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Abstract 

The aging of the global population and increasing 

incidence of chronic diseases have exacerbated social 

problems such as the shortage of medical resources and 

increased medical costs. There is a growing interest in 

medical monitoring services based on wireless body area 

network (WBAN). In WBAN, due to limitations on 

processing capacity, battery, and storage capacity of the 

sensors, it is difficult to guarantee the low-latency, high-

reliability requirements, and better user experience of 

medical monitoring services. Therefore, a novel data 

fusion method of WBAN for medical monitoring services 

is proposed in this study. According to the redundancy 

and complementarity of WBAN data collection in time or 

space, the proposed method realizes the fusion of single 

source and multisource data in time and space, which 

obtains a consistent interpretation and description of the 

measured object, as well as more effective collection 

results than a single sensor. Furthermore, to meet the 

requirements of real-time of medical monitoring services, 

a hierarchical data fusion model based on edge 

computing is proposed. In this model, to realize the load 

balance of the entire system and maximize system utility, 

different types of data fusion tasks are scheduled for 

execution on the sensor, sink node, or edge node. The 

simulation results show that the proposed method 

effectively improves the accuracy and reliability of 

WBAN data collection when the algorithm execution 

time is acceptable and meets the real-time requirements 

of medical monitoring services. 

Keywords: WBAN, Data fusion, Edge computing, 

Medical monitoring 

1 Introduction 

Currently, hundreds of millions of people worldwide 

are suffering from chronic diseases. In China alone, the 

number of people who die from chronic diseases such 

as cerebrovascular diseases, asthma, obesity, and 

diabetes each year has reached one million [1]. In 

addition, problems such as shortage of medical 

resources, lack of medical staff, increased medical 

costs, and uneven medical allocation have become a 

major bottleneck to the rapid development of the health 

industry [2]. As a result, the wireless body area 

network (WBAN) [3] technology for medical services 

has been introduced. It is a human-centered short-

distance, highly reliable, and low-power wireless 

communication network technology that consists of a 

central control node and multiple sensor nodes 

connected to each other on the surface, in the body, or 

near the human body. The sensor collects the user’s 

physiological (heartbeat, body temperature, blood 

pressure, ECG signal, etc.), behavioral (such as 

running frequency, distance, duration etc.), and other 

health-related information and sends it to the central 

node or to the remote monitoring center through the 

external network to provide users with timely medical 

services [4]. 

WBAN has become the core technology in the 

medical monitoring field, it is widely used in scenarios 

such as health monitoring, real-time diagnosis, and 

remote assistance, effectively alleviating problems 

such as the lack of high-quality medical resources [5]. 

WBAN for medical monitoring mainly includes the 

following key technologies: data acquisition, data 

transmission, and data fusion technologies. Accurate 

data collection, reliable data transmission, and real-

time data fusion are prerequisites of medical 

monitoring. In addition, the accuracy, reliability, and 

real-time nature of the data are crucial for medical 

monitoring. If some life-threatening emergency data 

contains errors, it threatens human life and may lead to 

catastrophic consequences [6]. Currently, this technology 

mainly faces the following challenges: 

(1) Due to limitations of WBAN sensor sophistication 

and sampling accuracy, the data collected may not 

always meet the accuracy requirements. 

(2) The wireless communication of WBAN will be 

interfered with by the external environment, mainly 

through electromagnetic interference and other 

communication technologies such as ZigBee and WiFi, 

which will reduce the reliability of data. 



878 Journal of Internet Technology Volume 22 (2021) No.4 

 

(3) For portability and comfort, the wearable or 

implanted sensor devices in WBAN should be as 

compact as possible. Therefore, the communication, 

storage, and computing capabilities as well as the 

battery capacity are limited, making it difficult to run 

complex data fusion algorithms to improve the real-

time performance of collected data. 

Data fusion technology [7] is an effective method of 

solving these problems. The term data fusion here 

refers to abnormal judgment, data compensation and 

analysis, and prediction of data from multiple sensors 

[8]. At present, literature 10-15 propose various data 

fusion methods based on D-S, maximum likelihood 

estimation, Kalman filter, support vector machine 

(SVM), ordered weighted aggregation (OWA), etc. 

However, these researches mainly focus on two aspects: 

First, the data fusion methods for WBAN mostly 

analyze single data, and there is relatively little 

research on multisource and heterogeneous data 

analysis of multisensor systems. Second, most of the 

current fusion algorithms require high-performance 

hardware or cloud platform support, whereas the 

processing power of WBAN nodes for medical 

monitoring is low. If the data is transmitted to the 

cloud for data fusion, it will cause a large processing 

delay, which makes it difficult to meet the real-time 

requirements of medical monitoring services. 

The goal of this research is to make full use of the 

data resources collected from different multiple sensors 

in time and space. We use computer technology to 

analyze, synthesize, control, and utilize the observation 

data obtained in time series under certain criteria to 

arrive at a consistent interpretation and description of 

the measured object. Therefore, the corresponding 

decision making and estimation can be realized, while 

the system obtains sufficient information from its 

various components. Edge computing adequately 

meets the low energy consumption, low latency, and 

high reliability communication and computing 

requirements of WBAN [9]. This study proposes a data 

fusion model based on edge computing, scientifically 

scheduling WBAN sensor nodes, aggregation nodes 

and edge nodes and, other computing resources for 

redundancy and complementary integration. In 

addition, the proposed method improves data accuracy, 

reliability, and real-time performance, while reducing 

network load and system power consumption and 

improving user experience. The main contributions of 

this study are as follows: 

(1) A single source data fusion algorithm is designed 

using the time correlation of the data that are collected 

by the same sensor to perform abnormality judgment, 

correction, and compensation for the sampled data to 

improve the accuracy and reliability of the data. 

(2) A multisource data fusion algorithm is designed, 

including similar and heterogeneous multisources, 

using the spatial redundancy and complementarity of 

multiple sensor data. The data is then fused by 

calculating the correlation between the data to obtain 

more accurate results than those of a single sensor node. 

(3) A data fusion model based on edge computing is 

designed to scientifically schedule data collection, data 

aggregation, single source data fusion, and multisource 

data fusion to different locations for execution, which 

helps realize low-latency and high-performance real-

time fusion. 

The rest of this paper is arranged as follows: Section 

2 reviews the related research on data fusion in WBAN. 

Section 3 establishes mathematical models of single 

source and multisource data fusion. Section 4 proposes 

a data fusion model based on edge computing. Single-

source, similar multisource, and heterogeneous 

multisource data fusion (HMDF) algorithms are 

realized using this model. Section 5 performs system 

simulation and data analysis. Section 6 concludes this 

paper. 

2 Related Research 

Research on data fusion based on WBAN mainly 

focuses on improving accuracy, target recognition, 

analysis and prediction, and data transmission. 

Literature [10] proposed a cross feature fusion neural 

network for the enhancement of collaborative filtering 

by constructing a cross feature fusion network that 

enables the fusion of user features and item features. 

Then, the user’s preference for various item features 

was realized by designing a feature extraction layer 

with multiple multilayer perceptron (MLP) modules to 

extract both user features and item features. Compared 

to existing models, CFFNN has obvious advantages in 

hit ratio and normalized discounted cumulative gain. In 

[11], with regard to the shortcomings of using DS 

combination rules in multisensor data fusion, an 

improved evidence combination method based on 

information gain and fuzzy preference relationship was 

proposed. In addition, by considering both historical 

and real-time data, more accurate fusion results were 

obtained. Literature [12] proposed a method of signal 

conversion using A/D conversion and a microcontroller 

that realized real-time observation and control of 

sensor data. It used the maximum likelihood estimation 

to fuse multiple odometer measurement data to obtain 

the optimal fusion value. To achieve a low-cost 

solution that accurately evaluates the displacement 

under external influence, the literature [13] proposed 

a multiresponse data fusion using Kalman filtering, 

which effectively overcomes the expensive use of 

wired solutions. Literature [14] addressed the problem 

of traditional fault diagnosis methods not being accurate 

enough in the data fusion process. It is difficult to 

distinguish the fault types with nondimensional 

indicators by performing dimensionless calculations on 

the original collected data. Literature [14] proposed a 

data fusion method based on the SVM model, which 

could more effectively solve the aforementioned 
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problem. Literature [15] proposed a novel method 

based on the OWA operator through the improvement 

of the Q function in the OWA. The influence of time 

intervals on the final fusion result was reduced, and the 

application of a target recognition based on time series 

data fusion showed the effectiveness of their method. 

Literature [16] proposed a new method of multisensor 

data fusion based on the Bayesian algorithm and 

compressed sensing (CS), which can realize data 

fusion and reconstruct sparse signals, the method can 

identify the damage accurately on the aviation 

aluminum plate and let the detection error within 

0.82 mm. Literature [17] studied the big data 

analysis application of WBAN in disease prediction 

through collecting electromyography (EMG), 

electroencephalogram (EEG) and electrocardiogram 

(ECG), and other human physiological data and 

performing data fusion via cloud computing for disease 

predictions. Literature [18] proposed a method for 

monitoring biomarkers in athletes’ saliva or sweat 

using wearable devices. It achieves a noninvasive and 

continuous detection of key indicators such as athletes’ 

stress and physical condition and customized recovery 

or training programs for each athlete. A study in 

literature [19] proposed a scalable system using 

wearable sensor functions through real-time collection 

of human body temperature, ECG, body position, 

current geographic location, and other related 

information. It used decision-level integration to 

identify the user’s posture and health status. Literature 

[20] focused on biometrics and medical monitoring 

applications. It proposes a method to support medical 

diagnosis and treatment services based on multisensor 

decision fusion systems and using ECG, temperature, 

accelerometer and other sensors to collect data in real 

time for fusion analysis. Literature [21] used 

smartphone accelerometers and gyroscope sensors to 

collect data on 41 continuous tasks from 44 

participants. It calculated 76 signal characteristics, 

based on three general classifiers (Bayes, SVM, 

decision tree), and designed a method of categorizing 

patients into healthy, elderly and stroke patients. 

Literature [22] was based on Dempster-Shafer theory 

that fuses the data of two different modal sensors 

(including depth camera and inertial human sensor) 

and used the complementarity of sensor data to realize 

human motion recognition. The results showed that 

this method could increase the recognition rate by 2% 

to 23%. In literature [23], a distributed scheduling 

mechanism for wireless sensor network VD-CSMA is 

proposed in response to the data fusion problem caused 

by the various time characteristics of Internet of Things 

environments. This mechanism considers the data 

fusion value and delay constraints of the data packet 

when determining the priority of data fusion. 

Simulation results show that, compared with the 

typical solutions, VD-CSMA can improve the 

throughput and reduce the data transmission delay.  

3 System Model 

The WBAN topology based on edge computation is 

shown in Figure 1. Each user carries a number of 

sensors arranged on the surface of or implanted in their 

bodies. A sink node forms a star network, and the sink 

nodes of a group of people form a multihop network 

that wirelessly accesses the allocated edge nodes. The 

edge nodes are used to serve multiple neighboring 

users. One edge node is connected to many sink nodes, 

and the edge nodes access the Internet through wired or 

wireless gateways to upload the processed data to the 

cloud platform. Sensors are responsible for periodically 

collecting human body data, while sink nodes are 

responsible for collecting sensor data and carrying out 

simple data fusion. Simultaneously, edge nodes carry 

out complex data fusions and upload them to the cloud.  

 

Figure 1. System topological structure 

Assuming that a certain edge node is responsible for 

the data of N users, that is, corresponding to N sink 

nodes, for any sink node ( [1, ])i i N∈  there are a total 

of ci sensor nodes below. For convenience, the 

following definition is given: the j-th sensor of the i-

th sink node is denoted as ,i j< > , and the data 

collected at time t is represented as ( )j

i
d t  

( [1, ]), [1, ], ).i
i i N j c t

+

∈ ∈ ∈�  If the data collection 

period of the i-th sink node is T and the data flow from 

time 1 to time T is (1), (2), ..., ( ),j j j

i i i
d d d T  then the 

data of all associated sensors on the sink node is 

recorded as the data matrix T

i
D , as shown in Formula 

(1). 

 

1 1 1
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... ... ... .

(1) (2) ( )

(1) (2) ( )
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i i i

T i i i

i

c c c

i i i

Td d d

d d d
D

d d d

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (1) 

Due to the different types of data collected by 

different types of sensors and the different start-up 



880 Journal of Internet Technology Volume 22 (2021) No.4 

 

times, the duration it takes to send out data is 

different. Therefore, at a certain time, some sensors 

may not send data, resulting in the corresponding 

( )j

i
d t in T

i
D  being empty. As a result, the actual data 

stream is not a time-continuous matrix. To save 

storage space, the sink node uses a queue 

{ ( ) | [1, ], [1, ], }j i

i i
Q d t i N j c t +

= ∈ ∈ ∈�  to store the 

nonempty data collected by all associated sensor nodes. 

3.1 Single Source Data Fusion 

SSDF uses the data stream collected by a certain 

sensor node ,i j< >  within a period of time to correct 

the measurement result ( )j

i
d t  at time t. Using the 

correlation of collected data can improve the accuracy 

of data. Sensors may be affected by abrupt large 

impulse noise and small-amplitude high-frequency 

noise. Thus, errors in the data at certain instances is 

inevitable. Because of the continuous change of human 

body data over time, the data are strongly correlated 

with time. Therefore, the accuracy of the collected data 

can be improved by fusing it with the data collected 

previously. Here, a single source data fusion method 

that comprehensively considers both the abrupt large 

impulse noise and small-amplitude high-frequency 

noise is proposed. The proposed method is divided into 

two parts: 

For sudden large impulse noise, a method that limits 

the process is adopted: First, the sampling result should 

exceed the upper or lower bound data, and if so, the 

upper or lower bound data are used; Second, the 

variance amplitude of the measurement results of the 

two adjacent times cannot exceed the variance 

threshold. If the difference between the measurement 

value and the last measurement value is greater than 

the threshold value, the current value is invalid and 

gets abandoned. In this case, the last valid value is used 

instead of the current value to reduce the influence of 

sudden large impulse noise on the measurement results. 

Let the upper limit of the data collected by node 

,i j< >  be 
,i j

U , the lower limit be 
,i j

L , the threshold 

value of data variance be 
,

.

i j
α . For [1, ],i N∀ ∈  

[1, ],
i

j c t
+

∈ ∈� , ( )j

i
d t  is calculated as follows: 

 ( )

, ,

, ,

,

,

,

( )

( )

( 1) ( ) ( 1)

( ),

j

i j i i j

j

i j i i jj

i j j j

i i i i j

j

i

t

t

t t t

t

U d U

L d L

d t

d d d

d Otherwise

α

>

<
=

−

⎧
⎪
⎪⎪
⎨

− >−⎪
⎪
⎪⎩

 (2) 

For a high-frequency and small noise, the moving 

average fusion method is used to save the first θ-1 

adjacent measurement data of the current measurement 

result to the queue Q. According to the first-in-first-out 

principle, every time a new sample is taken, the 

measurement result is inserted at the end of the queue, 

so that there are always θ latest data in the queue. The 

θ data in the queue are arithmetically averaged, and the 

average is taken as the current time. The measurement 

result reduces the influence of the high-frequency and 

small-amplitude noise on the measurement result. 

Assuming that at time t, the data to be fused is 

( 1), ..., ( 2), ( 1), ( ),j j j j

i i i i
t td d d dt tθ− + − −  obviously, the 

larger the value of θ, the more accurate the judgment of 

the change trend of sensor data. However, a too-large 

value will increase the processing delay of the data 

fusion; thus, the value of θ needs to meet the delay 

constraint. Assuming that the data processing speed ω  

is constant, the upper limit of the data processing delay 

is τ  for the node ,i j< >  and the processing delay at 

time t is 
( )j

i
d t

ω

. For the first j

i
θ  time, including time t, 

the total processing delay satisfies: 

 

] [

1
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 (3) 

Because the sink node uses a cache queue to store 

the data collected by each sensor node, the data storage 

capacity cannot exceed the queue length. Let the buffer 

queue length of sink node i be ( )
i

Len Q  and i

j
p  be the 

sampling frequency of node ,i j< > . If 
i

Q  can store up 

to 
( )

i

j

i

Len Q

p
 data at the same time, then: 

 
( )ij

i j

i

Len Q

p
θ ≤  (4) 

According to Formula (3) and (4), θ can take the 

value: 

 
1

( ) *
min( , )

min ( )

j i

i j t j

i x i

Cnt Q

p d x

τ ω
θ

=

=  (5) 

Then, the fusion result of node ,i j< >  at time t is 

 1
( )

( )

t j

ij x t

i j

i

d x
d t

θ

θ

= − +

=

∑
 (6) 

3.2 Multisource Data Fusion 

Data correlation analysis refers to the analysis of 

two or more correlated variable elements to measure 

the closeness of two variables, and is used to discover 

the correlation and strength between different variables. 

Correlation analysis is a prerequisite for the 

development of the multi-source data fusion because 

the accuracy of measurement data can be further 
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improved by fusing relevant data. The various human 

body parameters collected by sensor nodes reflect the 

condition of that human body from different 

perspectives; thus, all data have a strong correlation. 

The correlation analysis and data fusion based on it 

have strong practical significance. This research uses 

the correlation coefficient to measure the correlation 

between physiological parameters, and the specific 

processes are as follows:  

Node ,i j< >  is recorded as a random variable X 

according to the time-varying data flow ( )j

i
d t  and 

node ,p q< >  is recorded as a random variable Y 

according to the time-varying data flow ( )q

p
d t , where n 

is the number of collected data. Then, the correlation 

coefficient ( , )( , )i j p q
ρ  between nodes ,i j< >  and 

,p q< >  is defined as: 

 
( )( )

[ ] [ ] [ ] [ ]

1

, , 2 2

1, , 1, 1, , 1,

( )( )

( ) ( )

,i i

n

t tt

i j p q

t t

i N j c p N q c

X X Y Y

X X Y Y

n n

ρ
=

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

− −

=

− −

×

∑

 (7) 

It is observed from the Formula (7) that the range of 

the correlation coefficient ( , )( , )i j p q
ρ is [-1,1]. The 

magnitude indicates the strength of the relationship, 

and the sign indicates the direction of the correlation. 

When the nodes are completely uncorrelated, the 

coefficient is 0, when completely correlated, it is 1. 

Because the data of different correlations have 

different weights when fused, to facilitate the 

algorithm design, we divide the correlation coefficient 

into three levels: strong, medium, and weak, denoted as 

1ρ , 2ρ  and 3ρ  respectively. 3ρ  is the lower limit of 

the correlation coefficient that can be used for fusion, 

which is determined by the actual application. We only 

consider the case of ( , )( , )| |
i j p q

ρ φ>  which gives the 

following definition: 

( )( )

( )( ) [

( )( ) [

( )( ) [

, ,

, , , ,

, ,

1, 1, ( 2) / 3)

2, ( 2) / 3, (2 1) / 3)

3, (2 1) / 3

=

, )

i j p q

i j p q i j p q

i j p q

ρ ρ ϕ

ρ ρ ρ ϕ ϕ

ρ ρ ϕ ϕ

∈ +

∈

⎧
⎪
⎪
⎨ + +

∈ +
⎪
⎪
⎩

 (8) 

3.2.1 Similar Multisource Data Fusion 

In a specific scenario of WBAN, multiple sensors of 

the same type may collect identical human body 

parameters, which is redundant. However, when 

multiple nodes collect the same data, the correlation 

coefficient ( , )( , ) 1
i j p q

ρ = , which is a strong correlation 

that satisfies the prerequisites for data fusion. 

Therefore, the data accuracy can be improved through 

redundant fusion. 

Let 1( ),H i j  be a set of similar sensor nodes of node 

,i j< > , defined as follows: 

 
( )( )

[ ]

, ,

1( ) { 1

}

,

1, , 1,

|
i j p q

p

H

p q

qi

c

p,j

N

ρ= =

∈ ∈ ⎡

>
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<
 (9) 

In the actual collection process, it is difficult to 

ensure that the data is simultaneously collected by the 

same type of sensor. If the time gap is too large, the 

data correlation will be weakened, and the 

effectiveness of fusion will gradually decrease. 

Therefore, it is necessary to compare the data 

collection time before fusion. Only the data that meets 

the specific time requirements can be used for fusion. 

As a result, the data collected by similar sensors 
,p q< >  can be expressed as (1), (2), ... ) |{ , (q q q

p p p
d d d t′  

[1, ], [1, ]}p
p N q c∈ ∈ , where its latest collected data is 

( )q

p
d t′ , ( )j

i
d t  acquisition time is t, β is the upper limit 

of the fusion time, if | | ,t t β′− <  ( )q

p
d t′  can be used 

for the fusion of ( )j

i
d t , the fusion method is as follows: 

 ( )
( )( )( , ) , '

'

( 1

( ) ( )

( , )) 1

q j

p ip q H i j t tj

i

d t d t
d t

Len H i j

β∈ ∩ − <

+

=

+

∑
 (10) 

3.2.2 Heterogeneous Multisource Data Fusion 

In addition to similar sensors in WBAN, other 

sensors collect different types of data, such as 

respiratory rate, body temperature, pulse and blood 

oxygen. Although the data types are different, the 

collection source is the same, which reflects the 

physical condition of the same person from different 

perspectives. Therefore, these data also have a strong 

correlation, and their accuracy can be improved 

through complementary fusion. However, the 

correlation between different types of physiological 

parameters is also different, and the sensor used for 

fusion needs to be determined based on the actual 

application. A typical fusion process is divided into 

three steps: 

Step 1: Calculate the correlation coefficient 

According to the application characteristics, 

collected physiological data may have a correlation. 

Assume ( )j

i
d t , the data from node ,i j< > , needs to 

be fused, and ( )q

p
d t  is the data from node ,p q< > , 

which may have a correlation with the previous data. 

We calculate the correlation coefficient ρ  between the 

two nodes according to Formula (7) and determine the 

type of ρ  according to Formula (8). 

Step 2: Establish a linear regression model  

The data collected by node ,i j< >  is represented as 

1 2
( ), ( ), ..., ( )

m

j j j

i i i
t dt td d  in time series, denoted as 

m
Y , 

and the data collected by the fused node ,p q< >  is 
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1 2
( ), ( ), ..., ( )

m

q q q

p p p
t dt td d , denoted as 

m
X . 

Let ( )
m m

f x ax b= + , which is the regression model 

between 
m

X  and 
m
Y , satisfying that the gap between 

( )
m

f x  and 
m
Y  is the smallest, then the calculation 

methods of parameters a and b are as follows: 

Let 2 2( ( ) ) ( )
m m m m

f x y ax b yε = Σ − = Σ + − , ε  is the 

deviation between the regression value ( )
m

f x  and the 

actual value 
m
Y , to obtain the minimum deviation, a 

and b need to satisfy:  
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2
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∂
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∂
∂

= ∑ + − =
∂

⎧ ∑ − −
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∑ −⎪
⇒ ⎨

∑ − −⎪ = −⎪ ∑ −⎩

  

Step 3: Data fusion 

Let 2 ,H i j< > be the set of correlation between 

nodes with node ,i j< > , the specific form is: 

 
( )( )

] [

, ,

2( , ) { , | 1 2 3,

1, , 1, }

i j p q

p

H i j p q

p N q c

ρ ρ ρ ρ= < > = ∪ ∪

⎡ ⎤∈ ∈⎣ ⎦

（
 (11) 

Same as Similar Multi-Source Data Fusion, for the 

correlated nodes ,p q< > , the acquisition time t′  of 

( )q

p
d t′  and the acquisition time t of ( )q

p
d t  need to 

satisfy | |t t β′− <  before they can be used for 

fusion.In view of the strength of the correlation 

between nodes, three different fusion factors 

1, 2, 3( 1, 2, 3 (0,1)) ^ ( 1 2 3)γ γ γ γ γ γ γ γ γ∈ > >  are defined, 

corresponding to 1ρ , 2ρ  and 3ρ  respectively. 

According to different fusion factors, ( )j

i
d t  and 

2( , )H i j  are combined with all the data that meet the 

requirements to realize the complementarity of 

different types of data, the specific calculation method 

is shown in Formula (12). 
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4 Design of the Data Fusion Scheme 

WBAN nodes are limited by their computing 

performance, storage space, and energy consumption. 

Traditional WBAN data processing algorithms are 

usually executed in the cloud, utilizing their powerful 

data processing capabilities to achieve data fusion. 

However, WBAN needs to respond to various 

emergency situations in real time to locally address 

abnormal physiological parameters in a timely manner 

and improve the survival chance of the patient. In this 

regard, it is difficult for the cloud to meet WBAN real-

time requirements. Our study takes full advantage of 

edge computing and combines WBAN topology to 

design a hierarchical data fusion model based on edge 

computing. 

4.1 Hierarchical Data Fusion Model Based on 

Edge Computing 

Edge computing provides a solution to the low-

latency, high-reliability communication, and computing 

requirements of WBAN data fusion for medical 

monitoring. By deploying computing, storage, and 

processing functions at the edge of WBAN and taking 

advantage of its distribution and proximity to the 

collection end, we manage to reduce the amount of 

data transmission, decrease system energy consumption, 

improve user experience, and meet the real-time 

requirements of data fusion. In the hierarchical data 

fusion model based on edge computing, data collection, 

single source data fusion, similar multi-source data 

fusion and heterogeneous multi-source data fusion will 

be scheduled to sensors, aggregation nodes, edge or 

cloud for execution. To focus local sensors and sink 

nodes on simple calculations, edge nodes focus on real-

time, short-period data processing, whereas the cloud 

focuses on non-real-time complex tasks such as big 

data analysis and realization of mutual cooperation. 

This effectively supports the real-time processing and 

execution of local application, as shown in Figure 2. 

The details are as follows: 

 

Figure 2. Hierarchical data fusion model based on 

edge computing 
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(1) The processing capacity, storage space, and 

energy of sensors are strictly limited. Generally, they 

only have simple information processing and wireless 

transmission functions; therefore, they can only carry 

out simple data acquisition. They periodically collect 

data and send the data to sink nodes. 

(2) The processing capacity of the sink node is 

stronger than that of the sensor node, but it is generally 

battery-powered and limited by the computing storage 

capacity. As a result, it can be used for simple 

computing tasks but has difficulties handling complex 

computing tasks. The sink nodes wait to receive the 

data from the sensor node and then perform the single 

source fusion of the data collected by identical sensor 

nodes. Finally, they send the fusion result and the 

original data to the edge node. 

 (3) The edge node has strong computing power and 

is powered externally. It is close to the body and can 

undertake more complex real-time computing tasks. By 

offloading the computationally large multisource data 

fusion task to the edge node, we reduce the data flow 

from the device to the cloud and ensure efficient and 

real-time data fusion. After receiving the data, the edge 

node uses data redundancy and complementarity of 

sensors to realize both the fusion of similar multisource 

data and heterogeneous multisource data. As a result, it 

obtains more accurate results than a single sensor node 

and sends the fusion result and original data to the 

cloud to support the big data application. 

(4) The cloud is used to deal with complex long-

term data analysis tasks. It is also responsible for data 

storage, analysis, mining, decision-making assistance, 

etc.  

Figure 3 shows the data processing flow of the 

sensor nodes, sink nodes, edge nodes, and cloud. 

4.2 Data Frame Structure 

The data frame of the sensor node includes sensor 

number sid, collection time time, original collection 

data data, and data service type type and is recorded as 

SDF. The sink node will add the sink node number siid 

and the result sdata of the SSDF with respect to SDF 

and is recorded as SIDF. The data frame of the edge 

node contains SIDF, the edge node number eid, the 

fusion result of similar multisource data edata1, the 

result of heterogeneous multisource data fusion edata2 

and is denoted as EDF, as shown in Figure 4. 

 

(a) Sensor (b) Sink node 

 

(c) Edge server (d) Cloud 

Figure 3. Data processing flowchart 

 

Figure 4. Data Frame structure 
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4.3 Algorithm of the Single Source Data 

Fusion  

For a given sensor node ,i j< > , the SSDF 

algorithm at time t uses Formulas (1)-(6) to fuse the 

data of a certain sensor in the time dimension. It also 

uses the queue 
i

Q  to store the data sent by the 

associated sensor node. The implementation of SSDF 

is described as follows: 

 

Algorithm 1. SSDF 

Input: 

sd is used to receive the data from the sensor, the data 

type is SDF 

u and l are the upper and lower bound arrays of the 

data collected by the sensor 

a is the variance threshold array of the data collected 

by the sensor 

θ is the number of valid data in the queue 

Output: 

Q is the buffer queue of the sink node 

1. SSDF(sd,Q,u,l,a,θ) 

2. { 

3. InitSIDF(fs); //Init SIDF 

4. if (sd.data > u[sd.sid] or sd.data < l[sd.sid]) { 

5. //Exceed the upper or lower bound data 

6. fs.sdata = u[sd.sid] or l[sd.sid]; } 

7. if (abs(sd.data-Q[rear].SDF.data) > a[sd.sid]) { 

8. // Changes exceed the threshold 

9. fs.sdata = Q[rear].SDF.data; } 

10. if (Q.len<θ) {// Not enough data can be fused 

11. EnQuene (Q,fs); return;} 

12. for (i = Q.front to Q.rear) {// Moving average 

fusion 

13. sum = sum+Q[i].sdata; } 

14. fs.sdata = (sd+sum)/( θ+1); 

15. EnQuene (Q, fs); 

16. } 

 

4.4 Multisource Data Fusion 

Multisource data fusion is divided into SMDF and 

HMDF. The edge node receives the SIDF data sent by 

the sink node and stores it then executes SMDF and 

HMDF to generate edge data frame (EDF). 

4.4.1 Algorithm of the Similar Multisource Data 

Fusion 

For sensors with redundant nodes, the algorithm 

uses Formulas (7)-(10) to improve the accuracy and 

reliability of the collected data by fusing redundant 

data. The implementation of SMDF is described as 

follows: 

 

 

 

Algorithm 2. SMDF 

Input: 

s is the SIDF that needs to be fused 

D store SIDF queues of all sink nodes 

ß is the maximum collection time interval 

Output: 

fe is used to store the fusion result 

1. SMDF (s, D, ß, fe) 

2. { 

3. InitSIDF(si); 

4. InitH1 (h1); 

5. for (i=0 to D.len) { 

6. // Establish a collection of similar sensors 

7. for (j=0 to D[i].len) { 

8. if (s.SIDF.SDF.type == D[i][j].type) { 

9. EnQueue (h1, i, j); } 

10. } 

11. } 

12. for (i = 0 to h1.len) { 

13. // Find collected data that meets the constraint ß 

14. rear = D[h1.m][h1.n].len-1; 

15. if ((D.SDF.time-s.SDF.time) < ß){ 

16. EnQueue (si, D); } 

17. } 

18. for (i = 0 to si.len){ 

19. // Fusion of data that meets the conditions 

20. sum = sum+si[i].SIDF.sdata; 

21. } 

22. fe.SIDF = s.SIDF; 

23. fe.edata1 = sum/s.len; 

24. } 

 

4.4.2 Algorithm of the Heterogeneous Multisource 

Data Fusion 

According to Formulas (7), (8), (11), (12), the 

HMDF algorithm uses the correlation strength between 

sensor nodes to perform a complementary fusion and 

improve the accuracy and reliability of collected data. 

The process of determining the presence of related 

nodes is combined with specific application scenarios. 

Therefore, before executing HMDF, it is necessary to 

configure the related node sequence H2 according to 

Formula (11) in combination with actual applications. 

The implementation of HMDF is described as follows: 

 

Algorithm 3. HMDF 

Input: 

s is the SIDF that needs to be fused 

h2 stores heterogeneous associated sensor nodes 

D store SIDF queues of all sink nodes 

ß is the maximum collection time interval 

γ1, γ2, γ3 are fusion factors 

Output: 

fe is used to store the fusion result 

1. HMDF(s, h2, D, ß, fe, γ1, γ2, γ3) 

2. { 
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3. InitSIDF(si); 

4. for (i = 0 to h2.len){  

5. //Query the data in h2 that meets the time 

constraints ß  

6. rear = D[h2[i].m][h2[i].n].len-1; 

7. if ((D.SDF.time-s.SDF.time)< ß){ 

8. EnQueue(si, D[h1.m][h1.n] [rear]); } 

9. } 

10. for(i = 0 to si.len){  

11. //Fusion of the data according the fusion factors 

γ1, γ2, γ3 

12. for (j = 0 to h2.len){ 

13. //According to the correlation choose different 

fusion factors 

14. if (si.[i].SIDF.SDF.sid == j){ 

15. if (h[j].ρ ==ρ1){// Strong correlation 

16. sum1 = sum1+si[i].SIDF.sdata;count1++; 

17. } else if(h[j].ρ ==ρ2){// Moderate correlation 

18. sum2 = sum2+si[i].SIDF.sdata;count2++; 

19. } else if(h[j].ρ ==ρ3){// Weak correlation 

20. sum3 = sum3+si[i].SIDF.sdata;count3++;} 

21. sum = (sum1/count1)×γ1+(sum2/count2)×γ2+ 

22. (sum3/count3)×γ3;  

23. } 

24. fe.SIDF = s.SIDF;  

25. fe.edata2 = sum+s×(1 - γ1 - γ2 - γ3); 

26. } 

 

5 Simulation and Analysis 

The simulation is based on MSP430 and CC2530 

chips for completing the hardware design of sensors 

and sink nodes. We use IBM System x3650 as an edge 

node, C language to implement various data fusion 

algorithms, and Python to analyze data. To verify the 

effectiveness of the simulation, we use three kinds of 

sensors to collect respiratory rate, pulse rate, and 

temperature data, with sampling periods 1000, 2000, 

and 3000 ms, respectively. To test the system 

performance under different parameter conditions, the 

simulation is carried out at six settings with regard to 

the number of sensors associated with the sink node. 

Each simulation time is 300 s, and the test data 

manually sets the abnormal data. The data follows 

the normal distribution 2( , ),N μ σ  ( ) / 2,U Lµ = −  

( ) / 2,U Lσ = +  where U and L refer to the upper and 

lower limits of the collected data. The simulation 

platform and specific parameter settings are shown in 

Table 1. The number of simulations indicates the total 

number of times each group of experiments is carried, 

whereas the simulation time refers to the duration of 

each group. Other simulation parameters have been 

explained in detail in Section 3. 

 

 

This article designs the simulation from two 

perspectives: the first is to analyze the improvement in 

the accuracy of the measurement results given by the 

fusion algorithm and measure the percentage of 

abnormal data in the total abnormal data that can be 

effectively removed by the fusion algorithm. The 

second is to analyze the efficiency of the hierarchical 

data fusion model based on edge computing and verify 

it by comparing the execution time of the algorithm in 

various situations to each other. The execution time of 

the algorithm refers to the time required to execute the 

data fusion algorithm. To facilitate the data analysis, 

we will simply process the parameters that have no 

substantial impact on the simulation results according 

to a given situation. For example, for the processor 

processing rate ω  in Formula (3), we use a constant 

value equal to 1 in the calculation because ω  has little 

effect on the simulation results. 

The simulation first analyzed the abnormal data 

detection rate of SSDF, SMDF, and HMDF algorithms 

in the same data set. It then compared the fusion 

effectivity of the three algorithms. SSDF is used to 

fuse data from a single sensor, SMDF is used to fuse 

data from multiple sensors of the same type, and 

HMDF is used to fuse two types of sensor data: 

respiratory rate and pulse rate. 

Figure 5 shows the comparison between the 

abnormal data detection rates of the three fusion 

algorithms under six different sensor configurations: 

from 1, 1, 1 to 6, 6, 6 of the respiratory, pulse, and 

body temperature sensors. Notably, HMDF has highest 

average abnormal data detection rate as well as the 

most effective fusion. SMDF has the second-best 

results, whereas SSDF has the lowest. This indicates 

that the data fusion algorithm proposed here can 

effectively improve the accuracy and reliability of the 

collected data. Furthermore, when the number of 

sensors is only one, the detection rates of the three 

algorithms are not significantly different. However, as 

the number of sensors increases, the detection rates of 

SMDF and HMDF also increase, which presents an 

approximately linear growth curve, whereas the 

detection accuracy of SSDF does not change 

significantly. This is a result of an increase in sensor 

nodes, also increasing the amount of redundant and 

complementary data, such that SMDF and HMDF 

algorithms can make full use of the redundancy or 

complementarity of similar and heterogeneous sensor 

data to improve performance. On the other hand, SSDF 

mainly relies on the data of a single node, and an 

increase in sensor nodes cannot improve the fusion 

effect. 
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Table 1. Simulation parameters 

 Edge Sink Node Sensor 

Processor IBM System x3650 MSP430 CC2530 (8051CPU) 
Hardware platform 

Wireless Link 
2.4GHz 

IEEE 802.15.4 

2.4GHz 

IEEE 802.15.4 

2.4GHz 

IEEE 802.15.4 

Programming language C and Python 

Type of sensors Breathing, Pulse, Body Temperature 

Number of sensors 1, 1, 1; 2, 2, 2; 3, 3, 3; 4, 4, 4; 5, 5, 5; 6, 6, 6 

Correlation sensor Respiratory rate, Pulse rate 

Regression coefficients a, b 4, 0 [24-25] 

Sampling period 1000ms, 2000ms, 3000ms 

Upper limit U 30, 120, 40 

Lower limit L 12, 48, 30 

Data change threshold a 1, 2, 0.5 

Queue length θ  10 

Lower limit of correlation 

coefficient φ  0.3 

Fusion time limit β  6000ms 

Fusion factor 1, 2, 3λ λ λ  0.3, 0.2, 0.1 

The simulation time 300s 

Packet size 20 Bytes 

The amount of data 

Respiration rate 300 times 

Pulse rate 150 times 

Body temperature 100 times 

Simulaiton parameters 

The number of simulaitons 30 times 

 

 

Figure 5. Comparison between the accuracies of the 

three algorithms 

Figure 6 is the simulation results of the three fusion 

algorithms SSDF, HMDF, and SMDF executed on the 

sink node. Figure 7 is the simulation result of SMDF 

executed on the sink node with HMDF and SMDF 

scheduled to be executed on the edge node. As the 

number of sensors increases, the execution time of 

HMDF and SMDF, as shown in Figure 6, has a larger 

increase than that of SSDF. However, the increase in 

Figure 7 is relatively monotonous. It is observed that 

the fusion algorithm based on the layered edge 

computing architecture designed in this study can 

effectively reduce the execution time of the algorithm, 

improving the real-time performance of the data fusion. 

When there is only one instance of each of the three 

types of sensors, the execution times of SSDF and 

SMDF are almost similar, whereas HMDF takes 

 

Figure 6. Comparison between the execution times of 

the three algorithms without edge computing 

architecture 

 

Figure 7. Comparison between the execution times of 

the three algorithms with edge computing architecture 
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significantly more time than both. This is because each 

type of sensor has only one instance, but SMDF fusion 

requires at least two similar sensor nodes. Thus, this 

type of fusion cannot be performed, and the execution 

time remains almost the same as that of SSDF. On the 

other hand, when there is only one respiratory and 

pulse rate, the fusion requirements of HMDF are met. 

Therefore, the execution time of HMDF is significantly 

higher than those of SSDF and SMDF. When the data 

size is not very large, the difference between different 

algorithms is small. However, when the number of 

sensors increases and the data size increases 

accordingly, the increase in the execution times of 

HMDF and SMDF algorithms is greater than that of 

SSDF. This is because the two algorithms need to fuse 

data collected by multiple similar and heterogeneous 

sensors, whereas SSDF only fuses data from a single 

sensor at a given time. As a result, the increase in 

execution time of SSDF is relatively low. 

From a comprehensive analysis point of view, the 

fusion algorithm based on the layered edge computing 

architecture proposed here has high data fusion 

performance and effectively improves the accuracy of 

the detection results. However, the execution time 

increases synchronously with increasing number of 

nodes this increase is controllable and acceptable 

because it is limited by the node scale of WBAN and 

the architecture of edge computing. 

The Kalman filter algorithm is a highly versatile 

data fusion algorithm with a wide range of applications. 

Therefore, we choose to compare HDMF to Kalman 

filter to analyze the performance differences between 

the two algorithms in terms of accuracy and execution 

time. 

Figure 8 is a boxplot diagram of the abnormal data 

detection rates of HDMF and Kalman filter, showing 

30 simulation datasets under 6 different sensor number 

configurations. It is observed that there is not much 

difference between the two when the sensors are few. 

However, with an increase in the number of sensors of 

each type, especially when there are more than three, 

the detection rate of HDMF is significantly higher than 

that of the Kalman filter. This is because HDMF 

requires sufficient nodes to fully leverage the 

advantages of multisource fusion, make full use of the 

correlation between sensor data, and effectively 

improve the accuracy and reliability of measurement 

results. 

Figure 9 is a boxplot diagram of HDMF and Kalman 

filter execution times, showing 30 simulation datasets 

under 6 different sensor configurations. It is observed 

that with an increase in the number of sensors, the 

execution time required by the Kalman filter shows a 

slower increase trend. This is because the number of 

sensors to be processed by the algorithm also increases, 

and the data processing time of a single sensor remains 

unchanged. Therefore, there is not much increase. 

However, in the same case, the execution time required  

 

Figure 8. Comparison between the accuracies of 

HDMF and Kalman Filter 

 

Figure 9. Comparison between the execution times of 

HDMF and Kalman Filter 

by HDMF shows an increasing trend that is 

significantly faster than that of Kalman filter because 

increasing the number of sensors increases redundancy 

and complementary fusion. This results in a faster 

increase in the algorithm execution time compared to 

that of the Kalman filter. 

Considering the accuracy and execution time of 

fusion results, the abnormal data detection rate of 

HDMF is significantly higher than that of the Kalman 

filter with an increasing number of sensors. This 

indicates that HDMF has better accuracy and reliability 

in WBAN. At the same time, when the number of 

sensors is small, the difference in execution time is 

very small. Although the increase in HDMF execution 

time is greater than that of Kalman Filter with an 

increase in the number of sensors, considering that the 

sensors in WBAN are mainly wearable devices, the 

number of sensors is not too large. When the 

architecture based on edge calculation is adopted, the 

increase in algorithm execution time is controllable. 

Therefore, compared to the improvement in detection 

accuracy, the cost of such execution is justified. 
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The simulation results show that the data fusion 

algorithm based on hierarchical edge computing 

architecture proposed here can effectively improve the 

accuracy, reliability, and real-time nature of sensor 

measurement results under the condition that the 

execution time is acceptable. 

6 Conclusions 

This research studies the application of WBAN in 

the medical monitoring field and analyzes the problems 

and challenges faced by sensor data fusion. To solve 

existing problems, a hierarchical data fusion model 

based on edge computing and corresponding data 

fusion algorithm are proposed. First, to address the 

real-time requirement of sensor data fusion, an 

effective scheduling of data fusion tasks is proposed 

regarding the sensors, sink nodes, edge nodes, and 

cloud. Through reasonable task offloading, the real-

time performance of data fusion is improved. Second, 

utilizing the redundancy and complementarity of the 

sensor data in time and space, three data fusion 

algorithms—SSDF, SMDF and HMDF—are proposed, 

which effectively improve the accuracy and reliability 

of the collected data. Finally, a simulation platform is 

built, which is used to analyze the performance of our 

prosed algorithm with regard to the accuracy, 

reliability and execution time parameters of the data 

fusion. The simulation results prove the effectiveness 

of the proposed algorithm. 
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