
A Bit Vector-Based Diagnosis Mechanism for Firewall Rule Anomalies in IPv6 Networking Environment 867

A Bit Vector-Based Diagnosis Mechanism for

Firewall Rule Anomalies in IPv6 Networking Environment

Chi-Shih Chao1, Stephen J. H. Yang2

1 Communications Eng. Department, Feng Chia University, Taiwan
2 Computer Sciences and Information Eng. Department, National Central University, Taiwan

cschao@fcu.edu.tw, Stephen.Yang.Ac@gmail.com*

*Corresponding Author: Chi-Shih Chao; E-mail: cschao@fcu.edu.tw

DOI: 10.53106/160792642021072204014

Abstract

Firewalls are what some consider to be the most

essential devices which can safeguard networks.

Misconfigurations of firewall rules often lead to rule

anomalies which can be easily used by network attacks to

paralyze the managed network. However, finding such

rule anomalies is no easy task due to its time-consuming,

laboring, strenuous characteristics. What’s worse is, with

the massive and increasing deployment of IPv6 in the

current Internet, anomaly diagnosis for firewall rules

becomes even harder. In this paper, a bit vector-based

anomaly diagnosis approach is proposed and realized

where it can pinpoint anomalies among IPv6 firewall

rules not only effectively, but also much more efficiently

and more easily. As a result, a visualized platform for our

IPv6 firewall rule anomaly diagnosis has been implemented

and comprehensive performance evaluations on anomaly

diagnosis have been conducted also, in which our

developed approach shows its excellence and feasibility.

Keywords: Rule anomalies in IPv6 firewalls, BST-based

vectorization, Rule anomaly diagnosis,

Diagnosis visualization and system usability

1 Introduction

As the development and applications of IoT and 5G

become more popular nowadays, Internet has already

embraced the increasing and massive deployment of

IPv6. For this, network attacks become far fiercer than

ever before since the amount of things that can be able

to get access to Internet has become fairly large, which

makes the amount of network attacks reach a new all-

time high [1]. A network firewall is configured with

packet filtering rules in its ACL (Access Control List)

file which is used to inspect the passing packets and

then decide whether they can pass or not, to shield the

protected network as well as its estate from being

attacked. The task of editing, ordering, and distribution

of these rules should be done with caution and

deliberation because misconfigurations of these rules

can give rise to rule anomalies where malicious

attackers can use them to launch unpredictable network

attacks [2-3]. However, network administrators are

often stranded by this task since it can be found that

there are usually hundreds, or thousands of rules in an

ACL file and these rules can affect mutually. It reveals

why researchers like to compare the firewall configuring

task to programming a distributed system in assembly

language [4]. And now, the introduction of IPv6 lets

this task much more troublesome, though really usable

systems or platforms which can handle the task in IPv6

networking environment are still hard to be found.

The research work of E. Al-Shaer and H. Hamed are

most acclaimed and renown worldwide in this field.

They are the first ones who define a rule anomaly as a

duplicate or multiple rule-matching for a packet in a

rule set. Based on the concept, they formally define

several different intra-/inter-ACL (Access Control List)

anomalies among the firewall rules [5-6]. Nevertheless,

since a Finite-State-Machine (or FSM)-based comparison

between each pair of filtering rules for anomaly

diagnosis should be conducted, their rule anomaly

inspection algorithm will meet an inefficiency as the

number of rules or firewalls grows [7]. Y. Yin et al. [8]

segment the IP address space, which is formed by the

managed source and destination networks, into blocks

where each block is precisely split by the IP addresses

in the conditional field of each firewall rule. With these

varying-sized blocks, a SIERRA tree is built and two

conflict rules would be hanged on the same branch of

the tree [9]. Network managers only needs to do the

anomaly inspections or check-ups on rules in the same

spatial block(s) (or on the same branches in the

SIERRA tree), as opposing to wasting enormous time

to conduct comprehensive pair-wise rule comparisons.

Still, a clean-slate reconstruction of the SIERRA tree is

very possibly unavoidable if a simple rule deletion or

insertion is done [7]. It is because space blocks are

precisely sliced according to the IP addresses of each

rule. So, once one rule changes, the whole spatial rule

relationship would change, and the corresponding data

structures could be reconstructed.

We have gotten involved in this field over a decade

868 Journal of Internet Technology Volume 22 (2021) No.4

and the research results were hailed as one of the most

useable systems in the world [10]. At beginning, a

RAR tree (Rule Anomaly Relation tree) data structure

was designed to rule out firewall rules having no

relationship (or intersection) between each other in

packet filtering so as to reduce the time-consuming

pairwise rule comparisons needed by [5]. With the

innate characteristic of this tree structure, local

diagnosis results can be easily integrated for

cross/inter-firewall rule anomaly diagnosis [11]. After

two-year striving, an upgrade version was proposed

where a new data structure was implemented, called

ARAR tree (Adaptive Rule Anomaly Relation tree),

which can not only slice the packet filtering space

more properly and then fasten the diagnosis, but also

keep the advantage of tree structure for system

extensibility. After that, a further improved data

structure was provided in our system development,

called Enhanced ARAR tree, in which it incorporates

more accurate coordinates to do slicing work on packet

filtering space such that a better performance on

diagnosis can be obtained [7].

In addition to the most-watched achievements

mentioned above, an abundance of related works and

efforts have already done in the field [10, 12-13]. But,

till now, no clue shows they are capable of undertaking

the rule anomaly diagnosis for IPv6 firewalls, not to

mention a useful system which can truely facilitate

diagnosis interactions with network administrators or

experts, since the expansion of the IPv6 addressing

makes the anoamly diagnosis too much of a hassle. To

address the need, in this paper, our anomaly diagnosis

approach is proposed and implemented. In contrast to

the other achievements, a new data structure – bit

vector is employed and realized in our work to depict

the relationships among rules as well as the location of

the filtering area of a rule on a two-dimensional traffic

filtering diagram, where it can give a boost of figuring

out rule anomalies for IPv6 firewall not only

effectively, but also much more efficiently and

easilierly. A brand new visualized interface is also

developed and integrated in our developed prototype

mechanism to effectively help users deal with rule

anomalies within IPv6 firewalls. The rest of this paper

is organized as follows: We organize Session 2 to brief

the basis of rule anomalies and how our two-phased

procedure can accomplish rule vectorization with a

binary search tree-based (or BST-basd for short)

methodology. In Session 3, we spell out how our rule

anomaly diagnosis works via the calculated bit vectors

on a two-dimensional traffic filtering diagram with

simple OR plus AND logic operations. As a result,

Section 4 presents the visualizsed graphic user

interface of our prototype mechanism. Beyond that,

system implementation and performance evaluations

for our developed mechanism are also detailed. At last,

Section 5 concludes this paper and shows some

directions of our system development in the upcoming

future.

2 Rule Anomalies and BST-Based

Vectorization

2.1 Firewall Rule Anomalies

For the anomalies between firewall rules, they are

completely defined and classified by E. Al-Shaer et al

[5-6]. Based on the <Action> field of ACL rules,

filtering area, and rule order in ACL, there are five

anomalies between each pair of firewall rules. As

shown in Figure 1, shadow anomaly means the filtering

area of rule R2 is totally covered by that of rule R1, but

R1 and R2 have different values of <Action>. In this

case, R2 is “shadowed” since it can not be triggered

due to the existence of R1. On the contrary,

redundancy anomaly stands for the filtering area of R2

is totally covered by that of R1, and R1 and R2 have

the same values of <Action>, e.g., both are “accept” or

“deny.” In this situation, R2 fully reveals its

redundancy and unnecessity on filtering function. In

addition, there is another situation which can be called

rule redundancy, where the filtering area of R2

contains that of R1 and they two have the same value

of <Action>. In most of cases, R1 can be removed

since its filtering function can be completely replaced

by R2. Generalization anomaly means the filtering area

of R2 contains that of R1 and they two have different

values of <Action>. Correlation anomaly is that R1 and

R2 have intersection between each other and they have

different values of <Action>. At last is non anomaly, as

shown in Figure 1, in which two rules have no

interaction or have intersections but with the same

action values.

R2

R1

R1

R2

R1

R2

R1

R2

Different Action

Same Action

Shadowing Anomaly

(i.e., R2 � R1)

Redundant Anomaly

Same Action

Different Action
Generalization Anomaly

(i.e., R2 � R1)

Different Action
Correlation Anomaly

Same Action

Non Anomaly

Irrespective of Action

SIP

SIP

SIP

SIP

DIP

DIP

DIP

DIP

Figure 1. Types of firewall rule anomalies

A Bit Vector-Based Diagnosis Mechanism for Firewall Rule Anomalies in IPv6 Networking Environment 869

2.2 Rule Vectorization – Phase I

To figure out the anomalies defined in Figure 1 in a

firewall rule set, it can be found that the filtering area

of each rule on a two-dimensional traffic-filtering

diagram should first be located or indicated, no matter

what diagnostic methods will be adopted. And then,

the spatial relationship between each pair of rules on

the diagram can be calculated by comparing the

location coordinates of their filtering areas. Unlike in

IPv4 firewalls, such coordinate comparing or locating

for rules in IPv6 firewalls will cost abundant

computing resources, since IPv6 addresses is 128-bit

long, rather than 32-bit long. For the reason, a brand

new coordinating system which can facilitate

indicating the relationships between the filtering areas

of IPv6 firewall rules in a two-dimensional traffic

filtering diagram is needed. In our work, a BST-basd

bitwise vectorization method is proposed to fasten the

calculation of spatial relationships among IPv6 firewall

rules. Figure 2 shows the example used for explaination

of the conecpt behind our vectorization method which

encodes the spatial relationships among filtering rules.

In Figure 2, there are three lines, x, y, and z on the axis,

with their corresponding durations, which can be

depicted in the form of a BST shown in Figure 3. Each

node Ei in the BST corresponds to an integer interval

on the axis and in this fasion, the intergal duration of

each line can be represneted as Figure 4; e.g, the

duration of line x is [10, 20] and can be repesented as

{E1, E2, E3} since its duration spans three intervals:

Interval 1, 2, and 3.

Figure 2. Example of three integer lines

Figure 3. The BST corresponding to Figure 2

Figure 4. BST-based representation for each line

duration in Figure 2

By utilizing the concept of our BST-based duration

representation, two BST trees can be built; one for the

SIP fields and the other for the DIP fields of a set of

firewall filtering rules, to record the spatial locations of

these rules on a two-dimensional traffic filtering

diagram. The example IPv6 rule set used for

explanation throughout this paper is shown in Figure 5

and the filtering area of each rule on the traffic filtering

diagram are depicted in Figure 6. Figure 7 and Figure 8

are the corresponding BSTs for source IP fields and

destinaion IP fields of the IPv6 rule set, built upon with

the concept just mentioned, where Ri.S indicates the

starting IP address of rule Ri and Ri.E indicates the

ending IP address of rule Ri.

Figure 5. Example IPv6 rule set

Figure 6. Corresponding traffic filtering diagram for

Figure 5

870 Journal of Internet Technology Volume 22 (2021) No.4

Figure 7. BST for rules’ source IP fields

Figure 8. BST for rules’ destination IP fields

2.3 Vectorization – Phase II

With the construction of BSTs in Phase I, in this

phase, an index will be marked to each one of nodes of

BTSs, using an in-order traversal of a binary tree:

Step 1: Travse the BST from the root down to the first

External node (the left-most node), marking it as index

0. For example in Figure 7, we can travese the BST of

the SIP fields from root R0.S down to the left-most

node of this tree; i.e., the left child of R9.S.

Step 2: Use this External node as the very beginning

node, starting an in-order tree traversal, to index each

one of the nodes in this BST, as the order of being

visited. In Figure 7, the index value of R3.E is 29

standing for that it is the 29th node being visited by our

in-order tree traversal.

Step 3: Find the corresponding node indexes in the

BSTs for the source IP address and destination IP

address of each filtering rule, and vectorize the filtering

rule’s duration. For example in Figure 7, the starting

and ending IP addresses in the SIP fields of rule R0 are

R0.S and R0.E in the BST, which are indexed as 11

and 23, respectively. So, like Figure 9, nodes indexed

12, 14, 16, 18, 20, and 22 are set to 1 and the others are

0, representing R0 effective filtering durations in SIP.

In this way, nodes R1.S and R1.E are indexed as 19

and 21, respectively, the node indexed 20 can be set to

1 while the others are 0, and then we append the bit

values to the results of Figure 9 (as shown in Figure

10).

Step 4: By the same token, after each of the filtering

rules is vectorized and appended, two vector tables for

the SIP fields and DIP fields of the rule set can be

obtained (shown in Figure 11 and Figure 12), in which

an interval indexed i with a bit vector with n elements

means there are n rules in total in the input rule set and

the jth element of the vector will be 1 if rule j has

filterig effects on interval i.

3 Rule Anomaly Diagnosis

In comparison with [5] which needs conducting a

FSM-based comparison between each pair of filtering

rules for anomaly diagnosis, our approach wipes out

those rules which have no relationship (i.e., no

intersection) on the traffic filtering diagram and put the

rest into our diagnosis procedure with a refined FSM,

to fasten the rule anomaly diagnosis.

A Bit Vector-Based Diagnosis Mechanism for Firewall Rule Anomalies in IPv6 Networking Environment 871

Figure 9. Results after R0’s SIP vectorization

Figure 10. Results after R1’s SIP vectorization

Figure 11. Vectorization results for SIP fields

Figure 12. Vectorization results for DIP fields

3.1 Anomaly Diagnosis

After our bit vector-encoding of the traffic filtering

diagram, in the next step, we turn to figure out those

rules which have spatial relationships; e.g., overlapping

filtering effects shown in Figure 1, and get rid of the

other rules which do not have the relationships, to

accelerate the anomaly diagnosis. [8] propose an

approach to isolate all of the problematic areas on the

traffic filtering diagram, which could trigger rule

anomalies, by conducting the AND logic operation on

each pair of source vectors and destination vectors. For

instance, in Figure 13, if we conduct bitwise AND

logic operation on vector � (01011010) from SIP and

vector � (01011100) from DIP, the result (01011000)

with three non-zero elements in the vector signifies

that rules R1, R3, and R4 all have filtering effects on

this block indicated by these two vectors. It also means

these three rules have spatial relationship among them

and further checks for types of rules anomalies are

needed. Given another example, if we AND vector �

(01000110) from SIP and vector � (01101100) from

DIP, we can obtain (01000100) which means there are

two rules R1 and R5 within this block, and further

inspection for rule anomaly types between R1 and R5

would proceed. Yet, their method revolves more

around the isolation of problematic areas/blocks on the

traffic filtering diagram, and thus extra data structures

along with the corresponding algorithms are needed for

the diagnosis of rule anoamlies.

Figure 13. Isloation of problematic filtering areas

With our bit vector-encoding of the traffic filtering

diagram, an efficient and effective rule anomaly

diagnosis is developed, in which no efforts for extra

data strucutures have to be done. After having the

vectorization results (as shown in Figure 11 and Figure

12), the algorithm CalculateOverlap in Figure 14 is built

and used by the filtering rules to calculate the spatial

relationships on the traffic filtering diagram between

one rule and the others. In the case of Figure 6, if we

want to know the spatial relationships on the traffic

filtering diagram between rule R0 and the other rules,

872 Journal of Internet Technology Volume 22 (2021) No.4

Figure 14. Algorithm CalculateOverlap()

the corresponding vectors of SIP and DIP containing R0

which are indicated by red rectangle in Figure 15(a)

and Figure 15(b) will first be OR-ed separately in

algorithm CalculateOverlap, seen in Figure 16. And then

conduct an AND logic operation to these two OR-ed

results, we can get a bit vector (1101110001) at the

bottom of Figure 16, which represents rules R1, R2, R3,

R4, R5, and R9 have spatial relationships or

overlapping filtering effects with R0. In the same

fasion, we can get the spatial relationships on the

traffic filtering diagram among all rules and then input

the calculated bit vector for each one of them into our

refined FSM (Finite State Machines) in Figure 17, for

the final diagnosis results (shown in Figure 18).

3.2 Time Complexity Analysis

The analysis of the time-complexity of our

mechanism can be broken down as follows:

(1) For Phase I of our rule vectorization in Section

2.2, it depends on the time of the establishment of two

BSTs; one for the SIP fields and the other for the DIP

fields of a set of firewall filtering rules. Thus, its time

complexity can be represented as O(nlogn), where n is

the the number of rules in the filtering rule set.

(2) The Phase II of our rule vectorization in Section

2.3, it depends on the time of traversal as well as

search of two built BSTs to accomplish the

vectoriztion of a two-dimensional traffic filtering

diagram, and hence its time complexity can also be

represented as O(nlogn), where n is the the number of

rules in the filtering rule set.

(a) SIP

(b) DIP

Figure 15. Vectors for R0’s duration in (a) SIP and (b) DIP

Figure 16. Calculated vector for R0’s spatical relationships with the other rules

A Bit Vector-Based Diagnosis Mechanism for Firewall Rule Anomalies in IPv6 Networking Environment 873

Figure 17. FSM for final rule anomaly diagnosis

Figure 18. Final anomay diagnosis reults for rules in

Figure 5

(3) In rule anomaly diagnosis mentioned in this

section, to find rules which have spatial filtering

relationships, Algorithm CalculateOverlap is designed

and used. Since each rule in the rule set would go

through the OR-plus-AND logic operations in

CalculateOverlap with the vecrotizaton results (shown in

Figure 11 and Figure 12), the time complexity goes to

O(n2), where n is the the number of rules in the rule set.

And then, we input the rest of filtering rules into our

refined FSM for final rule anomaly diagnosis, the time

complexity would be O(m2), where m is the number of

rules without spatial relationships and smaller than n in

most of the cases.

(4) From (1) to (3), we can summarize the rule

anomaly diagnosis of our mechanism has time

complexity of O(n2).

4 System Implementation and Performance

Evaluation

Figure 19 is our rule anomaly diagnosis mechanism

for IPv6 firewalls with the visualized interface which

shows the corresponding two-dimensional traffic

filtering diagram of the input rule set in Figure 5

(dedicated for service port 80 in this case). While

moving the mouse around on top of a block of the

diagram, the corresponding vector of the block, SIP and

DIP durations, and all the rules having effects on the

block will be displayed at the right subwindow in

Figure 19. Users can click the rule anoamly they are

interested in, like Correlation Anomaly between R0

and R4 in Figure 20, and the visualized results

containing anomaly type as well as locations/

relationships of these two rules will be displayed on the

left subwindow in Figure 20. Our visualizaton interface

also provides a 3-D augmented fucntion which

provides users with 360 degree roation, zoom-in/out,

and rule selection, for multiple and thorough diagnosis

viewpoints (Figure 21).

874 Journal of Internet Technology Volume 22 (2021) No.4

Figure 19. Traffic filtering block’s information

Figure 20. Visualized diagnosis results between two

certain rules

Figure 21. 3-D augmentation for rule anoamlies

Performance evaluation of our mechanism is

conducted and comparisons are also made with two

other anomaly diagnosis systems: one is from [5] using

one-by-one (or pairwise) rule-comparing approach, and

the other is our previously developed system running

with a differrent data structure called Enhanced ARAR

Tree [7]. All of the experiments are run on our PC-

based test platform which is equipped with an Intel

core i5-4570 CPU @ 3.20GHz, 8GB RAM, and

Windows 10 operating system. The following figures

of experimental results show the time in seconds and

memory space in kilobytes, respectively, where the

time includes the creation of data structures and the

execution of anomaly diagnosis, and rules are

generated by ClassBenchv6 [14-15]. In addition, to

obtain a thorough evaluation, our experiments take two

distinct conditions of filtering spcace distributions into

account: one is loose distriubion (Figure 22(a)), and the

other is dense distribution (Figure 22(b)). On the basis

of Figure 23 to Figure 26, it turns out that our

diagnosis mechanism with the BST-based bitwise

vectorization for IPv6 firewalls not only shows its

excellence on execution time at a limited and tiny cost

of memory space, but also reveals its exceptional

stability in different filtering space distributions of

rules.

(a) (b)

Figure 22. Filtering space distribution of rules

Figure 23. Time needed for rules in loose distribution

Figure 24. Space needed for rules in loose distribution

A Bit Vector-Based Diagnosis Mechanism for Firewall Rule Anomalies in IPv6 Networking Environment 875

Figure 25. Time needed for rules in dense distribution

Figure 26. Space needed for rules in dense distribution

5 Conclusion and Future Work

With the demand of IP addresses is growing, IPv6 is

emerging to solve the problem of IPv4 address

exhaustion, whereas it hardens the work of anomaly

diagnosis for rules in IPv6 firewalls. Our work aims at

the development of a truly useful system for this

challenge. Different from those researches which have

been up so far in this topic, in this paper, a rule

anomaly diagnosis mechanism dedicated for IPv6

firewalls is proposed, where it can provide a speedy

and correct anomaly diagnosis along with its novel

BST-based bitwise vectorization data structure and

corresponding algorithms, and the performance

evaluations show its effectiveness and efficiency. A

visualized graphic user interface has also been

designed, implemented, and integrated with our

developed mechanism to complete our work towards

the goal of real usability in IPv6 firewall management.

As the next steps, to accommodate the new demands

of anomaly diagnosis, more interesting ingredients and

many of technical challenges have to be considered,

e.g., augmenting our system with functionality of

parallel processing or data mining [16], adding

inspection functions for behavior mismatching among

firewalls, checking port configuration anomalies, and

firewall diagnosis deployment in IoT networking

environment [17]. For these, with hard working a new

version is expected to be rolled out at the end of 2021.

In addition, the emergence and development of SDN

(Software Defined Network) technologies have

impacted the rule anomaly diagnosis of firewalls and it

has become one of our research targets in this field to

go on.

Acknowledgments

This work is supported by MOST, R.O.C., under

contract MOST-109-2221-E-035-058.

References

[1] A. X. Liu, A. R. Khakpour, J. W. Hulst, Z. Ge, D. Pei, J.

Wang, Firewall Fingerprinting and Denial of Firewalling

Attacks, IEEE Transactions on Information Forensics and

Security, Vol. 12, No. 7, pp. 1699-1712, July, 2017.

[2] E. Al-Shaer, J. Lobo, L. Kalger, Policies for Distributed

Systems and Networks, IEEE Press, 2008.

[3] H. Hamed, E. Al-Shaer, Taxonomy of Conflicts in Network

Security Policies, IEEE Communications Magazine, Vol. 44,

No. 3, pp. 134-141, March, 2006.

[4] T. Wong, On the Usability of Firewall Configuration, The 4th

Symposium on Usable Privacy and Security, Pittsburgh, PA,

USA, 2008, pp. 180-185.

[5] E. Al-Shaer, H. Hamed, R. Boutaba, M. Hasan, Conflict

Classification and Analysis of Distributed Firewall Policies,

IEEE Journal on Selected Areas in Communications, Vol. 23,

No. 10, pp. 2069-2084, October, 2005.

[6] E. Al-Shaer, Automated Firewall Analytics: Design,

Configuration and Optimization, Springer, 2014.

[7] C. S. Chao, S. J.-H. Yang, Towards a Usable Anomaly

Diagnosis System among Internet Firewalls’ Rules, Journal

of Internet Technology, Vol. 20, No. 3, pp. 789-799, May,

2019.

[8] Y. Yin, Y. Katayama, N. Takahashi, Detection of Conflicts

Caused by a Combination of Filters Based on Spatial

Relationships, Journal of Information Processing, Vol. 16, pp.

142-156, August, 2008.

[9] Y. Yin, R. S. Bhuvaneswaran, Y. Katayama, N. Takahashi,

Implementation of Packet Filter Configurations Anomaly

Detection System with SIERRA, The 7th International

Conference on Information and Communications Security,

Beijing, China, 2005, pp. 467-480.

[10] A. Voronkov, L. Iwaya, L. Martucci, S. Lindskog, Systematic

Literature Review on Usability of Firewall Configuration,

ACM Computing Surveys, Vol. 50, No. 6, Article No. 87,

January, 2018.

[11] C. S. Chao, S. J.-H. Yang, A Novel Three-Tiered

Visualization Approach for Firewall Rule Validation, Journal

of Visual Languages and Computing, Vol. 22, No. 6, pp. 401-

414, December, 2011.

[12] Y. Z. Cheng, W. P. Wang, J. X. Wang, H. D. Wang, FPC: A

New Approach to Firewall Policies Compression, Tsinghua

Science and Technology, Vol. 24, No. 1, pp. 65-76, February,

876 Journal of Internet Technology Volume 22 (2021) No.4

2019.

[13] C.-S. Chao, S. J. H. Yang, A Novel Mechanism for Anomaly

Removal of Firewall Filtering Rules, Journal of Internet

Technology, Vol. 21, No. 4, pp. 949-957, July, 2020.

[14] D. E. Taylor, J. S. Turner, ClassBench: A Packet

Classification Benchmark, IEEE/ACM Transactions on

Networking, Vol. 15, No. 3, pp. 499-511, June, 2007.

[15] E. Al-Shaer, A. El-Atawy, T. Samak, Automated Pseudo-Live

Testing of Firewall Configuration Enforcement, IEEE

Journal on Selected Areas in Communications, Vol. 27, No. 3,

pp. 302-314, April, 2009.

[16] K. Golnabi, R. K. Min, L. Khan, E. Al-Shaer, Analysis of

Firewall Policy Rules Using Data Mining Techniques, The

2006 IEEE/IFIP Network Operations and Management

Symposium, Vancouver, BC, Canada, 2006, pp. 305-315.

[17] M. M. Noor, W. H. Hassan, Current Research on Internet of

Things (IoT) Security: A Survey, Computer Networks, Vol.

148, pp. 283-294, January, 2019.

Biographies

Chi-Shih Chao currently is an

associated professor at the

Communications Engineering Dept.

of Feng Chia University, Taiwan. His

research interests include network

security, network fault management,

high-speed networks, and wireless

LANs. Dr. Chao received the Annual

Best Paper Awards from Taiwan TANet in 2015 and

2020, respectively. He also serves for plenty of

relevant conferences, journals, and industrial

committees. In addition, he is a member of IEEE and

Phi-Tau-Phi.

Stephen J. H. Yang is the Vice

President of Asia University, Taiwan.

He is also associated with the

National Central University as the

Distinguished Professor of

Department of Computer Science &

Information Engineering. Dr. Yang

received his PhD degree in Electrical Engineering &

Computer Science from the University of Illinois at

Chicago in 1995. Dr. Yang has published over 60

SSCI/SCI journal papers, his research interests include

Big Data, learning analytics, Artificial Intelligence,

educational data mining, and MOOCs. Dr. Yang

received the Outstanding Research Award from

Ministry of Science & Technology (2010) and

Distinguished Service Medal from Ministry of

Education (2015).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

