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Abstract 

The Distributed Trigger Counting (DTC) problem is a 

fundamental block for many distributed applications. 

Such a problem is to raise an alert while the whole system 

receives a pre-defined number of triggers. There have 

been several algorithms proposed to solve the DTC 

problem in the literature. However, these existing 

algorithms are all under the assumption that there is no 

event regarding process moving, leaving and joining in 

the network. In other words, they can be only applicable 

to static networks. The foregoing assumption is not 

practical for dynamic networks with continually changing 

topology. In this paper, we investigate the DTC problem 

for dynamic networks and introduce a distributed 

algorithm without any global assumption. Moreover, to 

reduce the message complexity of the above algorithm, 

we further propose a more message-efficient version, 

only with one additional requirement that all processes 

have learned ahead the upper bound on number of 

processes involved in the computation. 

Keywords: Distributed trigger counting, Distributed 

algorithms, Dynamic networks 

1 Introduction 

The Distributed Trigger Counting (DTC) problem is 

a basic block for many distributed applications, such as 

monitoring [1-11], global snapshots [12-15], 

synchronizers [14-15] and so on. The underlying 

system will raise an alert upon receiving a certain 

number of triggers corresponding to natural events. 

Hence, this problem is especially important to 

monitoring applications of Wireless Sensor Networks 

(WSNs). For example, on the battlefield, sensors can 

be deployed at certain strategic points to detect and 

track enemies. Furthermore, in traffic management, 

when the number of vehicles on the road exceeds a 

pre-defined threshold, the system can raise an alarm to 

inform the supervisor. Likewise, in environment/habitat 

monitoring, sensors can prevent a conflagration by 

detecting if temperatures monitored by most sensors 

are higher than normal. 

Several algorithms have been proposed in the 

literature to solve the DTC problem [14-22]. Most of 

those efforts mainly focused on how to design efficient 

methods based on specific network topologies [14-19]. 

First, in [14-15], the authors proposed a centralized 

algorithm and also demonstrated that its message 

complexity is near-optimal. Particularly, in their 

algorithm, a certain process acts as a coordinator, and 

all other processes communicate with the unique 

coordinator directly for trigger counting. Obviously, 

such a centralized algorithm can only work in a 

network topology with a sole central process and all 

other processes directly connecting to the central one. 

Furthermore, for the above algorithm, each process in 

the network has to know what kind of role it plays in 

advance. 

On the other hand, some decentralized DTC 

algorithms have been proposed in [16-18]. More 

specifically, the authors in [16-17] proposed a 

decentralized model instead of the centralized one. In 

this model, all processes are first arranged into a pre-

defined number of layers, and each process knows in 

advance the layer that it belongs to as well as executing 

a corresponding algorithm. After a process receives 

sufficient triggers, it informs some process residing in 

the upper layer. Moreover, upon receiving sufficient 

triggers, the unique process in the root layer starts a 

negotiation procedure with all participants to calculate 

the total number of triggers received by the entire 

system until now. In addition, based on the foregoing 

distributed model, the authors in [18] adjusted the 

threshold value for informing a process in the upper 

layer to design a more message-efficient algorithm. 

However, just like the work in [14-15], every process 

in the algorithm also has to know ahead not only what 

kind of network topology it resides in but also what 
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kind of role it plays in the system. With a similar 

concept, in [19], the authors designed an approximate 

algorithm for the DTC problem in a ring network and 

derived its message complexity. After that, in [20], still 

in a ring network, the authors further proposed an 

improved version to deal with the DTC problem in a 

deterministic way. In summary, these above efforts 

mainly focused on how to reduce the message 

complexity of a DTC algorithm in similar network 

topologies. Moreover, though these algorithms are 

claimed to be decentralized, they still need a particular 

process as the unique coordinator and especially a pre-

defined underlying network topology. Due to the 

inherent decentralized and self-organized properties of 

dynamic networks, these aforementioned algorithms 

with specific global assumptions are not practical. In 

particular, all processes in WSNs tend to play the same 

role during the computation and do not know ahead 

what kind of topology the whole network constitutes. 

Recently, some researches have explored how to 

eliminate the foregoing unreasonable global 

assumptions [21-22]. For example, a randomized DTC 

algorithm was introduced in [21], which can solve the 

DTC problem with a less restrictive assumption, 

especially unnecessary to direct any process in the 

system to play a certain role during the computation. 

Unfortunately, such an algorithm is approximate. 

Namely, it may fail to raise an alert upon receiving the 

exact number of triggers. Though the authors showed 

that there seems to be little probability of failure, it is 

better not to trust an approximate algorithm in critical 

situations. In contrast, the authors in [22] proposed two 

exact distributed algorithms to solve the DTC problem, 

free of any above global assumptions. More 

importantly, their algorithms will always raise an alert 

precisely. 

Yet, all existing DTC algorithms introduced in the 

literature were devised for static networks, in which 

there is no process leaving or joining the considered 

system. Therefore, they cannot deal with some 

applications of dynamic networks, where the network 

topology will continually change. In this paper, based 

on the two algorithms for static networks proposed in 

[22], we design two distributed algorithms for solving 

the DTC problem in dynamic networks. Particularly, 

like their static versions, our two dynamic algorithms 

are both exact and thus can raise an alert upon 

receiving the exact number of triggers. 

This paper is structured as follows. The system 

model and the specification of the DTC problem are 

described in Section 2. Furthermore, in Section 3 and 

Section 4, we introduce our first dynamic DTC 

algorithm and improve it in terms of message overhead, 

respectively. Then, a simulation study is presented in 

Section 5. At last, we conclude our work and present 

possible future work in Section 6. 

2 Preliminaries 

2.1 System Model 

A finite set Π of processes {p1, p2, …, pn} with n > 1 

is considered in the subject. Unlike the model of 

traditional networks, the processes in Π are not 

necessarily aware of each other initially, even at the 

end of computation. This assumption reveals the nature 

of considered dynamic networks, where there is no 

central authority that initializes each process with 

certain context information. Moreover, processes in Π 

communicate by exchanging messages through reliable 

channels, that is, there is no message creation, 

corruption and duplication. Hence, if processes of two 

ends are correct, a message sent is eventually delivered 

to its destination exactly once. In particular, process pi 

can send a message to another process pj if pj is within 

the transmission range of pi. Here, we assume that the 

communication between any two processes is 

symmetric, i.e., if pi can send a message to pj, pj can 

also send a message to pi [23]. Below, we further 

describe two technical terms employed in the text: 

Definition 1: In a dynamic network, a process pj is 

called a neighbor of some other process pi if and only if 

pj is within the transmission range of pi. 

Namely, a neighbor of pi is a process with one hop 

away from pi. As an example, in Figure 1, p3 is the 

unique neighbor of p1. 

 

Figure 1. A network topology with five processes 

Definition 2: In a dynamic network, a process pj is 

called a participant of some other process pi if and only 

if pi can route a message to pj via some intermediate 

process(es). 

In other words, there exists at least one path between 

the process and any of its participants. For instance, in 

Figure 1, p2, p3, p4 and p5 are all participants of p1. 

Finally, we denote the set of neighbors of pi as 

neighborsi and the set of participants of pi as 

participantsi in this paper. 

2.2 DTC Specification 

In the Distributed Trigger Counting (DTC) problem, 

every process pi receives triggers from some external 

sources. After the number of triggers received by the 

whole system reaches a pre-specified amount w, the 
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system will raise an alert to inform the supervisor. 

More specifically, the DTC problem is solved under 

the following two conditions [16]: 

1. The order of triggers received by a process is 

unknown in advance. 

2. The number of triggers received by a process is 

unknown beforehand. 

In addition, according to the requirement on the time 

of raising the alert, we can classify algorithms for the 

DTC problem into two categories [21]: 

1. Exact: This kind of algorithm will raise an alert 

upon receiving exactly w triggers. 

2. Approximate: This kind of algorithm will raise an 

alert when it receives about w triggers. This means that 

it may fail to raise an alert precisely. 

The dynamic DTC problem that we intend to 

address in this research work is to solve the 

aforementioned DTC problem on the dynamic system 

model defined in the previous subsection. 

3 Dynamic Intuitive Algorithm 

First, we make an assumption that the time for a 

message to diffuse throughout a considered network is 

much less than that between the receipt of two 

continuous triggers from external sources. This 

assumption is reasonable in real situations since the 

time for propagating a message over a dynamic 

network is negligible in comparison to that between 

two continuous triggers related to a natural event 

happening. Also, it is necessary for exact DTC 

algorithms because when the considered system has 

received w-1 triggers, if two distinct processes can 

receive a trigger almost at the same time, it is possible 

that the whole system has received more than w 

triggers upon raising an alarm. The foregoing 

assumption is also adopted by all exact DTC 

algorithms introduced in [14-21], just without being 

mentioned explicitly. Moreover, solving the DTC 

problem requires that all processes in the network can 

communicate with each other to cooperatively count 

the triggers received by the whole system. If the 

network becomes disconnected due to process moving 

or leaving, processes in one of the two disconnected 

parts obviously have no way to communicate with 

those in the other part. Thus we need to make an 

assumption that regardless of how many processes 

leave the network and how a process moves within the 

network, the resultant topology of the network is still 

connected. 

Next, if a process leaves before broadcasting out its 

information regarding the trigger count, such 

information will be lost and thus the resultant trigger 

number calculated by the entire system will be 

imprecise. Here, we want to remark that a process may 

leave the system permanently for being crashed, or 

may leave temporarily due to movement or low battery 

and will join the system again afterward. The former 

case is the trickiest part to tackle. One viable way to 

achieve this assumption is to attach a watchdog timer 

to every process to store the latest information about 

the trigger number periodically. Upon detecting its 

corresponding process being crashed, the watchdog 

timer will provide necessary information to the 

neighbors of the crashed process. As for the latter case, 

we suppose that as soon as a process detects that it will 

leave the system, e.g., being warned low battery by 

some supervisory voltage system or recognizing low 

signals from all other processes, the process will 

immediately broadcast out its latest information 

regarding trigger counting. Besides, the leaving 

process will store all variables used in the algorithm 

into its nonvolatile memory for its rejoining afterward. 

On the other hand, it is also required to make a 

joining process able to learn the total number of 

triggers that the system has received so far. 

Specifically, a joining process has to ask other 

processes for the latest information regarding trigger 

counting no matter it is a recovering or newly-joining 

process. Here, a recovering process means that such a 

process had joined the system for cooperatively 

calculating the number of triggers but left due to some 

event, like low battery, and joins the cooperation again 

via some recovery procedure, like recharge. Such a 

kind of process will restore all variables stored in the 

nonvolatile memory prior to its leaving to facilitate the 

collaboration with other processes. As for a newly-

joining process, we mean that it is the first time for this 

process to join the system for collecting triggers. This 

kind of process will first execute the init phase of the 

algorithm to do the initialization. Note that for the sake 

of brief presentation, in our following two algorithms 

for dynamic networks, we assume that all trigger-

receiving, process-leaving and process-joining actions 

proceed in a totally sequential fashion. The assumption 

is reasonable because the times for the entire system 

processing these three kinds of actions are much 

shorter than that between two continuous events 

occurring. 

Below, we introduce the core property of our first 

DTC algorithm for dynamic networks, called the 

dynamic intuitive algorithm. This property is directly 

derived form the result of [22]: 

Theorem 1: In a connected component of a network 

topology, if the first time a process receives a message 

from a neighbor, it will broadcast the message to all its 

neighbors, such a message will finally reach all 

participants of the process from which the message 

originates. 

Furthermore, as mentioned in [22], though the above 

idea can make information propagate to all processes 

in the whole connected network, it will cause a process 

to send a redundant message. To distinguish useful 

messages from redundant ones, a feasible way is to 

attach more information to make each message distinct, 

e.g., attaching the unique ID of the originating process 
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and the number of triggers received by the process so 

far. 

Now we begin to elaborate our dynamic intuitive 

DTC algorithm, which is presented in Figure 2, and all 

definitions of messages and variables for this algorithm 

are listed in Table 1. Foremost, the part for counting 

triggers is similar to its counterpart for static networks 

proposed in [22]. Particularly, each process pi takes the 

number of triggers that have to be received by the 

whole system, i.e., w, as the input (line 1). Then in the 

init phase, pi designates wi as the number of triggers 

received by it so far and wi’ as the number of triggers 

that all processes except pi have received so far (lines 

2-3). Since there is no trigger received by the system in 

the very beginning, both wi and wi’ are initialized to 

zero (lines 4-5). After completing the init phase, upon 

receipt of a trigger from an external source, wi is 

increased by one to denote that pi has just received a 

trigger (line 6). Besides, pi broadcasts increasei(wi) to 

inform its neighbors that it has received one more 

trigger (line 7). Then, pi examines whether the sum of 

wi and wi’ equals w; if so, pi is the process that receives 

the last trigger such that it needs to raise an alarm to 

inform the supervisor (lines 8-9). While receiving 

increasej(wj) for j≠i, if it is the first time for pi to 

receive such a message, pi stores the current number of 

triggers received by pj in dynamically-allocated 

variable latest_receivedi
j (line 13). Here, if such a 

variable does not exist, pi first allocates memory space 

for it (lines 11-12). Moreover, pi adds wi’ by one and 

broadcasts increasej(wj) out (lines 14-15). Note that the 

reason of exploiting dynamically-allocated variables is 

that the algorithm is assumed to not learn the accurate 

number of processes in the system. Thus doing so 

makes every process merely allocate necessary 

memory space to record numbers of triggers received 

by other processes until now. 

 

Figure 2. The dynamic intuitive DTC algorithm for receiving w triggers 
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Table 1. The definitions of all messages and variables in the dynamic intuitive DTC algorithm 

Variable Definition 

w  The number of triggers the entire system has to receive 

i
w  The number of triggers 

i
p  has received so face 

i
w′  The number of triggers all processes except 

i
p  have received so far 

increasei ( )
i

w  To indicate if 
i
p  has received the th

i
w  trigger 

latest_receoved j

i
 The information 

i
p  has known regarding the number of triggers received by 

j
p  so far 

leavei() To indicate if 
i
p  has left now 

leaving_process j

i
 The information 

i
p  has known regarding if 

i
p  has left now 

join i() To indicate if 
i
p  has joined now 

in_for_joini ( , )
i

w j  To provide the information for 
j

p  regarding the number of triggers 
i
p  has received so far 

 

As for the part for dealing with process leaving, 

since a process immediately broadcasts out a message 

to inform other processes upon receiving a trigger (line 

7), a leaving process pi does not need to provide any 

information regarding trigger counting when it leaves. 

Instead, pi just lets its neighbors know its leaving (line 

16). Correspondingly, upon learning some process pj 

leaving the system for the first time, pi sets dynamically-

allocated Boolean variable leaving_processi
j to true to 

denote that pj has left the system and broadcasts this 

information out (lines 17-21). 

In contrast, a joining process pi has to ask all 

processes in the system for the latest number of 

triggers received by the entire system by broadcasting 

message joini() out (line 22). Correspondingly, upon 

receiving joinj() for the first time, pi sets dynamically-

allocated Boolean variable leaving_processi
j to false to 

denote that pj has joined the system and broadcasts out 

joinj() as well as message inf_for_joini(wi, j) (lines 23-

28). Furthermore, to make pj able to learn the total 

number of triggers that the whole system has received 

so far, pi also needs to provide pj with its known 

numbers of triggers received by all leaving processes 

(lines 29-31). More importantly, upon receiving 

message inf_for_joinj(wk, l), where wk represents the 

latest number of triggers received by some process pk 

known by process pj, an intermediate process pi, i.e., i

≠ j, i≠k and i≠ l, forwards the message to other 

processes if it is the first time to receive this message 

(lines 32-34). If the destination of such a message is pi 

itself, namely, i=l, pi updates its knowledge about the 

system according to the information carried on the 

message (lines 35-48). In particular, according to 

information carried on the message, pi can determine 

whether pk is a leaving process. Namely, if j≠k, this 

means that pk is a leaving process, and pj offers pi 

required information for it. Otherwise, pk still remains 

in the system. After the above procedure, a joining 

process can obtain the numbers of triggers received by 

all processes involved in the computation, especially 

those having left. 

Here, we illustrate the above algorithm with the 

instance shown in Figure 1. After p1 receives the first 

trigger from an external source, it broadcasts increase1(1) 

to its neighbors. Upon receipt of increase1(1), the 

unique neighbor of p1, that is, p3, knows that p1 has just 

received a trigger and records this event. Because it is 

the first time to receive such a message, p3 broadcasts 

increase1(1) to its neighbors. Later, p1, p2, and p5 

receive increase1(1). According to the information 

carried on the message, p1 learns that this message 

broadcast by p3 is a redundant message. Hence, p1 

discards it. On the other hand, p2 and p5 realize that it is 

the first time for them to receive such a message. They 

record increase1(1) and then broadcast it to their 

neighbors. Finally, message increase1(1) will travel 

throughout the entire network. This means that all 

processes in the network will eventually learn that p1 

has just received a trigger from an external source. 

Moreover, since we assume that all trigger-receiving, 

process-leaving and process-joining actions progress in 

a totally sequential fashion, all processes will know 

every previous trigger-receiving event before the next 

trigger is received by the system. 

Next, we formally demonstrate that the algorithm 

presented in Figure 2 is an exact DTC algorithm for a 

dynamic network. 

Theorem 2: The algorithm presented in Figure 2 is 

sufficient for solving the DTC problem in a dynamic 

network and also an exact algorithm. 

Proof. Based on the result of [22], we know that the 

algorithm presented in Figure 2 is sufficient for solving 

the DTC problem if no dynamic event happens. Hence, 

we only need to discuss the events of leaving process 

and joining process here. First, because a process 

immediately broadcasts out a message to inform other 

processes upon receiving a trigger (line 7), information 

about trigger counting of a leaving process will not be 

lost. Furthermore, a joining process can obtain the 

numbers of triggers received by all processes involved 

in the computation from some other process (lines 35-

48) such that it can cooperate with other processes 

remaining in the system to count triggers as if the 

joining process had participated in the computation 

from the very beginning. 
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More importantly, seeing that we assume that all 

trigger-receiving, process-leaving and process-joining 

actions progress in a totally sequential fashion, the 

network topology can be regarded static at any 

duration of dealing with a trigger received from an 

external source. Therefore, we have that all processes 

will know every previous trigger-receiving event 

before the next trigger is received by the system. 

Namely, when the system has received w-1 triggers, all 

processes in the system can know this result prior to 

receiving the wth trigger. This means that when some 

process in the system receives the wth trigger from an 

external source, it will precisely raise an alarm to 

inform the supervisor (lines 8 and 9), and all other 

processes will learn such an event before they receive 

one more trigger. From the above discussions, we can 

conclude that the algorithm presented in Figure 2 is 

sufficient for solving the DTC problem in a dynamic 

network and also exact.  

4 Dynamic Improved Algorithm 

Although the algorithm presented in Figure 2 is 

sufficient for solving the DTC problem in the exact 

way, it will have the whole system yield much message 

overhead during the computation. This is obviously a 

critical issue for energy-limited dynamic networks, 

especially WSNs. The method adopted by the second 

DTC algorithm for static networks introduced in [22] 

to reduce the message overhead is to lessen the 

frequency of broadcasting actions performed by a 

process upon receiving a trigger from external sources. 

More specifically, the above algorithm directs a 

process pi not to broadcast information about trigger 

counting so frequently that pi only broadcasts a 

message to inform its neighbors after receiving a 

certain amount of triggers, i.e., f. Trivially, doing so 

can significantly lower the message complexity of the 

entire system. Though a larger value of f can reduce 

more message overhead of the whole system, it causes 

the problem that the system may not raise an alarm 

exactly upon receiving the desired number of triggers. 

Therefore, to lower the message complexity as well as 

avoiding an imprecise alarm, the second DTC 

algorithm in [22], which is round-based, makes the 

value of f vary round by round, with the requirement 

that the number of processes in the system is known 

beforehand so as to appropriately adjust the value of f 

during the computation. In addition, to calculate the 

number of remaining triggers for a coming round, all n 

processes in the system need to broadcast a message by 

the end of the current round to inform other processes 

of how many triggers they have received until now. 

Hence, the benefit of the threshold for lowering the 

message complexity may not be achieved when its 

value is less than the number of processes in the 

system. Thus as the value of f is less than n, the 

foregoing algorithm acts like the first one introduced in 

[22]. 

Here, we exploit the concept of the second DTC 

algorithm in [22] to improve our dynamic intuitive 

algorithm. The resultant dynamic improved algorithm 

contains two parts, which are presented in Figure 3 and 

Figure 4, respectively, and all definitions of messages 

and variables for this algorithm are listed in Table 2. 

The former part is responsible for counting triggers and 

is also similar to its static counterpart in [22]. Below, 

we only explain the techniques that are not employed 

in the foregoing dynamic intuitive one. First, each 

process pi takes the initial number of processes in the 

system, n, and the upper bound on number of processes 

during the computation, nu, as the input (lines 2-3). The 

upper bound nu can be any integer not less than n, and 

it means that during the whole course of collecting w 

triggers, the number of processes involved in the 

computation at any moment will never exceed this 

value. Such a bound is used for properly adjusting the 

threshold value in every non-final round. Moreover, in 

the init phase, pi defines some variables with certain 

purposes. In particular, roundi is the number of the 

current round in pi, which is initialized to 1 (lines 6 and 

10), and fi is the threshold value to end the current 

round, which is defined as ⎣(w−wi−wi’)/nu⎦ (lines 7 and 

11). Because the initial number of processes in the 

system is assumed to be known, each process first 

allocates memory space for storing information about 

initial participants. More specifically, Boolean variable 

leaving_processi
x is utilized for denoting whether px 

has left the system or not, and infori
x is used for 

checking if pi has received information about trigger 

counting from px in the current round (lines 15-18). 

Seeing that there is no corresponding event happening 

in the beginning of the algorithm, the above 

dynamically-allocated variables are all initialized to 

zero or false. 

Next, upon receipt of a trigger from an external 

source, if pi is not in the final round, namely, roundi≠

0, fi is decreased by one (lines 20-21). Then, if fi equals 

zero, pi broadcasts finish_this_roundi(wi, roundi) to its 

neighbors to inform them that it has received enough 

triggers in the current round and also records the 

number of triggers that it has received so far, i.e., wi, in 

latest_receivedi
i (lines 22-24). Otherwise, if pi is in the 

final round, it will work as the previous intuitive one 

(lines 36-39). As for upon receiving finish_this_ 

roundj(wj, roundj) for the first time, pi broadcasts the 

message out, updates the trigger number of pj, and sets 

infori
j to roundj for denoting that it has already 

received the information from pj in the current round 

(lines 40-43). Furthermore, if pi has not provided its 

trigger count in the current round, it broadcasts finish_ 

this_roundi(roundi, wi) out and updates corresponding 

variables as well (lines 44-47). Since leaving processes 

cannot support their trigger numbers, pi utilizes its 

knowledge regarding them for computing the new 

threshold for the coming round (lines 26-28 and 48-50). 
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More importantly, to deal with the extreme scenario 

that there is merely one process remaining in the 

system, the process terminating the current round will 

verify this scenario via checking if the value of every 

existing infori
x equals roundi (lines 26-28). Finally, 

after receiving enough information, that is, receiving 

finish_this_roundj(wj, roundj) originating from any 

remaining process pj in the current round, pi calculates 

the threshold value for the next round (lines 29-30 and 

51-52). If the new value of fi is not less than nu, pi 

enters a new non-final round and increases roundi by 

one accordingly (lines 31-32 and 53-54). Otherwise, pi 

calculates the total number of triggers received by all 

processes but itself so far and sets roundi to 0 to enter 

the final round (lines 33-35 and 55-57). 

 

Figure 3. The main part of the dynamic improved DTC algorithm for process pi 
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Figure 4. The auxiliary part of the dynamic improved DTC algorithm for process pi 

Table 2. The definitions of all messages and variables in the dynamic improved DTC algorithm 

Variable Definition 
w  The number of triggers the entire system has to receive 
n  The initial number of processes in the system 

u
n  The upper bound on number of processes in the system 

i
w  The number of triggers 

i
p  has received so far 

i
w′  The number of triggers all processes except 

i
p  have received so far 

i
round  The current round number of 

i
p  

i
f  The threshold value for 

i
p  to end the current round 

latest_receoved j

i
 The information 

i
p  has known regarding the number of triggers received by 

j
p  so far 

leaving_process j

i
 The information 

i
p  has known regarding if 

i
p  has left now 

infor j

i
 

To indicate if 
i
p  has received information about trigger counting from 

j
p  in the current 

round 

Finish_this_roundi To inform participants that 
i
p  has received enough triggers in the current round 

increasei ( )
i

w  To indicate if 
i
p  has received the th

i
w  trigger 

leavei ( )
i

w  To indicate if 
i
p  has left and received 

i
w  trigger now 

joini() To indicate if 
i
p  has joined now 

in_for_join i ( , , , )
i i i

w round f j  
To provide the information for 

j
p  regarding the number of triggers 

i
p  has received so far, 

along with the current round number and the current threshold value of 
i
p  

 

On the other hand, the part shown in Figure 4 is for 

dealing with process leaving and joining. In particular, 

now that no process will broadcast out its information 

about trigger counting until the end of a non-final 

round, a process pi needs to send out its number of 

triggers received so far to let its neighbors learn its 

latest trigger count upon its leaving (line 62). While 

knowing the leaving action of some process pj for the 

first time, pi updates its knowledge about pj as well as 

broadcasting this information out (line 63-66). As for 
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the joining procedure, upon learning the first time that 

some process has joined the system, beside updating its 

knowledge regarding this joining process, pi informs 

the process of all known information about the system 

(lines 68-79). Furthermore, upon receiving inf_for_ 

joinj(wk, roundj, fj, l) from some other process, if pi is 

exactly the destination of such a message, it updates its 

knowledge about the system accordingly (lines 80-94). 

Here, we also use Figure 1 as an example to 

illustrate the improved algorithm. First, after p1 

receives enough f1 triggers in the first round, it 

broadcasts finish_this_round1(f1, round1) to inform its 

sole neighbor p3 that it will end the first round. Upon 

receipt of this message, p3 knows that p1 has terminated 

the first round and thus records the information carried 

on the message. Because p3 receives such a message 

for the first time, p3 broadcasts finish_this_round1(f1, 

round1) and finish_this_round3(w3, round3) to its 

neighbors. Subsequently, all p1, p2, and p5 receive these 

two messages. After receiving such two messages, p1 

discards the first message, which is redundant to it, and 

records the information carried on finish_this_ 

round3(w3, round3). Also, p1 broadcasts finish_this_ 

round3(w3, round3) to its neighbors. Likewise, p3 

discards the above redundant message from p1. On the 

other hand, both p2 and p5 know that it is the first time 

for them to receive the two messages separately 

originating from p1 and p3. Hence, p2 and p5 broadcast 

to their neighbors finish_this_round2(w2, round2) and 

finish_this_round5(w5, round5), respectively, along 

with the two messages from p1 and p3. At last, after 

receiving the information about the trigger number 

from all other processes, every process pi in the system, 

∀i ∈ [1, 5], can learn how many triggers the whole 

system has received in the first round and then 

calculate the new threshold value for the second round. 

Theorem 3: The algorithms presented in Figure 3 and 

Figure 4 are sufficient for solving the DTC problem in 

a dynamic network and also an exact algorithm. 

Proof. Based on the result of [22], we know that the 

algorithm presented in Figure 3 and Figure 4 are 

sufficient for solving the DTC problem if no dynamic 

event happens. Hence, we also only need to discuss the 

events of leaving process and joining process here. 

First, because a leaving process will broadcast out its 

latest number of received triggers to its neighbors as it 

leaves (line 62), the information about trigger counting 

of the leaving process will not be lost. In addition, a 

joining process will obtain the total numbers of triggers 

received by the whole system so far from some other 

process (lines 83-94) such that it can count triggers 

cooperatively with other processes remaining in the 

system. 

Moreover, for showing that the algorithm is also 

exact, we need to prove that the system will still have 

some remaining triggers by the end of a round except 

the final one. Thus it will continuously enter a new 

round until the final one is reached. Since the 

procedure of the final round in the algorithm is the 

same as that of the algorithm in Figure 2, which is 

proven exact by Theorem 2, we only need to 

demonstrate that in any non-final round, the number of 

triggers received by the whole system will never 

exceed the number of remaining triggers that the 

system has not yet received prior to this round. 

Let the number of remaining triggers having not 

been received by the system before entering the kth 

round, which is not the final one, is wk, where k ≥  1. 

The value of wk as well as that of the corresponding 

threshold fk for the kth round is calculated by the end of 

the (k-1)th round for k ≥  2 (lines 51 and 52), while the 

value of w1 for the first round is obtained from the 

input (line 1) and that of f1 for the same round is 

computed in the initialization part (line 11). Note that 

in a non-final round, the system will receive the 

maximum number of triggers when triggers are evenly 

delivered to all processes. In particular, in this case, 

only one process will receive sufficient triggers to end 

the current round, and all other n-1 processes will 

receive one less trigger than this process. Hence, the 

maximum number of triggers that can be received in 

the kth round is f k + (n-1)(f k-1) = nf k-n+1 = n⎣wk/nu⎦-
(n-1). Because of ⎣wk/nu⎦ ≤  ⎣wk/n⎦ ≤  wk/n and n > 1, 

we have n⎣wk/nu⎦-(n-1) ≤ n⎣wk/n⎦-(n-1) ≤  n(wk/n)-(n-1) 

≤  wk-(n-1) < wk.  

5 Simulation Results 

Now, we start to perform a simulation study to 

compare our two algorithms more comprehensively in 

dynamic and randomized situations. Particularly, we 

use the PARSEC language [24] to conduct the 

simulation. Since the topologies of dynamic networks 

are varied, we execute the DTC application on systems 

with different settings of node numbers, edge numbers 

and process leaving/joining frequencies. The parameter 

settings of our simulation experiments are listed below: 

1. The environment: 

□ The considered environment is a square with sides 

1000m long. 

2. The processes: 

□ For each experiment, there are 20, 30 or 40 

processes uniform-randomly scattered in the 

considered environment, where the upper bound 

on number of processes is set to the value of the 

number of initial processes plus 10. 

□ Both process leaving and joining times are 

determined by a Poisson distribution with a mean 

interval λ equal to the duration of receiving 1000, 

2000 or 3000 triggers. 

3. The transmission range: 

□ The transmission range of every process is set to 

100m, 200m or 300m in the simulation. 

4. The triggers: 

□ There are 10000 triggers that the system has to 
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receive. Moreover, the destination of a trigger is 

uniformly random. 

For each setting, we generate 1000 different 

connected network topologies and separately execute 

the dynamic intuitive and improved algorithms on 

these systems. 

According to the algorithms, we can know the 

corresponding message costs of dealing with different 

dynamic events, e.g., the function, upon receipt of 

leavingi(), is for dealing with the event of a leaving 

process. Furthermore, since the sizes of messages 

induced by our DTC algorithms are different, we 

further consider the total sizes of all messages 

produced by the algorithms during the entire procedure 

to make the simulation comparisons more convincible 

(Table 3). Particularly, we suppose that the size of a 

trivial message carrying no variable, e.g., joini(), is one; 

while that of a message with y variables is y+1. For 

example, the size of message increasei(wi) is 2. 

Table 3. The comparison of weighted overhead of each message in our algorithms and [22] 

intuitive Improved Algorithm 

Message Static Dynamic Static Dynamic 

increase(w) 1 2 1 2 

leave() N/A 1 N/A 1 

join() N/A 1 N/A 1 

inf_for_join(w, j) N/A 3 N/A N/A 

finish_this_round(w, round) N/A N/A 1 3 

leave(w) N/A N/A N/A 2 

in_for_join(w, round, f, j) N/A N/A N/A 5 

 

In addition, distinct settings in the simulation 

experiments are used to verify if our algorithms can 

meet various conditions, e.g., the number of processes 

for the scalability of the system, the frequency of 

dynamic events for the environment and application, 

and the transmission range for the limitation of the 

hardware and environment. 

The simulation results are summarized in Table 4, 

Table 5 and Table 6, where we present the average 

total message size, standard deviation and the ratio of 

the message size induced by the improved algorithm to 

that by the intuitive one for each transmission range 

setting, respectively. Note that if the topology is 

disconnected in any moment of simulation, we will 

discard it. More specifically, from the simulation 

results of all settings with the same number of 

processes, we can see that the smaller the value of λ is, 

the higher message overhead the two algorithms 

produce during the computation. The underlying 

reason is that with a smaller value of λ, both process 

leaving and joining events happen more frequently, 

and thus more messages are produced to manipulate 

these events. On the other hand, because the two DTC 

algorithms direct all existing processes to provide a 

joining process with the up-to-date information of the 

system and the latest trigger count of a leaving process 

also needs to be broadcast to the whole system, a 

system with more initial processes and a process with 

longer transmission range, resulting in a topology with 

higher connectivity, will induce more message 

overhead. As expected, the simulation results of all 

settings with the same value of λ exactly conform to 

this observation. 

Table 4. The simulation results for transmission range 100m 

λ = 1000 λ = 2000 λ = 3000 

Intuitive Improved Intuitive Improved Intuitive Improved Number of 

processes 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

Ratio 

Mean 
Standard 

deviation
Mean 

Standard 

deviation 

Ratio

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Ratio

20 647962.15 250604.14 306439.73 121151.76 0.4729 493361.39 199896.13 123241.40 59662.30 0.2498 466676.12 185878.97 78322.88 38509.28 0.1678 

30 1590083.49 427111.64 1011462.74 293860.32 0.6361 1181777.22 333577.85 434980.71 156996.32 0.3681 1089985.78 303721.39 290150.18 104332.63 0.2662 

40 3126706.25 621555.10 2301553.00 523216.74 0.7361 2240689.77 493855.18 992489.62 305735.77 0.4429 2020795.14 425618.16 625696.66 191474.14 0.3096 

Table 5. The simulation results for transmission range 200m 

λ = 1000 λ = 2000 λ = 3000 

Intuitive Improved Intuitive Improved Intuitive Improved Number of 

processes 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

Ratio

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Ratio 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Ratio 

20 2368984.90 663377.88 1119260.99 326714.13 0.4725 1800914.40 470774.58 450594.88 171582.81 0.2502 170467.14 421133.93 286666.23 105086.62 0.1682 

30 5855927.10 1106696.15 3708280.15 780525.96 0.6333 437136136 843081.68 1602337.56 458696.52 0.3666 4031393.59 735015.93 1076190.98 309473.40 0.2670 

40 11503274.83 1642552.75 8466750.26 1449546.42 0.7360 8256762.63 1283929.10 3661319.72 1004132.60 0.4434 7453087.23 1057056.55 2307606.61 625945.39 0.3096 
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Table 6. The simulation results for transmission range 300m 

λ = 1000 λ = 2000 λ = 3000 

Intuitive Improved Intuitive Improved Intuitive Improved Number of 

processes 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

Ratio

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Ratio

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Ratio 

20 4845149.65 1243885.89 2290969.20 610138.64 0.4728 3692487.40 833191.68 92643.20 339337.26 0.2501 3495892.59 727390.27 588279.34 204955.35 0.1683 

30 11963263.96 2095894.75 7571915.44 1495571.19 0.6329 8940271.80 1528954.78 3284950.10 931001.82 0.3674 8247105.54 1343799.30 2206267.81 620489.22 0.2675 

40 23514562.76 3094378.28 17307564.48 2776668.36 0.7360 16885369.26 2405820.31 7486031.19 1998480.81 0.4433 15234234.72 1947740.97 4719675.66 1250411.66 0.3098 

 

Next, to show the efficiency of the dynamic 

improved algorithm for reducing message overhead, 

the ratio between message sizes induced by our two 

dynamic algorithms is presented as well. According to 

that, we can observe that regardless of which setting is 

considered, the dynamic improved algorithm is much 

more efficient in message overhead than the dynamic 

intuitive one. However, we can also learn that the 

dynamic improved algorithm pays more message 

overhead to address topology variations of networks 

than the intuitive one, especially when the number of 

initial processes is large. 

6 Conclusions 

In this paper, we have proposed two exact 

algorithms for solving the DTC problem in dynamic 

networks, where a process will move, leave or join. 

Therefore, our algorithms are much more applicable to 

the real world, especially monitoring applications of 

WSNs. In addition, we have comprehensively 

compared our two DTC algorithms and found that the 

technique adopted by the latter does take effect in 

reducing the message overhead. For the future work, it 

is interesting to propose novel dynamic DTC 

algorithms with other techniques to achieve better 

performances. 
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