
An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 765

An Edge Intelligence-based Generative Data Augmentation

System for IoT Image Recognition Tasks

Wei-Jian Hu1, Tang-Ying Xie1, Bao-Shan Li1, Yong-Xing Du1, Neal N. Xiong2

1 School of Information Engineering, Inner Mongolia University of Science and Technology, China
2 Department of Mathematics and Computer Science, Northeastern State University, USA

hwj_llf@hotmail.com, xty_CGC@163.com, libaoshan@imust.edu.cn, dyxql@imust.edu.cn,

xiongnaixue@gmail.com*

*Corresponding Author: Yong-Xing Du; E-mail: dyxql@imust.edu.cn

DOI: 10.53106/160792642021072204005

Abstract

To solve the problem of data scarcity in IoT image

recognition tasks, an EI-based generative data augmentation

system is designed in this paper. The system adopts

hybrid architecture, and edge server and cloud data center

participate in computing together, which is logically

divided into the training phase and running phase. The

training phase completes data augmentation of source

data and training of Convolutional Neural Networks

(CNNs), while the running phase processes information

through the pretrained CNNs, and completes iteration of

the CNNs through expert review and self-learning

mechanism. It is worth mentioning that a generative data

augmentation model, an Effective Deep Convolutional

Generative Adversarial Network (E-DCGAN), has been

proposed in the system. The experiments show that E-

DCGAN is superior to the baseline model in image

generation and data augmentation in both agricultural and

medical fields. Compared with the baseline model, the

FID values were reduced by 4.73% and 19.59%.

Meanwhile, the use of E-DCGAN for data augmentation

can significantly improve the image classification model

(VGG19, AlexNet, ResNet50), and the average accuracy

of agricultural and medical classification results has

increased by 0.96% and 1.27% over the baseline.

Keywords: Deep Learning (DL), Data scarcity, Edge

Intelligence (EI), Generative Adversarial

Network (GAN), IoT

1 Introduction

Recent years, with the rapid development of

artificial intelligence (AI) technology, many related

applications and services have emerged. AI technology

has achieved good performance in Computer Vision

(CV), Natural Language Processing (NLP), etc. The

use of AI technology to analyze information has

become the most effective method now, mostly

represented by Machine Learning (ML) technology

and Deep Learning (DL) technology [1]. However, the

computing resources required for traditional AI

computing are usually concentrated in the cloud data

center, which makes it difficult for the IoT system to

generate many real-time data from edge devices to

enjoy the strong support of AI technology, and it is

also challenging to ensure that high quality and high-

level service. The emergence of Edge Intelligence (EI)

technology has successfully solved this problem. EI is

a new computing model based on EC. It combines EC

and AI and uses AI methods to process data in edge

devices. To ensure the efficiency and real-time of data

processing, and simultaneously promote the broad

application of AI in IoT, and solve “the last mile”

problem in AI. At present, IoT has become an

important application field of EI, and the use of EI in

IoT systems has become a hot research topic, attracting

the attention of many scholars from academia and

industry [2-4].

The deep Convolutional Neural Networks (CNNs) in

DL is a type of feedforward neural network that

includes convolution calculation and has a deep

structure. It has achieved good results in CV tasks such

as image recognition, semantic segmentation, and

image generation [5]. In IoT systems that use EI

technology, deep CNNs are also widely used, such as

in the agricultural field [6], medicine field [7], etc.

Although CNNs has achieved good results in CV

tasks, its training relies on many labeled data.

Obtaining enough labeled data in actual application

scenes requires many workforces and material

resources, which makes data scarcity has become one

of the main problems that limit CNN’s development.

For example, it is challenging to collect image data of

various crop diseases in crop disease identification due

to multiple crops, broad geographic distribution, and

different disease cycles. It is also challenging to collect

massively labeled medical image data in the medical

field due to personal privacy, disease diversity, and

collection equipment differences. Unfortunately, the

data scarcity is more prominent in IoT systems that use

CNN. This is because the system’s visual information

766 Journal of Internet Technology Volume 22 (2021) No.4

is collected from a specific application scene, and it

isn’t easy to find the same data information as in the

scene. The amount of information is usually difficult to

meet the training requirements of CNN. CNN models

often have problems such as training difficulties and

weak generalization ability. It is difficult for the system

to be put into use quickly, and it is also a big project to

label enough data.

This article takes the agricultural and medical fields

as the starting point. Aiming at data scarcity using

CNN in the IoT image recognition tasks, based on EI

and Generative Adversarial Network (GAN) technology,

designs an EI-based generative data augmentation

system. The system is constructed based on EI

technology and uses a hybrid structure of “edge-cloud”.

The edge service and cloud data center jointly

complete the DL computing tasks in center phases. The

system solves the problem that cannot train the CNN

model due to the lack of actual application scene data

in the image recognition task of IoT system, avoids the

restriction of the environment on the system to a

certain extent, and is beneficial to the application of EI

technology in the IoT system. At the same time, An

Effective Deep Convolutional Generative Adversarial

Network (E-DCGAN) is proposed to expand the image

data in the system to solve the problems of model over-

fitting and insufficient generalization ability caused by

data scarcity in the IoT image recognition task. E-

DCGAN is based on the Deep Convolutional Generative

Adversarial Network (DCGAN) [8] model, the

gradient instability problem is solved by changing the

model loss function, and the network structure of the

generator network and discriminator network is

optimized, which can greatly improve the model

performance ability, enhance the stability of the

network, and reduce the occurrence of mode collapse

as far as possible. In the experiment, the agricultural

and medical datasets were used to verify the model,

which not only verified the model generation effect but

also verified the influence of the generated sample data

on the classification effect through the classification

model. The main contributions of this paper are listed

as follows:

(1) Designed an EI-based generative data augmentation

system. The system is constructed based on EI

technology and uses a hybrid structure of “edge-cloud”.

The edge service and cloud data center jointly

complete the DL computing tasks in phases. The whole

system divides into the training phase and running

phase, in the training phase, the public dataset close to

the application field is used as the source data, and the

GAN is used to enhance the source data. The data after

the data augmentation is used to train the CNN in the

system, and the effect of the model is comprehensively

evaluated by the precision, accuracy, recall and F1-

Measure; in the running phase, the system adopts the

transfer learning method for the classification model

obtained in the training phase, and establishes an

expert review and self-learning mechanism that during

the system running, the expert reviews and proofreads

the real data, and iteratively train model to improve the

model’s effectiveness in actual use.

(2) Proposed a generative data augmentation method:

E-DCGAN. Based on DCGAN, E-DCGAN uses the

wasserstein distance loss function with the gradient

penalty to guide unsupervised learning, which improves

the feature extraction ability of the convolutional layer.

Moreover, it introduces a Spectral Normalization (SN)

layer in the generator and discriminator, respectively.

The model’s performance is greatly improved, and the

dropout layer is introduced into the discriminator

network structure to add randomness to avoid getting

stuck during the training process (may be at a local

minimum value or saddle point).

(3) In the fields of agriculture and medicine, using

FID (Fréchet Inception Distance) as the criterion, AI

Challenger 2018 crop disease fine-grained classification

competition and Chest X-Ray Images datasets are used

to verify the image effects generated by the model and

compared with the current mainstream generative data

augmentation methods. The results show that the E-

DCGAN network has better image generation effects.

(4) In the fields of agriculture and medicine, use

accuracy, precision, recall, and F1-Measure as the

evaluation criteria, use E-DCGAN to generate image

samples for data augmentation, and use the VGG19,

AlexNet, ResNet50 models to compare the classification

effects of different data augmentation methods. The

results show that the samples generated by E-DCGAN

have better image generation effect.

The remainder of the paper is arranged as follows:

In Section 2, EI and IoT, data augmentation, and GAN-

based generative data augmentation methods are

introduced. In Section 3, an EI-based generative data

augmentation system is introduced, and the generative

data augmentation method E-DCGAN is explained in

detail. In Section 4, extensive experiments are

described, and the results are analyzed. In Section 5,

we conclude this shortcomings and future work are

also proposed.

2 Related Work

2.1 EI and IoT

With the proliferation of mobile computing and IoT,

billions of mobile and IoT devices are connected to the

Internet. Meanwhile, these devices will generate

zillions of bytes of data at the network edge, calling for

instant data processing and intelligent data analysis to

fully unleash the edge big data’s potential. Both

traditional cloud computing and on-device computing

cannot sufficiently address this problem due to the high

latency and limited computation capacity [9]. However,

the emerging EC pushes the data processing from the

remote network core to the local network edge,

An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 767

remarkably reducing the latency and improving the

efficiency. In fact, EI integrates EC and AI, and

intelligently processes data at the terminal, enabling

fast, efficient, and reliable calculation and decision-

making at the edge of the network. And EI is widely

used in agriculture, medicine, industry, etc. For

example, in agriculture, Castañeda-Miranda et al. [10]

developed a reliable system for smart irrigation of

greenhouses using artificial neural networks and IoT

architecture, using transfer learning to reduce neural

networks’ processing power for the IoT edge devices.

Namani et al. [11] used a Smart Drone for crop

management where the real-time Drone data coupled

with IoT and Cloud Computing technologies help in

building a sustainable Smart Agriculture. In medicine,

Khan et al [12] designed An IoT Framework for Heart

Disease Prediction Based on MDCNN Classifier, the

MDCNN achieves an accuracy of 98.2 which is better

than existing classifiers. Young et al. [13] designed

wearable medical IoT devices based on DL to

automate AI hearing aids. The system has achieved

92% accuracy in sound recognition and classification.

In industry, Weimer et al. [14] designed a new

industrial inspection architecture based on CNN-based

automatic feature extraction with minimal human

interaction. Wang et al. [15] proposed a DNN-based

architecture to accurately predict the remaining energy

and remaining lifetime of batteries, which further

enables an informed power configuration among base

stations. In other respects, Yan et al. [16] proposed a

reinforcement learning-based method to identify

critical attack sequences with consideration of physical

system behaviors.

2.2 Data Augmentation

Data augmentation is one of the effective means to

solve the data scarcity in DL. Currently, there are two

methods for data augmentation: non-generative data

augmentation and generative data augmentation. Non-

generative data augmentation adopts preset rules to

increase the number and types of data by geometric

transformation and color change [17] of existing data.

Commonly used methods include affine transformation

[18], noise type, and fuzzy type, etc. The non-

generative data augmentation method is simple to

implement and can expand the number of datasets to a

certain extent. Still, it does not produce substantial

changes to the dataset, and the generated samples lack

diversity, so non-generative data augmentation

generalizes the model. The improvement in capacity is

limited. Simultaneously, non-generative data

augmentation methods need to adjust the generation

method according to the characteristics of the dataset.

Generally, the generation method that applies to a

specific dataset is challenging to apply to other datasets.

For example, on the CIFAR-10 dataset, rotation is a

useful data augmentation method, but it does not

perform well on the MNIST dataset because the

classifier cannot correctly identify the numbers 6 and 9

[19]. The generative data augmentation method learns

the distribution that the data obey through the model

and randomly generates data consistent with the

sample set’s distribution. This method can make the

dataset cover more patterns, which is more conducive

to improving the model’s generalization performance

and makes up for the shortcomings of the non-

generative data augmentation.

The generative model is the critical technology in

generative data augmentation. At present, the more

commonly used models are Variational Auto-Encoder

(VAE) [20], Auto Regressive model (AR) [21], and

GAN. Among them, VAE and AR are modeled based

on display density, but AR is used to generate images

on a pixel by pixel, which resulted in high

computational cost and limited parallelism and time-

consuming in processing large resolution images. VAE

in the image generation can be parallel, but the

generated images are fuzzy, lacking expression of

complex models. Compared with display density

modeling methods such as VAE and AR, GAN based

on implicit density modeling avoids problematic

inferences and generates high-quality images; due to its

ability to fit high-dimensional data distribution and

excellent image generation performance, GAN the best

method for generative models. GAN is mainly

composed of two parts, including the generator and the

discriminator [22]. The generator learns mostly the

distribution of original data samples to make the data it

generates more real, while the discriminator is used to

judge the input image data’s authenticity. After

multiple rounds of zero-sum games, the generator’s

performance and the discriminator continue to improve,

and finally, the two will reach a dynamic equilibrium

(Nash equilibrium) [23]. Scholars have done extensive

research on data augmentation using GAN, such as

Frid-Adar et al. [24] based on GAN synthetic medical

images for data augmentation, the sensitivity increased

from 78.6% to 85.7%, and the specificity increased

from 88.4% to 92.4%. Zheng et al. [25] generated

unmarked samples based on DCGAN, achieving a

+0.6% increase on a strong baseline (CNN). Wang et al.

[26] based on GAN, combined with noise-to-image

and image-to-image, for image augmentation of brain

MR tumor detection, increasing the sensitivity from

93.67% to 97.48%.

3 Our Proposed System

3.1 System Overview

The system is built on EI technology, which gives

AI capabilities to edge services in the IoT system so

that the IoT system’s visual information can be

processed quickly and efficiently. Most importantly, it

provides a solution to the problem of data scarcity in

IoT image recognition task. In the system, we use the

768 Journal of Internet Technology Volume 22 (2021) No.4

generative data augmentation method based on GAN to

enhance the data samples and use the CNN to classify

the visual information. However, whether it is a

generative data augmentation method or a deep

convolution neural network, its model’s training and

operation require a lot of time and computing resources.

It is not appropriate to place these tasks in edge

services. Therefore, the system uses a hybrid

architecture of “edge-cloud”. Edge services and cloud

data center work together to complete DL computing

tasks in phases. Figure 1 shows the overall structure of

the system. The cloud data center, the edge service

nodes, and the edge devices make up the whole system,

in which edge devices are divided into information

collection devices and information display devices.

The system uses wireless networks to connect edge

devices and edge service nodes and wired networks to

connect edge service nodes to the cloud data center.

Information collection devices include cameras,

unmanned aerial vehicles, and smartphones responsible

for collecting visual information while the system is

running. Information display devices include personal

computers, tablets, and smartphones, which receive

and display processed information. The edge server

node consists of a GPU-capable server that receives the

collected visual information, processes the data, and

sends the CNN analysis results. The cloud data center

comprises a cluster of servers with GPU-capable and is

responsible for tasks that require a lot of computing,

such as generative data augmentation, CNN model

training, expert review, and self-learning mechanisms.

The Cloud Data Center is composed of a cluster of

servers with GPU computing and is responsible for

tasks that require a lot of computing, such as data

augmentation for generation, CNN model training,

expert review, and self-learning mechanisms.

Ultimately, the cloud data center sends trained CNN

models to edge server nodes through transfer learning.

The whole system can be logically divided into the

training phase and running phase. The training phase

describes the training process of the CNN model and

data augmentation in the system, and the running phase

describes the process of using the CNN model to

process visual information.

Figure 1. Structure of the system

In the training phase, the open dataset close to the

system application field is used as the source data, and

the data generated in the actual application field as the

target data. The source data train the CNN model, and

the CNN model put into operation after the training.

Simultaneously, to further improve the training effect

of the CNN model in the training process, the

generative data augmentation method E-DCGAN (see

Section III for the specific structure) enhances the

source data. Finally, accuracy, precision, recall, and

F1-Measure are used to investigate the model’s

training effect in many aspects. Figure 2 shows the

training process of the system training phase with

tomato leaf’s disease and pneumonia X-ray as

examples. The training phase process divides into three

sub steps. First, select the tomato leaf’s disease images

and chest X-Ray images send them to E-DCGAN; after

E-DCGAN data augmentation, the generated images

and the real images are mixed as a training set and sent

to the CNN model. CNN model consists of VGG19,

AlexNet, ResNet50. And judge the performance of the

model contains Accuracy, Precision, Recall, F1-

Measure. Figure 3 shows the running phase of the

system. The running phase process divides into three

sub steps. First, the data collected by the visual

information collector is preprocessed, and then sent to

the classification model for recognition, and the

recognition result is pushed to the display devices, such

An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 769

as computer, ipad and smartphone. Second, the

preprocessed images and the classification model’s

recognition results review by domain experts. The

experts judge the classification, and give the correct

recognition results as the label of the images, and

finally these data will be stored in the database. Third,

the self-learning mechanism regularly obtains the

labeled real data from the database, and uses the real

data to continue training the classification model, to

improve the performance of the classification model in

real tasks. The process of self-learning is the same as

that of system training phase. Finally, replace the

original model with a new classification model.

Figure 2. The training phase of the system

Figure 3. The running phase of the system

770 Journal of Internet Technology Volume 22 (2021) No.4

3.2 E-DCGAN

E-DCGAN is based on the standard DCGAN and

has been improved from three aspects: generator,

discriminator, and loss function. The improved model

is composed of a generator and a discriminator. The

generator is used to learn the distribution of real data to

generate images, and the discriminator is used to judge

whether the input image is true or false. The overall

structure of the E-DCGAN model is shown in Figure 4.

(a) Generator

256

8

8

Deconv 1 Deconv 2 Deconv 3

3

32

32

512

4

4

Z=100

128

16

16

Real

32

32

32

32

32

Fake

32

32

512

256

128

1

Conv 1 Conv 2 Conv 3

(b) Discriminator

16

16 8

8

4

4

BN ReLU SN Tanh IN Dropout Linear LeakyReLU

Figure 4. Structure of the network

3.2.1 Generator Network Structure

The generator network architecture shows in Figure

4(a). It is divided into five layers, from left to right are

the input layer, the fully connected layer, and the three-

layer transposed convolutional layer (Deconv1,

Deconv2, Deconv3). The fully connected layer consists

of Linear Layer, Batch Normalization (BN), and ReLU

activation function; Deconv1 and Deconv2 layers

consist of SN [27] and BN. The Deconv3 layer is

consists of the SN layer and the Tanh activation

function. The size of each convolution kernel of the

generator network is 4 × 4, and the convolution step

size is [2, 2, 1]. The generator network takes 100-

dimensional (z=100) random, customarily distributed

noise as input, after the input linear mapped to a tensor

with a shape of 4 × 4 × 512, and then it is up-sampling

using a transposed convolutional layer to improve the

learning rate, speed up the convergence speed and

stabilize the training process. Each transposed

convolutional layer will perform an SN operation. The

output will be batch normalized and processed by the

non-linear ReLU activation function as the next layer’s

input. After the last transposed convolutional layer’s

output, through the Tanh activation function, a three-

channel RGB image with 32 × 32 pixels is finally

output.

3.2.2 Discriminator Network Structure

The discriminator network structure shows in Figure

4(b). It is divided into five layers, from left to right are

the input layer, the 3-layer convolutional layer (Conv1,

Conv2, and Conv3), and the fully connected layer.

Conv1 layer and Conv2 layer are consists of SN,

instance normalization (IN), LeakyReLU activation

function; Conv3 layer is consists of SN, IN,

LeakyReLU activation function, and dropout layer; the

fully connected layer consists of a linear layer. Each

convolution kernel of the discriminator network is 4 ×

4, and the convolution step size is [1, 2, 2]. The

discriminator network inputs a 32 × 32 × 3 RGB image

and then uses the convolutional layer to downsampling

An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 771

it. To more improve the performance and learning

ability of the model, each convolutional layer performs

SN. At the same time, we retain the IN layer to

constrain the output of the samples and convolutional

layers to a better range, such as a Gaussian distribution

with a mean of 0 and a variance of 1. And the last layer

of activation function sigmoid is removed; a layer of

dropout is added after the LeakyReLU activation

function at the end of the network to increase its

randomness and avoid getting stuck during training

(may be at a local minimum value or saddle point).

Finally, it is passed to the fully connected layer to

determine whether the input image is true or false.

3.2.3 Loss Function

The loss function of the original DCGAN is showing

in formula (1):

data

~p ()minmax (,) [log ()]x x
G D

V D G D xE=

 ~ ()[log(1 (()))]

z
z p z D G zE+ − (1)

G is the generator, D is the discriminator,
data
p is the

real data sample, and
z

p is the noise distribution.

Formula (1) shows that the solving process of the

model is maximizing the discriminator and minimizing

the generator. For the discriminator, we maximize

log(()) log(1 (()))D x D G z+ − the generator; we minimize

log(1 (()))D G z− by gradient descent. Unfortunately,

such an alternating gradient rise and descent make the

model difficult to learn. It is easy to cause problems

such as model collapse and insufficient diversity of

generated samples in practical application. In response

to the above problems, wasserstein’s distance with the

gradient penalty term is used to replace the original

loss function, which can effectively solve gradient

instability and improve the training process’s stability.

The updated loss function is shown in formula (2),

where L represents the updated loss function, which is

consists of the arithmetic sum of the discriminator’s

loss term
D

L and generator’s loss term
G
L . The

discriminator loss term
D

L is consists of the arithmetic

sum of unsupervised loss term
UL
L and gradient

penalty term
GP
L ,

UL
L as shown in formula (4), where

is
data
p the real data sample,

g
p is the generated data

sample, ~

data
x p and ~

g g
x p follows the distribution

of [0, 1]. As shown in formula (5), where is x random

interpolation sample on x and
g
x , x can be expressed

as (1)
g

x x x xθ θ= + − . Besides, ~

data
x p , ~

g g
x p , and

θ also follows the distribution of [0, 1]. And λ is the

weight coefficient. The generator loss term
G
L is

shown in formula (6),
z

p is the noise distribution and

()G z generate data samples.

D G

L L L= + (2)

D UL GP

L L L= + (3)

 ~ () ~[()] [()]
data gUL z p x x p

L E D x E D x= − + (4)

 2

2~
[(|| () || 1)]

x

GP x p x
L E D xλ= ∇ − (5)

z

~ ()- [(())]
G z p z
L E D G z= (6)

4 Performance Analysis

4.1 Dataset

To verify the validity and advancement of the E-

DCGAN model, we selected two different types of

datasets for experiments in the fields of agriculture and

medicine, and subsequent experiments will be

conducted on these two datasets. The agricultural field

selected AI Challenger 2018 Crop Disease Fine-

Grained Classification Contest dataset, containing

45285 images, of which 40745 is training set, and 4540

is test set can be divided into 61 categories. To explore

the impact of various data augmentation methods on

the small-scale dataset, we selected tomato species as

dataset1 from this dataset, including seven diseases and

11100 images in 14 categories. The medical field

selected the public medical image Chest X-Ray Images

dataset on Kaggle, including two types of NORMAL

and PNEUMONIA, 5883 X-ray images. We selected

2500 from this dataset as dataset2. Dataset1 and

dataset2 divides into a training set and test set

according to 8:2. The specific distribution of the

dataset shows in Table 1.

Table 1. Dataset distribution

Dataset Training set Test set

dataset1 8880 2220

dataset2 2000 500

4.2 Contrast Experimental of Image Generation

4.2.1 Experimental Description

In order to verify the quality and diversity of the

images generated by E-DCGAN (method4) proposed

in this paper, we use DCGAN (method1) as the

baseline to generate images for dataset1 and dataset2,

and set up multiple groups of comparison experiments,

mainly comparing method1, DCGAN+WGAN [28]

+dropout (method2), DCGAN+WGAN-GP [29]

+dropout (method3), and evaluating the advantages

and disadvantages of the four image generation

methods through FID. To reduce the FID may have

errors, each method selected the same number of

772 Journal of Internet Technology Volume 22 (2021) No.4

images for four sets of experiments. The specific

experimental results are showing in Table 4.

4.2.2 Evaluating Indicator

It is a difficult problem to evaluate the quality of the

generated image. The traditional method is to judge the

quality of the model’s rendered image through visual

intuition to assess the GAN model’s performance. This

method has specific errors in the generated image and

the real image, and fine-tuning of parameters is not

applicable. Therefore, in this paper, FID (Fr é chet

Inception Distance) [30] was used to evaluate the

generated images’ quality and diversity. FID is based

on the convolution feature layer of the Inception

network to model the real data distribution
data
p and

the generated data distribution
g

p as a multivariate

Gaussian distribution with a mean value
r

µ ,
g

µ and

variance
r

∑ ,
g

∑ and then solve the distance between

the two features. The calculation formula of FID is

shown in formula (7).

 2 1/ 2

r
|| || (2())

r g g r g
FID Trµ µ= − + ∑ +∑ − ∑ ∑ (7)

The formula represents the sum of the elements

along the diagonal of the matrix. FID represents the

distance between the feature vector of the generated

image and the real image’s feature vector. The closer

the distance, the better the generated model’s effect.

That is, the higher the definition of the image and the

richer the diversity. Simultaneously, the measurement

method can reflect the difference between the real data

distribution and the generated data distribution, and has

a better performance in terms of diversity, robustness,

and efficiency.

4.2.3 Experimental Environment And Parameter

Setting

The experiment carries out under the GPU

environment. Based on the Pytorch framework,

parameters such as learning rate (LR), epoch, and

dropout model were adjusted, and default parameter

settings are used for the others. Table 2 and Table 3

shows the experimental environment and parameter

configuration.

Table 2. Experimental environment configuration

Parameters Values

Operating System Windows10

Processor Core (TM) i7-7800X

Memory 32G

GPU CUDA9.0

Development Environment Pytorch 1.1.0, torvision 0.3.0

Table 3. Parameter configuration

Parameters Values

optim

Adam

LR 0.0002
λ 10

1 2 d
(, ,)nβ β (0.5, 0.999, 5)

epoch 300

LeakyReLU 0.2

batchsize 32

dropout 0.2

4.2.4 Experimental Results And Analysis

Table 4 shows the FID comparison of the four

models in dataset1 and dataset2. Table 4 shows that in

the two different datasets, the FID value of the method

proposed in this paper is lower than that of other

methods. Compared with the method1 drops by 6.47%

and 19.59%, respectively. It is because method4

changes the loss function, introduce SN, GP, and

dropout, which solves the problems of unstable

training and insufficient diversity of generated images;

compared with the method2 drops by 2.27% and

4.17%. It is because method4 uses gradient penalty

instead of weight clipping to solve the problem of

gradient disappearance and gradient explosion;

compared with the method3 drops by 1.30% and

2.87%. It is because the method4 uses SN combined

with GP to improve the model’s quality. Besides,

method4 has better adaptability on the two datasets and

is more robust than other GAN types. Figure 5

Generated image comparison. The images from left to

right are Tomato Powerly Mildew general and serious;

Tomato_Early Blight Fungus general and serious;

Tomato_Late Blight Water Mold general and serious;

Tomato_Leaf Mold Fungus general and serious;

Tomato_Septoria Leaf Spot Fungus general and

serious; Tomato Spider Mite Damage general and

serious; Tomato YLCV virus general and serious.

Figure 5(a) The original images. Figure 5(b) All kinds

of images generated by method1. Figure 5(c) All kinds

of images generated by method2. Figure 5(d) All kinds

of images generated by method3. (e) All kinds of

images generated by method4. Figure 6 Generated

image comparison. The images from left to right are

NORMAL (the first three columns) and PNEUMONIA

(the last three columns). Figure 6 (a) The original

images. Figure 6(b) All kinds of images generated by

method1. Figure 6(c) All kinds of images generated by

method2. Figure 6(d) All kinds of images generated by

method3. Figure 6(e) All kinds of images generated by

method4. It can be seen from Figure 5, Figure 6 that

the difference between the generated image and the

original image is tiny, and it is difficult for the naked

eye to judge the true or false, indicating that method4

has a good generated effect.

An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 773

Table 4. Comparison of the average FID

Model dataset1 dataset2

method1 250.28 149.30

method2 243.96 145.71

method3 241.58 143.77

method4 238.43 139.64

(a)

(b)

(e)

(d)

(c)

Figure 5. Dataset1 generated image comparison

(a)

(b)

(c)

(e)

(d)

Figure 6. Dataset2 generated image comparison

In summary, given the unstable training of mehod1

and insufficient diversity of generated images, this

paper’s method solves the problems of method1 to a

certain extent, and the method4 has improved the

quality of image generation and can be used in data

augmentation tasks.

4.3 Image Recognition Comparison Experiment

4.3.1 Experimental Description

To validate the proposed E-DCGAN for data practical

application effect, enhanced image recognition tasks is

presented in this paper, using the four different data

augmentation method for dataset1 and dataset2, and to

set up multiple sets of contrast experiment, validating

data before and after augmentation, the influence of

different data augmentation method for image

recognition effect. This experiment mainly compares

the following four different data augmentation methods:

(1) do not use any data augmentation methods (N); (2)

traditional data augmentation methods based on affine

transformation (T_AUG); (3) DCGAN generation data

(DCGAN); (4) E-DCGAN generation data (E-

DCGAN). To solve the dataset imbalance caused by

the imbalance of various types of data, the generated

data is mixed into the corresponding category data to

achieve global data balance. How to do it: (1) For the

dataset1, the number of more than 1000 reduce to 1000,

and the number of fewer than 1000 is expanded to

1000, while ensuring the same number of images for

each data augmentation. (2) The Chest X-ray image

dataset to expand 2000 images per category with the

same number of images enhanced for each data type.

In the experiment, the classification effects of four data

augmentation methods on different classifiers (VGG19,

AlexNet, ResNet50) compare by accuracy, precision,

recall, and F1-Measure.

4.3.2 Evaluating Indicator

To ensure the experiment’s scientific, this article

uses accuracy, precision, recall, F1-Measure, etc. to

evaluate our model. The accuracy is used to measure

the model’s overall recognition effect on the test set.

The precision rate measures the precision of the model,

that is, the probability that the classifier predicts a

specific category. The recall measures the recall rate of

the model, that is, the probability that the classifier is

correctly classified into a specific class. The F1-

Measure is the harmonic average of precision and

recall used to measure the model’s performance,

defined by the formula such as (8)-(11).

TP TN

Accuracy
TP TN FP FN

+
=

+ + +

 (8)

TP

Precision
TP FP

=

+

 (9)

TP

Recall
TP FN

=

+

 (10)

2

1
Precision Recall

F
Precision Recall

× ×
=

+

 (11)

Where TP is the number of times the model

correctly classified the samples with true positive, TN

is the number of times the model correctly classified

the samples with real negative, FP is the number of

times the model misclassified the samples with false-

positive, FN is the number of times the model

misclassified the samples with false-positive, is the

number of times the model misclassified the samples

with false-negative.

4.3.3 Experimental Environment And Parameter

Setting

This article’s experiment is carried out in a GPU

environment, using the Keras framework based on

TensorFlow. The parameters of the model are mainly

adjusted in the experiment. Epoch set to 40, batchsize

set to 8, and the adam optimizer learning rate of

AlexNet and ResNet50 set to 0.0001, and the learning

rate of the adam optimizer of VGG19 set to 0.00001.

The specific experimental environment parameter

configuration shows in Table 5.

774 Journal of Internet Technology Volume 22 (2021) No.4

Table 5. Experimental environment configuration

Parameters Values

Operating System Ubuntu 18.04.3

Processor GeForce RTX 2080 Ti

Memory 32G

GPU CUDA10.0.1

Development Environment Keras framework based on TensorFlow

4.3.4 Experimental Results and Analysis

Table 6 and Table 7 show the performance comparison

of different data augmentation methods in dataset1 and

dataset2. It can be seen from the table that E-DCGAN

proposed in this paper has the following advantages

compared with the three methods adopted:

(1) In the VGG19, AlexNet, ResNet50 classification

model, data augmentation using T_AUG, DCGAN,

and E-DCGAN is more significant than N in the

classification model. Specific performance comparisons

show in Table 6, Table 7. Based on the T_AUG and

CNN models, the average accuracy of dataset1 and

dataset2 is 87.05% and 84.07%. Compared with the N

data augmentation method, the T_AUG data augmentation

method’s average accuracy is 0.67% and 1.69% higher.

Based on DCGAN and CNN models, the average

accuracy of dataset1 and dataset2 is 87.55% and

85.33%. Compared with the N data augmentation

method, the average accuracy of the data augmentation

method of DCGAN is 1.18% and 2.80% higher. The

average accuracy of E-DCGAN and CNN based

models on dataset1 and dataset2 is 88.51% and 86.60%,

respectively. Compared with the N data augmentation

method, the E-DCGAN data augmentation method’s

average accuracy is 2.14% and 4.07% higher. It can be

seen from the improvement of classification model

accuracy that the three methods of data augmentation

are superior to the method N without data augmentation.

Besides, data augmentation methods of T_AUG,

DCGAN, and E-DCGAN have tremendous improvement

in precision rate, recall rate, and F1-Measure,

indicating that data augmentation can effectively solve

data shortage and improve the generalization ability

and robustness of classification models.

(2) Although the data augmentation method can

improve the classification model’s performance to a

certain extent, different methods’ improvement effect

is different. It can be concluded from Table 9 that

compared with N, the accuracy of the T_AUG data

augmentation method is improved by 0.67% and

1.54%, the accuracy improves by 1.16%, 0.47%, and

the recall rate on dataset1 and dataset2. The average

increase was 0.36% and 1.16%, and the F1-Measure

increased by 1.04% and 0.81% on average. Although

the T_AUG data augmentation method can improve

the model’s classification effect to a certain extent, the

improvement effect is not apparent due to the lack of

diversity of samples generated by non-generative data

augmentation and insufficient model generalization

ability. The average of DCGAN and E-DCGAN

methods for data augmentation is significantly better

than the T_AUG method, indicating that the generative

data augmentation method learns the original data

distribution and randomly generates data consistent

with the sample distribution, which is more conducive

to improving the diversity of samples and generalization

ability of the model.

(3) The generative data augmentation methods are

superior to other augmentation methods, but there are

differences between them. From Table 8, the

comparison table of the improvement degree of E-

DCGAN compared to the other three methods, and

compared with the DCGAN method, the accuracy of

the E-DCGAN method on the dataset1 and dataset2

has increased by 0.96%, 1.27%, and accuracy on

average. The precision has increased by 1.23%, 0.72%,

the recall has increased by an average of 2.16%, 2.74%,

and the F1-Measure has increased by an average of

1.67% and 1.46%. It shows the effect of E-DCGAN

through the improvement of network structure and loss

function, and further explains the progressive nature of

E-DCGAN.

Table 6. Performance comparison of different data augmentation methods in dataset1

Classificatio

n models

Data augmentation

methods

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Measure

(%)

Average

training

time

Average

recognition

time

N 82.27 78.35 78.25 77.30

T_AUG 83.42 79.16 78.26 78.71

DCGAN 84.43 79.37 80.87 80.11
VGG19

E-DCGAN 85.51 80.30 85.02 82.59

111m58s 0.480s

N 87.60 83.66 84.34 84.00

T_AUG 87.93 84.24 85.22 84.73

DCGAN 88.25 84.31 85.34 84.82
AlexNet

E-DCGAN 88.54 85.68 85.76 85.72

61m36s 0.264s

N 89.26 85.05 87.99 86.50

T_AUG 89.80 87.14 88.20 87.47

DCGAN 89.98 87.77 88.22 87.99

ResNet50

E-DCGAN 91.49 89.16 90.12 89.63

67m36s 0.290s

An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 775

Table 7. Performance comparison of different data augmentation methods in dataset2

Classificatio

n models

Data augmentation

methods

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Measure

(%)

Average

training

time

Average

recognition

time

N 77.56 77.67 72.64 75.07

T_AUG 80.61 79.0 74.62 76.75

DCGAN 81.89 86.40 82.05 84.99
VGG19

E-DCGAN 83.81 88.15 87.95 88.04

39m33s 0.472s

N 83.81 85.50 89.5 87.45

T_AUG 84.57 85.54 89.74 87.59

DCGAN 85.47 85.73 90.16 87.89
AlexNet

E-DCGAN 86.72 85.96 92.24 88.99

21m32s 0.251s

N 86.22 88.0 92.0 89.96

T_AUG 87.02 88.04 93.26 90.57

DCGAN 88.62 88.28 94.36 91.22
ResNet50

E-DCGAN 89.26 88.46 94.62 91.44

24m6s 0.284s

Table 8. Performance improvement of E-DCGAN compared with other methods

Dataset
Classification

models

Data augmentation

methods
Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

N 3.24 1.95 6.77 5.29

T_AUG 2.09 1.14 6.76 3.88 VGG19

DCGAN 1.08 0.93 4.15 2.48

N 0.94 2.02 1.42 1.72

T_AUG 0.61 1.44 0.54 0.99 AlexNet

DCGAN 0.29 1.37 0.42 0.90

N 2.23 4.11 2.13 3.13

T_AUG 1.69 2.02 1.92 2.16

dataset1

ResNet50

DCGAN 1.51 1.39 1.90 1.64

N 6.25 10.48 15.31 12.97

T_AUG 3.20 9.15 13.33 11.29 VGG19

DCGAN 1.92 1.75 5.90 3.05

N 2.91 0.46 2.74 1.54

T_AUG 2.15 0.42 2.50 1.40 AlexNet

DCGAN 1.25 0.42 2.08 1.10

N 3.04 0.46 2.62 1.48

T_AUG 2.24 0.23 1.36 0.87

dataset2

ResNet50

DCGAN 0.64 0.38 0.26 0.22

Table 9. Average performance of data augmentation methods on different classification models

Dataset
Data augmentation

methods

Average Accuracy

(%)

Average Precision

(%)

Average Recall

(%)

Average F1-Measure

(%)

N 86.38 82.35 83.53 82.60

T_AUG 87.05 83.51 83.89 83.64

DCGAN 87.55 83.82 84.81 84.31
dataset1

E-DCGAN 88.51 85.05 86.97 85.98

N 82.53 83.72 84.71 84.16

T_AUG 84.07 84.19 85.87 84.97

DCGAN 85.33 86.80 88.86 88.03
dataset2

E-DCGAN 86.60 87.52 91.60 89.49

In summary, given the relative data scarcity for crop

disease images and medical images in training CNN,

the E-DCGAN data augmentation method, used in this

paper can improve the classifier and break performance

the bottleneck of data augmentation technology

compared with other methods. The accuracy of the

model on the test set has been dramatically improved,

further verify the feasibility and effectiveness of E-

DCGAN for data augmentation.

5 Conclusion

Based on the background of using EI to process the

visual information in IoT system, aiming at the

problem of data scarcity in IoT image recognition task,

this paper proposes an EI-based generative data

augmentation system. The system adopts the hybrid

776 Journal of Internet Technology Volume 22 (2021) No.4

architecture of “Edge- Cloud”, applies EI technology

to the edge computing nodes of the system, and

expands the data through the generative data

augmentation model to solve the problem of data

scarcity. The system is logically divided into training

phase and operation phase. In the training phase,

transfer learning is used to perform generative data

augmentation on the source data close to the target

field, and use the enhanced data to complete the CNN

model training; the pre-trained CNN is used in the

running phase, and the CNN model is continuously

improved in actual use scenes by establishing an expert

review and self-learning mechanism. It is worth

mentioning that this article proposes the E-DCGAN

model as a generative data augmentation method. The

model performs spectral normalization on the

discriminator and generator convolution layer of the

DCGAN model to improve the performance of the

model. And use the wasserstein distance loss function

with gradient penalty to guide unsupervised learning,

which enhances the feature extraction ability of the

convolutional layer; at the same time, a dropout layer is

added at the end of the discriminator network to avoid

being stuck during the training process (may be at a

local minimum value or saddle point). In the training

phase, the E-DCGAN model generated image data is

applied to the image recognition of the CNNs; the data

samples are generated through the generative network

and then mixed into the category samples with less

original data. Then the balanced dataset is input into

the classification model for training. In the experiment,

both agricultural and medical datasets are used, and E-

DCGAN is investigated from image generation effect

and image recognition. Experiments show that in terms

of image generation, compared with the other three

GAN, E-DCGAN improves the quality and diversity of

the generated images, theoretically solves the

phenomenon of model collapse, and stabilizes the

training process of the model. In terms of image

recognition, the classification model using E-DCGAN

for data augmentation is significantly higher than other

data augmentation methods in terms of accuracy,

precision, recall, and F1-Measure, indicating that E-

DCGAN improves the generalization ability and

robustness of the model. Not only that, E-DCGAN is

not limited to a single field. It has good adaptability

and production effects in agriculture and medicine, and

it makes up for the vacancy of the IoT system in this

respect.

Acknowledgments

This work was supported in part by the Inner

Mongolia Autonomous Region’s major science and

technology: AI application technology and product

research and development; application research and

demonstration in modem pastures, fund number

2019ZD025. It was also supported by the Inner

Mongolia Natural Science Foundation on livestock big

data, livestock grazing trajectory mining, and

optimized production decision-making research fund

number 2019MS06021. It was supported by Inner

Mongolia’s special project on the transformation of

scientific and technological achievements, Xiaoweiyang’s

entire industry chain quality traceability big data

service platform. It has obtained the innovation fund of

Inner Mongolia University of science and technology,

the construction of chronic disease knowledge map

based on natural language processing, fund number:

2019QDL-S09.

References

[1] M. Asim, Y. Wang, K. Wang and P.-Q. Huang, A Review on

Computational Intelligence Techniques in Cloud and Edge

Computing, IEEE Transactions on Emerging Topics in

Computational Intelligence, Vol. 4, No. 6, pp. 742-763,

December, 2020.

[2] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo,

M. K. Marina and F. Kawsar, Multimodal Deep Learning for

Activity and Context Recognition, Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies,

Vol. 1, No. 4, Article No. 157, December, 2017.

[3] S. K. Sharma and X. Wang, Live Data Analytics With

Collaborative Edge and Cloud Processing in Wireless IoT

Networks, IEEE Access, Vol. 5, pp. 4621-4635, March, 2017.

[4] Y. Shen, T. Han, Q. Yang, X. Yang, Y. Wang, F. Li and H.

Wen, CS-CNN: Enabling Robust and Efficient Convolutional

Neural Networks Inference for Internet-of-Things Applications,

IEEE Access, Vol. 6, pp. 13439-13448, February, 2018.

[5] S. Wu, G. Wang, P. Tang, F. Chen and L. Shi, Convolution

with even-sized kernels and symmetric padding, Computer

Science, https://arxiv.org/pdf/1903.08385.pdf, May, 2019.

[6] W. Hu, J. Fan, Y. Du, B. Li, N. Xiong and E. Bekkering,

MDFC-ResNet: An Agricultural IoT System to Accurately

Recognize Crop Diseases, IEEE Access, Vol. 8, pp. 115287-

115298, June, 2020.

[7] G. Hatzivasilis, O. Soultatos, S. Ioannidis, C. Verikoukis, G.

Demetriou and C. Tsatsoulis, Review of Security and Privacy

for the Internet of Medical Things (IoMT), 2019 15th

International Conference on Distributed Computing in Sensor

Systems, Santorini, Greece, 2019, pp. 457-464.

[8] A. Radford, L. Metz and S. Chintala, Unsupervised

Representation Learning with Deep Convolutional Generative

Adversarial Networks, Computer Science, https://arxiv.org/

pdf/1511.06434.pdf, January, 2016.

[9] F. Wang, M. Zhang, X. Wang, X. Ma and J. Liu, Deep

Learning for Edge Computing Applications: A State-of-the-

Art Survey, IEEE Access, Vol. 8, pp. 58322-58336, March,

2020.

[10] A. Castañeda-Miranda and V. M. Castaño-Meneses, Smart

frost measurement for anti-disaster intelligent control in

greenhouses via embedding IoT and hybrid AI methods,

Measurement, Vol. 164, Article No. 108043, November, 2020.

An Edge Intelligence-based Generative Data Augmentation System for IoT Image Recognition Tasks 777

[11] S. Namani and B. Gonen, Smart Agriculture Based on IoT

and Cloud Computing, 2020 3rd International Conference on

Information and Computer Technologies, San Jose, CA, USA,

2020, pp. 553-556.

[12] M. A. Khan, An IoT Framework for Heart Disease Prediction

Based on MDCNN Classifier, IEEE Access, Vol. 8, pp.

34717-34727, February, 2020.

[13] F. Young, L. Zhang, R. Jiang, H. Liu and C. Wall, A Deep

Learning based Wearable Healthcare IoT Device for AI-

enabled Hearing Assistance Automation, Computer Science,

https://arxiv.org/abs/2005.08076, May, 2020.

[14] D. Weimer, B. Scholz-Reiter and M. Shpitalni, Design of

deep convolutional neural network architectures for

automated feature extraction in industrial inspection, Cirp

Annals Manufacturing Technology, Vol. 65, No. 1, pp. 417-

420, 2016.

[15] F. Wang, X. Fan, F. Wang and J. Liu, Backup Battery

Analysis and Allocation against Power Outage for Cellular

Base Stations, IEEE Transactions on Mobile Computing, Vol.

18, No. 3, pp. 520-533, March, 2019.

[16] J. Yan, H. He, X. Zhong and Y. Tang, Q-Learning-Based

Vulnerability Analysis of Smart Grid Against Sequential

Topology Attacks, IEEE Transactions on Information

Forensics and Security, Vol. 12, No. 1, pp. 200-210, January,

2017.

[17] P. Enkvetchakul and O. Surinta, Effective Data Augmentation

and Training Techniques for Improving Deep Learning in

Plant Leaf Disease Recognition, Applied Science and

Engineering Progress, January, 2021. DOI: 10.14416/j.asep.

2021.01.003.

[18] E. J. Bjerrum, SMILES Enumeration as Data Augmentation

for Neural Network Modeling of Molecules, Computer

Science, https://arxiv.org/pdf/1703.07076.pdf, May, 2017.

[19] I. S. A. Abdelhalim, M. F. Mohamed and Y. B. Mahdy, Data

augmentation for skin lesion using self-attention based

progressive generative adversarial network, Expert Systems

with Applications, Vol. 165, Article No. 113922, March, 2021.

[20] T. Hahn, C. Mechefske, Self-supervised learning for tool

wear monitoring with a disentangled-variational-autoencoder,

International Journal of Hydromechatronics, Vol. 4, No. 1,

pp. 69-98, March, 2021.

[21] A. V. D. Oord, N. Kalchbrenner and K. Kavukcuoglu, Pixel

Recurrent Neural Networks, Proceedings of the 33nd

International Conference on Machine Learning, New York,

NY, USA, 2016, pp. 1747-1756.

[22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville and Y. Bengio,

Generative Adversarial Nets, Advances in Neural Information

Processing Systems, Montreal, Quebec, Canada, 2014, pp.

2672-2680.

[23] W. Li, M. Cao, Y. Wang, C. Tang and F. Lin, Mining Pool

Game Model and Nash Equilibrium Analysis for PoW-Based

Blockchain Networks, IEEE Access, Vol. 8, pp. 101049-

101060, May, 2020.

[24] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger

and H. Greenspan, GAN-based Synthetic Medical Image

Augmentation for increased CNN Performance in Liver

Lesion Classification, Neurocomputing, Vol. 321, pp. 321-

331, December, 2018.

[25] Z. Zheng, L. Zheng and Y. Yang, Unlabeled Samples

Generated by GAN Improve the Person Re-identification

Baseline in Vitro, 2017 IEEE International Conference on

Computer Vision, Venice, Italy, 2017, pp. 3774-3782.

[26] W. Wang, Y. Sun and S. Halgamuge, Improving MMD-GAN

Training with Repulsive Loss Function, Computer Science,

https://arxiv.org/pdf/1812.09916.pdf, February, 2019.

[27] C. Han, L. Rundo, R. Araki, Y. Nagano, Y. Furukawa, G.

Mauri, H. Nakayama and H. Hayashi, Combining Noise-to-

Image and Image-to-Image GANs: Brain MR Image

Augmentation for Tumor Detection, IEEE Access, Vol. 7, pp.

156966-156977, October, 2019.

[28] M. Arjovsky, S. Chintala and L. Bottou, Wasserstein GAN,

Statistics, https://arxiv.org/pdf/1701.07875.pdf, December,

2017.

[29] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A.

Courville, Improved Training of Wasserstein GANs, Computer

Science, https://arxiv.org/pdf/1704.00028.pdf, December,

2017.

[30] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and S.

Hochreiter, GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium, Neural Information

Processing Systems, Long Beach, CA, USA, 2017, pp. 6629-

6640.

Biographies

Wei-Jian Hu Lecturer of Inner

Mongolia University of Science and

Technology. He researches interest is

computer vision and deep learning.

Tang-Ying Xie Student of Inner

Mongolia University of Science and

Technology. His research interests

include pattern recognition and

computer vision.

Bao-Shan Li Professor of Inner

Mongolia University of Science and

Technology, is mainly engaged in the

research of RFID and Internet of

things technology.

778 Journal of Internet Technology Volume 22 (2021) No.4

Yong-Xing Du Professor of Inner

Mongolia University of Science and

Technology, is mainly engaged in the

research of fields are numerical

calculation of electromagnetic fields,

new microwave radiators, attenuation

of black barrier effects, beam

synthesis, etc.

Neal N. Xiong Professor (5th year) at

Department of Mathematics and

Computer Science, Northeastern State

University, OK, USA. His research

interests include Cloud Computing,

Security and Dependability, Parallel

and Distributed Computing, Networks,

and Optimization Theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

