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Abstract 

Efficient and collision-free pathfinding, between 

source and destination locations for multi-Unmanned 

Aerial Vehicles (UAVs), in a predefined environment is 

an important topic in 3D Path planning methods. Since 

path planning is a Non-deterministic Polynomial-time 

(NP-hard) problem, metaheuristic approaches can be 

applied to find a suitable solution. In this study, two 

efficient 3D path planning methods, which are inspired 

by Incremental Grey Wolf Optimization (I-GWO) and 

Expanded Grey Wolf Optimization (Ex-GWO), are 

proposed to solve the problem of determining the optimal 

path for UAVs with minimum cost and low execution 

time. The proposed methods have been simulated using 

two different maps with three UAVs with diverse sets of 

starting and ending points. The proposed methods have 

been analyzed in three parameters (optimal path costs, 

time and complexity, and convergence curve) by varying 

population sizes as well as iteration numbers. They are 

compared with well-known different variations of grey 

wolf algorithms (GWO, mGWO, EGWO, and RW-

GWO). According to path cost results of the defined case 

studies in this study, the I-GWO-based proposed path 

planning method (PPI-GWO) outperformed the best with 

%36.11. In the other analysis parameters, this method 

also achieved the highest success compared to the other 

five methods.  

Keywords: Path planning, Multiple UAV, Mobile robots, 

Metaheuristics 

1 Introduction  

Mobile robots are cutting-edge technologies that can 

be employed in numerous unprecedented research 

areas such as Internet of Things (IoT) [1-2], military 

[3], agriculture [4], and health [5]. These robots have 

also been used in Vehicle Ad-hoc Networks (VANETs) 

[6-7] and Flying Ad-hoc Networks (FANETs) [8], a 

subset of the Mobile Ad-hoc networks [9-10], Internet 

of Drones (IoD) [11] and Internet of Vehicles (IoV) 

[12] in the IoT category. In autonomous routing 

techniques of these systems, one of the aims is to find 

safe paths in shortest possible time, effectively using 

the resources. These robots consist of sensors and 

actuators. Furthermore, each robot (node) has a 

processor and a memory. As such it is adequate to state 

that these devices can function as an all-in smart agent. 

Therefore, artificial intelligence-based techniques can 

be easily implemented using these smart nodes. When 

appropriated in interconnected and successive systems, 

it is vital to plan a path for every single mobile 

autonomous device such as UAVs and drones. In this 

paper, the proposed path planning mechanisms, 

inspired by Incremental Grey Wolf Optimization (I-

GWO) [13] and Expanded Grey Wolf Optimization 

(Ex-GWO) [13] are realized for each autonomous 

mobile robot (e.g. UAVs) in different environments, 

containing various obstacles without any collisions. 

Each proposed method attempts to find an almost 

optimal path by eliminating the process of creating 

complex environment models based on stochastic 

approaches. They can be faster and more successful in 

finding the most suitable solutions.  

In literature, many studies have been conducted on 

path planning and mobile autonomous vehicles in 

recent years [14-19], especially on three-dimensional 

path planning [20-23]. The general taxonomy of 3D 

path planning methods is generally consisting of four 

basic areas; sampling-based, node-based optimal 

algorithm, mathematical model-based and nature-

inspired algorithms [24]. The methods in the first three 

categories suffer from high time complexity and local 

minima capture [25], especially where mobile robots 

face multiple constraints when planning a path. 

Therefore, the nature-inspired algorithms, especially 

metaheuristics, can be the most appropriate methods in 

3D path planning. So, in this section, mainly 
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metaheuristic-based studies are discussed. 

In [14] has been presented a new method for a 

mobile robot in an uncertain environment based on 

Firefly Algorithm (FA). It solves the challenges of 

navigation by avoiding the random movement of 

fireflies and minimizing the computational cost. The 

authors defined an objective function, which is 

controlled by the trial and error method. With this 

function, the paths to be chosen are decided. In this 

study, which aim is crowded environments, the choice 

of the obstacle closest to each station is required for 

path planning and an equation has been defined for this 

purpose. However, this equation, which contains very 

few parameters, may not be successful in real and 

complex environmental conditions. Moreover, this 

study focused solely on 2D path planning. In [22] has 

been proposed ground robot based on a new version of 

Ant Colony Optimization (ACO) for 3D path planning. 

It defines a new phenomenon update mechanism and 

constructs various paths between the initial and target 

points of a robot. It avoids obstacles and is used for 

solving the easily falling into local optimum and long 

search times in 3D path planning problems. 

Performance analysis could not be comprehensive by 

comparing this proposed method with only the basic 

ACO method. In addition, generally, it has a higher 

time and space complexity than GWO-based methods, 

this is due to the nature of ACO. 

The GWO algorithm may be more likely to be 

successful than other metaheuristic methods in this 

type of problem on various parameters due to its 

working mechanism. One of the most important and 

effective of the last studies is a GWO-based 3D path 

planning method. Some researchers [26] have proposed 

a new 3D path planning method for multi-UAVs. The 

main important issue is obstacle avoidance that the 

authors in this study, focused on obstacle avoidance 

and their main goal is to find the path with minimum 

cost. In their work, they used the GWO algorithm to 

find an optimal path with minimal cost. According to 

the results of the study, the better path cost with best 

time complexity in the GWO-based method in 

comparison to other methods such as Dijkstra, A*, D*, 

and a few other famous metaheuristic-based methods is 

obtained. In [26] there are three different maps with 

varying number of obstacles. Euclidean distance 

between stations, visited by UAVs, is used to calculate 

the cost of the path. Most of the obstacles in their study 

are located in the center of the maps so that the UAVs 

do not require much effort to reach the destination. 

According to this paper, GWO-based methods, with 

the specific features and advantage of the nature of its 

algorithm, perform a more balanced and better 

performance in similar problems. Therefore, GWO-

based algorithms are sought after in many research and 

application areas due to their balanced behavior 

amongst various metaheuristic algorithms. For this 

reason, this paper uses two variants of GWO and 

propose two novel path planning methods for obstacle 

detection and avoidance, random movement avoidance, 

and optimal pathfinding. In addition, the used methods 

to compare with our proposed methods in this study in 

performance analysis will be GWO-based methods. 

Despite the advantages of the study, [26], two new 

methods that perform better in various sizes and 

conditions environments have been proposed in our 

paper. Ex-GWO based path planning method (PPEx-GWO) 

performs more successfully in larger and crowded 

environments, and I-GWO based path planning method 

(PPI-GWO) method outperforms good results in smaller 

and less populated environments. 

The rest of this paper is planned as follows: In 

Section 2, scenarios are defined including UAV 

positions, environment, and obstacle maps defined 

together with the necessary definitions regarding the 

problem. For this, the fitness function is defined where 

UAVs can find the appropriate path. The proposed 

methods are described together with the relevant 

problems in Section 3. In section 4, simulation results 

are analyzed and discussed. The final section contains 

the study’s conclusions and future works. 

2 Definitions 

The main goal of a 3D path planning method is to 

find optimal paths in a predefined environment, 

containing various obstacles without any collisions. 

The difficulties of path planning in a 3D environment, 

unlike 2D path planning, increases exponentially due 

to the inherent kinematic nature of the environment. 

Furthermore, finding an optimal 3D path planning is a 

Non-Deterministic Polynomial-Time (NP-hard) problem. 

Because the suitable path planning mechanism arises 

from examining all possible paths. However, this can 

be a very costly process, so this study is inspired by 

metaheuristic algorithms. 

The obstacles in the environment are in a different 

position. In the movement space, UAVs must consider 

the Z dimension alongside the X and the Y dimensions. 

Each UAV in the environment find a trajectory 

between the initial (source) and final (destination) 

stations. source and destination denote relative 

coordinates of the source (Xsource, Ysource, Zsource) and the 

destination (Xdestination, Ydestination, Zdestination) positions on 

the map. Each path has a cost during motion from a 

source to a destination. There are different parameters 

that determine this cost between the two points. In 

most studies, cost is calculated using consumption of 

energy, altitude, air pressure, Euclidean distance, and 

velocity. In this paper, the cost between initial and final 

stations (states) is calculated based on the sum of the 

possible tuples Euclidean distance. In each map, the 

positions of the mobile robot marking its trajectory can 

be defined using positions [ps, p1, p2, …, pD]. The cost 

of the optimal path, where each optimal path is the sum 

of distances between tuples from source to the 
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destination is obtained based on Eq.1. Where distancei,j 

demonstrates the distance between two stations [27]. 

 ( , ) ,tan

j D

i j i j

i s

Cost dis ce

=

=

=∑  (1) 

Figure 1 shows the trajectory between the initial and 

final stations. In the trajectory, there are some stations 

that the UAVs movement over stations. The S indicates 

the initial station, and the D is the final station. The p 

presents the possible stations that UAVs can move in 

the environment. The optimized path is generated 

without collision with the obstacles. In each proposed 

method in this study, the cost of each tuple on the path 

is calculated by a fitness function. Therefore, it is 

possible to find an optimum or close to an optimal path 

with a minimum cost between two points. The possible 

optimal path with the proposed methods is represented 

as a sample in Figure 1. The structure of the proposed 

methods is described in detail in section 3. 

 

Figure 1. The generated sample optimal path between 

initial and final stations 

2.1 Maps 

Typically, the first step in path planning is to 

represent the workspace as a map. The presence of 

obstacles in the maps makes the task of finding an 

optimal path a bit complex for the UAVs, but with this 

definition, the scenario becomes more realistic. Where 

the challenge is to avoid the obstacles and to reach the 

final destination giving minimum costs. In this paper, 

two maps have been considered to evaluate proposed 

methods; a medium map and a large map. In Table 1, 

map boundary for both maps is presented. Furthermore, 

there are three UAVs with distinct initial and final 

positions. These three-dimensional points of UAVs are 

given in Table 2. Furthermore, the number of obstacles 

for each map is different, positions of the obstacle are 

listed in Table 3. 

Table 1. 3D map boundary 

Map Start boundary End Boundary 

Medium map (0,0,0) (100,100,100) 

Large map (0,0,0) (150,150,150) 

Table 2. 3D map UAV initial and final positions 

Small map Large map  

UAV 1 UAV 2 UAV 3 UAV 1 UAV 2 UAV 3 

Initial (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 50, 0) (0, 100, 0) 

Final (50, 50, 50) (150, 150, 150) (150, 150, 150) (150, 150, 150) (100, 50 100) (100, 0, 100) 

Table 3. 3D obstacles coordinate for each map 

Obstacle numbers Medium map Large map 

1 (5, 7.5,4) - (10,20,15) (5, 7.5,4) - (10,20,15) 

2 (20, 5, 10) - (44,44,36) (20, 5, 10) - (44,44,36) 

3 (8, 30, 4) -(10,34,28) (1,5,14) – (3,6,16) 

4 (17, 14, 17) - (19,16,21) (0,15,1) − (7,16,3) 

5 (22, 5, 0) - (23, 5, 100) (0,18,4) − (10,13,6) 

6 (15, 5, 0) - (16, 0, 100) (0,7,2) − (4,5,5) 

7 (19, 1, 0) - (19, 6, 100) (4,0,2) − (7,5,6) 

8 (25, 6, 0) - (25, 8, 100) (0,15,0) − (10,20,1) 

9  (7,8,9) – (10,11,12) 

10  (5,89,140) - (5,90,144) 

11  (9,15,2) – (12,19,6) 

12  (85, 15, 23) – (86, 16, 26) 
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3 Proposed Methods 

As mentioned before, one of the most significant 

and contemporary problems in robotics is 3D path 

planning for mobile robots (e.g. UAVs). It is necessary 

to find an optimal (or close to optimal) path between 

initial and final stations for robots to move without any 

intervention. The obtained path contains the tuple of 

solutions. The sum of each possible tuple in the 

obtained path gives the path cost and the least costly 

path is used as the optimal solution for each method. 

As such, in this paper new 3D path planning methods 

are presented for autonomous UAVs. This study 

proposes two novel path planning methods for obstacle 

detection and avoidance, random movement avoidance, 

and optimal pathfinding. These methods are also 

intended to be useful for various purposes in different 

environments. The name of these methods, which have 

been inspired by the Incremental Grey Wolf 

Optimization (I-GWO), and Extended Grey Wolf 

Optimization (Ex-GWO) metaheuristic algorithms [13], 

are Path Planning based on I-GWO (PPI-GWO) and Path 

Planning based on Ex-GWO (PPEx-GWO). In these 

proposed methods, each UAV will use the equations of 

the relevant metaheuristic algorithm, which are 

explained in the below subsection, to decide the most 

appropriate selection at the next station transition from 

the current to each next station. In each step, the cost of 

each possible path between tuple stations is calculated. 

This process will continue till reaches to a destination 

station. In the end, the obtained path cost of selected all 

stations will be also calculated by the defined fitness 

function. 

3.1 I-GWO and Ex-GWO: Grey Wolf 

Algorithms 

These metaheuristic algorithms are inspired by grey 

wolves in their natural habitat, where their natural 

behavior is mathematically modeled. The main 

behavioral traits of the wolves are encircling, hunting, 

and attacking the prey. There are four types of wolves 

in each pack; alpha (α), beta (β), delta (δ), and omega 

(ω). Each wolf has different responsibilities in the pack. 

The wolf’s responsibilities are different in the group. 

Grey wolves encircle the prey during the hunt. In both 

algorithms, the omega wolves, which are a set in the 

pack, update their positions according to the defined 

equations. To model this behavior mathematically in I-

GWO and Ex-GWO, Eq. 2 and 3 are proposed. Both 

equations are applied similar to these algorithms. 

Where t indicates the current iteration, T demonstrates 

the total iterations, X
�

 indicates the position vector of a 

wolf. Also, D is a vector that depends on the location 

of the target. The coefficient vectors A
�

, and C
�

 are 

considered to lead in encircling their prey (Eq. 4 and 5). 

These parameters control the tradeoff between 

exploration and exploitation phase in both I-GWO and 

Ex-GWO. Also, a
�

 is linearly decreased from 2 to 0 

over the courses of iteration. It is used to get closer to 

the solution range and r1 and r2 are the random vectors 

in range of [0, 1]. The a
�

 is defined by Eq. 6 for the I-

GWO and Eq. 7 for the Ex-GWO algorithm. Besides, 

there are two positions for each leader (alpha) in the 

pack; attack, or search. When | |A
�

 is less than 1, the 

wolves in the pack attack to hunt, otherwise they try to 

find prey to be hunted. In this way, these algorithms try 

to find possible solutions in the whole area. 

 | ( ) | ( ) |,
p

D C X t X t= ⋅ −

�� �� ���� ���

 (2) 

 ( 1) ( ) ,
p

X t X t A D+ = − ⋅

��� ���� �� ��

 (3) 

 
1

2 ,A a r a= ⋅ −

�� � �� �

 (4) 

 
2

2 ,C r= ⋅

�� ��

 (5) 

 
2

2
2(1 ),

t
a

T
= −

�

 (6) 

 2(1 )
t

a
T

= −

�

 (7) 

The hunting mechanism I-GWO algorithm for the 

wolves in the pack is based on the leader (alpha) wolf. 

In the I-GWO algorithm, the wolf at the top of the 

hierarchy is the leader wolf and the remaining wolves 

in the pack are others. In the prey hunting mechanism, 

the other wolves in the pack followed the leader wolf. 

It is assumed that the leader (alpha) has the best 

knowledge about the prey position. In this way, the 

remaining wolves in the pack update their own position 

based on this leader position. The other wolves in the 

pack that should update their own position to prey on 

the prey follow Eq. 8 to 10.  

 | |,D C X X
α α α
= ⋅ −

���� ��� ���� ���

  (8) 

 
1 1

,X X A D
α α

= − −

��� ���� ��� ����

  (9) 

 
1

1

1
( 1) ( );

1

n

n i

i

X t X t
n

−

=

+ =

−
∑

����

n = 2, 3, …, m  (10) 

In Ex-GWO first three wolves; alpha, beta, and delta 

wolves, all have the best knowledge about the prey. 

The fourth wolf in the pack updates its own position 

based on alpha, bets, and delta wolves. The fifth wolf 

updates its own position using the positions of the first 

three wolves and the fourth wolf. As such, the nth wolf 

updates its own position based on the first three wolves 

in the pack and the n-3 wolves before it. So, the wolves 

benefit more from the pack’s knowledge in order to 

hunt and attack. In Ex-GWO, the hunting mechanism 
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follows Eq. 11 to 13. Figure 2 shows the working 

mechanisms of both algorithms considering exploration 

and exploitation phases. 

 

(a) I-GWO 

 

(b) Ex-GWO 

Figure 2. Working mechanism by considering exploration and exploitation  

1 1 1 2 2 2 3 3 3
| |, | |, | |,D C X X D C X X D C X X= ⋅ − = ⋅ − = ⋅ −

��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ���

(11) 

1 1 1 1 2 2 2 2 3 3 3 3
, , ,X X A D X X A D X X A D= − ⋅ = − ⋅ = − ⋅

��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ���

(12) 

 
1

1

1
( 1) ( );

1

n

n i

i

X t X t
n

−

=

+ =

−
∑

����

n=4, 5, …, m   (13) 

3.2 PPI-GWO and PPEx-GWO: Path Planning 

Methods based on I-GWO and Ex-GWO 

The structures and defined equations for the above 

metaheuristic algorithms are used to propose 3D path 

planning methods. In the proposed methods of study, 

each UAV starts from the initial stations based on the 

predefined configurations. Then, the next station for 

UAVs should be selected. In this step, the next station 

of each UAV is elected according to the defined 

suitable equations in PPI-GWO and PPEx-GWO. The 

selected stations are aimed to be the choices that will 

create the optimal path. With each proposed method, 

all stations are selected and their costs are calculated. 

According to the working mechanisms of the proposed 

methods, a path is determined for each wolf at the end 

of maximum defined iteration and the path of alpha 

wolf is accepted as the best solution to each UAV. The 

optimal selection of stations is obtained in PPI-GWO are 

based on Eq. 10 while the PPEx-GWO are based on Eq. 13, 

as is presented in Algorithm 1. The path achieved will 

be a collision-free and optimal cost path. Some of the 

advantages of the proposed methods are simplicity, 

flexibility, derivation-free mechanism, and local 

optima avoidance. In addition, fewer parameters are 

needed to control them. Therefore, they may be 

effectively used for real problems with expensive or 

unknown derivative information. The mechanism of 

the iterations of both methods is presented in Figure 3 

as an example of optimal path selection between each 

UAV between the S and D stations. 
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Figure 3. At the end of iterations, the best solution is 

chosen in proposed methods 

For the realization of the proposed methods, we will 

use the map information and fitness function defined in 

section 2. The map, obstacles, and initial and final 

stations of each UAV are described in the previous 

section. In this study, the number and positions of 

stations (UAV’s stopovers) and obstacles are 

predefined similar to other studies in literature [13, 23-

26]. In proposed methods a station pool is employed, 

which includes defined stations. In the first step, these 

stations are randomly created, furthermore, they can be 

predefined by the user. Figure 4 shows a 3×n matrix 

depicting a station pool as a sample. Each station in the 

pool is a possible position for a UAV that can choose 

as the next station. This pool is used to control the 

UAV movement in the area. Besides, by using the 

information of this pool, it may be possible to avoid 

obstacles. 

 

Figure 4. Stations pool that each state has ordinates 

Primarily, the proposed methods initialize the 

random position matrix. Each row of position matrix 

defines the path, and the columns represent the number 

of steps, in the path, to the destination. These number 

of steps are denoted as p. The ( , , )m m m

n n n
x y z  presents 

coordinates of each station where m is the 

aforementioned index of stations and n is the number 

of search agents in each method (Table 4). The search 

agents are the configuration parameter of the 

metaheuristic algorithms. Then, for each metaheuristic 

algorithm, a search space, based on the position matrix, 

is initialized. The search space is shown in Table 5, 

which represents the distance between tuples. In this 

table, each row represents a path length. Each element 

of the row shows the distance between two points as 

( , )

n

i j
d , where i is the current station and j is the previous 

station. Furthermore, n is in the number of search 

agents. Besides, in the proposed methods is calculated 

the path cost based on a fitness function that was 

presented in the Eq.1.  

Table 4. The position matrix of each path 

path 1 2 �  p 

1 1 1 1

1 1 1
( , , )x y z  

2 2 2

1 1 1
( , , )x y z �  

1 1 1
( , , )p p p
x y z  

2 1 1 1

2 2 2
( , , )x y z  2 2 2

2 2 2
( , , )x y z �  2 2 2

2 2 2
( , , )x y z

�  �  �  �  �  
n 

1 1 1( , , )
n n n
x y z  2 2 2( , , )

n n n
x y z �  ( , , )p p p

n n n
x y z  

Table 5. The search space that represents distance 

between tuples 

path 1 2 �  p 

1 1

(1, )sd  
1

(2,1)d  �  1

( , 1)p p
d

−

 

2 2

(1, )sd  2

(2,1)d  �  2

( , 1)p p
d

−

 

�  �  �  �  �  
n 

(1, )

n

s
d  (2,1)

n

d  �  
( , 1)

n

p p
d

−

 

 

In the next step, the proposed methods calculate the 

distance between tuple for each station in the pool. In 

this case, we have a distance cost (d) between current 

station and next candidate stations. The d includes two 

values, first is the distance between current and next 

station, and second is the distance between next and 

destination station. However, the metaheuristic 

algorithms find one best solution for next station of 

each current station. If the distance of possible next 

stations is smaller than the obtained value from 

metaheuristic algorithms (w), the relevant station with 

minimum value is selected as elected next station. 

Otherwise, the UAV chooses the achieved solution of 

the metaheuristic algorithms as next station (Algorithm 

1). The methods aim to reduce the cost of each path. 

The proposed methods try to find the optimal path with 

minimum cost for multi-UAVs. In this study, there are 

three UAVs that have a dissimilar start (initial) and 

final (destination) stations. The results obtained from 

this method are explained in the analysis and results 

section. Pseudocodes of proposed path planning 

methods (PPI-GWO and PPEx-GWO) can be found in 
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Algorithm 2 and Algorithm 3, respectively. 

 

Algorithm 1. Pseudocode of node (station) selection

1. Station is array of candidate stations 

2. w= distance obtained from metaheuristics  //Eq. 10 

and 13 

3. d=The list of distances 

4. For each station (i) in pool 

5. di = distance between current and next stations + 

distance between next and destination stations 

6. End For 

7. MinDist=Min(d)  // Min function indicates 

minimum distance in the list 

8. if (MinDist < w) 

9.           Select station with minimum distance as 

next station 

10. Else  

11.          Select station by metaheuristics as next 

station   

12. End if 

 

Algorithm 2. Pseudocode of path planning using I-

GWO (PPI-GWO) 

1. Initialize grey wolf population Xi (i=1, 2, …, n) 

2. Initialize A, C and a                     //Eq. 4, 5, and 6 

3. Initialize Positions matrix and search space 

4. Calculate fitness of each agent    //Eq. 1 

5. Xα = best search agent  

6. While (t< Max number of iterations) 

7.     For each search agent 

8.         Update position of current search agent 

//Alg. 1  

9.     End For  

10. Update a, A and C 

11. Calculate fitness of all search agents     

12. Update Xα 

13. Insert Xα to best Positions matrix 

14. Update search space matrix 

15. t = t +1  

16. End While 

17. Return Xα  

 

Algorithm 3. Pseudocode for path planning using 

Ex-GWO (PPEx-GWO) 

1. Initialize grey wolf population Xi (i=1, 2, …, n) 

2. Initialize A, C and a                     //Eq. 4, 5, and 7 

3. Initialize Positions matrix and search space  

4. Calculate fitness of each agent    //Eq.1 

5. Xα = best search agent  

6. Xß = second-best search agent 

7. Xδ = third best search agent 

8. While (t < Max iterations) 

9.     For each search agent 

10.        Update position of current search agent   //Alg. 

1 

11.     End For  

12. Update a, A and C  

13. Calculate fitness of all search agents  

14. Update Xα, Xß and Xδ 

15. Insert Xα to best Positions matrix 

16. Update search space matrix 

17.   = t +1  

18. End While 

19. Return Xα  

 

4 Simulation Results 

This section presents the results of the proposed 

methods and evaluates their performance. The 

proposed methods are compared with GWO [26], 

mGWO [28], EGWO [29], and RW-GWO [30] in the 

same environmental conditions. The simulation and 

analysis presentation has been performed using 

MATLAB. The proposed methods and other used 

methods to compare are simulated on a Core i7-5500 U 

2.4 processor with 8GB of RAM. In simulations, two 

maps (medium and large), presented in Table 1, with 

different starting and ending boundaries have been 

used. Furthermore, the initial and final stations of three 

UAVs were presented in Table 2, whereas the 

obstacles coordinates were explained in Table 3. All 

the coordinates are presented in three-dimensional 

space. The performance analysis parameters are cost 

analysis, execution time analysis, and convergence 

curve analysis. The population sizes and iterations 

numbers as given in couple-tuples form: (25, 40), (50, 

100), (100, 100). 

4.1 Analysis and Evaluation (Costs of Distance 

Traveled) 

In this section, both of the proposed path planning 

methods are analyzed based on the cost function (Eq.1). 

All of the cost values obtained are in centimeters. As 

metaheuristic algorithms may obtain different as well 

as close to best solutions, we run each algorithm 10 

times. The best, worst, and average cost values 

(distance traveled in cm) are presented with different 

population sizes and iteration numbers (see Table 6 

and Table 7). Each proposed method has three UAVs 

with different starting and final positions. Briefly, each 

path planning method runs in the 3 different 

populations and iteration sizes on two maps. 
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Table 6. Simulation results of each path planning methods for medium map 

UAV1 COST 

(cm) 

UAV2 COST 

(cm) 

UAV3 COST 

(cm) Methods pop Iter. 

Best Ave Worst Best Ave Worst Best Ave Worst

Overall 

time 

(sec) 

PPGWO 25 40 261 324 377 204 217 233 241 277 307 6.241 

PPI-GWO 25 40 255 295 323 202 215 223 224 279 324 7.914 

PPEX-GWO 25 40 284 314 348 199 213 234 225 277 335 10.605 

PPmGWO 25 40 289 325 380 207 218 239 239 280 324 10.078 

PPEGWO 25 40 265 320 381 198 215 227 234 279 320 9.714 

PPRW-GWO 25 40 260 300 331 198 213 223 237 279 328 6.981 

PPGWO 50 100 239 297 341 192 213 225 236 241 246 49.601 

PPI-GWO 50 100 236 280 320 197 206 215 222 226 235 43.491 

PPEX-GWO 50 100 242 314 352 201 209 220 223 237 256 46.879 

PPmGWO 50 100 270 310 370 201 213 231 237 250 269 50.147 

PPEGWO 50 100 250 306 369 194 210 221 223 248 270 50.098 

PPRW-GWO 50 100 239 299 345 192 217 229 235 243 250 49.641 

PPGWO 100 100 239 293 346 191 208 220 213 224 234 128.26 

PPI-GWO 100 100 241 276 318 204 206 211 217 221 224 128.21 

PPEX-GWO 100 100 239 290 331 191 198 206 213 226 231 118.05 

PPmGWO 100 100 275 292 350 190 200 211 241 239 241 128.32 

PPEGWO 100 100 260 311 349 194 208 219 230 243 240 128.27 

PPRW-GWO 100 100 253 299 351 190 207 220 215 227 237 128.08 
* The best values are bold. 

Table 7. Simulation results of each path planning methods for large map 

UAV1 COST 

(cm) 

UAV2 COST 

(cm) 

UAV3 COST 

(cm) Algorithm pop Iter. 

Best Ave Worst Best Ave Worst Best Ave Worst 

Overall 

time 

(sec) 

PPGWO 25 40 363 483 616 419 775 1204 397 432 455 7.933 

PPI-GWO 25 40 363 470 558 464 626 785 388 431 472 7.791 

PPEX-GWO 25 40 419 486 584 348 581 874 389 416 457 11.014 

PPmGWO 25 40 401 484 602 421 770 1219 400 435 458 9.147 

PPEGWO 25 40 420 489 581 360 619 903 397 427 472 8.172 

PPRW-GWO 25 40 370 488 601 410 690 1107 395 438 467 8.047 

PPGWO 50 100 374 444 528 340 489 674 362 381 399 84.569 

PPI-GWO 50 100 383 452 512 344 479 645 345 371 395 72.626 

PPEX-GWO 50 100 358 453 557 378 527 606 343 368 398 77.990 

PPmGWO 50 100 375 450 546 340 493 680 368 386 402 73.541 

PPEGWO 50 100 385 459 521 346 481 651 351 378 401 73.083 

PPRW-GWO 50 100 373 450 527 346 499 679 367 393 407 83.146 

PPGWO 100 100 365 433 468 328 385 429 348 356 360 153.763 

PPI-GWO 100 100 374 430 482 322 353 393 346 354 361 161.690 

PPEX-GWO 100 100 352 448 547 339 363 383 338 346 355 142.403 

PPmGWO 100 100 368 436 479 333 387 421 357 361 372 160.054 

PPEGWO 100 100 372 438 483 324 359 409 338 355 369 162.429 

PPRW-GWO 100 100 365 438 465 330 386 427 351 358 369 156.809 
* The best values are bold. 

Among the proposed methods in this study, PPI-GWO 

gives best results compared to the other methods. Table 

8 presents the ranking summary of each method. This 

table shows the percentage of algorithms obtaining the 

minimum cost. According to the obtained simulation 

results, in general, PPEx-GWO performed more 

successfully in larger and crowded environments, 

while PPI-GWO method gave good results in smaller and 

less populated environments. This is due to the fact 

that I-GWO only acts on the alpha wolf. However, Ex-

GWO based methods involve all group members. 

Indeed, the PPEx-GWO may be better in applications in 

an environment with a larger workspace and many 

obstacles. The main reason for this is that in the Ex-

GWO method, almost all wolves in the pack have an 

important role in each other’s position update. 

Therefore, the wolves in the pack minimize the escape 

paths of the hunt (prey), and hence, the hunts can be 

caught faster. The fact that this mechanism can be 

better than other methods can be seen more clearly in 

large and crowded environments. The I-GWO basic 

update process is very dependent on the alpha setup. 

Therefore, the speed of growth and the selection of the 

right places for the first wolf is of great importance. In 

this method, there is the possibility of finding problem 

solutions (preys) much faster in fewer iterations.  
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Table 8. Ranking summary of path planning methods 

in cost parameter 

Algorithm Success Rate (Percent) Rank 
PPGWO %13.89 3 

PPI-GWO %36.11 1 

PPEX-GWO %33.33 2 

PPmGWO %5.55 5 

PPEGWO %2.78 6 

PPRW-GWO %8.34 4 

 

In Figure 5, all the paths generated for different 

maps have been shown in a perspective view. As 

mentioned before, there are three UAVs on each map. 

The balls show the initial state of each UAV and stars 

indicate the destination state of each UAV. The results 

show that both proposed methods generate optimum 

paths without any collision. This is a noteworthy issue 

to mention that is the experiments demonstrate that the 

metaheuristic algorithms need at least 40 iteration 

numbers and 25 population sizes for the optimal path. 

After that, the metaheuristic algorithms are less likely 

to decrease the cost of the path. Therefore, the 

movement model of the proposed methods on the maps 

is only be shown according to this number of 

populations and iterations.  

 

  

(a) 3D path planning by I-GWO in medium map (b) 3D path planning by Ex-GWO in medium map 

  

(a) 3D path planning by I-GWO in large map (b) 3D path planning by Ev-GWO in large map 

Figure 5. Generated optimal paths in PPI-GWO and PPEx-GWO for medium and large map; population:25 and iteration: 

40 

4.2 Analysis and Evaluation (Execution Time 

and Complexity) 

The second analysis parameter is execution times. 

The results of this parameter are presented in Figure 6 

for the different populations and iterations of each of 

the five methods. The proposed algorithms should sort 

the entire possible set of stations for each element of 

the search space. The analysis of the time complexity 

for the proposed algorithms is O(n2). Also, the 

execution time of PPI-GWO is better than others. In the I-

GWO, each wolf updates its own position based on all 

the wolves selected before. In the first step, there is one 

wolf. If there are n wolves in a pack, the nth wolf 

updates its own position based on n-1 wolves’ position. 

Among the used algorithms, the I-GWO-based path 

planning algorithm, which employs three UAVs in 

parallel, takes the minimum time to reach the 

destination. In Ex-GWO algorithm, each pack member 

has more roles and contributions compared to other 

algorithms, which results in this algorithm consuming 

more execution time than PPI-GWO. When all methods 
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are evaluated in terms of execution time and 

complexity, it is shown that the I-GWO-based path 

planning method is a more suitable approach.  

 

Figure 6. Execution time analysis for different maps in each method 

4.3 Analysis and Evaluation (Convergence 

Curve) 

Figure 7 present the convergence curve of each path 

planning method. As aforementioned, the obstacle 

numbers and the boundary sizes of the map are 

declared in the section 2. PPI-GWO and PPEx-GWO 

methods have different structures with respect to 

exploration and exploitation. The presented figure 

illustrates the convergence curve of algorithms with 40 

iterations and 25 population sizes. In PPI-GWO, crossing 

from exploration to exploitation phase is faster 

compared to other methods. According to the results 

and the figure obtained, regarding PPI-GWO algorithm, 

UAVs reach near-optimal path earlier than when using 

other methods. In the analysis, we considered different 

iteration sizes to get the size of optimal iteration. As a 

result of observations, it was concluded that 40 

iterations are enough to find the best path because 

achieved results have not a remarkable difference [26]. 

Continuing with further iterations, it was found that 

same results are being obtained. The acquired 

outcomes also indicate the execution time of 

algorithms is variable in the maps. Due to the number 

of obstacles and the map boundary, different results are 

collected. Also, while using three UAVs with different 

initial and final station behaviors in the convergence 

curve analysis, it is shown that the obstacle number has 

an effect on the path cost. 

5 Conclusions and Future works 

The novelty of this paper is to apply two new 

variants of the GWO algorithm to solve the 3D path 

planning problem for autonomous UAVs. They find 

collision-free paths with optimum cost. In this study, 

there are two different maps with various obstacles, 

furthermore, three UAVs with different start and final 

stations have been used. The proposed methods (PPI-

GWO and PPEx-GWO) have been analyzed in terms of 

optimal path costs, time complexity, and convergence 

curve by varying population sizes as well as iteration 

numbers. The simulation results demonstrate that the 

proposed 3D path planning methods choose the 

optimal cost path across from the initial to final 

stations without collision. According to path cost 

results of the defined case studies in this study, PPI-GWO 

outperformed the best with %36.11. In the analysis of 

other parameters, this method also achieved the highest 

success compared to other methods. However, in 

general, PPEx-GWO performs more successfully in larger 

and crowded environments, and PPI-GWO method 

outperforms good results in medium and smaller-sized 

environments. This is due to the nature of the working 

mechanisms of the proposed methods. These methods 

are convenient for the environment with distributed 

obstacles. In future work, the proposed 3D path 

planning methods can be employed for IoT, and 

connected vehicles with VANET and FANET 

structures. 
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Figure 7. Convergence analysis for each UAV on the two different maps in 25 population and 40 iterations 
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