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Abstract 

To solve the problem of data scarcity in IoT image 

recognition tasks, an EI-based generative data augmentation 

system is designed in this paper. The system adopts 

hybrid architecture, and edge server and cloud data center 

participate in computing together, which is logically 

divided into the training phase and running phase. The 

training phase completes data augmentation of source 

data and training of Convolutional Neural Networks 

(CNNs), while the running phase processes information 

through the pretrained CNNs, and completes iteration of 

the CNNs through expert review and self-learning 

mechanism. It is worth mentioning that a generative data 

augmentation model, an Effective Deep Convolutional 

Generative Adversarial Network (E-DCGAN), has been 

proposed in the system. The experiments show that E-

DCGAN is superior to the baseline model in image 

generation and data augmentation in both agricultural and 

medical fields. Compared with the baseline model, the 

FID values were reduced by 4.73% and 19.59%. 

Meanwhile, the use of E-DCGAN for data augmentation 

can significantly improve the image classification model 

(VGG19, AlexNet, ResNet50), and the average accuracy 

of agricultural and medical classification results has 

increased by 0.96% and 1.27% over the baseline. 

Keywords: Deep Learning (DL), Data scarcity, Edge 

Intelligence (EI), Generative Adversarial 

Network (GAN), IoT 

1 Introduction 

Recent years, with the rapid development of 

artificial intelligence (AI) technology, many related 

applications and services have emerged. AI technology 

has achieved good performance in Computer Vision 

(CV), Natural Language Processing (NLP), etc. The 

use of AI technology to analyze information has 

become the most effective method now, mostly 

represented by Machine Learning (ML) technology 

and Deep Learning (DL) technology [1]. However, the 

computing resources required for traditional AI 

computing are usually concentrated in the cloud data 

center, which makes it difficult for the IoT system to 

generate many real-time data from edge devices to 

enjoy the strong support of AI technology, and it is 

also challenging to ensure that high quality and high-

level service. The emergence of Edge Intelligence (EI) 

technology has successfully solved this problem. EI is 

a new computing model based on EC. It combines EC 

and AI and uses AI methods to process data in edge 

devices. To ensure the efficiency and real-time of data 

processing, and simultaneously promote the broad 

application of AI in IoT, and solve “the last mile” 

problem in AI. At present, IoT has become an 

important application field of EI, and the use of EI in 

IoT systems has become a hot research topic, attracting 

the attention of many scholars from academia and 

industry [2-4]. 

The deep Convolutional Neural Networks (CNNs) in 

DL is a type of feedforward neural network that 

includes convolution calculation and has a deep 

structure. It has achieved good results in CV tasks such 

as image recognition, semantic segmentation, and 

image generation [5]. In IoT systems that use EI 

technology, deep CNNs are also widely used, such as 

in the agricultural field [6], medicine field [7], etc. 

Although CNNs has achieved good results in CV 

tasks, its training relies on many labeled data. 

Obtaining enough labeled data in actual application 

scenes requires many workforces and material 

resources, which makes data scarcity has become one 

of the main problems that limit CNN’s development. 

For example, it is challenging to collect image data of 

various crop diseases in crop disease identification due 

to multiple crops, broad geographic distribution, and 

different disease cycles. It is also challenging to collect 

massively labeled medical image data in the medical 

field due to personal privacy, disease diversity, and 

collection equipment differences. Unfortunately, the 

data scarcity is more prominent in IoT systems that use 

CNN. This is because the system’s visual information 
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is collected from a specific application scene, and it 

isn’t easy to find the same data information as in the 

scene. The amount of information is usually difficult to 

meet the training requirements of CNN. CNN models 

often have problems such as training difficulties and 

weak generalization ability. It is difficult for the system 

to be put into use quickly, and it is also a big project to 

label enough data. 

This article takes the agricultural and medical fields 

as the starting point. Aiming at data scarcity using 

CNN in the IoT image recognition tasks, based on EI 

and Generative Adversarial Network (GAN) technology, 

designs an EI-based generative data augmentation 

system. The system is constructed based on EI 

technology and uses a hybrid structure of “edge-cloud”. 

The edge service and cloud data center jointly 

complete the DL computing tasks in center phases. The 

system solves the problem that cannot train the CNN 

model due to the lack of actual application scene data 

in the image recognition task of IoT system, avoids the 

restriction of the environment on the system to a 

certain extent, and is beneficial to the application of EI 

technology in the IoT system. At the same time, An 

Effective Deep Convolutional Generative Adversarial 

Network (E-DCGAN) is proposed to expand the image 

data in the system to solve the problems of model over-

fitting and insufficient generalization ability caused by 

data scarcity in the IoT image recognition task. E-

DCGAN is based on the Deep Convolutional Generative 

Adversarial Network (DCGAN) [8] model, the 

gradient instability problem is solved by changing the 

model loss function, and the network structure of the 

generator network and discriminator network is 

optimized, which can greatly improve the model 

performance ability, enhance the stability of the 

network, and reduce the occurrence of mode collapse 

as far as possible. In the experiment, the agricultural 

and medical datasets were used to verify the model, 

which not only verified the model generation effect but 

also verified the influence of the generated sample data 

on the classification effect through the classification 

model. The main contributions of this paper are listed 

as follows: 

(1) Designed an EI-based generative data augmentation 

system. The system is constructed based on EI 

technology and uses a hybrid structure of “edge-cloud”. 

The edge service and cloud data center jointly 

complete the DL computing tasks in phases. The whole 

system divides into the training phase and running 

phase, in the training phase, the public dataset close to 

the application field is used as the source data, and the 

GAN is used to enhance the source data. The data after 

the data augmentation is used to train the CNN in the 

system, and the effect of the model is comprehensively 

evaluated by the precision, accuracy, recall and F1-

Measure; in the running phase, the system adopts the 

transfer learning method for the classification model 

obtained in the training phase, and establishes an 

expert review and self-learning mechanism that during 

the system running, the expert reviews and proofreads 

the real data, and iteratively train model to improve the 

model’s effectiveness in actual use. 

(2) Proposed a generative data augmentation method: 

E-DCGAN. Based on DCGAN, E-DCGAN uses the 

wasserstein distance loss function with the gradient 

penalty to guide unsupervised learning, which improves 

the feature extraction ability of the convolutional layer. 

Moreover, it introduces a Spectral Normalization (SN) 

layer in the generator and discriminator, respectively. 

The model’s performance is greatly improved, and the 

dropout layer is introduced into the discriminator 

network structure to add randomness to avoid getting 

stuck during the training process (may be at a local 

minimum value or saddle point). 

(3) In the fields of agriculture and medicine, using 

FID (Fréchet Inception Distance) as the criterion, AI 

Challenger 2018 crop disease fine-grained classification 

competition and Chest X-Ray Images datasets are used 

to verify the image effects generated by the model and 

compared with the current mainstream generative data 

augmentation methods. The results show that the E-

DCGAN network has better image generation effects. 

(4) In the fields of agriculture and medicine, use 

accuracy, precision, recall, and F1-Measure as the 

evaluation criteria, use E-DCGAN to generate image 

samples for data augmentation, and use the VGG19, 

AlexNet, ResNet50 models to compare the classification 

effects of different data augmentation methods. The 

results show that the samples generated by E-DCGAN 

have better image generation effect.  

The remainder of the paper is arranged as follows: 

In Section 2, EI and IoT, data augmentation, and GAN-

based generative data augmentation methods are 

introduced. In Section 3, an EI-based generative data 

augmentation system is introduced, and the generative 

data augmentation method E-DCGAN is explained in 

detail. In Section 4, extensive experiments are 

described, and the results are analyzed. In Section 5, 

we conclude this shortcomings and future work are 

also proposed. 

2 Related Work 

2.1 EI and IoT 

With the proliferation of mobile computing and IoT, 

billions of mobile and IoT devices are connected to the 

Internet. Meanwhile, these devices will generate 

zillions of bytes of data at the network edge, calling for 

instant data processing and intelligent data analysis to 

fully unleash the edge big data’s potential. Both 

traditional cloud computing and on-device computing 

cannot sufficiently address this problem due to the high 

latency and limited computation capacity [9]. However, 

the emerging EC pushes the data processing from the 

remote network core to the local network edge, 
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remarkably reducing the latency and improving the 

efficiency. In fact, EI integrates EC and AI, and 

intelligently processes data at the terminal, enabling 

fast, efficient, and reliable calculation and decision-

making at the edge of the network. And EI is widely 

used in agriculture, medicine, industry, etc. For 

example, in agriculture, Castañeda-Miranda et al. [10] 

developed a reliable system for smart irrigation of 

greenhouses using artificial neural networks and IoT 

architecture, using transfer learning to reduce neural 

networks’ processing power for the IoT edge devices. 

Namani et al. [11] used a Smart Drone for crop 

management where the real-time Drone data coupled 

with IoT and Cloud Computing technologies help in 

building a sustainable Smart Agriculture. In medicine, 

Khan et al [12] designed An IoT Framework for Heart 

Disease Prediction Based on MDCNN Classifier, the 

MDCNN achieves an accuracy of 98.2 which is better 

than existing classifiers. Young et al. [13] designed 

wearable medical IoT devices based on DL to 

automate AI hearing aids. The system has achieved 

92% accuracy in sound recognition and classification. 

In industry, Weimer et al. [14] designed a new 

industrial inspection architecture based on CNN-based 

automatic feature extraction with minimal human 

interaction. Wang et al. [15] proposed a DNN-based 

architecture to accurately predict the remaining energy 

and remaining lifetime of batteries, which further 

enables an informed power configuration among base 

stations. In other respects, Yan et al. [16] proposed a 

reinforcement learning-based method to identify 

critical attack sequences with consideration of physical 

system behaviors. 

2.2 Data Augmentation 

Data augmentation is one of the effective means to 

solve the data scarcity in DL. Currently, there are two 

methods for data augmentation: non-generative data 

augmentation and generative data augmentation. Non-

generative data augmentation adopts preset rules to 

increase the number and types of data by geometric 

transformation and color change [17] of existing data. 

Commonly used methods include affine transformation 

[18], noise type, and fuzzy type, etc. The non-

generative data augmentation method is simple to 

implement and can expand the number of datasets to a 

certain extent. Still, it does not produce substantial 

changes to the dataset, and the generated samples lack 

diversity, so non-generative data augmentation 

generalizes the model. The improvement in capacity is 

limited. Simultaneously, non-generative data 

augmentation methods need to adjust the generation 

method according to the characteristics of the dataset. 

Generally, the generation method that applies to a 

specific dataset is challenging to apply to other datasets. 

For example, on the CIFAR-10 dataset, rotation is a 

useful data augmentation method, but it does not 

perform well on the MNIST dataset because the 

classifier cannot correctly identify the numbers 6 and 9 

[19]. The generative data augmentation method learns 

the distribution that the data obey through the model 

and randomly generates data consistent with the 

sample set’s distribution. This method can make the 

dataset cover more patterns, which is more conducive 

to improving the model’s generalization performance 

and makes up for the shortcomings of the non-

generative data augmentation. 

The generative model is the critical technology in 

generative data augmentation. At present, the more 

commonly used models are Variational Auto-Encoder 

(VAE) [20], Auto Regressive model (AR) [21], and 

GAN. Among them, VAE and AR are modeled based 

on display density, but AR is used to generate images 

on a pixel by pixel, which resulted in high 

computational cost and limited parallelism and time-

consuming in processing large resolution images. VAE 

in the image generation can be parallel, but the 

generated images are fuzzy, lacking expression of 

complex models. Compared with display density 

modeling methods such as VAE and AR, GAN based 

on implicit density modeling avoids problematic 

inferences and generates high-quality images; due to its 

ability to fit high-dimensional data distribution and 

excellent image generation performance, GAN the best 

method for generative models. GAN is mainly 

composed of two parts, including the generator and the 

discriminator [22]. The generator learns mostly the 

distribution of original data samples to make the data it 

generates more real, while the discriminator is used to 

judge the input image data’s authenticity. After 

multiple rounds of zero-sum games, the generator’s 

performance and the discriminator continue to improve, 

and finally, the two will reach a dynamic equilibrium 

(Nash equilibrium) [23]. Scholars have done extensive 

research on data augmentation using GAN, such as 

Frid-Adar et al. [24] based on GAN synthetic medical 

images for data augmentation, the sensitivity increased 

from 78.6% to 85.7%, and the specificity increased 

from 88.4% to 92.4%. Zheng et al. [25] generated 

unmarked samples based on DCGAN, achieving a 

+0.6% increase on a strong baseline (CNN). Wang et al. 

[26] based on GAN, combined with noise-to-image 

and image-to-image, for image augmentation of brain 

MR tumor detection, increasing the sensitivity from 

93.67% to 97.48%.  

3 Our Proposed System 

3.1 System Overview 

The system is built on EI technology, which gives 

AI capabilities to edge services in the IoT system so 

that the IoT system’s visual information can be 

processed quickly and efficiently. Most importantly, it 

provides a solution to the problem of data scarcity in 

IoT image recognition task. In the system, we use the 
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generative data augmentation method based on GAN to 

enhance the data samples and use the CNN to classify 

the visual information. However, whether it is a 

generative data augmentation method or a deep 

convolution neural network, its model’s training and 

operation require a lot of time and computing resources. 

It is not appropriate to place these tasks in edge 

services. Therefore, the system uses a hybrid 

architecture of “edge-cloud”. Edge services and cloud 

data center work together to complete DL computing 

tasks in phases. Figure 1 shows the overall structure of 

the system. The cloud data center, the edge service 

nodes, and the edge devices make up the whole system, 

in which edge devices are divided into information 

collection devices and information display devices. 

The system uses wireless networks to connect edge 

devices and edge service nodes and wired networks to 

connect edge service nodes to the cloud data center. 

Information collection devices include cameras, 

unmanned aerial vehicles, and smartphones responsible 

for collecting visual information while the system is 

running. Information display devices include personal 

computers, tablets, and smartphones, which receive 

and display processed information. The edge server 

node consists of a GPU-capable server that receives the 

collected visual information, processes the data, and 

sends the CNN analysis results. The cloud data center 

comprises a cluster of servers with GPU-capable and is 

responsible for tasks that require a lot of computing, 

such as generative data augmentation, CNN model 

training, expert review, and self-learning mechanisms. 

The Cloud Data Center is composed of a cluster of 

servers with GPU computing and is responsible for 

tasks that require a lot of computing, such as data 

augmentation for generation, CNN model training, 

expert review, and self-learning mechanisms. 

Ultimately, the cloud data center sends trained CNN 

models to edge server nodes through transfer learning. 

The whole system can be logically divided into the 

training phase and running phase. The training phase 

describes the training process of the CNN model and 

data augmentation in the system, and the running phase 

describes the process of using the CNN model to 

process visual information.  

 

Figure 1. Structure of the system 

In the training phase, the open dataset close to the 

system application field is used as the source data, and 

the data generated in the actual application field as the 

target data. The source data train the CNN model, and 

the CNN model put into operation after the training. 

Simultaneously, to further improve the training effect 

of the CNN model in the training process, the 

generative data augmentation method E-DCGAN (see 

Section III for the specific structure) enhances the 

source data. Finally, accuracy, precision, recall, and 

F1-Measure are used to investigate the model’s 

training effect in many aspects. Figure 2 shows the 

training process of the system training phase with 

tomato leaf’s disease and pneumonia X-ray as 

examples. The training phase process divides into three 

sub steps. First, select the tomato leaf’s disease images 

and chest X-Ray images send them to E-DCGAN; after 

E-DCGAN data augmentation, the generated images 

and the real images are mixed as a training set and sent 

to the CNN model. CNN model consists of VGG19, 

AlexNet, ResNet50. And judge the performance of the 

model contains Accuracy, Precision, Recall, F1-

Measure. Figure 3 shows the running phase of the 

system. The running phase process divides into three 

sub steps. First, the data collected by the visual 

information collector is preprocessed, and then sent to 

the classification model for recognition, and the 

recognition result is pushed to the display devices, such 
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as computer, ipad and smartphone. Second, the 

preprocessed images and the classification model’s 

recognition results review by domain experts. The 

experts judge the classification, and give the correct 

recognition results as the label of the images, and 

finally these data will be stored in the database. Third, 

the self-learning mechanism regularly obtains the 

labeled real data from the database, and uses the real 

data to continue training the classification model, to 

improve the performance of the classification model in 

real tasks. The process of self-learning is the same as 

that of system training phase. Finally, replace the 

original model with a new classification model. 

 

Figure 2. The training phase of the system 

 

Figure 3. The running phase of the system 
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3.2 E-DCGAN 

E-DCGAN is based on the standard DCGAN and 

has been improved from three aspects: generator, 

discriminator, and loss function. The improved model 

is composed of a generator and a discriminator. The 

generator is used to learn the distribution of real data to 

generate images, and the discriminator is used to judge 

whether the input image is true or false. The overall 

structure of the E-DCGAN model is shown in Figure 4. 
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Figure 4. Structure of the network 

3.2.1 Generator Network Structure 

The generator network architecture shows in Figure 

4(a). It is divided into five layers, from left to right are 

the input layer, the fully connected layer, and the three-

layer transposed convolutional layer (Deconv1, 

Deconv2, Deconv3). The fully connected layer consists 

of Linear Layer, Batch Normalization (BN), and ReLU 

activation function; Deconv1 and Deconv2 layers 

consist of SN [27] and BN. The Deconv3 layer is 

consists of the SN layer and the Tanh activation 

function. The size of each convolution kernel of the 

generator network is 4 × 4, and the convolution step 

size is [2, 2, 1]. The generator network takes 100-

dimensional (z=100) random, customarily distributed 

noise as input, after the input linear mapped to a tensor 

with a shape of 4 × 4 × 512, and then it is up-sampling 

using a transposed convolutional layer to improve the 

learning rate, speed up the convergence speed and 

stabilize the training process. Each transposed 

convolutional layer will perform an SN operation. The 

output will be batch normalized and processed by the 

non-linear ReLU activation function as the next layer’s 

input. After the last transposed convolutional layer’s 

output, through the Tanh activation function, a three-

channel RGB image with 32 × 32 pixels is finally 

output. 

3.2.2 Discriminator Network Structure 

The discriminator network structure shows in Figure 

4(b). It is divided into five layers, from left to right are 

the input layer, the 3-layer convolutional layer (Conv1, 

Conv2, and Conv3), and the fully connected layer. 

Conv1 layer and Conv2 layer are consists of SN, 

instance normalization (IN), LeakyReLU activation 

function; Conv3 layer is consists of SN, IN, 

LeakyReLU activation function, and dropout layer; the 

fully connected layer consists of a linear layer. Each 

convolution kernel of the discriminator network is 4 × 

4, and the convolution step size is [1, 2, 2]. The 

discriminator network inputs a 32 × 32 × 3 RGB image 

and then uses the convolutional layer to downsampling 
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it. To more improve the performance and learning 

ability of the model, each convolutional layer performs 

SN. At the same time, we retain the IN layer to 

constrain the output of the samples and convolutional 

layers to a better range, such as a Gaussian distribution 

with a mean of 0 and a variance of 1. And the last layer 

of activation function sigmoid is removed; a layer of 

dropout is added after the LeakyReLU activation 

function at the end of the network to increase its 

randomness and avoid getting stuck during training 

(may be at a local minimum value or saddle point). 

Finally, it is passed to the fully connected layer to 

determine whether the input image is true or false. 

3.2.3 Loss Function  

The loss function of the original DCGAN is showing 

in formula (1): 

 
data

~p ( )minmax ( , ) [log ( )]x x
G D

V D G D xE=

 
 ~ ( )[log(1 ( ( )))]

z
z p z D G zE+ −  (1) 

G is the generator, D is the discriminator, 
data
p  is the 

real data sample, and 
z

p  is the noise distribution. 

Formula (1) shows that the solving process of the 

model is maximizing the discriminator and minimizing 

the generator. For the discriminator, we maximize 

log( ( )) log(1 ( ( )))D x D G z+ −  the generator; we minimize 

log(1 ( ( )))D G z−  by gradient descent. Unfortunately, 

such an alternating gradient rise and descent make the 

model difficult to learn. It is easy to cause problems 

such as model collapse and insufficient diversity of 

generated samples in practical application. In response 

to the above problems, wasserstein’s distance with the 

gradient penalty term is used to replace the original 

loss function, which can effectively solve gradient 

instability and improve the training process’s stability.  

The updated loss function is shown in formula (2), 

where L represents the updated loss function, which is 

consists of the arithmetic sum of the discriminator’s 

loss term 
D

L  and generator’s loss term 
G
L . The 

discriminator loss term 
D

L  is consists of the arithmetic 

sum of unsupervised loss term 
UL
L  and gradient 

penalty term 
GP
L , 

UL
L  as shown in formula (4), where 

is 
data
p  the real data sample, 

g
p  is the generated data 

sample, ~

data
x p  and ~

g g
x p  follows the distribution 

of [0, 1]. As shown in formula (5), where is x  random 

interpolation sample on x  and 
g
x , x  can be expressed 

as (1 )
g

x x x xθ θ= + − . Besides, ~

data
x p , ~

g g
x p , and 

θ  also follows the distribution of [0, 1]. And λ  is the 

weight coefficient. The generator loss term 
G
L  is 

shown in formula (6), 
z

p  is the noise distribution and 

( )G z  generate data samples. 

 
D G

L L L= +  (2) 

 
D UL GP

L L L= +  (3) 

 ~ ( ) ~[ ( )] [ ( )]
data gUL z p x x p

L E D x E D x= − +  (4) 

 2

2~
[(|| ( ) || 1) ]

x

GP x p x
L E D xλ= ∇ −  (5) 

 
z

~ ( )- [ ( ( ))]
G z p z
L E D G z=  (6) 

4 Performance Analysis 

4.1 Dataset 

To verify the validity and advancement of the E-

DCGAN model, we selected two different types of 

datasets for experiments in the fields of agriculture and 

medicine, and subsequent experiments will be 

conducted on these two datasets. The agricultural field 

selected AI Challenger 2018 Crop Disease Fine-

Grained Classification Contest dataset, containing 

45285 images, of which 40745 is training set, and 4540 

is test set can be divided into 61 categories. To explore 

the impact of various data augmentation methods on 

the small-scale dataset, we selected tomato species as 

dataset1 from this dataset, including seven diseases and 

11100 images in 14 categories. The medical field 

selected the public medical image Chest X-Ray Images 

dataset on Kaggle, including two types of NORMAL 

and PNEUMONIA, 5883 X-ray images. We selected 

2500 from this dataset as dataset2. Dataset1 and 

dataset2 divides into a training set and test set 

according to 8:2. The specific distribution of the 

dataset shows in Table 1. 

Table 1. Dataset distribution 

Dataset Training set Test set 

dataset1 8880  2220  

dataset2 2000  500  

 

4.2 Contrast Experimental of Image Generation  

4.2.1 Experimental Description 

In order to verify the quality and diversity of the 

images generated by E-DCGAN (method4) proposed 

in this paper, we use DCGAN (method1) as the 

baseline to generate images for dataset1 and dataset2, 

and set up multiple groups of comparison experiments, 

mainly comparing method1, DCGAN+WGAN [28] 

+dropout (method2), DCGAN+WGAN-GP [29] 

+dropout (method3), and evaluating the advantages 

and disadvantages of the four image generation 

methods through FID. To reduce the FID may have 

errors, each method selected the same number of 
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images for four sets of experiments. The specific 

experimental results are showing in Table 4. 

4.2.2 Evaluating Indicator 

It is a difficult problem to evaluate the quality of the 

generated image. The traditional method is to judge the 

quality of the model’s rendered image through visual 

intuition to assess the GAN model’s performance. This 

method has specific errors in the generated image and 

the real image, and fine-tuning of parameters is not 

applicable. Therefore, in this paper, FID (Fr é chet 

Inception Distance) [30] was used to evaluate the 

generated images’ quality and diversity. FID is based 

on the convolution feature layer of the Inception 

network to model the real data distribution 
data
p  and 

the generated data distribution 
g

p  as a multivariate 

Gaussian distribution with a mean value 
r

µ , 
g

µ  and 

variance 
r

∑ , 
g

∑  and then solve the distance between 

the two features. The calculation formula of FID is 

shown in formula (7). 

 2 1/ 2

r
|| || ( 2( ) )

r g g r g
FID Trµ µ= − + ∑ +∑ − ∑ ∑  (7) 

The formula represents the sum of the elements 

along the diagonal of the matrix. FID represents the 

distance between the feature vector of the generated 

image and the real image’s feature vector. The closer 

the distance, the better the generated model’s effect. 

That is, the higher the definition of the image and the 

richer the diversity. Simultaneously, the measurement 

method can reflect the difference between the real data 

distribution and the generated data distribution, and has 

a better performance in terms of diversity, robustness, 

and efficiency. 

4.2.3 Experimental Environment And Parameter 

Setting 

The experiment carries out under the GPU 

environment. Based on the Pytorch framework, 

parameters such as learning rate (LR), epoch, and 

dropout model were adjusted, and default parameter 

settings are used for the others. Table 2 and Table 3 

shows the experimental environment and parameter 

configuration.  

Table 2. Experimental environment configuration 

Parameters Values 

Operating System Windows10 

Processor Core (TM) i7-7800X 

Memory 32G 

GPU CUDA9.0 

Development Environment Pytorch 1.1.0, torvision 0.3.0 

 

Table 3. Parameter configuration 

Parameters Values 

optim
 

Adam 

LR 0.0002 
λ  10 

1 2 d
( , , )nβ β  (0.5, 0.999, 5) 

epoch 300 

LeakyReLU 0.2 

batchsize 32 

dropout 0.2 

 

4.2.4 Experimental Results And Analysis 

Table 4 shows the FID comparison of the four 

models in dataset1 and dataset2. Table 4 shows that in 

the two different datasets, the FID value of the method 

proposed in this paper is lower than that of other 

methods. Compared with the method1 drops by 6.47% 

and 19.59%, respectively. It is because method4 

changes the loss function, introduce SN, GP, and 

dropout, which solves the problems of unstable 

training and insufficient diversity of generated images; 

compared with the method2 drops by 2.27% and 

4.17%. It is because method4 uses gradient penalty 

instead of weight clipping to solve the problem of 

gradient disappearance and gradient explosion; 

compared with the method3 drops by 1.30% and 

2.87%. It is because the method4 uses SN combined 

with GP to improve the model’s quality. Besides, 

method4 has better adaptability on the two datasets and 

is more robust than other GAN types. Figure 5 

Generated image comparison. The images from left to 

right are Tomato Powerly Mildew general and serious; 

Tomato_Early Blight Fungus general and serious; 

Tomato_Late Blight Water Mold general and serious; 

Tomato_Leaf Mold Fungus general and serious; 

Tomato_Septoria Leaf Spot Fungus general and 

serious; Tomato Spider Mite Damage general and 

serious; Tomato YLCV virus general and serious. 

Figure 5(a) The original images. Figure 5(b) All kinds 

of images generated by method1. Figure 5(c) All kinds 

of images generated by method2. Figure 5(d) All kinds 

of images generated by method3. (e) All kinds of 

images generated by method4. Figure 6 Generated 

image comparison. The images from left to right are 

NORMAL (the first three columns) and PNEUMONIA 

(the last three columns). Figure 6 (a) The original 

images. Figure 6(b) All kinds of images generated by 

method1. Figure 6(c) All kinds of images generated by 

method2. Figure 6(d) All kinds of images generated by 

method3. Figure 6(e) All kinds of images generated by 

method4. It can be seen from Figure 5, Figure 6 that 

the difference between the generated image and the 

original image is tiny, and it is difficult for the naked 

eye to judge the true or false, indicating that method4 

has a good generated effect. 
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Table 4. Comparison of the average FID 

Model dataset1 dataset2 

method1 250.28 149.30 

method2 243.96 145.71 

method3 241.58 143.77 

method4 238.43 139.64 

(a)

(b)

(e)

(d)

(c)

 

Figure 5. Dataset1 generated image comparison 

(a)

(b)

(c)

(e)

(d)

 

Figure 6. Dataset2 generated image comparison 

In summary, given the unstable training of mehod1 

and insufficient diversity of generated images, this 

paper’s method solves the problems of method1 to a 

certain extent, and the method4 has improved the 

quality of image generation and can be used in data 

augmentation tasks. 

4.3 Image Recognition Comparison Experiment 

4.3.1 Experimental Description 

To validate the proposed E-DCGAN for data practical 

application effect, enhanced image recognition tasks is 

presented in this paper, using the four different data 

augmentation method for dataset1 and dataset2, and to 

set up multiple sets of contrast experiment, validating 

data before and after augmentation, the influence of 

different data augmentation method for image 

recognition effect. This experiment mainly compares 

the following four different data augmentation methods: 

(1) do not use any data augmentation methods (N); (2) 

traditional data augmentation methods based on affine 

transformation (T_AUG); (3) DCGAN generation data 

(DCGAN); (4) E-DCGAN generation data (E-

DCGAN). To solve the dataset imbalance caused by 

the imbalance of various types of data, the generated 

data is mixed into the corresponding category data to 

achieve global data balance. How to do it: (1) For the 

dataset1, the number of more than 1000 reduce to 1000, 

and the number of fewer than 1000 is expanded to 

1000, while ensuring the same number of images for 

each data augmentation. (2) The Chest X-ray image 

dataset to expand 2000 images per category with the 

same number of images enhanced for each data type. 

In the experiment, the classification effects of four data 

augmentation methods on different classifiers (VGG19, 

AlexNet, ResNet50) compare by accuracy, precision, 

recall, and F1-Measure. 

4.3.2 Evaluating Indicator 

To ensure the experiment’s scientific, this article 

uses accuracy, precision, recall, F1-Measure, etc. to 

evaluate our model. The accuracy is used to measure 

the model’s overall recognition effect on the test set. 

The precision rate measures the precision of the model, 

that is, the probability that the classifier predicts a 

specific category. The recall measures the recall rate of 

the model, that is, the probability that the classifier is 

correctly classified into a specific class. The F1-

Measure is the harmonic average of precision and 

recall used to measure the model’s performance, 

defined by the formula such as (8)-(11). 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +

 (8) 

 
TP

Precision
TP FP

=

+

 (9) 

 
TP

Recall
TP FN

=

+

 (10) 

 
2

1
Precision Recall

F
Precision Recall

× ×
=

+

 (11) 

Where TP  is the number of times the model 

correctly classified the samples with true positive, TN  

is the number of times the model correctly classified 

the samples with real negative, FP  is the number of 

times the model misclassified the samples with false-

positive, FN  is the number of times the model 

misclassified the samples with false-positive, is the 

number of times the model misclassified the samples 

with false-negative. 

4.3.3 Experimental Environment And Parameter 

Setting 

This article’s experiment is carried out in a GPU 

environment, using the Keras framework based on 

TensorFlow. The parameters of the model are mainly 

adjusted in the experiment. Epoch set to 40, batchsize 

set to 8, and the adam optimizer learning rate of 

AlexNet and ResNet50 set to 0.0001, and the learning 

rate of the adam optimizer of VGG19 set to 0.00001. 

The specific experimental environment parameter 

configuration shows in Table 5. 
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Table 5. Experimental environment configuration 

Parameters Values 

Operating System Ubuntu 18.04.3 

Processor GeForce RTX 2080 Ti 

Memory 32G 

GPU CUDA10.0.1 

Development Environment Keras framework based on TensorFlow

 

4.3.4 Experimental Results and Analysis 

Table 6 and Table 7 show the performance comparison 

of different data augmentation methods in dataset1 and 

dataset2. It can be seen from the table that E-DCGAN 

proposed in this paper has the following advantages 

compared with the three methods adopted: 

(1) In the VGG19, AlexNet, ResNet50 classification 

model, data augmentation using T_AUG, DCGAN, 

and E-DCGAN is more significant than N in the 

classification model. Specific performance comparisons 

show in Table 6, Table 7. Based on the T_AUG and 

CNN models, the average accuracy of dataset1 and 

dataset2 is 87.05% and 84.07%. Compared with the N 

data augmentation method, the T_AUG data augmentation 

method’s average accuracy is 0.67% and 1.69% higher. 

Based on DCGAN and CNN models, the average 

accuracy of dataset1 and dataset2 is 87.55% and 

85.33%. Compared with the N data augmentation 

method, the average accuracy of the data augmentation 

method of DCGAN is 1.18% and 2.80% higher. The 

average accuracy of E-DCGAN and CNN based 

models on dataset1 and dataset2 is 88.51% and 86.60%, 

respectively. Compared with the N data augmentation 

method, the E-DCGAN data augmentation method’s 

average accuracy is 2.14% and 4.07% higher. It can be 

seen from the improvement of classification model 

accuracy that the three methods of data augmentation 

are superior to the method N without data augmentation. 

Besides, data augmentation methods of T_AUG, 

DCGAN, and E-DCGAN have tremendous improvement 

in precision rate, recall rate, and F1-Measure, 

indicating that data augmentation can effectively solve 

data shortage and improve the generalization ability 

and robustness of classification models. 

(2) Although the data augmentation method can 

improve the classification model’s performance to a 

certain extent, different methods’ improvement effect 

is different. It can be concluded from Table 9 that 

compared with N, the accuracy of the T_AUG data 

augmentation method is improved by 0.67% and 

1.54%, the accuracy improves by 1.16%, 0.47%, and 

the recall rate on dataset1 and dataset2. The average 

increase was 0.36% and 1.16%, and the F1-Measure 

increased by 1.04% and 0.81% on average. Although 

the T_AUG data augmentation method can improve 

the model’s classification effect to a certain extent, the 

improvement effect is not apparent due to the lack of 

diversity of samples generated by non-generative data 

augmentation and insufficient model generalization 

ability. The average of DCGAN and E-DCGAN 

methods for data augmentation is significantly better 

than the T_AUG method, indicating that the generative 

data augmentation method learns the original data 

distribution and randomly generates data consistent 

with the sample distribution, which is more conducive 

to improving the diversity of samples and generalization 

ability of the model. 

(3) The generative data augmentation methods are 

superior to other augmentation methods, but there are 

differences between them. From Table 8, the 

comparison table of the improvement degree of E-

DCGAN compared to the other three methods, and 

compared with the DCGAN method, the accuracy of 

the E-DCGAN method on the dataset1 and dataset2 

has increased by 0.96%, 1.27%, and accuracy on 

average. The precision has increased by 1.23%, 0.72%, 

the recall has increased by an average of 2.16%, 2.74%, 

and the F1-Measure has increased by an average of 

1.67% and 1.46%. It shows the effect of E-DCGAN 

through the improvement of network structure and loss 

function, and further explains the progressive nature of 

E-DCGAN. 

Table 6. Performance comparison of different data augmentation methods in dataset1 

Classificatio

n models 

Data augmentation 

methods 

Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F1-Measure  

(%) 

Average 

training  

time 

Average 

recognition 

time 

N 82.27 78.35 78.25 77.30 

T_AUG 83.42 79.16 78.26 78.71 

DCGAN 84.43 79.37 80.87 80.11 
VGG19 

E-DCGAN 85.51 80.30 85.02 82.59 

111m58s 0.480s 

N 87.60 83.66 84.34 84.00 

T_AUG 87.93 84.24 85.22 84.73 

DCGAN 88.25 84.31 85.34 84.82 
AlexNet 

E-DCGAN 88.54 85.68 85.76 85.72 

61m36s 0.264s 

N 89.26 85.05 87.99 86.50 

T_AUG 89.80 87.14 88.20 87.47 

DCGAN 89.98 87.77 88.22 87.99 

 

ResNet50 

E-DCGAN 91.49 89.16 90.12 89.63 

67m36s 0.290s 
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Table 7. Performance comparison of different data augmentation methods in dataset2 

Classificatio

n models 

Data augmentation 

methods 

Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F1-Measure  

(%) 

Average 

training  

time 

Average 

recognition 

time 

N 77.56 77.67 72.64 75.07 

T_AUG 80.61 79.0 74.62 76.75 

DCGAN 81.89 86.40 82.05 84.99 
VGG19 

E-DCGAN 83.81 88.15 87.95 88.04 

39m33s 0.472s 

N 83.81 85.50 89.5 87.45 

T_AUG 84.57 85.54 89.74 87.59 

DCGAN 85.47 85.73 90.16 87.89 
AlexNet 

E-DCGAN 86.72 85.96 92.24 88.99 

21m32s 0.251s 

N 86.22 88.0 92.0 89.96 

T_AUG 87.02 88.04 93.26 90.57 

DCGAN 88.62 88.28 94.36 91.22 
ResNet50 

E-DCGAN 89.26 88.46 94.62 91.44 

24m6s 0.284s 

Table 8. Performance improvement of E-DCGAN compared with other methods 

Dataset 
Classification  

models 

Data augmentation 

methods 
Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

N 3.24 1.95 6.77 5.29 

T_AUG 2.09 1.14 6.76 3.88 VGG19 

DCGAN 1.08 0.93 4.15 2.48 

N 0.94 2.02 1.42 1.72 

T_AUG 0.61 1.44 0.54 0.99 AlexNet 

DCGAN 0.29 1.37 0.42 0.90 

N 2.23 4.11 2.13 3.13 

T_AUG 1.69 2.02 1.92 2.16 

dataset1 

ResNet50 

DCGAN 1.51 1.39 1.90 1.64 

N 6.25 10.48 15.31 12.97 

T_AUG 3.20 9.15 13.33 11.29 VGG19 

DCGAN 1.92 1.75 5.90 3.05 

N 2.91 0.46 2.74 1.54 

T_AUG 2.15 0.42 2.50 1.40 AlexNet 

DCGAN 1.25 0.42 2.08 1.10 

N 3.04 0.46 2.62 1.48 

T_AUG 2.24 0.23 1.36 0.87 

dataset2 

ResNet50 

DCGAN 0.64 0.38 0.26 0.22 

Table 9. Average performance of data augmentation methods on different classification models 

Dataset 
Data augmentation 

methods 

Average Accuracy 

(%) 

Average Precision 

(%) 

Average Recall 

(%) 

Average F1-Measure 

(%) 

N 86.38 82.35 83.53 82.60 

T_AUG 87.05 83.51 83.89 83.64 

DCGAN 87.55 83.82 84.81 84.31 
dataset1 

E-DCGAN 88.51 85.05 86.97 85.98 

N 82.53 83.72 84.71 84.16 

T_AUG 84.07 84.19 85.87 84.97 

DCGAN 85.33 86.80 88.86 88.03 
dataset2 

E-DCGAN 86.60 87.52 91.60 89.49 

 

In summary, given the relative data scarcity for crop 

disease images and medical images in training CNN, 

the E-DCGAN data augmentation method, used in this 

paper can improve the classifier and break performance 

the bottleneck of data augmentation technology 

compared with other methods. The accuracy of the 

model on the test set has been dramatically improved, 

further verify the feasibility and effectiveness of E-

DCGAN for data augmentation. 

5 Conclusion 

Based on the background of using EI to process the 

visual information in IoT system, aiming at the 

problem of data scarcity in IoT image recognition task, 

this paper proposes an EI-based generative data 

augmentation system. The system adopts the hybrid 
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architecture of “Edge- Cloud”, applies EI technology 

to the edge computing nodes of the system, and 

expands the data through the generative data 

augmentation model to solve the problem of data 

scarcity. The system is logically divided into training 

phase and operation phase. In the training phase, 

transfer learning is used to perform generative data 

augmentation on the source data close to the target 

field, and use the enhanced data to complete the CNN 

model training; the pre-trained CNN is used in the 

running phase, and the CNN model is continuously 

improved in actual use scenes by establishing an expert 

review and self-learning mechanism. It is worth 

mentioning that this article proposes the E-DCGAN 

model as a generative data augmentation method. The 

model performs spectral normalization on the 

discriminator and generator convolution layer of the 

DCGAN model to improve the performance of the 

model. And use the wasserstein distance loss function 

with gradient penalty to guide unsupervised learning, 

which enhances the feature extraction ability of the 

convolutional layer; at the same time, a dropout layer is 

added at the end of the discriminator network to avoid 

being stuck during the training process (may be at a 

local minimum value or saddle point). In the training 

phase, the E-DCGAN model generated image data is 

applied to the image recognition of the CNNs; the data 

samples are generated through the generative network 

and then mixed into the category samples with less 

original data. Then the balanced dataset is input into 

the classification model for training. In the experiment, 

both agricultural and medical datasets are used, and E-

DCGAN is investigated from image generation effect 

and image recognition. Experiments show that in terms 

of image generation, compared with the other three 

GAN, E-DCGAN improves the quality and diversity of 

the generated images, theoretically solves the 

phenomenon of model collapse, and stabilizes the 

training process of the model. In terms of image 

recognition, the classification model using E-DCGAN 

for data augmentation is significantly higher than other 

data augmentation methods in terms of accuracy, 

precision, recall, and F1-Measure, indicating that E-

DCGAN improves the generalization ability and 

robustness of the model. Not only that, E-DCGAN is 

not limited to a single field. It has good adaptability 

and production effects in agriculture and medicine, and 

it makes up for the vacancy of the IoT system in this 

respect. 
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