
On the Distributed Trigger Counting Problem for Dynamic Networks 855

On the Distributed Trigger Counting Problem for

Dynamic Networks

Che-Cheng Chang1, Jichiang Tsai2, Tien-Yu Chang3

1 Department of Information Engineering and Computer Science, Feng Chia University, Taiwan
2 Department of Electrical Engineering & Graduate Institute of Communication Engineering,

National Chung Hsing University, Taiwan
3 Department of Electrical Engineering, National Chung Hsing University, Taiwan

checchang@fcu.edu.tw, jichiangt@nchu.edu.tw, eltonchang166@gmail.com*

*Corresponding Author: Jichiang Tsai; E-mail: jichiangt@nchu.edu.tw

DOI: 10.53106/160792642021072204013

Abstract

The Distributed Trigger Counting (DTC) problem is a

fundamental block for many distributed applications.

Such a problem is to raise an alert while the whole system

receives a pre-defined number of triggers. There have

been several algorithms proposed to solve the DTC

problem in the literature. However, these existing

algorithms are all under the assumption that there is no

event regarding process moving, leaving and joining in

the network. In other words, they can be only applicable

to static networks. The foregoing assumption is not

practical for dynamic networks with continually changing

topology. In this paper, we investigate the DTC problem

for dynamic networks and introduce a distributed

algorithm without any global assumption. Moreover, to

reduce the message complexity of the above algorithm,

we further propose a more message-efficient version,

only with one additional requirement that all processes

have learned ahead the upper bound on number of

processes involved in the computation.

Keywords: Distributed trigger counting, Distributed

algorithms, Dynamic networks

1 Introduction

The Distributed Trigger Counting (DTC) problem is

a basic block for many distributed applications, such as

monitoring [1-11], global snapshots [12-15],

synchronizers [14-15] and so on. The underlying

system will raise an alert upon receiving a certain

number of triggers corresponding to natural events.

Hence, this problem is especially important to

monitoring applications of Wireless Sensor Networks

(WSNs). For example, on the battlefield, sensors can

be deployed at certain strategic points to detect and

track enemies. Furthermore, in traffic management,

when the number of vehicles on the road exceeds a

pre-defined threshold, the system can raise an alarm to

inform the supervisor. Likewise, in environment/habitat

monitoring, sensors can prevent a conflagration by

detecting if temperatures monitored by most sensors

are higher than normal.

Several algorithms have been proposed in the

literature to solve the DTC problem [14-22]. Most of

those efforts mainly focused on how to design efficient

methods based on specific network topologies [14-19].

First, in [14-15], the authors proposed a centralized

algorithm and also demonstrated that its message

complexity is near-optimal. Particularly, in their

algorithm, a certain process acts as a coordinator, and

all other processes communicate with the unique

coordinator directly for trigger counting. Obviously,

such a centralized algorithm can only work in a

network topology with a sole central process and all

other processes directly connecting to the central one.

Furthermore, for the above algorithm, each process in

the network has to know what kind of role it plays in

advance.

On the other hand, some decentralized DTC

algorithms have been proposed in [16-18]. More

specifically, the authors in [16-17] proposed a

decentralized model instead of the centralized one. In

this model, all processes are first arranged into a pre-

defined number of layers, and each process knows in

advance the layer that it belongs to as well as executing

a corresponding algorithm. After a process receives

sufficient triggers, it informs some process residing in

the upper layer. Moreover, upon receiving sufficient

triggers, the unique process in the root layer starts a

negotiation procedure with all participants to calculate

the total number of triggers received by the entire

system until now. In addition, based on the foregoing

distributed model, the authors in [18] adjusted the

threshold value for informing a process in the upper

layer to design a more message-efficient algorithm.

However, just like the work in [14-15], every process

in the algorithm also has to know ahead not only what

kind of network topology it resides in but also what

856 Journal of Internet Technology Volume 22 (2021) No.4

kind of role it plays in the system. With a similar

concept, in [19], the authors designed an approximate

algorithm for the DTC problem in a ring network and

derived its message complexity. After that, in [20], still

in a ring network, the authors further proposed an

improved version to deal with the DTC problem in a

deterministic way. In summary, these above efforts

mainly focused on how to reduce the message

complexity of a DTC algorithm in similar network

topologies. Moreover, though these algorithms are

claimed to be decentralized, they still need a particular

process as the unique coordinator and especially a pre-

defined underlying network topology. Due to the

inherent decentralized and self-organized properties of

dynamic networks, these aforementioned algorithms

with specific global assumptions are not practical. In

particular, all processes in WSNs tend to play the same

role during the computation and do not know ahead

what kind of topology the whole network constitutes.

Recently, some researches have explored how to

eliminate the foregoing unreasonable global

assumptions [21-22]. For example, a randomized DTC

algorithm was introduced in [21], which can solve the

DTC problem with a less restrictive assumption,

especially unnecessary to direct any process in the

system to play a certain role during the computation.

Unfortunately, such an algorithm is approximate.

Namely, it may fail to raise an alert upon receiving the

exact number of triggers. Though the authors showed

that there seems to be little probability of failure, it is

better not to trust an approximate algorithm in critical

situations. In contrast, the authors in [22] proposed two

exact distributed algorithms to solve the DTC problem,

free of any above global assumptions. More

importantly, their algorithms will always raise an alert

precisely.

Yet, all existing DTC algorithms introduced in the

literature were devised for static networks, in which

there is no process leaving or joining the considered

system. Therefore, they cannot deal with some

applications of dynamic networks, where the network

topology will continually change. In this paper, based

on the two algorithms for static networks proposed in

[22], we design two distributed algorithms for solving

the DTC problem in dynamic networks. Particularly,

like their static versions, our two dynamic algorithms

are both exact and thus can raise an alert upon

receiving the exact number of triggers.

This paper is structured as follows. The system

model and the specification of the DTC problem are

described in Section 2. Furthermore, in Section 3 and

Section 4, we introduce our first dynamic DTC

algorithm and improve it in terms of message overhead,

respectively. Then, a simulation study is presented in

Section 5. At last, we conclude our work and present

possible future work in Section 6.

2 Preliminaries

2.1 System Model

A finite set Π of processes {p1, p2, …, pn} with n > 1

is considered in the subject. Unlike the model of

traditional networks, the processes in Π are not

necessarily aware of each other initially, even at the

end of computation. This assumption reveals the nature

of considered dynamic networks, where there is no

central authority that initializes each process with

certain context information. Moreover, processes in Π

communicate by exchanging messages through reliable

channels, that is, there is no message creation,

corruption and duplication. Hence, if processes of two

ends are correct, a message sent is eventually delivered

to its destination exactly once. In particular, process pi

can send a message to another process pj if pj is within

the transmission range of pi. Here, we assume that the

communication between any two processes is

symmetric, i.e., if pi can send a message to pj, pj can

also send a message to pi [23]. Below, we further

describe two technical terms employed in the text:

Definition 1: In a dynamic network, a process pj is

called a neighbor of some other process pi if and only if

pj is within the transmission range of pi.

Namely, a neighbor of pi is a process with one hop

away from pi. As an example, in Figure 1, p3 is the

unique neighbor of p1.

Figure 1. A network topology with five processes

Definition 2: In a dynamic network, a process pj is

called a participant of some other process pi if and only

if pi can route a message to pj via some intermediate

process(es).

In other words, there exists at least one path between

the process and any of its participants. For instance, in

Figure 1, p2, p3, p4 and p5 are all participants of p1.

Finally, we denote the set of neighbors of pi as

neighborsi and the set of participants of pi as

participantsi in this paper.

2.2 DTC Specification

In the Distributed Trigger Counting (DTC) problem,

every process pi receives triggers from some external

sources. After the number of triggers received by the

whole system reaches a pre-specified amount w, the

On the Distributed Trigger Counting Problem for Dynamic Networks 857

system will raise an alert to inform the supervisor.

More specifically, the DTC problem is solved under

the following two conditions [16]:

1. The order of triggers received by a process is

unknown in advance.

2. The number of triggers received by a process is

unknown beforehand.

In addition, according to the requirement on the time

of raising the alert, we can classify algorithms for the

DTC problem into two categories [21]:

1. Exact: This kind of algorithm will raise an alert

upon receiving exactly w triggers.

2. Approximate: This kind of algorithm will raise an

alert when it receives about w triggers. This means that

it may fail to raise an alert precisely.

The dynamic DTC problem that we intend to

address in this research work is to solve the

aforementioned DTC problem on the dynamic system

model defined in the previous subsection.

3 Dynamic Intuitive Algorithm

First, we make an assumption that the time for a

message to diffuse throughout a considered network is

much less than that between the receipt of two

continuous triggers from external sources. This

assumption is reasonable in real situations since the

time for propagating a message over a dynamic

network is negligible in comparison to that between

two continuous triggers related to a natural event

happening. Also, it is necessary for exact DTC

algorithms because when the considered system has

received w-1 triggers, if two distinct processes can

receive a trigger almost at the same time, it is possible

that the whole system has received more than w

triggers upon raising an alarm. The foregoing

assumption is also adopted by all exact DTC

algorithms introduced in [14-21], just without being

mentioned explicitly. Moreover, solving the DTC

problem requires that all processes in the network can

communicate with each other to cooperatively count

the triggers received by the whole system. If the

network becomes disconnected due to process moving

or leaving, processes in one of the two disconnected

parts obviously have no way to communicate with

those in the other part. Thus we need to make an

assumption that regardless of how many processes

leave the network and how a process moves within the

network, the resultant topology of the network is still

connected.

Next, if a process leaves before broadcasting out its

information regarding the trigger count, such

information will be lost and thus the resultant trigger

number calculated by the entire system will be

imprecise. Here, we want to remark that a process may

leave the system permanently for being crashed, or

may leave temporarily due to movement or low battery

and will join the system again afterward. The former

case is the trickiest part to tackle. One viable way to

achieve this assumption is to attach a watchdog timer

to every process to store the latest information about

the trigger number periodically. Upon detecting its

corresponding process being crashed, the watchdog

timer will provide necessary information to the

neighbors of the crashed process. As for the latter case,

we suppose that as soon as a process detects that it will

leave the system, e.g., being warned low battery by

some supervisory voltage system or recognizing low

signals from all other processes, the process will

immediately broadcast out its latest information

regarding trigger counting. Besides, the leaving

process will store all variables used in the algorithm

into its nonvolatile memory for its rejoining afterward.

On the other hand, it is also required to make a

joining process able to learn the total number of

triggers that the system has received so far.

Specifically, a joining process has to ask other

processes for the latest information regarding trigger

counting no matter it is a recovering or newly-joining

process. Here, a recovering process means that such a

process had joined the system for cooperatively

calculating the number of triggers but left due to some

event, like low battery, and joins the cooperation again

via some recovery procedure, like recharge. Such a

kind of process will restore all variables stored in the

nonvolatile memory prior to its leaving to facilitate the

collaboration with other processes. As for a newly-

joining process, we mean that it is the first time for this

process to join the system for collecting triggers. This

kind of process will first execute the init phase of the

algorithm to do the initialization. Note that for the sake

of brief presentation, in our following two algorithms

for dynamic networks, we assume that all trigger-

receiving, process-leaving and process-joining actions

proceed in a totally sequential fashion. The assumption

is reasonable because the times for the entire system

processing these three kinds of actions are much

shorter than that between two continuous events

occurring.

Below, we introduce the core property of our first

DTC algorithm for dynamic networks, called the

dynamic intuitive algorithm. This property is directly

derived form the result of [22]:

Theorem 1: In a connected component of a network

topology, if the first time a process receives a message

from a neighbor, it will broadcast the message to all its

neighbors, such a message will finally reach all

participants of the process from which the message

originates.

Furthermore, as mentioned in [22], though the above

idea can make information propagate to all processes

in the whole connected network, it will cause a process

to send a redundant message. To distinguish useful

messages from redundant ones, a feasible way is to

attach more information to make each message distinct,

e.g., attaching the unique ID of the originating process

858 Journal of Internet Technology Volume 22 (2021) No.4

and the number of triggers received by the process so

far.

Now we begin to elaborate our dynamic intuitive

DTC algorithm, which is presented in Figure 2, and all

definitions of messages and variables for this algorithm

are listed in Table 1. Foremost, the part for counting

triggers is similar to its counterpart for static networks

proposed in [22]. Particularly, each process pi takes the

number of triggers that have to be received by the

whole system, i.e., w, as the input (line 1). Then in the

init phase, pi designates wi as the number of triggers

received by it so far and wi’ as the number of triggers

that all processes except pi have received so far (lines

2-3). Since there is no trigger received by the system in

the very beginning, both wi and wi’ are initialized to

zero (lines 4-5). After completing the init phase, upon

receipt of a trigger from an external source, wi is

increased by one to denote that pi has just received a

trigger (line 6). Besides, pi broadcasts increasei(wi) to

inform its neighbors that it has received one more

trigger (line 7). Then, pi examines whether the sum of

wi and wi’ equals w; if so, pi is the process that receives

the last trigger such that it needs to raise an alarm to

inform the supervisor (lines 8-9). While receiving

increasej(wj) for j≠i, if it is the first time for pi to

receive such a message, pi stores the current number of

triggers received by pj in dynamically-allocated

variable latest_receivedi
j (line 13). Here, if such a

variable does not exist, pi first allocates memory space

for it (lines 11-12). Moreover, pi adds wi’ by one and

broadcasts increasej(wj) out (lines 14-15). Note that the

reason of exploiting dynamically-allocated variables is

that the algorithm is assumed to not learn the accurate

number of processes in the system. Thus doing so

makes every process merely allocate necessary

memory space to record numbers of triggers received

by other processes until now.

Figure 2. The dynamic intuitive DTC algorithm for receiving w triggers

On the Distributed Trigger Counting Problem for Dynamic Networks 859

Table 1. The definitions of all messages and variables in the dynamic intuitive DTC algorithm

Variable Definition

w The number of triggers the entire system has to receive

i
w The number of triggers

i
p has received so face

i
w′ The number of triggers all processes except

i
p have received so far

increasei ()
i

w To indicate if
i
p has received the th

i
w trigger

latest_receoved j

i
 The information

i
p has known regarding the number of triggers received by

j
p so far

leavei() To indicate if
i
p has left now

leaving_process j

i
 The information

i
p has known regarding if

i
p has left now

join i() To indicate if
i
p has joined now

in_for_joini (,)
i

w j To provide the information for
j

p regarding the number of triggers
i
p has received so far

As for the part for dealing with process leaving,

since a process immediately broadcasts out a message

to inform other processes upon receiving a trigger (line

7), a leaving process pi does not need to provide any

information regarding trigger counting when it leaves.

Instead, pi just lets its neighbors know its leaving (line

16). Correspondingly, upon learning some process pj

leaving the system for the first time, pi sets dynamically-

allocated Boolean variable leaving_processi
j to true to

denote that pj has left the system and broadcasts this

information out (lines 17-21).

In contrast, a joining process pi has to ask all

processes in the system for the latest number of

triggers received by the entire system by broadcasting

message joini() out (line 22). Correspondingly, upon

receiving joinj() for the first time, pi sets dynamically-

allocated Boolean variable leaving_processi
j to false to

denote that pj has joined the system and broadcasts out

joinj() as well as message inf_for_joini(wi, j) (lines 23-

28). Furthermore, to make pj able to learn the total

number of triggers that the whole system has received

so far, pi also needs to provide pj with its known

numbers of triggers received by all leaving processes

(lines 29-31). More importantly, upon receiving

message inf_for_joinj(wk, l), where wk represents the

latest number of triggers received by some process pk

known by process pj, an intermediate process pi, i.e., i

≠ j, i≠k and i≠ l, forwards the message to other

processes if it is the first time to receive this message

(lines 32-34). If the destination of such a message is pi

itself, namely, i=l, pi updates its knowledge about the

system according to the information carried on the

message (lines 35-48). In particular, according to

information carried on the message, pi can determine

whether pk is a leaving process. Namely, if j≠k, this

means that pk is a leaving process, and pj offers pi

required information for it. Otherwise, pk still remains

in the system. After the above procedure, a joining

process can obtain the numbers of triggers received by

all processes involved in the computation, especially

those having left.

Here, we illustrate the above algorithm with the

instance shown in Figure 1. After p1 receives the first

trigger from an external source, it broadcasts increase1(1)

to its neighbors. Upon receipt of increase1(1), the

unique neighbor of p1, that is, p3, knows that p1 has just

received a trigger and records this event. Because it is

the first time to receive such a message, p3 broadcasts

increase1(1) to its neighbors. Later, p1, p2, and p5

receive increase1(1). According to the information

carried on the message, p1 learns that this message

broadcast by p3 is a redundant message. Hence, p1

discards it. On the other hand, p2 and p5 realize that it is

the first time for them to receive such a message. They

record increase1(1) and then broadcast it to their

neighbors. Finally, message increase1(1) will travel

throughout the entire network. This means that all

processes in the network will eventually learn that p1

has just received a trigger from an external source.

Moreover, since we assume that all trigger-receiving,

process-leaving and process-joining actions progress in

a totally sequential fashion, all processes will know

every previous trigger-receiving event before the next

trigger is received by the system.

Next, we formally demonstrate that the algorithm

presented in Figure 2 is an exact DTC algorithm for a

dynamic network.

Theorem 2: The algorithm presented in Figure 2 is

sufficient for solving the DTC problem in a dynamic

network and also an exact algorithm.

Proof. Based on the result of [22], we know that the

algorithm presented in Figure 2 is sufficient for solving

the DTC problem if no dynamic event happens. Hence,

we only need to discuss the events of leaving process

and joining process here. First, because a process

immediately broadcasts out a message to inform other

processes upon receiving a trigger (line 7), information

about trigger counting of a leaving process will not be

lost. Furthermore, a joining process can obtain the

numbers of triggers received by all processes involved

in the computation from some other process (lines 35-

48) such that it can cooperate with other processes

remaining in the system to count triggers as if the

joining process had participated in the computation

from the very beginning.

860 Journal of Internet Technology Volume 22 (2021) No.4

More importantly, seeing that we assume that all

trigger-receiving, process-leaving and process-joining

actions progress in a totally sequential fashion, the

network topology can be regarded static at any

duration of dealing with a trigger received from an

external source. Therefore, we have that all processes

will know every previous trigger-receiving event

before the next trigger is received by the system.

Namely, when the system has received w-1 triggers, all

processes in the system can know this result prior to

receiving the wth trigger. This means that when some

process in the system receives the wth trigger from an

external source, it will precisely raise an alarm to

inform the supervisor (lines 8 and 9), and all other

processes will learn such an event before they receive

one more trigger. From the above discussions, we can

conclude that the algorithm presented in Figure 2 is

sufficient for solving the DTC problem in a dynamic

network and also exact.

4 Dynamic Improved Algorithm

Although the algorithm presented in Figure 2 is

sufficient for solving the DTC problem in the exact

way, it will have the whole system yield much message

overhead during the computation. This is obviously a

critical issue for energy-limited dynamic networks,

especially WSNs. The method adopted by the second

DTC algorithm for static networks introduced in [22]

to reduce the message overhead is to lessen the

frequency of broadcasting actions performed by a

process upon receiving a trigger from external sources.

More specifically, the above algorithm directs a

process pi not to broadcast information about trigger

counting so frequently that pi only broadcasts a

message to inform its neighbors after receiving a

certain amount of triggers, i.e., f. Trivially, doing so

can significantly lower the message complexity of the

entire system. Though a larger value of f can reduce

more message overhead of the whole system, it causes

the problem that the system may not raise an alarm

exactly upon receiving the desired number of triggers.

Therefore, to lower the message complexity as well as

avoiding an imprecise alarm, the second DTC

algorithm in [22], which is round-based, makes the

value of f vary round by round, with the requirement

that the number of processes in the system is known

beforehand so as to appropriately adjust the value of f

during the computation. In addition, to calculate the

number of remaining triggers for a coming round, all n

processes in the system need to broadcast a message by

the end of the current round to inform other processes

of how many triggers they have received until now.

Hence, the benefit of the threshold for lowering the

message complexity may not be achieved when its

value is less than the number of processes in the

system. Thus as the value of f is less than n, the

foregoing algorithm acts like the first one introduced in

[22].

Here, we exploit the concept of the second DTC

algorithm in [22] to improve our dynamic intuitive

algorithm. The resultant dynamic improved algorithm

contains two parts, which are presented in Figure 3 and

Figure 4, respectively, and all definitions of messages

and variables for this algorithm are listed in Table 2.

The former part is responsible for counting triggers and

is also similar to its static counterpart in [22]. Below,

we only explain the techniques that are not employed

in the foregoing dynamic intuitive one. First, each

process pi takes the initial number of processes in the

system, n, and the upper bound on number of processes

during the computation, nu, as the input (lines 2-3). The

upper bound nu can be any integer not less than n, and

it means that during the whole course of collecting w

triggers, the number of processes involved in the

computation at any moment will never exceed this

value. Such a bound is used for properly adjusting the

threshold value in every non-final round. Moreover, in

the init phase, pi defines some variables with certain

purposes. In particular, roundi is the number of the

current round in pi, which is initialized to 1 (lines 6 and

10), and fi is the threshold value to end the current

round, which is defined as ⎣(w−wi−wi’)/nu⎦ (lines 7 and

11). Because the initial number of processes in the

system is assumed to be known, each process first

allocates memory space for storing information about

initial participants. More specifically, Boolean variable

leaving_processi
x is utilized for denoting whether px

has left the system or not, and infori
x is used for

checking if pi has received information about trigger

counting from px in the current round (lines 15-18).

Seeing that there is no corresponding event happening

in the beginning of the algorithm, the above

dynamically-allocated variables are all initialized to

zero or false.

Next, upon receipt of a trigger from an external

source, if pi is not in the final round, namely, roundi≠

0, fi is decreased by one (lines 20-21). Then, if fi equals

zero, pi broadcasts finish_this_roundi(wi, roundi) to its

neighbors to inform them that it has received enough

triggers in the current round and also records the

number of triggers that it has received so far, i.e., wi, in

latest_receivedi
i (lines 22-24). Otherwise, if pi is in the

final round, it will work as the previous intuitive one

(lines 36-39). As for upon receiving finish_this_

roundj(wj, roundj) for the first time, pi broadcasts the

message out, updates the trigger number of pj, and sets

infori
j to roundj for denoting that it has already

received the information from pj in the current round

(lines 40-43). Furthermore, if pi has not provided its

trigger count in the current round, it broadcasts finish_

this_roundi(roundi, wi) out and updates corresponding

variables as well (lines 44-47). Since leaving processes

cannot support their trigger numbers, pi utilizes its

knowledge regarding them for computing the new

threshold for the coming round (lines 26-28 and 48-50).

On the Distributed Trigger Counting Problem for Dynamic Networks 861

More importantly, to deal with the extreme scenario

that there is merely one process remaining in the

system, the process terminating the current round will

verify this scenario via checking if the value of every

existing infori
x equals roundi (lines 26-28). Finally,

after receiving enough information, that is, receiving

finish_this_roundj(wj, roundj) originating from any

remaining process pj in the current round, pi calculates

the threshold value for the next round (lines 29-30 and

51-52). If the new value of fi is not less than nu, pi

enters a new non-final round and increases roundi by

one accordingly (lines 31-32 and 53-54). Otherwise, pi

calculates the total number of triggers received by all

processes but itself so far and sets roundi to 0 to enter

the final round (lines 33-35 and 55-57).

Figure 3. The main part of the dynamic improved DTC algorithm for process pi

862 Journal of Internet Technology Volume 22 (2021) No.4

Figure 4. The auxiliary part of the dynamic improved DTC algorithm for process pi

Table 2. The definitions of all messages and variables in the dynamic improved DTC algorithm

Variable Definition
w The number of triggers the entire system has to receive
n The initial number of processes in the system

u
n The upper bound on number of processes in the system

i
w The number of triggers

i
p has received so far

i
w′ The number of triggers all processes except

i
p have received so far

i
round The current round number of

i
p

i
f The threshold value for

i
p to end the current round

latest_receoved j

i
 The information

i
p has known regarding the number of triggers received by

j
p so far

leaving_process j

i
 The information

i
p has known regarding if

i
p has left now

infor j

i

To indicate if
i
p has received information about trigger counting from

j
p in the current

round

Finish_this_roundi To inform participants that
i
p has received enough triggers in the current round

increasei ()
i

w To indicate if
i
p has received the th

i
w trigger

leavei ()
i

w To indicate if
i
p has left and received

i
w trigger now

joini() To indicate if
i
p has joined now

in_for_join i (, , ,)
i i i

w round f j
To provide the information for

j
p regarding the number of triggers

i
p has received so far,

along with the current round number and the current threshold value of
i
p

On the other hand, the part shown in Figure 4 is for

dealing with process leaving and joining. In particular,

now that no process will broadcast out its information

about trigger counting until the end of a non-final

round, a process pi needs to send out its number of

triggers received so far to let its neighbors learn its

latest trigger count upon its leaving (line 62). While

knowing the leaving action of some process pj for the

first time, pi updates its knowledge about pj as well as

broadcasting this information out (line 63-66). As for

On the Distributed Trigger Counting Problem for Dynamic Networks 863

the joining procedure, upon learning the first time that

some process has joined the system, beside updating its

knowledge regarding this joining process, pi informs

the process of all known information about the system

(lines 68-79). Furthermore, upon receiving inf_for_

joinj(wk, roundj, fj, l) from some other process, if pi is

exactly the destination of such a message, it updates its

knowledge about the system accordingly (lines 80-94).

Here, we also use Figure 1 as an example to

illustrate the improved algorithm. First, after p1

receives enough f1 triggers in the first round, it

broadcasts finish_this_round1(f1, round1) to inform its

sole neighbor p3 that it will end the first round. Upon

receipt of this message, p3 knows that p1 has terminated

the first round and thus records the information carried

on the message. Because p3 receives such a message

for the first time, p3 broadcasts finish_this_round1(f1,

round1) and finish_this_round3(w3, round3) to its

neighbors. Subsequently, all p1, p2, and p5 receive these

two messages. After receiving such two messages, p1

discards the first message, which is redundant to it, and

records the information carried on finish_this_

round3(w3, round3). Also, p1 broadcasts finish_this_

round3(w3, round3) to its neighbors. Likewise, p3

discards the above redundant message from p1. On the

other hand, both p2 and p5 know that it is the first time

for them to receive the two messages separately

originating from p1 and p3. Hence, p2 and p5 broadcast

to their neighbors finish_this_round2(w2, round2) and

finish_this_round5(w5, round5), respectively, along

with the two messages from p1 and p3. At last, after

receiving the information about the trigger number

from all other processes, every process pi in the system,

∀i ∈ [1, 5], can learn how many triggers the whole

system has received in the first round and then

calculate the new threshold value for the second round.

Theorem 3: The algorithms presented in Figure 3 and

Figure 4 are sufficient for solving the DTC problem in

a dynamic network and also an exact algorithm.

Proof. Based on the result of [22], we know that the

algorithm presented in Figure 3 and Figure 4 are

sufficient for solving the DTC problem if no dynamic

event happens. Hence, we also only need to discuss the

events of leaving process and joining process here.

First, because a leaving process will broadcast out its

latest number of received triggers to its neighbors as it

leaves (line 62), the information about trigger counting

of the leaving process will not be lost. In addition, a

joining process will obtain the total numbers of triggers

received by the whole system so far from some other

process (lines 83-94) such that it can count triggers

cooperatively with other processes remaining in the

system.

Moreover, for showing that the algorithm is also

exact, we need to prove that the system will still have

some remaining triggers by the end of a round except

the final one. Thus it will continuously enter a new

round until the final one is reached. Since the

procedure of the final round in the algorithm is the

same as that of the algorithm in Figure 2, which is

proven exact by Theorem 2, we only need to

demonstrate that in any non-final round, the number of

triggers received by the whole system will never

exceed the number of remaining triggers that the

system has not yet received prior to this round.

Let the number of remaining triggers having not

been received by the system before entering the kth

round, which is not the final one, is wk, where k ≥ 1.

The value of wk as well as that of the corresponding

threshold fk for the kth round is calculated by the end of

the (k-1)th round for k ≥ 2 (lines 51 and 52), while the

value of w1 for the first round is obtained from the

input (line 1) and that of f1 for the same round is

computed in the initialization part (line 11). Note that

in a non-final round, the system will receive the

maximum number of triggers when triggers are evenly

delivered to all processes. In particular, in this case,

only one process will receive sufficient triggers to end

the current round, and all other n-1 processes will

receive one less trigger than this process. Hence, the

maximum number of triggers that can be received in

the kth round is f k + (n-1)(f k-1) = nf k-n+1 = n⎣wk/nu⎦-
(n-1). Because of ⎣wk/nu⎦ ≤ ⎣wk/n⎦ ≤ wk/n and n > 1,

we have n⎣wk/nu⎦-(n-1) ≤ n⎣wk/n⎦-(n-1) ≤ n(wk/n)-(n-1)

≤ wk-(n-1) < wk.

5 Simulation Results

Now, we start to perform a simulation study to

compare our two algorithms more comprehensively in

dynamic and randomized situations. Particularly, we

use the PARSEC language [24] to conduct the

simulation. Since the topologies of dynamic networks

are varied, we execute the DTC application on systems

with different settings of node numbers, edge numbers

and process leaving/joining frequencies. The parameter

settings of our simulation experiments are listed below:

1. The environment:

□ The considered environment is a square with sides

1000m long.

2. The processes:

□ For each experiment, there are 20, 30 or 40

processes uniform-randomly scattered in the

considered environment, where the upper bound

on number of processes is set to the value of the

number of initial processes plus 10.

□ Both process leaving and joining times are

determined by a Poisson distribution with a mean

interval λ equal to the duration of receiving 1000,

2000 or 3000 triggers.

3. The transmission range:

□ The transmission range of every process is set to

100m, 200m or 300m in the simulation.

4. The triggers:

□ There are 10000 triggers that the system has to

864 Journal of Internet Technology Volume 22 (2021) No.4

receive. Moreover, the destination of a trigger is

uniformly random.

For each setting, we generate 1000 different

connected network topologies and separately execute

the dynamic intuitive and improved algorithms on

these systems.

According to the algorithms, we can know the

corresponding message costs of dealing with different

dynamic events, e.g., the function, upon receipt of

leavingi(), is for dealing with the event of a leaving

process. Furthermore, since the sizes of messages

induced by our DTC algorithms are different, we

further consider the total sizes of all messages

produced by the algorithms during the entire procedure

to make the simulation comparisons more convincible

(Table 3). Particularly, we suppose that the size of a

trivial message carrying no variable, e.g., joini(), is one;

while that of a message with y variables is y+1. For

example, the size of message increasei(wi) is 2.

Table 3. The comparison of weighted overhead of each message in our algorithms and [22]

intuitive Improved Algorithm

Message Static Dynamic Static Dynamic

increase(w) 1 2 1 2

leave() N/A 1 N/A 1

join() N/A 1 N/A 1

inf_for_join(w, j) N/A 3 N/A N/A

finish_this_round(w, round) N/A N/A 1 3

leave(w) N/A N/A N/A 2

in_for_join(w, round, f, j) N/A N/A N/A 5

In addition, distinct settings in the simulation

experiments are used to verify if our algorithms can

meet various conditions, e.g., the number of processes

for the scalability of the system, the frequency of

dynamic events for the environment and application,

and the transmission range for the limitation of the

hardware and environment.

The simulation results are summarized in Table 4,

Table 5 and Table 6, where we present the average

total message size, standard deviation and the ratio of

the message size induced by the improved algorithm to

that by the intuitive one for each transmission range

setting, respectively. Note that if the topology is

disconnected in any moment of simulation, we will

discard it. More specifically, from the simulation

results of all settings with the same number of

processes, we can see that the smaller the value of λ is,

the higher message overhead the two algorithms

produce during the computation. The underlying

reason is that with a smaller value of λ, both process

leaving and joining events happen more frequently,

and thus more messages are produced to manipulate

these events. On the other hand, because the two DTC

algorithms direct all existing processes to provide a

joining process with the up-to-date information of the

system and the latest trigger count of a leaving process

also needs to be broadcast to the whole system, a

system with more initial processes and a process with

longer transmission range, resulting in a topology with

higher connectivity, will induce more message

overhead. As expected, the simulation results of all

settings with the same value of λ exactly conform to

this observation.

Table 4. The simulation results for transmission range 100m

λ = 1000 λ = 2000 λ = 3000

Intuitive Improved Intuitive Improved Intuitive Improved Number of

processes
Mean

Standard

deviation
Mean

Standard

deviation

Ratio

Mean
Standard

deviation
Mean

Standard

deviation

Ratio

Mean
Standard

deviation
Mean

Standard

deviation

Ratio

20 647962.15 250604.14 306439.73 121151.76 0.4729 493361.39 199896.13 123241.40 59662.30 0.2498 466676.12 185878.97 78322.88 38509.28 0.1678

30 1590083.49 427111.64 1011462.74 293860.32 0.6361 1181777.22 333577.85 434980.71 156996.32 0.3681 1089985.78 303721.39 290150.18 104332.63 0.2662

40 3126706.25 621555.10 2301553.00 523216.74 0.7361 2240689.77 493855.18 992489.62 305735.77 0.4429 2020795.14 425618.16 625696.66 191474.14 0.3096

Table 5. The simulation results for transmission range 200m

λ = 1000 λ = 2000 λ = 3000

Intuitive Improved Intuitive Improved Intuitive Improved Number of

processes
Mean

Standard

deviation
Mean

Standard

deviation

Ratio

Mean
Standard

deviation
Mean

Standard

deviation

Ratio

Mean
Standard

deviation
Mean

Standard

deviation

Ratio

20 2368984.90 663377.88 1119260.99 326714.13 0.4725 1800914.40 470774.58 450594.88 171582.81 0.2502 170467.14 421133.93 286666.23 105086.62 0.1682

30 5855927.10 1106696.15 3708280.15 780525.96 0.6333 437136136 843081.68 1602337.56 458696.52 0.3666 4031393.59 735015.93 1076190.98 309473.40 0.2670

40 11503274.83 1642552.75 8466750.26 1449546.42 0.7360 8256762.63 1283929.10 3661319.72 1004132.60 0.4434 7453087.23 1057056.55 2307606.61 625945.39 0.3096

On the Distributed Trigger Counting Problem for Dynamic Networks 865

Table 6. The simulation results for transmission range 300m

λ = 1000 λ = 2000 λ = 3000

Intuitive Improved Intuitive Improved Intuitive Improved Number of

processes
Mean

Standard

deviation
Mean

Standard

deviation

Ratio

Mean
Standard

deviation
Mean

Standard

deviation

Ratio

Mean
Standard

deviation
Mean

Standard

deviation

Ratio

20 4845149.65 1243885.89 2290969.20 610138.64 0.4728 3692487.40 833191.68 92643.20 339337.26 0.2501 3495892.59 727390.27 588279.34 204955.35 0.1683

30 11963263.96 2095894.75 7571915.44 1495571.19 0.6329 8940271.80 1528954.78 3284950.10 931001.82 0.3674 8247105.54 1343799.30 2206267.81 620489.22 0.2675

40 23514562.76 3094378.28 17307564.48 2776668.36 0.7360 16885369.26 2405820.31 7486031.19 1998480.81 0.4433 15234234.72 1947740.97 4719675.66 1250411.66 0.3098

Next, to show the efficiency of the dynamic

improved algorithm for reducing message overhead,

the ratio between message sizes induced by our two

dynamic algorithms is presented as well. According to

that, we can observe that regardless of which setting is

considered, the dynamic improved algorithm is much

more efficient in message overhead than the dynamic

intuitive one. However, we can also learn that the

dynamic improved algorithm pays more message

overhead to address topology variations of networks

than the intuitive one, especially when the number of

initial processes is large.

6 Conclusions

In this paper, we have proposed two exact

algorithms for solving the DTC problem in dynamic

networks, where a process will move, leave or join.

Therefore, our algorithms are much more applicable to

the real world, especially monitoring applications of

WSNs. In addition, we have comprehensively

compared our two DTC algorithms and found that the

technique adopted by the latter does take effect in

reducing the message overhead. For the future work, it

is interesting to propose novel dynamic DTC

algorithms with other techniques to achieve better

performances.

Acknowledgments

This research was supported by Ministry of Science

and Technology, Taiwan, R.O.C. under grant 109-

2221-E-035-067-MY3, 109-2622-H-035-001-, and 108-

2221-E-035-063-.

References

[1] C.-Y. Chong, S. P. Kumar, Sensor Networks: Evolution,

Opportunities, and Challenges, Proceedings of the IEEE, Vol.

91, No. 8, pp. 1247-1256, August, 2003.

[2] D. Steere, A. Baptista, D. McNamee, C. Pu, J. Walpole,

Research Challenges in Environmental Observation and

Forecasting Systems, Proceedings of the 6th Annual

International Conference on Mobile Computing and

Networking, Boston, Massachusetts, USA, 2000, pp. 292-299.

[3] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, Next

Century Challenges: Scalable Coordination in Sensor

Networks, Proceedings of the 5th Annual ACM/IEEE

International Conference on Mobile Computing and

Networking, Seattle, Washington, USA, 1999, pp. 263-270.

[4] C.-Y. Chong, F. Zhao, S. Mori, S. Kumar, Distributed

Tracking in Wireless Ad Hoc Sensor Networks, Proceedings

of the 6th International Conference of Information Fusion,

Queensland, Australia, 2003, pp. 431-438.

[5] F. Zhao, J. Shin, J. Reich, Information-Driven Dynamic

Sensor Collaboration, IEEE Signal Processing Magazine, Vol.

19, No. 2, pp. 61-72, March, 2002.

[6] M. L. Massie, B. N. Chun, D. E. Culler, The Ganglia

Distributed Monitoring System: Design, Implementation, and

Experience, Parallel Computing, Vol. 30, No. 7, pp. 817-840,

July, 2004.

[7] W. Zhang, G. Cao, DCTC: Dynamic Convoy Tree-based

Collaboration for Target Tracking in Sensor Networks, IEEE

Transactions on Wireless Communications, Vol. 3, No. 5, pp.

1689-1701, September, 2004.

[8] K. S. Park, V. S. Pai, CoMon: A Mostly-scalable Monitoring

System for PlanetLab, ACM SIGOPS Operating Systems

Review, Vol. 40, No. 1, pp. 65-74, January, 2006.

[9] B. Li, B. Qi, J. Yang, Y. Sun, W.-X. Cui, H.-G. Yan,

OEEABed-Online Distributed Energy Efficiency Analysis

Testbed and Novel Monitoring Approach under Wireless

Sensor Network, Journal of Internet Technology, Vol. 14, No.

3, pp. 467-475, May, 2013.

[10] F. Lamberti, A. Sanna, A Java Web-based Multichannel

Architecture for Distributed System Monitoring, Journal of

Internet Technology, Vol. 3, No. 4, pp. 235-244, October,

2002.

[11] C. Liu, G. Cao, Distributed Monitoring and Aggregation in

Wireless Sensor Networks, 2010 IEEE Proceedings

INFOCOM, San Diego, CA, USA, 2010, pp. 1-9.

[12] S. Ji, J. He, A. S. Uluagac, R. Beyah, Y. Li, Cell-based

Snapshot and Continuous Data Collection in Wireless Sensor

Networks, ACM Transactions on Sensor Networks, Vol. 9,

No. 4, pp. 1-29, July, 2013.

[13] T. H. Lai, T. H. Yang, On Distributed Snapshots, Information

Processing Letters, Vol. 25, No. 3, pp. 153-158, May, 1987.

[14] R. Garg, V. K. Garg, Y. Sabharwal, Scalable Algorithms for

Global Snapshots in Distributed Systems, Proceedings of the

20th Annual International Conference on Supercomputing,

Queensland, Australia, 2006, pp. 269-277.

[15] R. Garg, V. K. Garg, Y. Sabharwal, Efficient Algorithms for

Global Snapshots in Large Distributed Systems, IEEE

Transactions on Parallel and Distributed Systems, Vol. 21,

No. 5, pp. 620-630, May, 2010.

[16] V. T. Chakaravarthy, A. R. Choudhury, V. K. Garg, Y.

Sabharwal, Brief Announcement: A Decentralized Algorithm

for Distributed Trigger Counting, Proceedings of the 24th

866 Journal of Internet Technology Volume 22 (2021) No.4

International Conference on Distributed Computing,

Cambridge, MA, USA, 2010, pp. 398-400.

[17] V. T. Chakaravarthy, A. R. Choudhury, V. K. Garg, Y.

Sabharwal, An Efficient Decentralized Algorithm for the

Distributed Trigger Counting Problem, Proceedings of the

12th International Conference on Distributed Computing and

Networking, Bangalore, India, 2011, pp. 53-64.

[18] S. Kim, J. Lee, Y. Park, Y. Cho, An Optimal Distributed

Trigger Counting Algorithm for Large-scale Networked

Systems, Simulation, Vol. 89, No. 7, pp. 846-859, July, 2013.

[19] S. Karmakar, S. Chattopadhyay, A Trigger Counting

Mechanism for Ring Topology, Proceedings of the 37th

Australasian Computer Science Conference, Auckland, New

Zealand, 2014, pp. 81-87.

[20] S. Karmakar, A. C. Reddy, An Improved Algorithm for

Distributed Trigger Counting in Ring, The Computer Journal,

Vol. 57, No. 7, pp. 980-986, July, 2014.

[21] V. T. Chakaravarthy, A. R. Choudhury, Y. Sabharwal,

Improved Algorithms for the Distributed Trigger Counting

Problem, Proceedings of the 2011 IEEE International

Parallel & Distributed Processing Symposium, Anchorage,

AK, USA, 2011, pp. 515-523.

[22] C.-C. Chang, J. Tsai, Distributed Trigger Counting

Algorithms for Arbitrary Network Topology, Wireless

Communications and Mobile Computing, Vol. 16, No. 16, pp.

2463-2476, November, 2016.

[23] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley,

1990.

[24] X. Zeng, R. Bagrodia, M. Gerla, GloMoSim: A Library for

Parallel Simulation of Large-scale Wireless Networks,

Proceedings of the 12th Workshop on Parallel and

Distributed Simulations, Alberta, Canada, 1998, pp. 154-161.

Biographies

Che-Cheng Chang received his PhD

degree in department of electrical

engineering from National Chung

Hsing University, Taiwan in 2015.

Then he joined the department of

information engineering and computer

science, Feng Chia University, Taiwan, as an assistant

professor in 2018. His current research interests

include autonomous vehicles, machine learning, and

distributed computing.

Jichiang Tsai joined the Department

of Electrical Engineering, National

Chung Hsing University, Taiwan, as

an assistant professor in 2002 and then

was promoted to associate professor

in 2005. From 2017, he has been a full

professor of the same department. His

current research interests include unmanned vehicles,

distributed computing and machine learning.

Tien-Yu Chang received his Ph. D.

degree in the Department of Electrical

Engineering, National Chung Hsing

University, Taiwan in 2019. He has

been a software design engineer in the

National Chung-Shan Institute of

Science and Technology, Taiwan

from 2003. His research interests include distributed

systems and wireless sensor networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

