperparameters are the neural network model’s 

different parameters that play a crucial role in model 

performance. Sometimes, choosing optimum 

hyperparameters manually one-by-one becomes 

difficult due to the complexity of the model. There 

were some hyperparameter tuning techniques 

introduced recently. Using these hyperparameter 

tuning techniques, we can improve the computation 

cost [28]. It is the process of choosing the best 

hyperparameters to maintain the efficiency of model 

performance. Essential hyperparameter tuning 

techniques are given as Grid search, Bayesian 

optimization, and Cross-validation. 

5.4.1 Grid Search 

Grid search is one of the best hyperparameter tuning 

techniques. Although it can be computationally costly, 

it increases the model performance metrics such as 

accuracy, Precision, Recall, and F1-value while being 

non-adaptive [9]. We used GridSearchCV from scikit-

learn in our proposed model. 

5.4.2 Bayesian Optimization 

Bayesian optimization is the most advanced 

hyperparameter tuning technique [29]. It chooses the 

optimum hyperparameters based on previous 

performances of the model automatically. Due to its 

dependency on the Gaussian process, it can be 

computationally faster. However, it might sometimes 

perform poorly. 

5.4.3 Cross-validation 

Cross-validation is the commonly used technique to 

compute bias-variance trade-offs. It is referred to as k-

fold cross validation because we divide the dataset in 

‘k’ folds; each fold has a ‘k-1’ training division and 1 

test division [30]. It does not provide the exact best 

hyperparameters, but it efficiently estimates the model 

performance through a bias-variance trade-off [31]. 

However, Cross-validation is practically very hard to 

perform with our hardware. Thus, as we are working 

with a large dataset, Cross-Validation can make the 

process computationally costlier [32]. Hence, we prefer 

to use the Holdout method in our proposed model. 

5.5 Experimental Setup 

All our paper experiments are conducted on a high-

performing laptop with the specifications of Intel Core 

i7-9750H, 2.40 GHz processor, 16GB RAM, Nvidia 

GeForce GTX 1080Ti GPU on Windows 10 workstation. 

For performing the experiments and observing the 

results, Anaconda’s Spyder IDE [33] is used. The data 

preparation, i.e., Feature Engineering, is performed 

using Pandas and NumPy computational libraries and 

scikit-learn scientific library [34]. For implementing 

our proposed LSTM network, a high-level Neural 

Network API, i.e., the Keras library and the 

TensorFlow library for backend processing, is used 

[35].  

6 Empirical Study 

Our proposed algorithm for transportation mode 

detection using Feature Engineering and LSTM 

network (deep learning technique) is mentioned in 

Table 2. 

Table 2. Proposed algorithm 

Algorithm: LSTM network for Transportation Mode 

Detection 

1. initialize: m framed data ← sensors 

2. for data in a range (1, len(m)):  

3.     [Data] ← cleansing (data)  

4.     For window in data:  

5.         [Windows] ← partitioning (window)  

6.         For a feature in windows  

7.             [Fv] ← n frames (k sized features)  

8. [fv] ← (timestamp × k features (normalization ([fv]))) 

9. lstm ← LSTM network  

10. [traning_set].[validation_set] ← train_test_split ([fv]))  

11. lstm ← Dropout (lstm)  

12. lstm ← lstm (softmax, categorical_cross_entropy)  

13. for q_epochstrain (fit ([training_set], lstm)):  

14.     loss_function, lstm_updated ← GridSearchCV 

(lstm) 

15. performance_metrics ← lstm_updated [validation_set]

16. End 

 

First of all, we sample data with ‘m’ sized frames. 

We apply Feature Engineering, including data cleaning, 

window partitioning, and selecting appropriate features 

from the data. For example, as mentioned in the sample 

Python code snippet: 1, we divide the Bus 

transportation mode into different sample time 

windows. We have extracted its mean, minimum, 

maximum, and standard deviation features for each 

time window.  

Snippet 1: Feature Extraction 

 

We create frames of vectors and store 256 features, 

including some new attributes, for example, turn 

frequency, stationary duration, and signal strength of 
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the base station in each frame. Then for normalization, 

we use MinMaxScaler from scikit-learn’s preprocessing 

to normalize the data in the range of 0 to 1, as 

mentioned in Python code Snippet: 2. 

Snippet 2: Normalization 

 

We set a time step to reshape the data by multiplying 

the normalized data with its time step. As discussed 

earlier, the scaled data goes into the LSTM network as 

its input, but we input different sized samples. Then, 

we perform forward propagation with some dropout to 

calculate training performance and loss using Softmax 

activation function and Categorical cross-entropy. We 

use Keras’s Sequential, Dense, LSTM, and Dropout 

procedures to create an LSTM network. Further, we 

compile the system using Adam optimizer and adjust 

the weight according to gathered loss and training 

performance after the forward propagation for each set 

of the input sample, as shown in Python code snippet: 

3. 

Snippet 3: The LSTM network 

 

In the end, we apply scikit-learn’s GridSearchCV 

hyperparameter optimization technique to get optimal 

parameters to the convergence of the loss function. In 

sample Python code snippet: 4, we perform 

hyperparameter optimization using GridSearchCV. 

KerasClassifier function is used from Keras’s wrapper 

class to join the hyperparameter tuning operation to the 

LSTM network. 

Snippet 4: Hyperparameter tuning 

 

7 Experimental Results 

We have explained our model in the previous 

section, where we have proposed an end-to-end 

process of transportation mode detection, where our 

model performed up to 98%. This section will focus on 

the results and observations of the proposed model 

based on various parameters. 

7.1 Frame Dimension (FD) 

Selecting the dimension of the frame is a crucial 

factor that can easily affect model performance. Frame 

dimensions can slightly disturb frame count, increasing 

or decreasing the input of the LSTM network. The 

window dimension used here is 720, and the size of 

every feature is 72. That gives us ten feature frames 

(LSTM input) for each window. In this way, we 

focused on the frame dimension because if the frame 

increases to the optimum size, it provides us with more 

features and the highest possible accuracy.  

7.2 Window Dimension (WD) 

The window dimension can have an impact on the 

model’s performance rate. More oversized windows 

can contain the highest number of feature frames. 

Nevertheless, it can increase the performance time of 

the model as well. In the proposed method, we used 

360 and 720 sample dimensions of windows to observe 

the model’s accuracy. 

7.3 LSTM Cell Dimension (LCD)  

As discussed, we have run several experiments on 

the different dimensions of LSTM cells. However, we 

have used only one layer of LSTM cells in the 

proposed method. More LSTM cells could give better 

accuracy, but it could also increase the whole 

network’s complexity. 128, 256, 512, and 1024 are the 

optimum dimensions of the LSTM cells, as used in the 

literature.  

7.4 Training Data after the Split (TDS) 

We split our dataset into training dataset and 

validation dataset before we train our classification 

model. The training data covers 70%-80% of the 

dataset, which allows the model to train and validate 

the performance using the remaining 20%-30% of the 

validation dataset. The training data takes most of the 

data because it helps the model learn more from the 

training data. However, if the training data is not 

optimum, it can lead the model to either overfitting or 

underfitting. In the proposed method, we split the 

training data into 75%. 

7.5 Count of Epoch (CE) 

One-time forward propagation and backward 

propagation combined is called an Epoch during the 

model’s training phase. An optimum number of epochs 

can make the model learn more efficiently. We have 

experimented with several Epoch counts and found the 

suitable count of the epoch for our model. 

Here, we use the notation FD-WD-LCD-TDS-CE to 

represent the result. Our experiment used different 
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frames and window dimensions with constant LSTM 

cell dimensions, train data split, and epoch count. For 

example, we have used 36 sample frame dimensions 

and 360 sample window dimensions. LSTM cell of 256 

measurements with a train data split rate is 75% used, 

requiring a 20-optimum number of epochs. These 

parameters give us an accuracy of 94.17%, mentioned 

in Table 3. The following parameters can be denoted as 

36-360-256-75-20. 

Table 3. Frames and windows dimensions comparison 

FD WD LCD TDS EC Acc (%) 

18 360 256 75 20 94.46 

36 360 256 75 20 96.17 

36 720 256 75 20 95.43 

72 720 256 75 20 95.54 

Here: FD = Frame Dimension, WD = Window Dimension, 

LCD = LSTM Cell Dimension, TDS = Train Data Split,  

CE = Count of Epoch, Acc = Accuracy 

 

In Table 4, we experiment with different LSTM cell 

dimensions, and we let the other parameters be 

constant. Table 3, 36-360-256-75-20, gives an 

accuracy of 96.17%, the highest among all the 

additional accuracy present in the table.  

Table 4. Different LSTM cell dimension comparison 

FD WD LCD TDS CE Acc (%) 

36 360 128 75 20 95.68 

36 360 256 75 20 96.17 

36 360 512 75 20 95.78 

36 360 1024 75 20 96.10 

Here: FD = Frame Dimension, WD = Window Dimension,  

LCD = LSTM Cell Dimension, TDS = Train Data Split,  

CE = Count of Epoch, Acc = Accuracy 

 

In Table 5, we experiment with different train data 

split rates while the remaining parameters are constant. 

Surprisingly, the parameters in Table 5 that resulted in 

the highest accuracy and the highest accuracy are the 

same as the parameters in Table 3 and Table 4, which 

resulted in their highest accuracy and accuracy. 

Table 5. Different training data split rate comparison 

FD WD LCD TDS CE Acc (%) 

36 360 256 65 20 94.87 

36 360 256 70 20 94.83 

36 360 256 75 20 96.17 

36 360 256 80 20 95.83 

Here: FD = Frame Dimension, WD = Window Dimension,  

LCD = LSTM Cell Dimension, TDS = Train Data Split,  

CE = Count of Epoch, Acc = Accuracy 

 

Therefore, in Table 3, Table 4, and Table 5, we 

observe that only 36-360-256-75 facilitates the highest 

accuracy among all the other Accuracies. After 

comparing all three tables, we find that these tables’ 

highest Accuracies are the same and result in the same 

parameters. Hence, we can conclude that 36 frame 

dimensions, 360 window dimensions, 75% train data 

split rate, and 256 LSTM cell dimensions are the 

optimum parameters. Now, as we have found all the 

optimum parameters in the above observations, 

however, the epoch’s count remained constant in all 

the experiments that we have performed. Count of the 

epoch plays a vital role in deep learning. Epoch can 

lead a model to the underfitting or the overfitting state 

as more epochs result in more training with the data 

and fewer epochs result in less training with the data. 

Hence, we will be careful while experimenting with 

different epoch counts and focusing on the optimum 

number of epoch counts. As shown in Table 6, we have 

tested with varying counts of the epoch. Initially, when 

we increase the count from 10 to 20, the accuracy 

improves by 2.21%. Nevertheless, the accuracy’s 

increase rate is 0.04% between epoch count of 40 and 

epoch count of 50.  

Table 6. Different count of the epoch comparison 

FD WD LCD TDS CE Acc (%) 

36 360 256 75 10 94.00 

36 360 256 75 20 96.21 

36 360 256 75 40 97.68 

36 360 256 75 50 98.11 

Here: FD = Frame Dimension, WD = Window Dimension,  

LCD = LSTM Cell Dimension, TDS = Train Data Split,  

CE = Count of Epoch, Acc = Accuracy 

 

Figure 6 demonstrates the loss convergence graph; 

we can observe that the graph convergence rate is in 

saturation point from 40 to 50 epochs. Hence, 50 

epochs result in 98.11% accuracy, which is the highest 

optimum accuracy facilitated by 36-360-256-75-50 

parameters.  

 

Figure 6. Drop rate of the loss concerning epoch count 

Observing the above experiments, 36-360-256-75-

50 are suitable parameters. Using these parameters, 

data collection for Feature Engineering consumes 5 
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seconds. However, Feature Engineering and deep 

learning processes consume 90 milliseconds and 722 

µ-seconds. 

Table 7 demonstrates the confusion matrix for 

different class labels of our proposed classification 

model. In our confusion matrix, we observe that the 

predicted walk class performed almost entirely. The 

car and the bus classes confuse me the most. Overall, 

using our confusion matrix, we have calculated 

Precision and Recall for each class label. 

Table 7. Confusion matrix of our proposed model 

Pred. → 

True ↓ 
Still Car Bus Walk Train Recall (%) 

Still 639 0 1 13 4 97.26 

Car 2 3070 34 5 18 98.11 

Bus 0 27 1180 7 9 96.48 

Walk 9 4 4 2474 6 99.07 

Train 0 9 6 10 1387 98.22 

Precision (%) 98.30 98.71 96.32 98.60 97.40  

 

The accuracy of the model describes the 

performance of the model. Similarly, Recall and 

Precision demonstrate the model’s overall relevance to 

the results [36]. We calculate F-Score, the calculated 

Precision, and Recall average to represent the perfect 

Precision and Recall for each class. Table 8 shows the 

average Precision, Recall, and F-Score. 

Table 8. Average Recall, Precision, and F1-Score 

calculation 

Parameter Calculation (%) 

Recall 97.82 

Precision 97.86 

F-Score 97.83 

 

8 Model Performance 

This section will compare our model’s performance 

with the other different models from the study done by 

Broach et al. [6], Wang et al. [7], Xiao et al. [8], Soares 

et al. [9] and Soares et al. [12]. Table 9 contains a 

comparison of the observations of various performance 

parameters of different models. We have compared 

Accuracy, Recall, Precision, and F-Score [37] of 

Multinomial Logit Model, Random Forest, Continuous 

Hidden Markov Model, Travel Mode Detection 

Ensemble, and our model Travel Mode Detection with 

Deep Learning. We observe that the Multinomial Logit 

Model’s performance accuracy is lowest, i.e., 91%, 

among all the other models, but the overall performance 

is good in Precision, Recall, and f-score, i.e., 94% in 

all. Random Forest gives an accuracy of 93%, but the 

rest of the parameters could not achieve more than 90%. 

The continuous Hidden Markov Model surprisingly 

achieves many efficient performance parameters. 

However, Travel Mode Detection Ensemble (TMDE) 

performed with 97% Accuracy, Recall, Precision, and 

F-Score, which is the best among all the above-

discussed models. However, the study was done by 

Soares et al. [12] used Feed-Forward Neural Network 

and Long Short-Term Memory (TMD-LSTM). Since 

this study uses a deep learning approach, there can be 

structural similarities between this study and our study. 

However, the authors in TMD-LSTM collected the 

data using only orientation sensors, whereas, in our 

study, we collected the data using orientation sensors 

and ambient and proximity sensors. Apart from data 

collection, we extracted features from only the time 

domain and fed them in our LSTM network after 

framing. In TMD-LSTM, authors extracted features 

from both time and frequency-domain and fed them in 

FNN and LSTM. However, the performance of TMD-

LSTM is slightly efficient with 90% in Accuracy, 

Precision, Recall, and F-Score parameters compared to 

the study with Random Forest. Our proposed 

Transportation Mode detection’s performance parameters 

with LSTM Network resulted slightly well with a 1% 

increment than the TMDE in all the performance 

parameters. Our model scored 98% of Accuracy, 

Precision, Recall, and F-Score. Hence, our proposed 

model performed more effectively among all the other 

compared models. 

Table 9. Comparison of different models’ performance with our model performance 

Models Accuracy (%) Precision (%) Recall (%) F-Score (%) 

MNL (Broach et al.) [6] 91 94 94 94 

RF (Wang et al.) [7] 93 89 88 88 

CHMM (Xiao et al.) [8] 94 91 90 90 

TMDE (Soares et al.) [9] 97 97 97 97 

TMD-LSTM (Soares et al.) [12] 90 90 90 90 

TMD-LSTMN (Our) 98 98 98 98 

Here: MNL = Multinomial Logit Model, RF = Random Forest,  

TMDE = Travel Mode Detection Ensemble, CHMM = Continuous Hidden Markov Model, TMD-LSTM = Travel Mode 

Detection with FNN and LSTM, TMD-LSTMN = Travel Mode Detection with LSTM Network. 
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8.1 Impact of Transportation Mode Detection 

Technique on Intelligent Cities 

Transportation mode detection has a substantial 

impact on intelligent transportation [38-39] and smart 

cities. Depending on the user location and situation, it 

can work as the best recommender system for choosing 

the transportation modes [40]. Unlike other systems 

dependent mainly on centralized servers, the intelligent 

transportation mode detection technique focuses on 

each user’s Smartphone separately. Hence, it can 

reduce complexity and cost compared to the traditional 

transportation mode recommender systems [41-42]. 

The governments can also use this system smartly by 

collecting the users’ transportation history data and can 

provide them with the best recommendation or 

facilitate the required transportation modes in 

particular areas. 

Similarly, on-demand cab service providers and 

traditional taxi services can also use this system to 

serve their customers smartly [31, 21]. These are the 

fundamental advancements that can take place using 

intelligent transportation mode detection. The most 

crucial area where it can benefit is that many 

businesses use this system for the transportation 

modes’ recommendation systems and create the user 

profile [1] and mobility as the right platforms [43] to 

provide efficient facilities future. Hence, it can be 

optimized in smart transportation mode 

recommendations and intelligent pricing [44].  

9 Conclusion 

We have introduced a novel deep learning approach 

to the transportation mode detection model and studied 

the impact of feature engineering on transportation 

modes’ classification performance. We have collected 

the user transportation mode dataset using the 

technique used in TMDataset1 using nine mentioned 

sensors from the smartphone application. We proposed 

a method that performed the success rate of up to 98% 

while the other compared models could achieve only 

up to 97% of the success rate. Moreover, we believe 

that the Epoch count and frame size are two factors in 

our study: the number of feature frames that positively 

affect the performance. However, the limitation of the 

model’s high computational cost, learning rate, drop 

rate, and error detection could improve in new future 

transportation mode detection studies. 
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